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Abstract: Domain generalization has led to remarkable achievements in Hyperspectral Image (HSI)

classification. Inspired by contrastive language-image pre-training (CLIP), the language-aware

domain generalization method has been explored to learn cross-domain-invariant representation.

However, existing methods face some challenges: 1) The weak capacity to extract long-range

contextual information and inter-class correlation. 2) Due to the inadequacies of the large-scale

pre-training for HSI data, the spatial-spectral features of HSI and linguistic features can not be

straightforwardly alignment. To address the above problems, a novel network has been proposed

with a CLIP framework, which consists of an image encoder, based on an encoder-only transformer

to obtain the global contextual information and inter-class correlation, a frozen text encoder, and

a cross-attention mechanism, named Linguistic-Interact-with-Visual Engager (LIVE), enhances the

interaction between two modalities. Extensive experiments demonstrating superior performance

over state-of-the-art methods in HSI Domain Generalization with a CLIP framework.

Keywords: hyperspectral image (HSI) classification; contrastive learning; CLIP; domain

generalization; Linguistic-Visual alignment

1. Introduction

With the development of Deep Learning (DL), many supervised methods for HSI classification

have achieved extraordinary performance[1][2][3][4][5]. However, the traditional supervised methods

need manual annotation, which is time-consuming and professional-knowledge-supported, and have

a weak capacity to attain cross-domain-invariant representation. It causes a terrible generalization

gap between the Source Domain (SD) to the Target Domain (TD). In other words, when encountering

cross-scene classification tasks, such as data re-collection by advanced devices, HSIs are affected by

sensor nonlinearities, seasonal variations, and weather conditions. These factors result in spectral

reflectance variations between SD and TD of the same land cover classes. Despite the same land space

and region, the well-pretrained model also fails to achieve exact performance. The naive supervised

architecture is presented in Figure 1.

Figure 1. The pipeline of the traditional supervised method for image classification.
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Domain Generalization (DG) has recently attracted significant attention as a more challenging

task setting to tackle this problem. Distincting from Domain Adaption (DA), DG requests to produce

generalization models and without any TD samples engaging in training. Currently, most DG works

focus on learning visual-level domain-invariant representation from multiple SDs or a single SD

[6][7][8].

With the rise of the Contrastive Language-Image Pre-training (CLIP) [9] model, which is trained

on vast (image, text) pairs and achieves a remarkable generalization and zore-shot learning capability.

It has become increasingly appealing to adapt a CLIP framework with linguistic information to

DG tasks for natural RGB image classification. A question arises: Can we adapt the CLIP domain

generalization for cross-scene hyperspectral imagery classification, directly? A markable work [10]

proposed a straightforward multimodal DG framework for HSI, called LDGnet, utilizing the language

knowledge to learn visual representation and achieve visual-linguistic alignment. However, due to

the substantial disparity between the natural RGB image and the HSI data, the SOTA work, LDGnet,

still achieves an inferior performance compared with some traditional DG classification models.

This seems a depressing assessment, and the question is why we need to employ the CLIP. There

are three potential advantages: Firstly, traditional DG models tackle the domain alignment with

domain extension and data augment methods based on variational auto-encoder (VAE) [11] and

generative adversarial networks (GANs) [12], which special design for single or multiple modalities.

As opposed to the traditional methods, fine-tuning is a key step in CLIP, which is demonstrated by

[13][14], for the diversity of downstream tasks. Once the CLIP’s fine-tuning provides an effective

for one modality, it can be easily extended to other modalities, such as multispectral and visible

light data. This is the exciting generalization capacity distinguished from the traditional method.

Secondly, the language knowledge auxils have been demonstrated to be helpful for multi-modal

learning by [15][16][17]. Thirdly, The training time of the CLIP framework has an advantage over

traditional discriminative generative (DG) classification tasks due to the preservation of a large portion

of pre-trained weights. Based on the above analysis, we have reconsidered the LDGnet. The LDGnet’s

architecture is specially designed and can be split into three sections: An Image encoder, a frozen text

encoder, and a visual–linguistic alignment strategy. Image encoder extracts the visual features from

the image patch and splits it into two branches: one is fed into the classification head for the design

of the auxiliary loss and another is fed into the projection layer for the visual–linguistic alignment,

where the image encoder is designed by the deep residual 3-D CNN network. the text encoder extracts

the linguistic features. Finally, the visual–linguistic alignment strategy can make the semantic space

treated as a cross-domain shared space. Fine-grained feature recognition, however, benefits from

the contextual information in the background, where this information encapsulates the correlation

between each pixel and its neighboring pixels. Yet, the image encoder proposed by LDGnet can not

