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Article 

Machine Learning Approaches for Inverse Problems 
and Optimal Design in Electromagnetism 
Alessandro Formisano 1,* and Mauro Tucci 2 
1  Università della Campania «Luigi Vanvitelli» 
2  Università di Pisa; mauro.tucci@unipi.it 
*  Correspondence: alessandro.formisano@unicampania.it 

Featured Application: Training neural networks to solve inverse electromagnetic problems. 

Abstract: The spread of high‐performance personal computers, frequently equipped with powerful 
Graphic Processing Units (GPU), raised the interest on a set of techniques able to extract models of 
electromagnetic phenomena (and devices) directly from available examples of the desired behavior. 
Such approaches are collectively referred to as Machine Learning (ML). A typical representative ML 
approach is the so called “Neural Network” (NN). Using such data‐driven models allows evaluating 
the output in a much shorter time when a theoretical model is available, or allows predicting the 
behavior of  the systems and devices when no  theoretical model  is available. With reference  to a 
simple yet  representative benchmark electromagnetic problem, some of  the possibilities and  the 
pitfalls of the use of NN for the interpretation of measurements (inverse problem) or to obtain the 
required measurements (optimal design problem) are discussed. The investigated aspects include 
the  choice  of  the NN model;  the  generation  of  the dataset(s);  the  selection of hyperparameters 
(hidden layers, training paradigm). Finally, the capabilities in the handling of ill‐posed problems 
are critically revised. 

Keywords: machine learning; magnetic field analysis; optimal design; inverse problems 
 

1. Introduction 

Computerized  analysis  is  frequently  used  to  recover  field  sources  or  device  structure  from 
measurements using numerical computations [1,2]. This process implies the repeated resolution of 
an  electromagnetic  problem,  under  different  trial  values  of  inputs  (either  sources  or  system 
parameters). The presence of measurement noise, the consideration of manufacturing and assembly 
tolerances,  the  inclusion  of  ferromagnetic  materials  or  the  consideration  of  complex,  three‐
dimensional geometries add relevant computational efforts to  the process. Several measures have 
been proposed to simplify or speed‐up the analysis, basically trading off accuracy in the evaluation 
of the distance of trial data from the actual measurements with promptness.   

Alternatively, Machine  Learning  (ML)  and Deep  Learning  (DL) models  can  be  used  for  a 
straightforward resolution of inverse problems or optimal design ones, trying to train NN to build 
an (approximated) relationship between the desired output (e.g. sensors reading) and the trial values 
of the degrees of freedom (e.g. radii or currents of coils, when considering magnets) starting from 
available examples of the desired output [3–7]. Examples can be obtained by solving a reduced set of 
instances for the computationally demanding problem, or even be extracted for experimental data. 

Note  that  the construction of an approximate model  from available experimental data could 
reveal the sole possibility in cases where a theoretical problem formulation is not available. This could 
happen  either when a model based on  the  laws of physics  is not available or  too  complex  to be 
reduced to a set of equations manageable in the due course of an iterative process. 
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In addition, the resulting problem, either the inverse one or the design one, shows an ill posed 
nature, being prone to multiple solutions [8,9]. This aspect has been counteracted in many ways, and 
some precaution must be taken also when using data‐driven models. 

In previous works the authors proposed several ML models both for solving the direct [10–14] 
model and the inverse model [15–17], focusing the attention on the optimization through the use of 
the direct model, and highlighting the difficulty behind the inverse models. 

Data‐driven  models  can  be  obtained  following  different  approaches  [8,10],  including  the 
classical statistical regressions or the most modern Deep Neural Networks. Each approach presents 
advantages  and  drawbacks,  which  must  be  comparatively  assessed.  In  addition,  the  hyper‐
parameters  shaping  the  approach  (e.g.  the  number  of  hidden  neurons  in  the NN  case) must  be 
carefully chosen to obtain the best balance between promptness and accuracy. This work presents a 
detailed analysis of the learning process for a set of NN models of a benchmark inverse problem. The 
data used to train the model are generated by FEM or analytical formulations. 

The main aspects investigated in this work include: 
 Training and testing ML approaches to solve direct and indirect electromagnetic problems; 
 Selection of the ML model; 
 Selection of the model hyper—parameters; 
 Dataset generation; 
 Regularization approaches; 
 How machine learning treats ill posed inverse problems. 

In  the  following, with  reference  to a  simple yet  representative benchmark problem, we will 
compare  the standard Shallow Neural Networks  (SNN)  [18,19] with a more recent model, namely 
Convolutional Neural Networks (CNN) [20,21]. For the sake of comparison, also a support vector 
machine, as an example of regression model, will be introduced.   

