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Abstract: Metabolites are at the end of the gene-transcript-protein-metabolism cascade. As such, metabolomics 
is the omic approach that offers the most direct correlation with phenotype. This allows that, where genomics, 
transcriptomics and proteomics fail to explain a trait, metabolomics might give an answer. Complex 
phenotypes, which are determined by the influence of multiple small effect alleles, are an example of these 
situations. Consequently, the interest in metabolomics has increased exponentially in the last years. As a newer 
discipline, the metabolomics bioinformatics analysis pipelines are not as standardized as in the other omic 
approaches. In this review we synthesized the different steps that need to be carried out to obtain biological 
insight from the annotated metabolite abundance raw data. These steps were grouped in three different 
modules: preprocessing, statistical analyses and metabolic pathway enrichment. We included within each one 
of them the different state-of-the art procedures and tools that can be used depending on the characteristics of 
the study, providing details about the characteristics of each method has, as well as the issues the reader might 
encounter. Finally, we introduce genome scale metabolic modeling as a tool for obtaining pseudo-metabolomic 
data in situations where its acquisition is difficult, being possible to analyze the resulting data with the modules 
of the described workflow. 

Keywords: metabolomics; bioinformatics; workflow; biostatistics; genome-scale metabolic 
modelling 
 

1. Introduction 

Metabolism is the currency of the physiological processes of all living organisms. The biomass 
that forms all organisms is a product of metabolism, as well as the chemical reactions that ensure its 
energetic viability and maintenance. The metabolome encompasses all the small chemical 
compounds (metabolites) that are present in a biological system at a given moment [1]. These small 
compounds include sugars, amino acids, nucleic acids, lipids, fatty acids, phenolic compounds, and 
alkaloids. Due to metabolism being at the end of the gene-transcript-protein-metabolism cascade, the 
metabolome is the omic dataset that is closer to the phenotypic state of the organism under 
investigation [2]. This straightforward correlation facilitates that the study of metabolism may 
provide explanations to the mechanisms driving phenotypes where genomic, transcriptomic, or 
proteomic approaches cannot. One example of this are complex phenotypes, where the observed 
features are product of a high number of small-effect alleles, rather than few strong-effect mutations, 
which makes it difficult to stablish connections between, for example, genome and phenotype [3]. In 
the context of pathogenic microorganisms, the possibility of examining their physiological state in a 
particular moment can give insight of their virulence mechanisms. Some pathogens rely on the 
production of secondary metabolites to display increased virulence. For example, Pseudomonas 

aeruginosa produces rhamnolipids in order to form biofilms and swarm through surfaces, and the 
secretion of these compounds serves as a mean for reducing oxidative stress [4–7]. Other pathogens 
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rewire their metabolic network to adjust to the stresses imposed by the infected host, diverting fluxes 
towards metabolic products that help to evade the immune response, serve as reserve resources 
against starving and protect against the host’s attacks. An example of this is Mycobacterium 

tuberculosis infection, which is characterized by a switch from carbohydrate to lipid use as a carbon 
source, an altered composition of the cell wall and an abrupt decrease of the growth rate [8–10]. These 
facts have contributed to an exponential increase of the interest in the application of metabolomic 
techniques in microbiological studies [11]. 

Metabolomic data is most frequently acquired with gas chromatography-mass spectrometry 
(GC-MS), followed closely by liquid chromatography-mass spectrometry (LC-MS) and nuclear 
magnetic resonance (NMR) [11,12]. GC-MS offers the advantages that the equipment is cheaper, 
easier to operate and less prone to maintenance issues. Additionally, retention times between runs 
are highly reproducible, being automated compound identification easier. Consequently, it is the 
gold standard for profiling primary metabolism [13,14]. An important drawback is that the sample 
needs to be volatilized prior to enter the chromatographic column, being necessary to derivatize non-
volatile compounds, therefore existing the possibility of the degradation of compounds and the 
formation of new ones as a product of the heat [15]. On the contrary, LC-MS has the advantage that 
allows for the detection of more compounds than GC—MS, being able to acquire tens of thousands 
of features in a single run. The lack of methods to determine the metabolite identity of all detected 
ions is, however, a major limitation [11]. Other advantages are a high sensitivity and, as it does not 
need compound derivatization, sample preparation is easier, faster and cheaper [16]. The main 
drawback is that the chromatographic column does not behave exactly the same in separate runs, 
causing compound elution times to naturally drift between runs [17], implying extra steps for 
identifying the identity of the peaks. Among the advantages offered by NMR are that it allows in 
vivo measurements, can provide information about interaction of metabolites with macromolecules 
and has an easier workflow for performing isotope tracing than LC-MS or GC-MS, with the drawback 
of less sensitive measurements [18]. In the three cases, after the steps needed to be carried out to 
convert the raw spectra data to metabolite feature data [19,20], the outcome will be a table of peak 
areas where each row will constitute the analyzed samples and each column the features, in other 
words, the metabolites. These peak areas are proportional to the relative abundance of the metabolite 
within the sample. 

To get biological insight from the raw peak areas several steps must be carried out, which can 
be summarized in preprocessing, unsupervised exploratory analyses, supervised analyses and 
pathway enrichment. In the preprocessing step, missing values need to be imputed and the unwanted 
experimental variability removed. Non-supervised approaches are usually used to explore the data, 
showing if there are differences between the experimental groups (for example phenotype or 
treatment) without informing the algorithm about what the group each sample belongs to. When 
there are many metabolomic differences strongly correlated to the target grouping unsupervised 
methods can be used to determine what are the features driving this difference. When this is not the 
case supervised approaches need to be used: information about the group of each sample is required 
by the algorithm, which determines what features are more strongly associated to the differences. 
The final step consists in, having the metabolites that are altered between the different groups, 
determine which are the metabolic pathways that appear to be perturbed. In this review we discuss 
the different state-of-the-art approaches that fall within each one of these three modules, detailing 
the particularities of each method and the issues that need to be considered. In the final section we 
will discuss alternative approaches for cases where the access to metabolomic data is difficult.  