effectively extract long-range contextual information. In addition, this image encoder has a weak ability

to extract inter-class correlation, where the inter-class correlation plays a significant role in enhancing

across-domain category transferability and classification performance, especially under a sample

imbalance situation. Distinct from traditional RGB images, which represent the category information

by visual characters, the prior knowledge of land cover classes is mainly reflected by the abundant

spectrum of the hyperspectral image so that spatial-spectral features extracted by the image encoder

are necessary for classification performance. However, the CLIP has already achieved well-aligned

knowledge between image features and linguistic features. In contrast, the joint spatial-spectral

features provide additional resistance for feature alignment, due to the large-scale pre-trained CLIP

specifically designed for HIS characteristics not yet perfect. In summary, the deficiency exists in the

following two stages: 1) In the image feature extraction stage, the image encoder can not attain the

inter-class correlation information and global features which harms the category transferability and

classification performance, respectively. 2) In the visual-linguistic alignment stage, the spatial-spectral

features and linguistic features can not be simply and directly aligned without the already well-aligned

knowledge from pre-trained CLIP on the HSI data.
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In this paper, for the former, we propose a novel image encoder, which equips a simple

encoder-only transformer [18] that can effectively extract the global information and inter-class

correlation, instead of the deep residual 3-D CNN network, which tends to fall short in capturing

sufficient class correlation information and global spatial-spectral features. For the latter, the key

is finding the approach to match the linguistic features and visual features with better alignment,

where the visual features contain extra spectral information than traditional images. The processing

of alignment in LDGnet has been reconsidered, which made the spatial image features and linguistic

features entirely isolated during encoding and there is no bridge for inter-model information flow

before the final matching, where inter-modality information means the interactions between visual

features and linguistic features. It will work because generic visual and text representations have

been obtained by CLIP, which is pre-trained by large-scale image-text pairs, so they can directly align

via cosine similarities calculation, but this convenience can not be promoted to alignment between

spatial-spectral features and linguistic features. According to this problem, A mechanism of the

interaction between two modalities, which is composed of a special cross-attention, has been proposed.

With this mechanism, the category information, which is derived from the spatial-spectral features, can

make the text semantics become visual-aware and image-conditional, instead of remaining the same for

the entire dataset. Correspondingly, the linguistic features make the more distinctive spatial-spectral

features, which from more informative spatial regions and more instrumental bands of spectrums, be

focused on. In addition, this cross-attention mechanism provides a moderate parameter that can play

a role as an adapter to achieve efficient freshly learned knowledge learning via fine-tuning.

In particular, both two improved modules, the image encoder and cross-attention mechanism,

have been designed as simply and effectively as possible to avoid conducting extra learnable

parameters in supposed to tackle over-fitting caused by insufficient training data of the HSI dataset.

The construction of the image encoder can be simply described as follows: a 3-D convolution

layer, a specially designed DW convolution [19] layer, and a transformer encoder with single-head

attention mechanism, which omits cls token. In addition, the cross-attention module for the

Inter-Modality, which is abbreviated as Linguistic-Interact-with-Visual Engager (LIVE) for full text,

only is implemented by several linear layers to generate queries, keys, and values in both the visual

branch and the text branch. Extensive experiments demonstrate the superiority of our method.

In summary, our main contributions are as follows:

• We design a special image encoder in the visual branch of the CLIP for HSI data characteristics,

where this encoder can extract the spatial-spectral features with global-ranged and category

correlation.
• The LIVE module was proposed to improve the interaction between two modalities before the final

matching. With this module, visual features will become more distinctive, and correspondingly

linguistic features will be visual-features-based adaptive, instead of being invariable.
• Extensive experiments demonstrate the proposed method has a better performance compared

with the SOTA work with a CLIP framework for HSI domain Generalization.

2. Materials and methods

2.1. Related Work

2.1.1. Domain Generalization (DG)

DG presents a more formidable challenge than DA, as it seeks to learn the model exclusively

through SD data during the training phase without requiring access to TD. The model’s extension

to TD occurs in the zero-shot inference stage. Current DG methodologies are broadly classified

into two categories: multi-source DG and single-source DG. Various methods explicitly address

domain shift among multiple SD domain representations by minimizing differences in feature

distributions, employing techniques such as MMD [20], second-order correlation [21], and Wasserstein
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distance [22]. For the single-source DG, the prevalent approach involves extensive data augmentation.

These methods typically amplify or generate out-of-domain samples related to SD, subsequently

incorporating these samples into model training to facilitate the transition from SD to TD. The

overarching objective of data generation is to produce diverse and plentiful data to enhance

generalization. Notably, techniques like variational auto-encoder (VAE) [11] and generative adversarial

networks (GANs) [12] are frequently harnessed for this purpose.