2. The Benchmark Problem 

To compare different approaches, we adopt here the benchmark problem TEAM 35 [22]. A multi‐
turn air‐cored coil is considered. The coil is composed of nt=20 independent turns. The width of each 
turn  is w  =  15 mm  and  the height  is h  =  10 mm. Hollow  turns  are  assumed  to  allow  for water 
circulation. In the following we will assume symmetric currents distribution among the uppermost 
10 coils and the lowermost ones. Consequently, only half of the model is needed to compute the field 
(see  Figure  1a).  For  evaluating  the  field,  a  two‐dimensional  controlled  region  is  considered, 
(delimited by curves S1, … S3 in Figure 1a). The two components Br and Bz along axes r and z of the 
flux density field B are sampled on a grid evenly spaced in a square region with a side length of 60 
mm, which is denoted as the Region Of Interest (ROI). Underlying sensors could be, e.g., Hall Probes. 

     
(a)  (b) 

Figure 1. A sketch of  the TEAM 35 benchmark problem: compute  the magnetic  field components 
along the red lines generated by a set of coils with radii R1, R2, …R10. (a): the problem geometry, (b): 
an example of field map. 

z 
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To train the shallow neural network and the support vector regressor, we firstly consider a grid 
of np=10×10 field points, taking the values along the boundaries S1, … S3 and the line γ, while for the 
training of the convolutional neural network we consider a grid of np=20×20 field points, taking all 
the internal values of the square region of interest. 

The magnetic analysis is based on the Finite Element (FE) method. An example of field map is 
shown in Figure 1b. 

In the TEAM 35 version considered here, the aim of the inverse problem is to identify the radii 
and  the  currents  in  the  coils  to  generate  a  prescribed  flux  density map  B(r,z).  In  the  original 
formulation, the map is uniform, with 𝐵 ൌ 𝐵଴𝑧, within a region adjacent to the symmetry plane z=0 
(lines S1, S2 and S3 in Figure 1), and with an amplitude as small as possible along an external segment 
of  the  symmetry  axis  (line    in Figure  1). To  evaluate  the  field uniformity  in  the  inner ROI,  the 
magnitude of B is “measured” in Np = 30 field points, evenly spaced on the boundary of the ROI. On 
the other hand, in order to guarantee the minimum field amplitude on γ, the field is “measured” on 
Nk  =  10  points  along  γ.  In  particular,  the  set  of measurements  includes  60  real  values, which 
correspond to 10 Br and 10 Bz measurements evenly spaced along lines S1 and S2 respectively, 10 Bz 
values measured along line S3, and 10 Bz values along  line γ. In this paper, we maintain a similar 
formulation  of  the  inverse  problem,  where  we  aim  to  identify  the  radii  and  the  currents 
correspondent to randomly generated flux density measured in the measurement’s points.   

Figure 2 shows the main characteristics of the variables involved in the problem. Note that when radii 
of all coils are known, the relationship between currents and flux density values is linear. The matrix 
mapping the current in each coil onto each single measurement is known as Lead Field Matrix (LFM). 
On the other hand, when the radii are among the degrees of freedom, the inverse problem gets non‐
linear, and the LFM must be, in principle, be re‐assembled for each trial configuration. One of the 
advantages of the ML approaches is that the reassembly of the LFM is not required, as the NN directly 
extracts from data the relationship between field values (measurements) and the degrees of freedom 
(radii and currents). 

 

Figure 2. Characteristics of the sources and of the measurements of the benchmark problem. 

More details on the benchmark problem geometry can be found in [10].   

3. Considered Machine Learning Models 

The machine learning models analyzed in this work will be used in different modalities: 
‐ a “Direct Problem” (DP), where examples of the radii/currents set and of the corresponding flux 

density values are used to create a model able to generate the target field map, hence replicating 
the LFM from the radii. The direct model is then used within traditional optimization or inverse 
problem resolution algorithms; 

‐ a first class of “Inverse Problem” (IP#1), where measurements (inputs) and currents (outputs) 
are used to create a model of the underlying linear map. In this case, radii are assumed known, 
and the linear model is related to the (pseudo‐)inverse of the LFM. 
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‐ a second class of “Inverse Problem” (IP#2), where the currents are known and provided as input 
together with the measurements, while the outputs are the radii; 

‐ finally, a third class (IP#3), where both currents and radii (the outputs) must be recovered from 
field measurements, which are the only inputs in this case. 
Figure 3  shows  the  input and output of each defined problem. As anticipated, different ML 

approaches are available to create data‐driven behavioral models. In this study, we have considered 
the following ones: 

 

Figure 3. Definition of the direct and inverse problems. 

