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Featured Application: Training neural networks to solve inverse electromagnetic problems.

Abstract: The spread of high-performance personal computers, frequently equipped with powerful
Graphic Processing Units (GPU), raised the interest on a set of techniques able to extract models of
electromagnetic phenomena (and devices) directly from available examples of the desired behavior.
Such approaches are collectively referred to as Machine Learning (ML). A typical representative ML
approach is the so called “Neural Network” (NN). Using such data-driven models allows evaluating
the output in a much shorter time when a theoretical model is available, or allows predicting the
behavior of the systems and devices when no theoretical model is available. With reference to a
simple yet representative benchmark electromagnetic problem, some of the possibilities and the
pitfalls of the use of NN for the interpretation of measurements (inverse problem) or to obtain the
required measurements (optimal design problem) are discussed. The investigated aspects include
the choice of the NN model; the generation of the dataset(s); the selection of hyperparameters
(hidden layers, training paradigm). Finally, the capabilities in the handling of ill-posed problems
are critically revised.

Keywords: machine learning; magnetic field analysis; optimal design; inverse problems

1. Introduction

Computerized analysis is frequently used to recover field sources or device structure from
measurements using numerical computations [1,2]. This process implies the repeated resolution of
an electromagnetic problem, under different trial values of inputs (either sources or system
parameters). The presence of measurement noise, the consideration of manufacturing and assembly
tolerances, the inclusion of ferromagnetic materials or the consideration of complex, three-
dimensional geometries add relevant computational efforts to the process. Several measures have
been proposed to simplify or speed-up the analysis, basically trading off accuracy in the evaluation
of the distance of trial data from the actual measurements with promptness.

Alternatively, Machine Learning (ML) and Deep Learning (DL) models can be used for a
straightforward resolution of inverse problems or optimal design ones, trying to train NN to build
an (approximated) relationship between the desired output (e.g. sensors reading) and the trial values
of the degrees of freedom (e.g. radii or currents of coils, when considering magnets) starting from
available examples of the desired output [3-7]. Examples can be obtained by solving a reduced set of
instances for the computationally demanding problem, or even be extracted for experimental data.

Note that the construction of an approximate model from available experimental data could
reveal the sole possibility in cases where a theoretical problem formulation is not available. This could
happen either when a model based on the laws of physics is not available or too complex to be
reduced to a set of equations manageable in the due course of an iterative process.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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In addition, the resulting problem, either the inverse one or the design one, shows an ill posed
nature, being prone to multiple solutions [8,9]. This aspect has been counteracted in many ways, and
some precaution must be taken also when using data-driven models.

In previous works the authors proposed several ML models both for solving the direct [10-14]
model and the inverse model [15-17], focusing the attention on the optimization through the use of
the direct model, and highlighting the difficulty behind the inverse models.

Data-driven models can be obtained following different approaches [8,10], including the
classical statistical regressions or the most modern Deep Neural Networks. Each approach presents
advantages and drawbacks, which must be comparatively assessed. In addition, the hyper-
parameters shaping the approach (e.g. the number of hidden neurons in the NN case) must be
carefully chosen to obtain the best balance between promptness and accuracy. This work presents a
detailed analysis of the learning process for a set of NN models of a benchmark inverse problem. The
data used to train the model are generated by FEM or analytical formulations.

The main aspects investigated in this work include:

e  Training and testing ML approaches to solve direct and indirect electromagnetic problems;
e  Selection of the ML model;

e  Selection of the model hyper—parameters;

e  Dataset generation;

e  Regularization approaches;

¢  How machine learning treats ill posed inverse problems.

In the following, with reference to a simple yet representative benchmark problem, we will
compare the standard Shallow Neural Networks (SNN) [18,19] with a more recent model, namely
Convolutional Neural Networks (CNN) [20,21]. For the sake of comparison, also a support vector
machine, as an example of regression model, will be introduced.