2.1.2. CLIP

CLIP (Contrastive Language-Image Pre-training), introduced by [9], stands as a groundbreaking

advancement in vision-language learning, demonstrating considerable potential in acquiring generic

visual representations through contrastive pre-training. Leveraging its impressive transferability,

the effective adaptation of CLIP to downstream tasks has been extensively explored, such as

Context Optimization (CoOp), proposed by [23], introduces learnable prompts for textual inputs

as opposed to handcrafted ones, drawing inspiration from prompt learning [24]. Adopting a strategy

reminiscent of adapters [25], CLIP-Adapter [14] integrates a lightweight adapter module to generate

adapted multi-modal features. Meanwhile, Tip-Adapter [26] substantially reduces training costs by

implementing a key-value cache model. The pipeline of naive CLIP is shown in Figure 2.

Figure 2. The pipeline of the CLIP for image classification.

2.1.3. Prompt Engineering

Inspired by the success of GPT-3, CLIP embarks on training a substantial contrastive learning

model using a vast dataset comprising over 400 million image-text pairs. Notably, CLIP showcases

the capability for prompt-based zero-shot visual classification. Serving as the foundation, subsequent

advancements such as CoOp (Context Optimization) by [27]. and CPT (Continuous Prompt Tuning)

by [28] extend these capabilities. These studies demonstrate that optimizing continuous prompts can

significantly outperform manually designed discrete prompts in various vision tasks. In this paper, an

HSI of {class name} is used as a template to construct coarse-grained text descriptions in a cloze way,

which is proposed by [10]. Analogously, fine-grained text is described manually combined the prior

knowledge.
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2.2. Proposed Method

In this section, we first introduce the overall network, and then we present the details of the

proposed model, including the image encoder and LIVE module. finally, we provide some variants of

the proposed model.

2.2.1. Overall Network

Assume that S = {si}N
i=1 ∈ R

d and Y = {yi}N
i=1 is the data and labels from SD, respectively, where

N denotes the number of source samples and d denote the channels of HSI data cube. Correspondingly,

T = ti
N
i=1 ∈ R

d is reprensed as the data from TD. We do the same prompt engineering as [10] introduced.

The text is made up of one coarse-grained prompt and two fine-grained prompts corresponding to

each sample. The VisEnc(·) and TexEnc(·) denote the image (visual) encoder and text encoder,

respectively. The HSI patches and text are respectively fed into the VisEnc(·) and TexEnc(·), to extract

the spatial-spectral features (visual features Fv) and linguistic features (text features Ft). TexEnc(·)
is a language-model transformer[33][34] (in LDGnet) and details of the VisEnc(·) will be elaborated

in the subsection. Then the spatial-spectral features are delivered to the projection head (Proj) and

the classification head (Cls), simulately. The Proj can project the visual features for interacting with

linguistic features and visual-linguistic alignment. The Cls is used to implement assistant loss by

calculating the cross-entropy. The pipeline of our proposed architecture is shown in Figure 3.

Figure 3. Pipeline of the proposed architecture. Firstly, the frozen text encoder and the visual encoder

extract the linguistic and visual features, respectively. Then, the LIVE module makes the two modalities

mutually communicate to achieve better alignment. Meanwhile, the visual features are fed into the

classifier head to obtain the prediction probability.

2.3. Image Encoder

The image encoder consists of a CNN backbone and a simple transformer encoder, as shown

in Figure 4 and the detail of the CNN backbone can be described in Figure 5. The subcubes Xs of

13 × 13 × d from SD are delivered to the CNN backbone for extracting the spatial-spectral features and

reducing its spectral dimensions, then the feature embedding is used by the transformer to extract

more distinctive features with contextual feature and inter-class correlation.
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Figure 4. The structure of the image encoder. The Non-Lin denotes a non-linear layer for embedding

feature projection.

The proposed CNN backbone consists of 3D-CNN with kernel size (9, 3, 3) to extract the local

features and spatial-spectral features, then the padding (0, 1, 1) is used to keep the spatial dimensions

the same and reduce the spectral dimensions for lightweight. Correspondingly, a DW block is designed

by a bi-branch framework. The depth-wise convolution with kernel size (3, 3) is adopted in one of

the branches and a ReLU activation function also is introduced. Correspondingly, the point-wise

convolution with kernel size of (1, 1) is equipped in the other. Further, The ultimate feature maps are

produced by multiplying the outputs of two branches and adding the output of 3D-CNN utilizing

the residual connection. Finally, the feature maps are fed into a simple transformer encoder to extract

the inter-class correlation and global contextual features, then the transformer outputs the Fv and Cls

matrix. Here, the L is the number of transformer encoder blocks and is initialized with 3 for obtaining

a more shallow transformer. In this case, the residual connection is not only unnecessary, because the

outputs are low-level inlinear and identity-like, but increases redundancy and latency. To tackle this

problem, we introduce a skipless module, which is composed of dual-branch attention without value.