 Shallow Neural Networks  (SNN)  [18,19]:  this  is  the  standard  approach:  an  artificial  neural 
network with a single hidden layer with logistic activation functions. In the DP, Ni input neurons 
(corresponding to the radii), Nh hidden neurons and No output neurons (the elements of the 
LFM) are trained to provide the output. While Ni=10, the LFM will be represented by a reduced 
number of real numbers, corresponding to the main components in a PCA analysis based on the 
correlation analysis of the measurements. The full matrix  is  then recovered by exploiting the 
components identified in the PCA. In the inverse problems IP#1, IP#2 and IP#3, the SNN is used 
a straightforward solver, and the meaning of output neurons depends on the type of considered 
problem. This point will be further discussed below. 

 The number Nh of hidden neurons is varied to assess model capabilities. The different SNN’s 
are  trained  using  Levenberg‐Marquardt  Bayesian  Regularization  approach  [23],  which 
minimizes the weights together with the discrepancy on the data. Early topping is performed by 
means of worsen performance on a validartion set. 

 Convolutional Networks (CNN) [20,21]. This class of NN will be considered for IP#3 only. A 
higher number of hidden  layers  is present here, and  the network can be named “deep”. The 
inner layers are classified as “convolutional” and “pooling”, with different associated actions on 
the data. The activation functions are in this scheme the “ReLU” functions. This model has an 
intrinsic capability of building a reduced order inner model, which can be exploited to cope with 
the highly correlated nature of the input, represented by the flux density map in the ROI. The 
ADAM algorithm is used to train the CNN. 

 In order to compare ML with more traditional statistical regression approaches, we have also 
considered  Support‐Vector Regression  (SVR)  [24,25]  for  the  inverse  problems.  SVR  training 
algorithm builds a linear model in a higher dimensional space exploiting the so called “kernel 
trick” by minimizing a quadratic objective  function which  is a combination of  the Euclidean 
norm of  the weights of  the  linear model and  the sum of  the so called slack variables, which 
represent  a  threshold of  the maximum  absolute deviation between  the predicted and  target 
values. The LIBSVM implementation of the SVR was employed 
The hyper‐parameters of the SNN and SVR models where selected using an exhaustive K‐Fold 

Grid Search Cross Validation approach, using K=10 and a defining adequate ranges for the optimized 
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hyper‐parameters. The CNN architecture was selected using a  trial and error heuristic approach, 
which is common for complex deep learning models.   

 

Figure 4. Representation of a random geometry, coils numbering and ROI. 

4. Results 

To  assess  the different models,  26000  examples have been generated using a FEM  solver  to 
compute the flux density in the measurement points. Examples have been arranged according to radii 
values,  to  identify different subsets with  the same LFM, and divided  into Training and Test sets, 
according to the 70/30 rule. 

4.1. Direct Problem 

In a first study we trained different SNN on the DP. The metric adopted here to compare the 
accuracy of the  different  predicted  currents  or  radii  is  the  Normalized  Mean  Absolute  Error% 
(NMAE%). 

NMAE% ൌ 100

1𝑁௧௘௦௧  ∑ ห𝑌௣௥௘ௗ െ 𝑌௧௥௨௘หே೟೐ೞ೟
maxሺ𝑌௧௥௨௘ሻ െ  minሺ𝑌௧௥௨௘ሻ . 

NMAE% is an alternative metric that overcomes the limitations of more classical Mean Absolute 
Percentage Error in situations involving data that can be negative or close to zero. NMAE normalizes 
the error by dividing  it by  the range of  the actual values, providing a more balanced measure of 
accuracy. 

Figure 5a  shows  that  the  training of a SNN with  36 hidden neurons  for  the direct problem 
required 10 hours of computation in a 12 cores processor, while the convergence was obtained after 
4 hours. The  similar  trend of  the  training  and validation  errors  suggests  that no  the SNN  is not 
overfitting. Figure 5b shows a test set pattern prediction, with respect to the target value, indicating 
that the prediction is qualitatively good. The NMAE% for the test set of the direct problem was 0.15%, 
indicating that the direct problem can be solved with good accuracy.   
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(a)  (b) 

Figure 5. Training error convergence a) and example of a test field pattern prediction b) of the direct 
problem solved by means of the SNN. 

4.2. Inverse Problem #1 

We then solved the inverse problem of type IP#1 by computing the Truncated‐Pseudo‐Inverse 
(TSVD) of either the SNN LFM and of the actual LFM, computed using FEM. Just 8 singular modes 
are used  in  this  investigation. The  currents obtained using  the  two  inverse matrices  are used  to 
compute the flux density in the measurement points, and the results are compared with the original 
measurements.   