2. Data Preprocessing 

Once metabolite extracts are analyzed with the chosen technique and the metabolite peaks are 
identified for each one of the samples, a metabolite table of peak areas will be generated, where rows 
and columns correspond to samples and metabolites, respectively. This table will present two issues: 
some metabolites will have missing values in some samples and there will be variability between 
batches introduced by technical errors. Regarding the missing values, it needs to be determined if 
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these metabolites are truly absent in the sample or below the limit of detection, or there was some 
error in the metabolite detection or in the determination of the peak, and their abundances need to 
be inferred. This process is known as metabolite imputation. The handling of the technical variation 
introduced during sampling preparation and data acquisition is done in the normalization step. 

2.1. Metabolite Imputation 

Metabolomic data acquired with Mass Spectrometry (MS) have the drawback that present 
missing values at a proportion that can be as high as 20% and affect 80% of the detected metabolites 
[21]. These missing values can interfere in the statistical analyses done downstream, so an important 
step in the preprocessing step is to handle them with imputation [22]. The approaches for dealing 
with the missing values in metabolomics are borrowed from other omics disciplines, mostly 
transcriptomics. Before the imputation usually the variables with a high proportion of missing values 
are completely removed from the dataset. An example of this approach is the “80% rule”, where 
metabolites with more than the 20% of missing values are removed from the dataset [23]. The samples 
with more than the 80% of the variables missing are also filtered out. 

After the prefiltering, there are different approaches to deal with missing values, some of them 
more sophisticated than others. They can be divided in three categories [24]. The simplest ones belong 
to single value imputation, which includes the imputation by the mean, by the median, by the 
minimum, by the minimum/2 or by zero. Imputation by the mean and the median of the non-missing 
values of a given variable assumes that the origin of the missing values is random, caused by errors 
during the sample preparation or detection. Conversely, imputation by the minimum, the 
minimum/2 and zero assume that the value is missing because it is below the limit of detection. 
Because of their approach, they do not determine the cause of each missing value observation. With 
an increasing complexity, we can find the imputation methods based on local structures. Some 
examples are random forest and k-nearest neighbors imputation [25–27]. These methods infer the 
imputed value based on the value of the same variable in other samples that are similar according to 
the rest of the variables, so it can at some level determine if the missing metabolite is in the limit of 
detection or was not detected because of some other issue. The third category encompasses the 
methods based on global structures, which infer missing values based on the “shape” of the vector 
space determined by the metabolomic matrix, being iteratively the missing values estimated until 
they converge. Among the different options there are methods based on Single Value Decomposition 
(SVD) [28], on Bayesian Principal Component Analysis (BPCA) [29] and on Probabilistic Principal 
Component Analysis (PPCA) [30]. 

2.2. Normalization 

After missing value imputation an important step is to normalize metabolomic data in order to 
remove the technical variation that might have been introduced during the experimental procedure. 
The sources of this variation are diverse, being among them human error, differences in temperature 
or atmospheric conditions, and between- and within-instrument variation, among many other 
sources. When samples are acquired in short intervals of time the produced variation might or not 
have a large impact, but when samples are acquired in different batches is when batch effect arises: 
samples that have been ran in the same batch were subjected to the same technical variation 
conditions determined by the moment when the analysis was performed and, therefore, have 
common traits that are not related to the biological factors of interest [31]. In order to help to 
distinguish if the observed differences are due to true biological variation or batch effects and to 
facilitate its correction, it is important to evenly split the samples belonging to the different biological 
groups across different batches during the design of the experiment in the data acquisition step. 

Compared to transcriptomics or proteomics, where commonly all the abundances are 
normalized to a single value (i.e., the total amount of transcripts or proteins in the sample, the mean, 
the median, or a value obtained based on a set of house-keeping features) [32–35], in metabolomics 
there is no standard method for dealing with non-biological variability [36,37]. Furthermore, the 
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outcome of the experiment can vary greatly depending on the chosen normalization method [38]. 
Consequently, a good practice is to test different methods and compare their performance [39]. 

2.2.1. Normalization Methods 

Normalization methods can be classified as pre-acquisition, or preventive, and post-acquisition, 
or curative [40]. Pre-acquisition methods consist in diluting the samples in order to force all of them 
to have the same global concentration, previously to sample preparation and analysis. In the case of 
microbial metabolomics, the most common approach is taking all the samples to the same optical 
density (OD, absorbance at 600 nm) before metabolite extraction [41]. For other cases some 
alternatives are normalizing to the total dry weight, to the number of cells or to the total DNA or 
protein quantity in the sample [36]. Post-acquisition methods are mathematical procedures that aim 
to remove the technical variation after the analytical process [36]. Differences in the performance 
between pre- and post-acquisition methods have been reported, with many post-acquisition methods 
failing to overcome non-linear variability [42]. However, even performing pre-acquisition 
normalization, differences in the analytic equipment conditions between runs can still produce 
variation during data acquisition that still need to be handled [43]. So, a combination of both 
approaches is advisable. 

Before post-acquisition normalization it is also advisable to transform the data, as metabolite 
abundances tend to have a right skewed distribution [44]. Log-transformation is the most used 
approach but may become problematic when dealing with small values, because as they approximate 
to zero, log-transformation tends to minus infinite. An alternative to overcome this problem is the 
power transformation, which consists in raising the values to the power of a rational number, 
commonly 1/2 [45]. Other solution that allows to use log-transformation consists in adding a small 
number c to all the values before transformation to avoid having zeros. 