Figure 5. The framework of the CNN backbone.

2.4. LIVE Module

As shown in Figure 6, Ft ∈ R
C×D and Fv ∈ R

HW×D respectively denote the linguistic features and

visual features, which outputted by the corresponding encoder. Here, C denotes the Classes number,
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and D denotes the feature Dimension. We propose projection layers to produce individual queries,

keys, and values. Specifically, Vt, Kt, and Qt are produced by the projection head using the linguistic

features as input. Correspondingly, Vv, Kv, and Qv denote value, key, and query projected from visual

features.

Qt, Vt, Kt = Projection(Ft) (1)

Qv, Vv, Kv = Projection(Fv) (2)

Where Projection(·) denotes the projection head, which consists of a linear layer of 3 × D

dimension, and the outputs are split equally as Q,K,V on D dimension. Then two attention maps can

be calculated, which are denoted as Av ∈ R
HW×C and At ∈ R

C×HW .

Av = SoftMax(
QtK

T
v√

D
) ∈ R

C×HW (3)

At = SoftMax(
QvKT

t√
D

) ∈ R
HW×C (4)

where At and Av are respectively for linguistic and visual features update.

Fa
v = AvVt (5)

Fa
t = AtVv, (6)

where Fa
v ∈ R

HW×D and Fa
t ∈ R

C×D respectively denote that updated visual and textual features.

With this cross-attention mechanism, the information communication and interaction bridge has been

built between linguistic modality to visual modality to align the spatial-spectral and linguistic features

with more reasonable and available. On the one hand, the high-level abstract visual features will be

focused on with text guidance. On the other hand, this bridge makes the linguistic features flexible,

image-conditional, and self-adapted instead of fixed.

In the ultimate stage, We proposed the top-class projection module to extract the linguistic

feature vectors corresponding to the class with the highest probability for each sample in the text data.

Subsequently, these selected feature vectors are projected into a new semantic space in preparation

for domain alignment. Spa-Max Pooling is adopted to retain the distinguish characters and reduce its

spatial dimension.

Figure 6. The architecture of the proposed LIVE module is depicted on the left side of the image,

while on the right side are its two variants based on bidirectional or unidirectional cross-attention

mechanisms, where the l2v and the v2l mean the text-guided visual and linguistic features alignment

and image-conditional linguistic and visual features alignment framework, respectively.
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2.5. Loss Function

Our loss function is composed of the classification loss and the linguistic-visual alignment loss

[29]. Firstly, the classification loss can be denoted as

ŝi = Cls(si) (7)

Lcls(S, Y) =
1

N ∑
i

LCE(ŝi, yi), (8)

where the LCE is Cross-Entropy loss function and ŷi is the output of classification branch of our

model. In addition, the linguistic-visual alignment loss (LLVA) is inspired by supervised contrastive

learning [36](in LDGnet), which is defined as

LLVA = −
N

∑
i=0

1

|P (i) |



 ∑
p∈Pt(i)

log
exp

(

vT
i t+p /τ

)

∑a∈At(i) exp
(

vT
i t−a /τ

)

+ ∑
p∈Pv(i)

log
exp

(

tT
i v+p /τ

)

∑a∈Av(i) exp
(

tT
i v−a /τ

)





(9)

where the vi and ti denote the visual feature and textual feature, respectively in minibatch, Pv(i)

and Av(i) means the positive and negative samples of visual feature. Correspondingly, Pt(i) and At(i)

also are the positive and negative samples of two modalities features. Notably, this loss exists for both

coarse-grained and fine-grained text prompts, denoted as Lcoarse and L f ine.

Integrating the above loss functions, the total loss is represented as

L = Lcls + α((1 − β)Lcoarse + βL f ine) (10)

where the α and β is hyperparameters for balancing the LLVA and control the contribution of both

Lcoarse and L f ine, respectively.