Table I reports the test set NMAE% (normalized to 80A) of the 10 currents for the IP#1, solved 
by means of the SNN.   

Table 1. NMAE% for IP#1. 

I10 I9 I8 I7 I6 I5 I4 I3 I2 I1 
2.21% 2.24% 2.69% 2.22% 1.54% 1.44% 1.12% 1.11% 0.98% 0.91% 

From Table 1 it can be observed that the NMAE% increases with the distance of the coil from the 
sampling curves S1..S3. The averaged NMAE% value  is 1.66%  In  this case a SNN with 27 hidden 
neurons performed best. The average NMAE for SVR is 2.35%. SVR with Gaussian kernel has 3 real 
hyperparameters  and  searching  them  is difficult  because  a  single  training  requires  hours:  better 
results were obtained with SNN. 

The  flux density  in  the “measurement” points corresponding  to  the different approaches are 
reported in Figure 6. The scatter plots shown in Figure 7 shows that the problem of predicting the 
currents  can be  solved by  the neural networks  accurately,  and  the dispersion  increases with  the 
distance for them sampling curves. 

 

Figure  6. Actual  flux density values  in  the measurement points  (blue  curve),  compared with  the 
values  obtained  using  currents  identified  using  the  tSVD  of  LFM  as  generated  by  FEM  (red 
continuous line) or as generated by SNN (red crosses line). 
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Figure 7. Regression plots of the predicted vs true currents for IP#1. 

4.3. Inverse Problem #2 

Very  similar  results  are  obtained  for  the  inverse  problem  IP#2,  reported  in  Table  2,  again 
showing an increase of NMAE% with the distance from the measurement region. The averaged value 
is 10.34% for the SNN and 14.1% for the SVR. In this case a SNN with 35 hidden neurons performed 
best. 

Table 2. NMAE% for IP#2. 

R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 
13.14% 12.98% 13.23% 12.94% 9.14% 10.40% 8.71% 8.42% 7.67% 6.75% 

 

Figure 8. Regression plots of the predicted vs true radii for IP#2. 

Figure 5 evidences that the problem of predicting the radii is more difficult, as expected. 

4.4. Inverse Problem #3 

Finally, for the inverse problem IP#3, the results for the currents confirmed the influence of the 
distance from the ROI, but with a slight recover in coils 9 and 10 when influence of  line starts to be 
relevant. On the other hand, the radii show a completely different behavior (see Table 3). 
  

I1 I10 

R1 R10 
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Table 3. NMAE% for IP#3. 

I10 I9 I8 I7 I6 I5 I4 I3 I2 I1 
2.21% 6.97% 7.19% 5.85% 5.15% 4.54% 4.51% 4.48% 4.47% 3.53% 
R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 

24.44% 26.04% 24.49% 25.97% 24.61% 25.34% 26.06% 24.62% 24.40% 24.53% 

It is interesting to show the scatter plot of true vs. predicted radius for coil 1 for all the test cases 
(Figure 9). Basically, the SNN keeps the estimate of the radius equal to the average value, regardless 
of the actual value. This is due to the mutual role of current and radius in this problem. If considering 
the expression of the flux density on the axis due to a filamentary coil: 

(1)𝐵௔௫௜௦ ൌ ఓబଶగ ூோ, 
where I is the coil current and R its radius, we can conclude that the relevant figure is the ratio of 
current and radius. Starting from this, we can hypothesize that the SNN tries to regularize this ill‐
posed  problem  by  keeping  the  radius  constant,  and  leveraging  on  the  currents  only  to  fit  the 
measurements. 

 

Figure 9. catter plot of true and predicted values of current and radius of coil 1. 

The above results for IP#3 where obtained with a SNN with 35 hidden neurons. We addressed 
the same problem using a CNN, but taking as inputs the whole Br and Bz images inside the ROI, 
considering a grid of 20x20. 

The total number of inputs of the CNN is then the whole 2D ROI region 800 (as shown in Figure 
10), compared  to  the 60  inputs along  the ROI border used by  the SNN, while  the output of both 
methods are 10 radii values and 10 current values (as shown in Table 3). The architecture of the CNN 
is shown in Figure 11. The training of the CNN required 20 hours, while the training of the SNN and 
the SVR for the previous problems required 10 hours and 4 hours respectively. The results obtained 
with  the CNN were  almost  identical  to  the  results of  the SNN,  shown  in Table  3  and Figure  6. 
Considering  that  the  SNN  adopts  only  the  boundaries  of  the ROI  as  inputs  and  that  the CNN 
considers  the whole 2D domain,  this  result  can be  interpreted  as  a  confirmation of  the Dirichlet 
theorem for harmonic functions. 