Regarding post-acquisition methods, there are different alternatives. In this review we will cover 
a selection of them. As with missing value imputation, there are some normalization methods that 
are more sophisticated than others. The less sophisticated methods are inherited from transcriptomics 
and proteomics. These are the scaling normalization methods, which consist in subtracting to each 
sample a single value corresponding to that sample, let it be the mean, median or sum of all the peak 
intensity values for the given sample [46]. When the number of differential compounds is low, these 
methods can be efficient solutions. But they present the problem that on many occasions the increase 
of abundance of a particular group of metabolites is not accompanied by a decrease of another group 
(self-averaging property does not occur). So, if there are many differential compounds, normalizing 
to a single value obtained from the total peak values can introduce differences in some metabolites 
that are not actually there [47]. With an increased level of sophistication, there are the normalization 
methods that rely on the spiking of one or several quality control metabolites in the sample. These 
compounds are known as internal standards. Depending on if it is desired to capture only differences 
in instrumental variation, or also in extraction efficiency, the internal standards can be added just 
before running the analytical step, or before the metabolite extraction, respectively. The compounds 
used in the latter case are referred by some authors as surrogate standards. The compounds typically 
used as internal standards are isotopically labeled versions of known metabolites [48]. The simplest 
of the normalization methods within this family is based on a single standard and is simply referred 
as IS (internal standard) method [49]. Here the peak intensity of each metabolite in each sample is 
normalized to the peak intensity of the internal standard, either by dividing each metabolite by this 
value or by subtracting it from each metabolite peak intensity [46,49]. The main drawback of this 
method is the assumption that all the metabolites are affected equally by the technical variation, 
which might not be always appropriate as variation can be influenced by their chemical properties. 
Therefore, the chemical properties of the standard might introduce variation due to matrix specific 
effects [47]. A solution to these issues is to add more than one quality control metabolite. The simplest 
approach using several quality control metabolites is the retention index method (RI). Here standards 
with different retention times are added to the samples, normalizing each analyte to the quality 
control metabolite with the closest retention [23]. However, technical variation might arise from other 
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sources than retention time. NOMIS (Normalization using Optimal selection of Multiple Internal 
Standards) aims to solve this issue by determining the covariance between the quality control 
metabolites and the analytes through multiple linear regression, for then removing this covariance 
from the analytes [47]. This way the standards that covariate more with each metabolite are given 
more weight in the normalization, effectively selecting the optimal standards for the normalization 
of the given analyte [47]. Despite this improvement, the internal standards could be still affected by 
cross-contribution, a phenomenon that is observed when different analytes co-elute in the 
chromatographic column, producing interference in the measurement [50]. Cross-contribution 
Compensating Multiple standard Normalization method (CCMN) overcomes this issue by 
performing the normalization in several steps [51]. First the variation introduced by the experimental 
design that is cross-contributed through the analytes to the standards is removed via multiple linear 
regression (MLR), for later using these cross-contribution free standard values for performing 
normalization [51]. Instead of using internal standards for normalization, another option is to use 
non-changing metabolites, which are present in the biological samples and therefore are exposed to 
technical variation but are uncorrelated to the biological factors of interest. RUV-2 (remove unwanted 
variation, 2-step) method uses this approach [43,52]. Here the unwanted component factors are 
estimated via single value decomposition (SVD) of the non-changing metabolite matrix, for later 
fitting a linear model to each metabolite using as explanatory variables both the factors of interest 
and the unwanted component factors [43,52]. These non-changing metabolites can be determined by 
statistical analysis or by determining which are the metabolites that correlate more with the standards 
(if included in the experiment) [43]. Non-changing metabolites have also been used with success with 
other normalization methods such as CCMN instead of internal standards [53]. Other category 
includes the methods based on quality control (QC) samples, which are analyzed before, after and 
scattered at regular intervals throughout each batch. These methods use the shifts between the 
measures of the QC sample to correct the values obtained from the test samples. A representative 
method of this class is quality control–based robust LOESS (locally estimated scatterplot smoothing) 
signal correction (QC- RLSC) [54]. These QC samples can be either pooled samples, obtained by 
combining small aliquotes of all the samples in the study, or commercially available QC samples 
made of combinations of different biofluids [54–57]. Pooled QC samples offer the advantage that 
contain the same metabolites that can be found in the individual samples, constituting the average of 
all the samples. The use of commercially available QC samples often implies metabolic information 
losses due to metabolites detected in the test samples but not in the QCs. Consequently, these 
metabolites will not be considered in downsream analyses. However, in long studies where sample 
preparation and data acquisition starts before the collection of all the samples, the use of 
commercially available QC samples might be necessary [54]. Finally, blank samples are another type 
of QC samples that, whether not directly related to normalization, are important in the assessment of 
the reproducibility of the analyses. These samples consist in either only solvent or the matrix of the 
sample, with optional internal standards spiked. Furthermore, the use of these samples allows to 
identify background compounds that should be excluded from downstream analyses [58]. The use 
of QC samples also serves for preparing the equipment for the analysis of the test samples, as the first 
few injections in a run tend to be poorly reproducible [54,59,60]. 

There are of course many more post-acquisition normalization methods than the ones covered 
here, but the aforementioned ones cover the different approaches used to handle technical variation. 
The scaling normalization methods can be easily implemented using any programming language 
such as R or Python, and are also included in NormalizeMets R package, as well as the methods based 
on internal standards and non-changing metabolites mentioned in this section [46]. 

2.2.2. Assessment of Post-Acquisition Normalization Effectivity 

Each one of the post-acquisition methods mentioned here solves an increasing number of issues 
metabolomic data can present and, consequently, there is an increment of complexity as well. 
Depending on the experimental implementation, the use of some methods might be more appropriate 
than others, as in some cases using excessively complicated methods may be overkill. For example, 
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in cases where the number of differential metabolites is small, such as in drug screening, scaling 
methods or IS method might be enough [50]. But in comparisons involving multiple differential 
metabolites, an increasing level of complexity is probably needed. Thus, it is recommended to test 
the performance of different methods to assess which is the one that best suits the dataset. There are 
different approaches to determine this, all of them complementary.  