2. The Benchmark Problem

To compare different approaches, we adopt here the benchmark problem TEAM 35 [22]. A multi-
turn air-cored coil is considered. The coil is composed of n=20 independent turns. The width of each
turn is w = 15 mm and the height is h = 10 mm. Hollow turns are assumed to allow for water
circulation. In the following we will assume symmetric currents distribution among the uppermost
10 coils and the lowermost ones. Consequently, only half of the model is needed to compute the field
(see Figure 1la). For evaluating the field, a two-dimensional controlled region is considered,
(delimited by curves Sy, ... Sz in Figure 1a). The two components Br and B along axes r and z of the
flux density field B are sampled on a grid evenly spaced in a square region with a side length of 60
mm, which is denoted as the Region Of Interest (ROI). Underlying sensors could be, e.g., Hall Probes.
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Figure 1. A sketch of the TEAM 35 benchmark problem: compute the magnetic field components
along the red lines generated by a set of coils with radii Ri, Ry, ...Ruo. (a): the problem geometry, (b):
an example of field map.
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To train the shallow neural network and the support vector regressor, we firstly consider a grid
of np=10x10 field points, taking the values along the boundaries S1, ... S3 and the line y, while for the
training of the convolutional neural network we consider a grid of ny=20x20 field points, taking all
the internal values of the square region of interest.

The magnetic analysis is based on the Finite Element (FE) method. An example of field map is
shown in Figure 1b.

In the TEAM 35 version considered here, the aim of the inverse problem is to identify the radii
and the currents in the coils to generate a prescribed flux density map B(r,z). In the original
formulation, the map is uniform, with B = B2, within a region adjacent to the symmetry plane z=0
(lines S1, S2 and Ss in Figure 1), and with an amplitude as small as possible along an external segment
of the symmetry axis (line y in Figure 1). To evaluate the field uniformity in the inner RO, the
magnitude of B is “measured” in Np = 30 field points, evenly spaced on the boundary of the ROI. On
the other hand, in order to guarantee the minimum field amplitude on v, the field is “measured” on
Nk = 10 points along v. In particular, the set of measurements includes 60 real values, which
correspond to 10 Br and 10 B: measurements evenly spaced along lines S1 and S2 respectively, 10 B
values measured along line Ss, and 10 B: values along line . In this paper, we maintain a similar
formulation of the inverse problem, where we aim to identify the radii and the currents
correspondent to randomly generated flux density measured in the measurement’s points.

Figure 2 shows the main characteristics of the variables involved in the problem. Note that when radii
of all coils are known, the relationship between currents and flux density values is linear. The matrix
mapping the current in each coil onto each single measurement is known as Lead Field Matrix (LFM).
On the other hand, when the radii are among the degrees of freedom, the inverse problem gets non-
linear, and the LEM must be, in principle, be re-assembled for each trial configuration. One of the
advantages of the ML approaches is that the reassembly of the LEM is not required, as the NN directly
extracts from data the relationship between field values (measurements) and the degrees of freedom
(radii and currents).

Sources

10 Radii lengths in mm
Uniformly distributed in [97.5 , 117.5] mm
(20mm range)

Measurements

60 Field Values across € border and v:

(Br, Bz) across 10 points on 81 (20 values)
(Br, Bz) across 10 points on Sz (20 values)
Bz across 10 points on S3 (10 values)
Bz across 10 points on y (10 values)

10 Currents values
Uniformly distributed in [-40, +40] A
(80 Arange)

€2 60x60 mm Region of Interest

Figure 2. Characteristics of the sources and of the measurements of the benchmark problem.
More details on the benchmark problem geometry can be found in [10].

3. Considered Machine Learning Models

The machine learning models analyzed in this work will be used in different modalities:

- a”Direct Problem” (DP), where examples of the radii/currents set and of the corresponding flux
density values are used to create a model able to generate the target field map, hence replicating
the LFM from the radii. The direct model is then used within traditional optimization or inverse
problem resolution algorithms;

- afirst class of “Inverse Problem” (IP#1), where measurements (inputs) and currents (outputs)
are used to create a model of the underlying linear map. In this case, radii are assumed known,
and the linear model is related to the (pseudo-)inverse of the LFM.
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- asecond class of “Inverse Problem” (IP#2), where the currents are known and provided as input
together with the measurements, while the outputs are the radii;
- finally, a third class (IP#3), where both currents and radii (the outputs) must be recovered from
field measurements, which are the only inputs in this case.
Figure 3 shows the input and output of each defined problem. As anticipated, different ML
approaches are available to create data-driven behavioral models. In this study, we have considered
the following ones:

DIRECT PROBLEM

|2 Radii_|——»{ machine Leamin/ 8-
ot~ Model

INVERSE PROBLEMS

Inverse Problem 1

Inverse Problem 2

ILadiil—b Machine Learnin/ I 10 Currents. I—b Machine Learnin/
Deep Learning Deep Learning
I 60 Field Values I—' Model I 60 Field Values I—P Model
Inverse Problem 3
ine Learnin/ —t! 10 Radii I
60 Field Values Deep Learning
Model —il 10 Currents I

Figure 3. Definition of the direct and inverse problems.