2.6. Variantes of Proposed Module

For the LIVE module, three versions can be selected, ALL-LIVE denotes that the module is used

for aligning both coarse-grained text and fine-grained with visual features, Coarse-LIVE denotes

that only is available in alignment between coarse-grained text and visual features, and similarly the

Fine-LIVE is designed for only fine-grained text and visual features alignment. For each version,

we explore and compare the performance of the unidirectional or bidirectional bridge that has been

used for information interaction. For all descriptions and experiments, the bidirectional Coarse-LIVE

module is the default, and more detailed discussions will be provided in Section 3.3.4.

3. Results

In this section, we display the details of experiments, including the dataset, evaluation metrics,

experiment setting, and the results of comparative and ablation experiments.

3.1. Dataset and evaluation metrics

3.1.1. Dataset Description

1) Houston Dataset: The dataset includes Houston 2013 [30] and Houston 2018 [31]. Houston

2013 conducted research published by the IEEE Geoscience and Remote Sensing Society. The dataset

used by UH was gathered in 2013 and involved the deployment of the CASI. Each image in the
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dataset comprises 340 × 1905 pixels, encompassing 144 distinct spectral bands, covering a wavelength

range spanning from 0.38 to 1.05 µ m. The spatial resolution is set at 2.5 meters per pixel (MPP). The

ground truth for the images comprises 15 unique classes that correspond to various land cover types.

Correspondingly, Houston 2018 has the same wavelength range but contains 48 spectral bands. The 48

spectral bands within the wavelength range 0.38-1.05µm are selected to correspond to the Houston

2018. The land-cover classes selected and the number of samples are exhibited in Table 1.

Table 1. Land-cover classes and the number of samples of the Houston13 and Houston18 datasets

Class No. Land-cover Class Number of Samples (Houston 13) Number of Samples (Houston 18)

1 Stressed Grass 345 1353
2 Grass stressed 365 4888
3 Trees 365 2766
4 Water 285 22
5 Residential buildings 319 5347
6 Non-residential buildings 408 32459
7 Road 443 6365

Total 2530 53200

2) Pavia dataset: University of Pavia (UP) has 103 spectral bands with 610×340 pixels. The Pavia

Center (PC) has 1096×715 pixels and 102 bands. The last channel of UP is removed to ensure the same

as PC on spectral dimension. The details are listed in Table 2.

Table 2. Land-cover classes and the number of samples of the UP and PC

Class No. Land-cover Class Number of Samples (UP) Number of Samples (PC)

1 Tree 3064 7598
2 Asphalt 6631 9248
3 Brick 3682 2685
4 Bitumen 1330 7287
5 Shadow 947 2863
6 Meadow 18649 3090
7 Bare soil 5029 6584

Total 39332 39355

Quantitative evaluation metrics of four are used to evaluate the effectiveness of the suggested

technique, as well as other methods for comparison. These metrics include:

• The class-specific accuracy (CA): Measures the accuracy of the model on each class. It is calculated

as the ratio of correctly classified samples for a specific class to the total number of samples in that

class.
• Overall Accuracy (OA): A comprehensive assessment of the classification;
• Kappa Coefficient (κ): The kappa coefficient assesses the agreement between the anticipated

classifications and the ground truth while taking into account any agreement that might happen

by chance.

3.2. Experiment setting

We conducted all experiments using the PyTorch framework on the NVIDIA 3090 GPU. We

trained our model with a batch size of 256. The AdamW [32] optimizer has been deployed for training

all networks. On the UH and Pavia datasets, the learning rate of 1e − 2, using a gradient of loss

function for the gradient descent updates with regularization parameter λ and weight α. Here the λ is

1e+0 for the UH dataset, and 1e-2 for the Pavia dataset, respectively. The data augmentation strategy

has been adopted for the mitigation of overfitting, with the multiple ratio r of 5 for the UH dataset and

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 February 2024                   doi:10.20944/preprints202402.0491.v1

https://doi.org/10.20944/preprints202402.0491.v1


10 of 17

1 for the Pavia dataset. The training epoch is set to 200. During the experiment, patches with a size of

13 × 13 are taken from the HSIs and used as input to the model. For the UH dataset, all models have

been trained on the source domain (Houston 13) and tested on the target domain (Houston 18). For

the Pavia dataset, all experiments have been conducted regarding UP and PC as source domain and

target domain, respectively.