R1 I1 
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Figure 10. Training pattern for the CNN, depicting the input images of the distribution of Br and Bz 
inside the region of interest. 

 

Figure 11. Architecture of the Convolutional Neural Network for inverse problem #3. 

4.4. Inverse Problem #3: forward solution of inverted patterns 

In order to assess the effectiveness of the radii and currents solutions obtained by the neural 
network  for  inverse  problem  IP#3,  apart  from  calculating  the  errors  in  Table  3, we  used  these 
solutions as the input of the direct solver by means of a Finite Element Method, and compared the 
resulting field distribution with the input field distribution.   

As a result, the NMAE% was 4.05%, where the normalization was performed against the mean 
absolute value of field inside the ROI. 

Figure 12 shows three test examples of the true field values compared to the reconstructed field 
values using the FEM solution of the geometry obtained solving the inverse problem IP#3 with the 
SNN. From these results it can be stated that even if the error of the predicted radii is large, as can be 
observed  in Figure 6 and Table 3, the combination of the predicted radii and currents represent a 
good  source  identification  by means  of  the  resulting  field  that  is  obtained  applying  the  direct 
problem. The leverage of the SNN (and the CNN as well) consisting in applying the nonlinearities 
only to the current estimation appears to be an automatic way for regularizing the difficult inverse 
problem IP#3.   
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Figure 12. Comparison between the reconstructed and true values of the field, after feeding the FEM 
direct solver with the neural network solutions of IP#3. 

5. Discussion 

The  availability  of  different  machine  learning  models  for  the  prompt  resolution  of 
electromagnetic problems, as required in the inverse problems from electromagnetic measurements 
or  in  the  optimization  of  electromagnetic  devices,  calls  for  a  reciprocal  comparison  in  terms  of 
accuracy and promptness of the models, both in the training and operation phases. We proposed here 
a comparison among a few neural models on a well‐known benchmark problem, considered here as 
an inverse problem. 

The correlation among measurements from each sensor location (assessed on 26000 randomly 
distributed examples) shows that  in the benchmark problem redundancy is present, although this 
redundancy is well managed by the machine learning and deep learning models, as shown by the 
results.   

In the linear direct problem DP, the reconstruction of lead field matrix is straightforward, while 
for the three inverse problems, care must be taken in the choice of the regression algorithm. In the 
latter case IP#3, an interpolating model is achieved anyway, but generalization capability could be 
probably  improved using “noisy” data. Neural network approach  to  linear  inverse problem also 
requires careful choice of the learning strategy. As a remark, an accurately selected and trained SNN 
was shown to be a powerful model to solve the inverse problems, both linear and non‐linear. The 
results obtained with the SNN and CNN for IP#3 show that a similar regularization was performed 
by two different models to approach the problem of infinite solutions of the inverse problem. Even if 
the radii and currents solutions were strongly regularized, they possessed both feasibility (they were 
inside the design bounds), and they turned to give good forward solutions when used as input of the 
direct problem. These results might be imputed more to the dataset itself than to the ML approach, 
confirming  the  results  obtained  in  previous works  [13]:  the  choice  of  the  distribution  of  design 
parameters used to generate the training set is crucial for the performance of the ML approaches that 
are, of course, data driven.   

Another quite  remarkable  result, which  is new  in  the  literature,  is  that  the  inversion of  the 
electromagnetic problem gives  the  same  results when using as  input  the  field distribution  in  the 
boundary of the domain and the field distribution in the whole domain. Being the distribution inside 
the domain in theory dependent on the boundary conditions, that shall not be a complete surprise 
from a mathematical point of view, but it is not automatically expected that a neural network is able 
to incorporate this knowledge based on learning from data. The results obtained for the IP#3 solved 
by means of the SNN, which uses the boundary of the ROI, and the CNN, which uses the whole ROI; 
show that the SNN was able to acquire from the boundary values the same information that the CNN 
obtained  from  internal  values. These  results  find  confirmation  in  the  recent development  of  the 
physics  informed  neural  networks.  For  this  reason,  we  are  still  working  on  the  resolution  of 
electromagnetic  inverse  and  optimization  problems with  physics  informed  [26]  and  generative 
adversarial (game theory) neural networks [27]. 

Future work will be focused on the tuning of the NN for the  inverse problem with a custom 
training  loop  using  automatic  differentiation.  The  idea  is  to  back‐propagate  the  error  of  the 
reconstructed field obtained by feeding the direct solver with the result of the NN.   
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