Shallow Neural Networks (SNN) [18,19]: this is the standard approach: an artificial neural
network with a single hidden layer with logistic activation functions. In the DP, Ni input neurons
(corresponding to the radii), Nh hidden neurons and No output neurons (the elements of the
LFM) are trained to provide the output. While Ni=10, the LFM will be represented by a reduced
number of real numbers, corresponding to the main components in a PCA analysis based on the
correlation analysis of the measurements. The full matrix is then recovered by exploiting the
components identified in the PCA. In the inverse problems IP#1, IP#2 and IP#3, the SNN is used
a straightforward solver, and the meaning of output neurons depends on the type of considered
problem. This point will be further discussed below.

The number Nh of hidden neurons is varied to assess model capabilities. The different SNN's
are trained using Levenberg-Marquardt Bayesian Regularization approach [23], which
minimizes the weights together with the discrepancy on the data. Early topping is performed by
means of worsen performance on a validartion set.

Convolutional Networks (CNN) [20,21]. This class of NN will be considered for IP#3 only. A
higher number of hidden layers is present here, and the network can be named “deep”. The
inner layers are classified as “convolutional” and “pooling”, with different associated actions on
the data. The activation functions are in this scheme the “ReLU” functions. This model has an
intrinsic capability of building a reduced order inner model, which can be exploited to cope with
the highly correlated nature of the input, represented by the flux density map in the ROIL The
ADAM algorithm is used to train the CNN.

In order to compare ML with more traditional statistical regression approaches, we have also
considered Support-Vector Regression (SVR) [24,25] for the inverse problems. SVR training
algorithm builds a linear model in a higher dimensional space exploiting the so called “kernel
trick” by minimizing a quadratic objective function which is a combination of the Euclidean
norm of the weights of the linear model and the sum of the so called slack variables, which
represent a threshold of the maximum absolute deviation between the predicted and target
values. The LIBSVM implementation of the SVR was employed

The hyper-parameters of the SNN and SVR models where selected using an exhaustive K-Fold
Grid Search Cross Validation approach, using K=10 and a defining adequate ranges for the optimized
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hyper-parameters. The CNN architecture was selected using a trial and error heuristic approach,
which is common for complex deep learning models.
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Figure 4. Representation of a random geometry, coils numbering and ROL

4. Results

To assess the different models, 26000 examples have been generated using a FEM solver to
compute the flux density in the measurement points. Examples have been arranged according to radii
values, to identify different subsets with the same LFM, and divided into Training and Test sets,
according to the 70/30 rule.

4.1. Direct Problem

In a first study we trained different SNN on the DP. The metric adopted here to compare the
accuracy ofthe different predicted currents or radii is the Normalized Mean Absolute Error%
(NMAE%).

1
m ZNtestlypred - Ytrue|

0fs —
NMAEY =100 maX(Ytrue) - min(Ytrue).

NMAE% is an alternative metric that overcomes the limitations of more classical Mean Absolute
Percentage Error in situations involving data that can be negative or close to zero. NMAE normalizes
the error by dividing it by the range of the actual values, providing a more balanced measure of
accuracy.

Figure 5a shows that the training of a SNN with 36 hidden neurons for the direct problem
required 10 hours of computation in a 12 cores processor, while the convergence was obtained after
4 hours. The similar trend of the training and validation errors suggests that no the SNN is not
overfitting. Figure 5b shows a test set pattern prediction, with respect to the target value, indicating
that the prediction is qualitatively good. The NMAE% for the test set of the direct problem was 0.15%,
indicating that the direct problem can be solved with good accuracy.
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Figure 5. Training error convergence a) and example of a test field pattern prediction b) of the direct
problem solved by means of the SNN.