One approach is to evaluate the tightness of the replicates. A way of assessing this is by 
comparing the average distance of each sample to its replicates to the average distance of each sample 
to the samples that are not replicates. A good normalization method should minimize the distance 
between replicates while maximizing the distance between groups. So, a scatterplot showing the 
average within- and between- group distances in the x and y axis for each one of the tested 
normalization methods can easily show which of them is optimizing these distances. Tightness of 
replicates can also be determined by using silhouette statistic [61]. Silhouette can be computed for 
each one of the data points in each one of the datasets generated with the tested normalization 
methods, considering the cluster as the group of replicate samples. The best performing 
normalization method, in terms of tightness of replicates, will display a distribution of silhouettes 
with lower standard deviation and higher median. Another option is to use within and between 
relative log abundance (RLA) plots [43]. Within-group RLA plots are boxplots of groupwise 
standardized log metabolite abundances, obtained by subtracting the median of the log abundances 
of each metabolite in the replicated samples to each sample. Within-group RLA plots show the 
tightness of the replicates achieved by the normalization method: all the samples should have a 
median within-group relative abundance close to zero and low standard deviation. For obtaining 
across-group plots, the median log abundance of each metabolite across all the samples is subtracted 
to the log abundance of each metabolite in each one of the samples. The obtained boxplots show the 
variability between groups of replicates: replicates should not vary a lot, but differences between 
groups of replicates should be observed. If the within-group RLA plots show a big proportion of the 
samples having their medians different from zero it means that the normalization method is not 
removing the unwanted variation properly. If within-group RLA plots look as expected, but across-
group RLA plots also show no difference between groups is a sign that the normalization method is 
removing the technical variation but also an important part of the biological variation [39]. 
Multivariate non-supervised approaches such as Principal component analysis (PCA) or hierarchical 
clustering analysis (HCA) can also be used to see if the samples aggregate according to their replicate 
structure or, instead, they group by batch. The results obtained with the unnormalized dataset and 
each one of the normalization methods can be compared to determine which of the methods yields 
tighter replicates and better removes batch effects [51].  

Other approach for assessing the adequacy of the normalization method is, if there are 
metabolites that are known beforehand to be differential between the levels of the biological factor of 
interest (positive control metabolites), rank the statistically significative metabolites before and after 
normalization, and see if they are among the top significative after normalization, meaning that the 
biological variation has not been removed [62]. 

The normalization diagnostic procedures depicted in this section can be performed using R 
statistical software with its included plotting features, or alternatively with ggplot2 package. RLA 
plots can be obtained easily with NormalizeMets R package [46]. In Python SciPy and Matplotlib 
libraries can be used for this same purpose [63,64]. 

3. Statistical Analysis of Metabolomics Data 

Once the metabolomic data has been normalized with the best performing method, different 
approaches can be used to answer the biological questions that have given origin to the performed 
study. Depending on the complexity of the question to be answered different approaches can be used.  

3.1. Univariate Analyses 

The most straightforward statistical methods to determine the metabolites associated with the 
biological factors of interest (phenotypes or experimental conditions applied to the biological 
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samples) are univariate analyses. Here the values of a single variable (metabolite) are tested one at a 
time for significant association with the factors of interest [65]. Depending on the variables being 
categorical or quantitative, on the distribution of the data and, if the variables are categorical, on how 
many categories there are, the most appropriate test needs to be chosen. If both the factor 
(independent variables) and the response variables (metabolite abundances) are quantitative, simple 
regression should be used, using t-statistic (for regression coefficients) or F-statistic for determining 
the significance of the association. If the factors are categorical, some examples of univariate tests to 
be used when there are only two categories are Student’s t-test and Mann-Whitney U test, the first 
one used when the distribution of the metabolite abundance is normal, while the second one does 
not assume normality. Simple logistic regression can also be used in this context, determining the 
significance of the association by using a Wald test [66]. ANOVA and Kruskal-Wallis test are some 
of the options that can be used when there are more than two categories. ANOVA, as the t-test, 
assumes normal distribution, while Kruskal-Wallis test does not [65]. As we are dealing with multiple 
testing, being that metabolomics datasets normally have from tens to hundreds of metabolites, p-
value correction will be necessary to compensate for the increasing probability of obtaining false 
positives [67]. 

3.2. Multivariate Analyses 

In multivariate analyses, instead of testing the association of independent variables to response 
variables one by one, all of them are tested at the same time. In metabolomic experiments, metabolite 
abundances are measured outcomes and are not usually manipulated. Therefore, they have the role 
of dependent variables according to the experimental design (as was considered in univariate 
analysis). But metabolites are not independent entities because they are connected through the 
metabolic network. Therefore, we expect that the different phenotypes being compared or the 
adaptation to the experimental treatments may result from the coordinated change of multiple 
metabolites. By using metabolite abundances as independent variables in multivariate analyses it is 
possible to assess the relationships between the different variables, giving insight about their 
interaction in relation to a particular biological factor [68]. Another advantage is that multiple 
hypothesis-testing is avoided, as only one test is performed for all the variables. Multivariate analysis 
methods can be broadly divided into supervised and unsupervised, according to the information 
about the response biological variable being given to the method or not, respectively. 

3.2.1. Non-Supervised Multivariate Analyses 

Non-supervised multivariate analyses are a good way of visualizing the structure of the dataset. 
In metabolomics, the most used method within this category is principal component analysis (PCA). 
PCA rotates the data in the multidimensional space determined by the variables, bringing the data 
to a new coordinate system where the variance is maximized across its axis (the principal 
components). The typical graphical representation of the PCA is the score plot, which is a scatterplot 
of the sample values for the two first components, which contain most of the variance of the dataset. 
With this representation it is possible to see the clustering of the samples according to their metabolite 
abundances, which ideally would correspond to the biological factors of interest, if variation between 
the samples sharing the same phenotype is smaller enough compared to the variation between 
samples belonging to different biological groups [69]. It is also common to overlay vectors of the 
loadings of the represented principal components of some or all of the variables used in the PCA, as 
loadings reflect the contribution of each variable to the correspondent principal component. This 
combination is designated as biplot (Figure 1A). It is also common to represent the amount of 
variance included in the sorted principal components as a barplot (Scree plot, Figure 1B). 