3.3. Comparison experiments

3.3.1. Comparison method setting

The comparison methods contain DAAN[33], MRAN[34], DSAN[35], HTCNN[36], PDEN[8],

LDSDG[37], SagNet[38], and LDGnet[10]. For DAAN, MRAN, DSAN, and HTCNN, which are

considered DA techniques, the SD data with labels and TD data without labels have been used for

training. Here, the SD data has been split randomly as 80% and 20% for training and validation,

respectively. For the DG methods, such as PDEN, LDSDG, SagNet, LDGnet, and Ours, only the SD

data has been used, under the same sample partition situation. In particular, the parch size of LDSDG

and SagNet has been set to 32 × 32 to accommodate the input size of Resnet18. We adopted the

random flip and random radiation noise in [10] to increase the UH dataset. The learning rate of all

the comparison methods is 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e+0, respectively and the λ of all comparison

models is 1e-3, 1e-2, 1e-1, 1e+0, 1e+1, 1e+2, 1e-2. The result of classification performance is shown in

the following Table 3-4, and the best results already are emphasized in bold.

3.3.2. Classificaion performance analysis

The classification performance of different methods for the target Houston 18 and PC dataset is

shown in Table 3 and Table 4, respectively. The following analyses can be obtained from classification

performance on two datasets.

1. In all DA methods, The DSAN has the best performance on both two datasets. Compared with DG

methods, the DSAN provides a 2% improvement in OA over PDEN on the Houston 18 dataset,

but on the PC dataset, on the contrary, the PDEN provides a 2.6% improvement in OA over DSEN.

This demonstrates that the superiority of DA and DG is equally matched and the key to cross-scene

classification is the generalization ability of the model for various data.
2. In all DG methods, the LDGnet achieves the exceptive performance using the linguistic visual

alignment, which demonstrates that linguistic prior knowledge is greatly helpful for cross-scene

classification and can improve the generalization ability for different datasets.
3. Our LIVEnet outperforms the DG methods. Compared with the second best, ours provides a 3.7%

and 1.7% in OA on the Houston 18, and PC, respectively. Because, for the hyperspectral image

data, we specially design the image encoder to extract the global spatial-spectral features with

good inter-class correlation. In addition, to tackle the prior knowledge of linguistics on HSI data,

we propose a LIVE module to build a bridge between linguistic and visual semantic space. With

this module, the linguistic visual alignment can be flexible and self-adapted.

We also design the visualization comparison on the UH dataset. The classification maps of

the different methods on the Hoston 18 data are illustrated in Figure 8 and Figure 7. The visual

outcomes generated by our approach exhibit heightened precision and feature more pronounced edge

characteristics.
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Table 3. CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS FOR THE TARGET

HOUSTON 18 DATA

Class No. DAAN MRAN DSAN HTCNN PDEN LDSDG SagNet LDGnet LIVEnet

1 68.29 41.02 62.31 11.83 46.49 10.13 25.79 61.71 44.42
2 77.80 76.94 77.50 70.11 77.60 62.97 62.79 77.45 77.41
3 67.50 65.91 74.55 54.99 59.73 60.81 48.66 62.08 62.33
4 100.0 100.0 100.0 54.55 100.0 81.82 81.82 95.45 81.82
5 47.69 36.90 73.39 55.60 49.62 45.65 59.57 69.53 84.65
6 79.49 82.68 86.84 92.85 84.98 89.22 89.28 91.57 92.03
7 45.12 56.43 46.33 46.47 64.21 44.15 34.99 45.42 60.25

OA 70.45±1.54 72.11±1.79 78.21±1.05 77.67±2.11 75.40±1.76 74.23±1.49 73.01±1.81 80.34±1.74 83.39±1.47
κ (×100) 53.86±2.14 55.03±2.86 64.10±1.83 60.18±3.07 55.87±2.92 55.42±2.27 55.29±3.50 65.80±2.59 71.83±2.89

Figure 7. The classification maps of the different methods on the Houston 18 dataset. (a) Ground

truth. (b) DAAN. (c) MRAN. (d) DSAN. (e) HTCNN. (f) PDEN. (g) LDSDG. (h) SagNet. (i) LDGnet. (j)

LIVEnet.

Table 4. CLASSIFICATION ACCURACY (%) OF DIFFERENT METHODS FOR THE TARGET PC

DATA

Class No. DAAN MRAN DSAN HTCNN PDEN LDSDG SagNet LDGnet LIVEnet

1 71.98 59.16 93.93 96.06 85.93 91.09 98.35 95.20 99.55
2 78.98 85.15 79.80 57.70 88.56 73.51 59.76 82.79 84.95
3 19.37 46.18 53.97 2.76 61.34 2.23 5.40 80.48 47.97
4 58.67 69.58 75.75 93.25 85.49 71.72 87.03 85.11 84.28
5 70.87 64.58 99.44 89.94 87.95 71.04 93.19 93.15 81.28
6 83.07 89.22 74.43 70.97 79.26 57.12 49.81 66.93 45.08
7 55.59 60.10 67.31 42.28 64.75 78.13 57.94 81.97 98.51

OA 66.71±2.15 69.01±1.21 78.21±1.10 68.31±1.62 80.27±1.38 70.88±1.55 69.28±1.11 82.53±1.24 83.94±0.99
κ (×100) 59.76±3.47 63.04±1.90 74.10±1.57 62.17±2.57 76.81±1.92 64.06±2.07 63.04±1.67 78.85±1.78 80.51±1.52
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Figure 8. The classification maps of the different methods on the PC dataset. (a) Ground truth. (b)

DAAN. (c) MRAN. (d) DSAN. (e) HTCNN. (f) PDEN. (g) LDSDG. (h) SagNet. (i) LDGnet. (j) LIVEnet.