4.2. Inverse Problem #1

We then solved the inverse problem of type IP#1 by computing the Truncated-Pseudo-Inverse
(TSVD) of either the SNN LFM and of the actual LFM, computed using FEM. Just 8 singular modes
are used in this investigation. The currents obtained using the two inverse matrices are used to
compute the flux density in the measurement points, and the results are compared with the original

measurements.
Table I reports the test set NMAE% (normalized to 80A) of the 10 currents for the IP#1, solved
by means of the SNN.
Table 1. NMAE% for IP#1.
I I Is I Is Is I Is Ib Tho

091% 098% 111% 1.12% 1.44% 154% 222%  2.69% 2.24% 221%

From Table 1 it can be observed that the NMAE% increases with the distance of the coil from the
sampling curves S1..Ss. The averaged NMAE% value is 1.66% In this case a SNN with 27 hidden
neurons performed best. The average NMAE for SVR is 2.35%. SVR with Gaussian kernel has 3 real
hyperparameters and searching them is difficult because a single training requires hours: better
results were obtained with SNN.

The flux density in the “measurement” points corresponding to the different approaches are
reported in Figure 6. The scatter plots shown in Figure 7 shows that the problem of predicting the
currents can be solved by the neural networks accurately, and the dispersion increases with the
distance for them sampling curves.
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Figure 6. Actual flux density values in the measurement points (blue curve), compared with the
values obtained using currents identified using the tSVD of LFM as generated by FEM (red
continuous line) or as generated by SNN (red crosses line).
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Figure 7. Regression plots of the predicted vs true currents for IP#1.

4.3. Inverse Problem #2

Very similar results are obtained for the inverse problem IP#2, reported in Table 2, again
showing an increase of NMAE% with the distance from the measurement region. The averaged value
is 10.34% for the SNN and 14.1% for the SVR. In this case a SNN with 35 hidden neurons performed

best.
Table 2. NMAE% for IP#2.
R: R> Rs Rs Rs Rs R~ Rs Ro R
6.75% 7.67% 8.42% 8.71% 10.40% 9.14% 12.94% 13.23% 12.98% 13.14%
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Figure 8. Regression plots of the predicted vs true radii for IP#2.
Figure 5 evidences that the problem of predicting the radii is more difficult, as expected.

4.4. Inverse Problem #3

Finally, for the inverse problem IP#3, the results for the currents confirmed the influence of the

distance from the ROI, but with a slight recover in coils 9 and 10 when influence of ¥ line starts to be
relevant. On the other hand, the radii show a completely different behavior (see Table 3).
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Table 3. NMAE% for IP#3.
In I I I I Is I7 Is Io T
3.53% 4.47% 4.48% 4.51% 4.54% 5.15% 5.85% 7.19% 6.97% 2.21%
R: R2 Rs Ra Rs Rs R~ Rs Ro R

2453% 24.40% 24.62% 26.06% 25.34% 24.61% 25.97% 24.49% 26.04% 24.44%

It is interesting to show the scatter plot of true vs. predicted radius for coil 1 for all the test cases
(Figure 9). Basically, the SNN keeps the estimate of the radius equal to the average value, regardless
of the actual value. This is due to the mutual role of current and radius in this problem. If considering
the expression of the flux density on the axis due to a filamentary coil:

Mo 1
Baxis = ﬁ;’ 1)
where I is the coil current and R its radius, we can conclude that the relevant figure is the ratio of
current and radius. Starting from this, we can hypothesize that the SNN tries to regularize this ill-
posed problem by keeping the radius constant, and leveraging on the currents only to fit the

measurements.
Currents Radii
50 - . . — 120
= 3
§20 L é115
g 2110
=] o
o 0 ®
3 2105/
L2 20 2
L 100/
o o
505 ' ' %% 100 105 110 115 120
40 20 0 20 40 1

True radius (mm)

True current (A)

Figure 9. catter plot of true and predicted values of current and radius of coil 1.

The above results for IP#3 where obtained with a SNN with 35 hidden neurons. We addressed
the same problem using a CNN, but taking as inputs the whole Br and Bz images inside the ROI,
considering a grid of 20x20.