Another commonly used non-supervised multivariate approach is hierarchical clustering 
analysis (HCA). Here a determined distance metric, usually Euclidean distance, is obtained between 
pairs of samples and the samples are iteratively aggregated into clusters, according to a criterion 
determined by the linkage method. In metabolomics HCA is usually represented graphically in 
heatmaps, where metabolites are clustered vertically, and samples horizontally, resulting in a row 
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dendrogram and a column dendrogram, usually containing the metabolites and the samples, 
respectively, and a tile plot in between where the colors reflect metabolite abundance (Figure 1C). 
With this visual representation it is possible to easily visualize groups of samples that have similar 
metabolic profiles, and groups of metabolites that have similar abundance patterns across groups of 
samples, which could reveal alterations in metabolic pathways correlated with sample grouping.  

PCA score plot has the advantage that, as only two principal components are represented, which 
contain most of the variance of the variables, low correlated information is filtered out. Therefore, 
PCA plots usually give a cleaner representation of the groups. However, this can come as a 
disadvantage when there is biologically relevant information included in principal components other 
than the two represented in the score plot. In the HCA heatmap, on the other hand, all the information 
of the dataset is included, which makes it easier to visualize the influence of the variables over the 
sample aggregation but causes the grouping to be noisier. Another disadvantage of the HCA is that 
it will always output some grouping, despite the existence (or not) of any pattern. PCA score plot, on 
the contrary, would display in this situation a sparse cloud pattern, where all the samples appear 
distributed without any structure in the bidimensional space.  

An approach to assess the stability of the observed grouping using HCA is consensus clustering, 
where several iterations of the clustering algorithm are performed, excluding a random number of 
samples on each round. This method needs previous indication of the number of groups (k) the 
samples are being clustered in. In order to determine what is the number of significant groups, 
different ks are tested and for each k a consensus matrix is obtained. This consensus matrix indicates 
for each pair of samples how many times they were clustered together divided by how many times 
they were selected together. Ideally this matrix would be composed by zeros and ones. By 
determining how far is the obtained consensus matrix from the ideal one the optimal number of 
clusters can be obtained. This can be done by comparing the CDF (Cumulative Distribution Function) 
curves of each k. The original metric used for this comparison is the delta K, which is the relative 
change in the area under the curve. However, the Proportion of Ambiguous clustering (PAC) has 
been shown to outperform delta K [70]. PAC quantifies the proportion of pairs of samples that fall in 
the middle segment of each CDF curve, which indicates that they cluster ambiguously. PAC is 
computed by substracting CDFk(u1) to CDFk(u2), being the u1 and u2 commonly used 0.1 and 0.9, 
respectively. With both metrics the ‘elbow’ method is the most commonly used to select the best k. 
This approach is, however, rather subjective, so different alternatives have been proposed in order to 
determine the number of significant clusters more objectively. An example is the M3C method, which 
computes a p-value based on a null distribution obtained by applying consenus clustering on 
random-generated datasets, which have the same feature correlation structure as the original dataset, 
but do not present clustering [71]. 
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Figure 1. Graphical outputs of a selection of unsupervised multivariate analyses. These plots were 
obtained using the metabolomic dataset included in the work by Boyle et al. from 2017 [72], obtained 
from different P. aeruginosa mutants. (A,B). Principal component analysis (PCA). A. PCA biplot, with 
the loadings of the top 8 metabolites that most contribute to the two first components overlayed. (B). 
Scree plot of the four first components, showing the variance of the data explained by them. (C). 
Heatmap of two hierarchical clustering analysis sample and metabolite-wise. The color gradient 
indicates metabolite abundance. 

The unsupervised approaches described in this section can be applied easily both in R and 
Python programming languages. PCA and HCA can be computed using R’s base functions (prcomp() 
and hclust(), respectively), while in Python it is necessary to install scikit-learn library [73]. Both 
consensus clustering and M3C algorithm can be implemented in R using ConsensusClusterPlus and 
M3C packages, respectively [71,74]. Using these last two methods is, to our knowledge, more 
difficcult to do in Python, as there are just a couple of GitHub-released implementations of consensus 
clustering for python, and the authors of M3C method only released it as an R package. 

Unsupervised multivariate approaches are usually used exploratively, with the aim of 
visualizing the underlying patterns hidden in the data. In cases where there is a great proportion of 
the total variance correlated with the studied phenotypic traits, unsupervised analysis can be 
sufficient for assessing what are the metabolic differences driving the separation. But if the data is 
structured but it is not possible to see a clear separation according to the biological factors, a 
supervised approach will be needed to determine if there are metabolic traits correlated with the 
phenotype, and to identify them. 

3.2.2. Supervised Multivariate Approaches 

Supervised multivariate analysis methods are used to determine the strength of the correlation 
of the multiple variables with the phenotype of interest. Formally, univariate tests are supervised 
analyses, so many of the supervised multivariate analyses are univariate methods extended for 
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multiple explanatory variables. Some examples of these methods are multiple linear regression 
(MLR), used when the phenotype to be explained is quantitative, or multiple logistic regression, used 
when the phenotype is categorical, with only two groups. Multinomial logistic regression can be used 
when there are more than two categories. For MLR the significance of the full model can be obtained 
by the p-value computed from the F-statistic, while the significance of the association of each one of 
the variables to the response is given by its t-statistic. Regarding logistic regression methods, as in 
simple logistic regression, the significance of each one of the variables is given by the Z-value 
obtained with a Wald test [66]. 

MLR and logistic regression work well when the predictor variables are uncorrelated, but when 
some of them are correlated (multicollinearity) they fail to explain their individual effects on the 
response variable. In metabolomic datasets, where typically there are a high number of predictors, 
and some of them are correlated because of their role in the same metabolic pathways, MLR might 
not be the best solution if the objective is to determine the association of the metabolite abundances 
to the phenotype. Partial least squares methods solve this problem, being widely used in 
metabolomics for this reason. These methods include Partial Least Squares (PLS), Partial Least 
Squares Discriminant Analysis (PLS-DA), Orthogonal Partial Least Squares (OPLS) and Orthogonal 
Partial Least Squares Discriminant Analysis (OPLS-DA) [75,76]. PLS solve the multicollinearity by 
reducing the dimension of the data, projecting the variables to a lower dimension space that 
maximizes the covariance with the response variable. OPLS goes one step further by separating the 
variability that is correlated to the response variable and the variability that is orthogonal to it, 
making easier the interpretation of the influence of each individual variable on the response variable, 
but not improving the overall model results. PLS-DA and OPLS-DA are versions of the methods 
intended to work with discrete binary response variables, but their foundations are the same as the 
ones of their continuous counterparts. The significance of the metabolites in the separation of the 
samples according to the response variable can be determined by the variable importance in 
projection (VIP). This statistic is defined as the weighted sum of squares of the PLS weight, reflecting 
the importance of the variable to the entire model [77]. The common threshold to consider a variable 
significant is VIP ≥ 1 [78–80]. 