3.3.3. Time complexity analysis

The results of execution time during one epoch training on all datasets are listed in Table 5. The

time consumption of our LIVEnet is lower than the DAAN, DSAN, HTCNN, LDSDG, and LDGnet,

because the single-head self-attention in Transformer is designed by a dual-branch framework with

removing the value. In this Transformer, the residual connection is simplified, which improves

the training speed. For the training parameters, excluding the parameters frozen text encoder, the

parameters of our model (2.97M) are higher than the LDGnet (0.78M), because the extra cross attention

provides the learnable parameters.

Table 5. EXECUTION TIME OF ONE EPOCH TRAINING IN COMPARISON METHODS ON THE

UH AND PAVIA DATASET

Datasets DAAN MRAN DSAN HTCNN PDEN LDSDG SagNet LDGnet LIVEnet

Houston 2013 16.04 14.01 15.94 32.22 4.79 40.28 7.63 18.19 15.61
UP 27.97 28.33 29.02 47.99 13.05 65.93 19.76 68.02 62.50

3.3.4. Variants of model analysis

In this section, we discuss various variants of the LIVE model, categorized into two groups based

on the service object of the LIVE model and the framework of cross-attention.

1. Variants of the Service Object of LIVE: 1) The All-LIVE model integrates a complete across-attention

mechanism for aligning linguistic features and visual features. Where the linguistic features

are extracted from both coarse-grained text and fine-grained text. 2) The Fine-LIVE model is

employed exclusively in the alignment of fine-grained linguistic features and visual features. 3)

Correspondingly, the Coarse-LIVE model serves as a counterpart, focusing on coarse-grained text

features.
2. Variants of the cross-attention framework: The Bidirection denotes the complete across-attention

with the Qt, Kt, Vt and Qv, Kv, Vv. Those Q, K, and V are completely produced and correctly

calculated to make attention maps At and Av. With this bidirectional LIVE, the visual features

can affect the linguistic features and also accept the feedback and guidance of linguistic features.

The l2v and v2l are the unidirectional bridge to make the linguistic and visual features uniaxially

communicate by removing the Qv, Kv or Qt, Kt, respectively. The LIVE, LIVE-l2v, and LIVE-v2l

framework is described in Figure 6.
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The classification performance of different service object variants for the target Houston 18 dataset

is shown in Table 6. Taken as a whole, the Coarse-LIVE variant provides the best performance on the

Houston 18 dataset, with 2.2% and 1.8% improvement compared with the Fine-LIVE and All-LIVE in

OA, respectively. Notably, The Fine-LIVE has the damnedest 100.00% precision in class "Water" and the

fine-grained text prompt is "The water has a smooth surface.", "The water appears dark blue or black".

The emergence of this phenomenon is attributed to the distinct visual and semantic clarity present

in the images and language descriptions of a particular category. Here, the language descriptions

overtly incorporate specific visual attributes such as color and texture, exhibiting alignment with the

linguistic domain priors acquired during CLIP training. Nonetheless, the manual effort required for

prompt engineering for each category is both time-consuming and arduous, and may even be deemed

impractical. Due to the potential redundancy or mutual conflicts in the information contained within

fine-grained and coarse-grained textual features, which impact the performance of linguistic-visual

feature alignment, resulting in lower AA (69.61%) and Kappa (69.22%) in the All-LIVE case. Above all,

the Coares-LIVE module has been selected in this work, abbreviated as the "LIVE module".

The classification accuracy of the different frameworks of the Coarse-LIVE module for the target

Houston 18 data is exhibited in Table 7. The bidirectional LIVE module has the best performance in

OA (83.72%) and Kappa (72.10%). This demonstrates the mutual interaction between the linguistic

and visual features is the key to alignment.