The total number of inputs of the CNN is then the whole 2D ROI region 800 (as shown in Figure
10), compared to the 60 inputs along the ROI border used by the SNN, while the output of both
methods are 10 radii values and 10 current values (as shown in Table 3). The architecture of the CNN
is shown in Figure 11. The training of the CNN required 20 hours, while the training of the SNN and
the SVR for the previous problems required 10 hours and 4 hours respectively. The results obtained
with the CNN were almost identical to the results of the SNN, shown in Table 3 and Figure 6.
Considering that the SNN adopts only the boundaries of the ROI as inputs and that the CNN
considers the whole 2D domain, this result can be interpreted as a confirmation of the Dirichlet
theorem for harmonic functions.
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Figure 11. Architecture of the Convolutional Neural Network for inverse problem #3.

4.4. Inverse Problem #3: forward solution of inverted patterns

In order to assess the effectiveness of the radii and currents solutions obtained by the neural
network for inverse problem IP#3, apart from calculating the errors in Table 3, we used these
solutions as the input of the direct solver by means of a Finite Element Method, and compared the
resulting field distribution with the input field distribution.

As a result, the NMAE% was 4.05%, where the normalization was performed against the mean
absolute value of field inside the ROL.

Figure 12 shows three test examples of the true field values compared to the reconstructed field
values using the FEM solution of the geometry obtained solving the inverse problem IP#3 with the
SNN. From these results it can be stated that even if the error of the predicted radii is large, as can be
observed in Figure 6 and Table 3, the combination of the predicted radii and currents represent a
good source identification by means of the resulting field that is obtained applying the direct
problem. The leverage of the SNN (and the CNN as well) consisting in applying the nonlinearities
only to the current estimation appears to be an automatic way for regularizing the difficult inverse
problem IP#3.
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Figure 12. Comparison between the reconstructed and true values of the field, after feeding the FEM
direct solver with the neural network solutions of IP#3.

5. Discussion

The availability of different machine learning models for the prompt resolution of
electromagnetic problems, as required in the inverse problems from electromagnetic measurements
or in the optimization of electromagnetic devices, calls for a reciprocal comparison in terms of
accuracy and promptness of the models, both in the training and operation phases. We proposed here
a comparison among a few neural models on a well-known benchmark problem, considered here as
an inverse problem.

The correlation among measurements from each sensor location (assessed on 26000 randomly
distributed examples) shows that in the benchmark problem redundancy is present, although this
redundancy is well managed by the machine learning and deep learning models, as shown by the
results.

In the linear direct problem DP, the reconstruction of lead field matrix is straightforward, while
for the three inverse problems, care must be taken in the choice of the regression algorithm. In the
latter case IP#3, an interpolating model is achieved anyway, but generalization capability could be
probably improved using “noisy” data. Neural network approach to linear inverse problem also
requires careful choice of the learning strategy. As a remark, an accurately selected and trained SNN
was shown to be a powerful model to solve the inverse problems, both linear and non-linear. The
results obtained with the SNN and CNN for IP#3 show that a similar regularization was performed
by two different models to approach the problem of infinite solutions of the inverse problem. Even if
the radii and currents solutions were strongly regularized, they possessed both feasibility (they were
inside the design bounds), and they turned to give good forward solutions when used as input of the
direct problem. These results might be imputed more to the dataset itself than to the ML approach,
confirming the results obtained in previous works [13]: the choice of the distribution of design
parameters used to generate the training set is crucial for the performance of the ML approaches that
are, of course, data driven.

Another quite remarkable result, which is new in the literature, is that the inversion of the
electromagnetic problem gives the same results when using as input the field distribution in the
boundary of the domain and the field distribution in the whole domain. Being the distribution inside
the domain in theory dependent on the boundary conditions, that shall not be a complete surprise
from a mathematical point of view, but it is not automatically expected that a neural network is able
to incorporate this knowledge based on learning from data. The results obtained for the IP#3 solved
by means of the SNN, which uses the boundary of the ROI, and the CNN, which uses the whole ROL;
show that the SNN was able to acquire from the boundary values the same information that the CNN
obtained from internal values. These results find confirmation in the recent development of the
physics informed neural networks. For this reason, we are still working on the resolution of
electromagnetic inverse and optimization problems with physics informed [26] and generative
adversarial (game theory) neural networks [27].

Future work will be focused on the tuning of the NN for the inverse problem with a custom
training loop using automatic differentiation. The idea is to back-propagate the error of the
reconstructed field obtained by feeding the direct solver with the result of the NN.
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