The drawback of the PLS methods is that they are prone to overfitting. To solve this obstacle a 
good approach is to split the dataset in training and testing subsets and assess if the performance of 
the model in the testing set is significantly different than in the training set. R2 and Q2 can be used for 
this aim. R2, as in linear regression, indicates the proportion of the variation in the response explained 
by the model. Q2 refers to the R2 obtained with the testing set. If the model is not overfitting R2 should 
be high and Q2 should be slightly smaller than R2, but not very different. However, because of the 
time-consuming nature of metabolomics sample acquisition, the number of samples is not always 
high enough to be able to split the dataset and still have an appropriate number of samples. An 
alternative to this approach is to use label permutation and cross validation [81]. In cross validation 
the dataset is split into several sample subsets, the model is fitted to all the combined subsets except 
for one and is tested in the left-out subset. This process is repeated until all the subsets have been 
used as a testing set. This allows to have R2 and Q2 values while keeping all the samples for the 
analysis. In permutation test the responses variables are randomly permutated between samples, a 
model is fitted to the altered dataset and R2 and Q2 are computed, comparing the values to the ones 
of the actual model. If the model is overfitting, the permutated model might have a higher R2 or Q2 
just by chance. Several permutation rounds are carried out, obtaining a p-value based on the 
proportion of R2 of permutated sets higher than the actual R2. Another p-value is obtained 
analogously for Q2. Some useful graphical representations for OPLS and OPLS-DA models are the 
score plot of the predictive and first orthogonal components (Figure 2A), the scatterplot of the R2 and 
Q2 values obtained before and after label permutation (Figure 2B) or the barplot of each metabolite’s 
loading for the predictor component (Figure 2C). These plots allow to visualize how well the model 
is separating the samples, if the model is statistically significant and the contribution of each 
metabolite to the separation of the samples according to the response variable, respectively. 
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Figure 2. Plots obtained from an OPLS-DA model. The OPLS-DA model was fitted on the 
metabolomic dataset included in the study by Boyle et al. 2017 [72], classifying the Pseuromonas 

aeruginosa clinical isolates as swarmers and non-swarmers (a collective motility phenotype P. 

aeruginosa displays). (A). Score plot of the predictive component and the first orthogonal component. 
Swarmers are indicated in blue, and non-swarmers in red. At the bottom of the plot the R2 value of 
the predictive component and the Q2 obtained with cross-validation are indicated. (B). Scatterplot of 
the R2 and Q2 values obtained with a permutation test (n = 200). Actual R2 values are indicated in gray, 
while Q2 are indicated in black. The respective horizontal lines represent actual R2 and Q2. At the 
bottom are the p-values of R2 and Q2, which are the proportion of permutated values that are higher 
or equal than the actual values. The similarity between the response variable value and the 
permutated response variable is represented in the X axis. (C). Barplot of the loadings for the 
predictive component of the metabolites that were determined as statistically significant by the OPLS-
DA model, by having a variable importance in the projection (VIP) higher or equal than 1. The 
metabolites with a negative loading are at higher abundance in non-swarmers, while the ones with a 
positive value are at higher abundance in swarmers. 

Another multivariate supervised method useful in omics analysis is a random forest, which is 
less prone to overfitting in comparison with PLS methods. A random forest is based on the decision 
tree method. Decision trees iteratively select the variable that best splits the data in two subsets, 
according to a threshold that maximizes that separation (i.e., minimize the sum of the squared 
residuals)[82]. At the end the samples have been separated according to similar values of the response 
variable. They can be used with discrete or continuous response and predictor variables (although in 
metabolomics predictors will be always continuous). Decision trees that work with continuous 
response variables are denominated regression trees, while when the response variable is discrete, 
they are called classification trees [82]. Decision trees are very prone to overfitting, so random forests 
come as a solution to this problem [83]. In random forests, instead of fitting a single tree, an ensemble 
of trees is fitted to randomly generated subsets of the total samples, and a random subset of the total 
number of predictor variables (sample and variable bagging, respectively) with the aim of making 
each tree in the ensemble as uncorrelated to each other as possible [84,85]. The results of each tree are 
aggregated by either averaging (in case of regression trees) or majority vote (in the case of 
classification trees) for obtaining the global results [86]. The resulting model can be interrogated to 
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obtain the importance of each variable in the prediction of the outcome by permuting the values of 
each variable and computing how much the accuracy of the resulting model decreases [83]. 

Linear and logistic regression models can be implemented using glm function in R, while for 
Python scikit learn library is the best option [73]. Multinomial logistic regression can be implemented 
in R using nnet R package [87], and some options for implementing the PLS methods described in 
this section are ropls and pls R packages [88,89], and scikit-learn library and pyopls module for Python 
[73,90]. Regarding random forests, they can be implemented in R using caret and randomForest R 
packages [91,92], and in Python with scikit-learn [73]. 

4. Metabolic Pathway Enrichment 

Once the set of metabolites significatively associated with the phenotype(s) of interest is known, 
it is important to determine which are the metabolic subsystems that are more likely to be perturbed 
in order to gain biological insight. This process is known as metabolic pathway enrichment. Pathway 
enrichment methods, as other computational tools used in metabolomics, were inherited from 
transcriptomics and proteomics. The different metabolic pathway enrichment methods can be 
divided in three different groups: over-representation analysis (ORA), functional class scoring (FCS) 
and pathway topology (PT) [93]. 