Table 6. CLASSIFICATION ACCURACY (%) OF DIFFERENT SERVICE OBJECT VARIANTS FOR THE

TARGET HOUSTON 18 DATA

Class No. All-LIVE Fine-LIVE Coarse-LIVE

1 41.24 47.89 44.23
2 69.46 71.62 77.59
3 60.88 59.58 62.57
4 81.82 100.0 81.89
5 83.60 76.30 84.38
6 92.05 92.58 92.89
7 58.24 56.62 61.11

OA 82.17 81.87 83.72
AA 69.61 72.09 72.11

κ (×100) 69.22 68.11 72.10

Table 7. CLASSIFICATION ACCURACY (%) OF DIFFERENT FRAMEWORKS OF COARSE-LIVE

MODULE FOR THE TARGET HOUSTON 18 DATA

Class No. LIVE-l2v LIVE-v2l LIVE

1 15.23 60.90 44.23
2 80.16 65.22 77.59
3 62.62 60.30 62.57
4 81.82 81.82 81.89
5 75.56 87.94 84.38
6 92.64 89.98 92.89
7 61.60 63.33 61.11

OA 82.53 82.03 83.72
AA 67.09 72.78 72.11

κ (×100) 69.86 69.99 72.10

3.3.5. Impact of the window size of the input HSI data analysis

The different window sizes are investigated thoroughly in this paper. Table 8 exhibits the impact

of the window size of the input HSI data on the target Houston 18 data. With the window size

expanding, both the execution time and the training parameters, excluding the frozen text encoder,

are increasing. Additionally, the OA and AA initially ascend and subsequently decline, as shown in

Figure 9. This phenomenon may be attributed to the increase in semantic information within each
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patch as the patch size grows. However, when the patch size becomes huge, it may lead to the loss of

local details. After considering achieving a good trade-off between the three metrics, execution time,

and training parameters, we ultimately chose a window size of 13 × 13 for all experiments.

Table 8. IMPACT OF THE DIFFERENT WINDOW SIZES ON THE TARGET HOUSTON 18 DATA

Window size OA AA Kappa (%) Execution time (s) Training parameters (M)

11 79.94 60.88 63.30 15.16 2.08
13 83.72 72.11 72.10 15.61 2.97
15 80.55 67.95 64.41 19.09 3.73
17 79.98 69.97 66.31 21.29 4.75

Figure 9. The impact of the different window sizes for classification on target Houston 18 data.

3.4. Ablation experiments

On the Houston dataset, we conducted ablation experiments to evaluate the superiority of the

two modules we had introduced. Table 9 displays the experimental results for different cases. To

make the baseline network, the Image encoder proposed has been removed in the allover network

of LIVEnet, instead of a 3-D CNN residual network, and the LIVE module also has been discarded.

For the w/o image encoder case, the 3-D CNN residual network has been instead of the proposed

image encoder, and the LIVE module is still adopted. Where the w/o LIVE means the LIVEnet without

the LIVE model and maintains the remaining architecture and condition the same. By analyzing the

above results of ablation experiments, the effectiveness of the image encoder and the LIVE module

is significantly reflected in the OA and Kappa metrics. This demonstrates the image encoder can

effectively extract the global features and capture the inter-class correlation, which is important for

the performance of classification and generalization of models. Correspondingly, the LIVE module is

helpful for linguistic-visual alignment.

Table 9. Ablation experiment on the UH dataset

Cases OA (%) Kappa (%)

baseline 79.13 77.62
w/o image encoder 81.20 69.53

w/o LIVE 79.42 78.10
LIVEnet 83.39 71.83

4. Conclusions

In this paper, we proposed a LIVEnet, for cross-scene HSI classification. The LIVEnet is contributed

by the CLIP framework and specially designed by a novel image encoder and LIVE module with

cross attention. During the training, No samples of TD have been involved. For the target dataset,
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the LIVEnet is testing only using the Cls loss with low-level time consumption. With the LIVEnet,

the local features, contributed by spectrums of HSI, can be extracted well and the linguistic features

and visual features can be alignment without the extra prior knowledge. The LIVE module increases

the information communication between linguistic and visual features with a simple cross-attention

mechanism. The variants of the LIVE module have been fully discussed. The results of comprehensive

experiments and analyses on UH and Pavia datasets demonstrate the proposed method’s efficacy in

improving performance in the domain generalization cross-scene classification.

Abbreviations

The following abbreviations are used in this manuscript:

HSIs Hyperspectral Images

CNN Convolution Neural Network

PU Pavia University

CASI Compact Airborne Spectrographic Imager

MPP Meters Per Pixel

GSD Groups Sampling Distance

IP IndianPines

UH University of Houston

POSIS Reflective Optics System Imaging Spectromete

OA Overall Accuracy

AA Average Accurary

κ Kappa Coefficient
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