4.1. Over-Representation Analysis (ORA) 

ORA is the simplest approach for performing metabolic pathway enrichment. It relies on 
statistical tests that determine what metabolic pathways have more metabolites with significantly 
altered abundances than the ones that could be expected by chance. This is accomplished, for each 
metabolic pathway, by building a 2x2 table containing the number of statistically significant 
metabolites that are included in the pathway, as well as the number of statistically significant 
metabolites not included in it, the number of metabolites in the pathway that are not statistically 
significant and the number of metabolites not in the pathway that are not statistically significant. This 
table is used to determine if there is over-representation in the metabolic pathway, usually using tests 
based in hypergeometric, chi-square or binomial distributions [94]. 

Among ORA’s advantages are its simplicity, the ease of implementation and has its fast 
computation time. However, it also has several limitations, among them that it does not account for 
the actual metabolite abundances, instead cataloguing the metabolites as differential by applying a 
threshold to a determined statistic and discarding the ones that do not pass the threshold, therefore 
implying information loss. It also does not take into account the interactions of the metabolites within 
the metabolic network, which implies that alterations in anyone of the metabolites within a pathway 
have the same effect on it. It also considers metabolic pathways as independent isolated 
compartments, which is not the case [93]. 

ORA can be easily implemented directly in any programming language with statistical 
capabilities such as R or Python, and it is available as prebuilt functions in R packages such as 
clusterProfiler [95]. 

4.2. Functional Class Scoring (FCS) 

FCS tries to improve the information loss limitation ORA implies by using the actual metabolite 
abundances of the whole dataset, without applying any statistic-based threshold. The hypothesis 
supporting this approach is that small but coordinated changes in several metabolites belonging to 
the same pathway can produce observable differences [93]. There are two types of FCS methods: 
univariate and multivariate FCS methods [96]. In univariate FCS methods a score is computed for 
each individual metabolite based on correlation with the studied biological factor, for later 
integrating them in a single score for each set of metabolites (metabolic pathway), while in 
multivariate FCS methods the score is directly computed for each pathway [96]. The pathway scores 
are tested for significance by using a null hypothesis either by permuting the phenotypes or the 
metabolites [93]. 
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FCS methods do not solve all the ORA limitations, still considering each metabolic pathway as 
an independent unit and not considering the position of metabolites within the metabolic network. 

MSEA, the metabolomics version of GSEA (an FCS univariate method intended to be used with 
transcriptomic data) [97], can be implemented in metaboAnalyst web server and the R package version 
metaboAnalystR [98,99]. mPLAGE, the metabolomics-adapted version of PLAGE (pathway level 
analysis of gene expression), is another FCS method that is implemented in Python within the PALS 
library, which is also available as a web application (https://pals.glasgowcompbio.org/app/) and as a 
standalone program [100,101]. 

4.3. Pathway Topology (PT) 

PT methods take advantage of the fact that databases such as KEGG provide information about 
the interaction between different elements of the metabolic network, building a graph accounting for 
all the relationships, and using it for determining how likely it is that differences in abundances in 
given metabolites affect certain metabolic pathways. There are different approaches that take into 
account the metabolic network, each of them with its own limitations. Some examples of these 
methods are NetGSA, FELLA and DEGraph, which can be implemented in netgsa, FELLA and 
DEGraph R packages, respectively [102–105]. NetGSA uses a graph based on the interaction between 
the different elements of the metabolic network, which must be provided by the user as an adjacency 
matrix. With this network it calculates the influence of the concentration of each metabolite to the rest 
of them. It then uses this propagation to decompose the reads of the abundance of each metabolite in 
baseline level and propagated signal through its neighbors. With these values it then computes a 
statistic for each pathway to determine if the pathway is potentially perturbed [102]. FELLA retrieves 
a graph consisting of the interconnections between the different entries existing in KEGG database 
for a given organism for latter applying network propagation algorithms on it using as input 
differentially abundant metabolites, yielding a subnetwork of entries with a high probability of 
receiving propagated signals from the input metabolites, meaning that they are highly interconnected 
[104] (Figure 3). DEGraph compares two conditions by using the same interconnected graph, which 
can be downloaded from KEGG using DEGraph R package. It uses a Hotelling T2 test on a lower 
dimension space built from the graph to determine the significance of subnetworks (pathways) 
within the graph [105]. 
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Figure 3. Example of pathway enrichment graph obtained by FELLA. The graph depicted here 
includes all the KEGG entries with a high probability of receiving propagated signal from the 
differential metabolites, represented as green squares. The category of each KEGG entry is 
represented with a color. These results can be printed out as a table of p-values too. 

5. Generating Insight when Metabolomic Data Is Not Available: Genome-Scale Metabolic 

Models 

There are some cases where the acquisition of intracellular metabolomics data is challenging, 
such as during infection of animal or cellular models with intracellular pathogens like Mycobacterium 

tuberculosis or Legionella pneumophilla [106]. In this situation the recovery of the bacteria from within 
the infected cells at sufficient biomass amounts without perturbing the metabolic state of the bacteria 
makes the obtention of metabolomic data virtually impossible. A suitable alternative to evaluate how 
differences of genomic content translate into distinct metabolic phenotypes can be the use of genome 
scale metabolic models (GEMs). GEMs are representations of the metabolic capabilities of an 
organism, based on its genomic content [107]. They have been used with success to predict the growth 
rate of an organism in a particular medium composition, gene essentiality, production of virulence 
factors or response to stresses in different microorganisms [108,109]. GEM reconstruction typically 
starts with the genome annotation of the organism to be modelled, from which the reactions that the 
organism is capable of catalyzing are inferred. With these reactions a draft metabolic network is 
automatically built, accounting for the constraints imposed by reaction stoichiometry. Later, further 
constraints based on experimental data are applied, such as compartmentalization of reactions and 
compounds, measured intake and secretion rates of metabolic compounds and biomass composition, 
integrated in a special reaction denominated biomass reaction, which represents the specific growth 
rate [110]. The obtained metabolic network will contain some gaps due to incompleteness and 
mistakes in the annotation and promiscuous enzymes that catalyze reactions that are not accounted 
for, which will need to be filled. This step is preferred to be carried out manually [111]. 
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Once the metabolic network is complete, the rate of change of each metabolite concentration can 
be represented as: 𝑑𝐶𝑑𝑡 = 𝑆𝑣 (1) 

Being C a vector of metabolite concentrations, S the stoichiometric matrix, with each row 
representing a metabolite and each column a reaction, being the matrix elements the stoichiometric 
coefficients of each metabolite relatively to each reaction (positive if the metabolite is produced, 
negative if it is consumed, zero if does not intervene in the reaction), and v the vector of reaction rates 
or fluxes [112]. As the metabolic reactions occur at a much shorter time scale than biomass growth, 
the system is assumed to be in stationary state, so: 0 = 𝑆𝑣 (2) 

This system of equations will be under-determined, as the number of reactions is higher than 
the number of metabolites for known metabolic networks. So, rather than giving a single solution of 
reaction fluxes for a particular medium composition, the GEM will delimit a multidimensional space 
containing all the metabolic states the model predicts to be possible in the specified conditions [110]. 
For obtaining particular solutions there are different approaches available. The first one is flux 
balance analysis (FBA), which consists in maximizing, or in some cases minimizing, at least one 
objective reaction [113]. Usually, objective reactions are biomass and/or ATP production 
maximization, and/or minimization of the total flux through the metabolic network [114,115]. With 
FBA a flux distribution in the edge of the solution space is obtained, under the assumption that a set 
of objective functions is at its maximum (Figure 4A). But in some situations, this assumption might 
not be adequate: in many natural environments, where nutrients are not abundant, the organisms 
prioritize global robustness against a wider range of stresses rather than in maximizing few objectives 
such as energy production or growth rate [114]. Some examples of this situation are M. tuberculosis 
macrophage infectious process, where bacteria diverts several resources to counteract the stresses 
imposed by the host [116], rhamnolipid production of Pseudomonas aeruginosa induced by high 
density bacterial population, where this microorganism secretes vast amounts of carbon-rich 
resources to the extracellular medium instead of using them for growth [117], or during adaptation 
to different temperatures in Arabidopsis thaliana, where this plant prioritizes the reallocation of 
metabolic resources to adapt to the new conditions [118]. In such situations a suitable alternative that 
allows to examine flux distributions without introducing any bias by the researchers is flux sampling. 
It consists in taking random samples of the solution space imposed by the model’s constraints (Figure 

4B). If the number of samples is large enough it is possible to get an idea of the shape of the solution 
space [119], being then able to make comparisons between the sampled flux distributions of model 
versions reflecting different genotypes or conditions [106]. 

 

Figure 4. Graphical 3D representation of flux distribution obtention methods. The three axes 
represent the values of the three variables in our simplification: the flux for each of the three reactions. 
The constraints the model determines delimit the solution space, which is represented as the blue 
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polyhedron. The red spheres represent a feasible solution of the solution space. (A). In flux balance 
analysis (FBA) the flux of an objective reaction is maximized, in this case V1, so the solution is at the 
edge of the solution space where V1 is maximized. (B). In flux sampling the solution space is 
randomly sampled a determined number of times. Therefore, each red sphere is a sampled flux 
distribution from the solution space. 

With GEMs and FBA and/or flux sampling it is possible to obtain a flux matrix for different 
genotypes or conditions, which can be considered as analogous to the imputed and normalized 
metabolite matrix obtained in section 2. The statistical analyses and the pathway enrichment methods 
depicted in sections 3 and 4 can be used to determine, for example, what are the metabolic pathways 
more likely to be affected by genomic differences between different bacterial strains when 
intracellular metabolome data is not available [106]. 

6. Conclusions 

Metabolomics is an emerging field with promising perspectives in several life-science disciplines 
[120]. As such, there is not a go-to procedure of how to deal with the computational analysis of these 
data as in other omic disciplines, for example in genomics or transcriptomics. In this review we 
managed to put together the most commonly applied approaches, suggesting a typical metabolomic 
bioinformatic workflow to be carried out after the raw data is acquired, either with LC-MS, GC-MS 
or NMR, and annotated. We divided the process in three main modules, namely data preprocessing, 
statistical analyses, and metabolic pathway enrichment, and displayed some of the most popular 
approaches for tackling these steps, indicating state-of-the-art tools that can be used by the reader for 
this aim. We schematized the steps to be performed in Figure 5. This workflow is intended to be used 
as a comprehensive guide, advancing the difficulties that can arise in each step of the bioinformatic 
analysis and highlighting the advantages of the presented methods, as well as their drawbacks. We 
introduced, as an alternative for the acquisition of intracellular metabolomics data in cases when it is 
not possible, the use of GEMs to generate metabolomic-like data that can be used to determine how 
differences at a genomic level can translate in metabolic discrepancies, taking into account the whole 
metabolic network [106]. If there is not available intracellular metabolomic data but it is possible to 
take measurements of the exchange compound rates of the extracellular metabolites, it is possible to 
further constrain these models, being possible to infer the metabolic phenotype across different 
environmental situations or individuals of the same species [118,121]. 
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Figure 5. Overview of bioinformatic analysis of metabolomic data. Each one of the three modules 
in which we divided the process is indicated in a different color. The workflow starts with the 
annotated metabolite peak area data. The first module is preprocessing, where the initial step is 
missing value imputation. After this the data is transformed, if necessary, for later being normalized 
with the most appropriate method for the dataset. Once the data is pre-processed, we can perform 
statistical analysis, being possible to use one or several univariate or multivariate methods. Within 
this second category we can alternate between unsupervised and supervised approaches. The 
outcome of this step are the differential metabolites. Finally, the last module is metabolic pathway 
enrichment. Some approaches like ORA and some PT methods such as FELLA require lists of 
differential metabolites. In FCS and in other PT methods the normalized metabolite abundances can 
be used directly. The output of the metabolic pathway enrichment are the altered metabolic pathways. 
Abbreviations: ORA – over-representation analysis; FCS – functional class scoring; PT – pathway 
topology. 
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