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Abstract: The objective of this study was to analyze the mental workload using EEG and eye tracking data and 
classify it using machine learning algorithms. The machine learning model was developed based on the 
simultaneous recording of eye tracking and EEG measurements during the experimental process. The 
experiments involved 15 university students, consisting of 7 women and 8 men. Throughout the experiments, 
the researchers utilized the n-back memory task and the NASA-Task Load Index (TLX) subjective rating scale 
to assess various levels of mental workload. The findings revealed that as the task difficulty increased, there 
was an increase in the diameter of both the right and left pupils, the number of fixations, the number and 
duration of saccades, and the number and duration of blinks. Conversely, variables related to fixation duration 
decreased. The EEG results indicated that theta power in the prefrontal, frontal, and front central regions 
increased with task difficulty. Additionally, alpha power increased in the frontal regions but decreased in the 
temporal, parietal, and occipital regions as the task became more challenging. Furthermore, low beta power 
significantly decreased in almost all brain regions as the task difficulty increased. In terms of the four-class 
classification problem, the mental workload level can be predicted with an accuracy rate of 76.59% using 34 
selected features. This study has made a significant contribution to the literature by presenting a four-class 
mental workload estimation model that utilizes different machine learning algorithms. 

Keywords: EEG; eye tracking; mental workload; machine learning; neuroergonomics; prediction; NASA-TLX; 
N-back 
 

1. Introduction 

The elucidation and measurement of mental workload are essential endeavors in the field of 
cognitive sciences. In a time marked by a constant influx of information and a growing range of 
cognitive requirements, the significance of methodically assessing and understanding mental 
workload becomes paramount. According to Sweller (1998) in cognitive load theory, it is believed 
that an individual's working memory capacity is limited. Therefore, task designers should minimize 
external cognitive load sources to allow employees to effectively focus their cognitive resources on 
completing the primary task. If the task requires more mental resources than the available capacity, 
it will result in mental overload (Bommer and Fendley, 2018). Considering mental load is not just a 
niche pursuit, but a crucial aspect in optimizing cognitive performance, reducing mental fatigue, and 
protecting against the potential negative consequences of mental overload. In essence, the assessment 
of mental workload remains a significant component in striving for more comfortable, satisfying, 
productive, and safer work environments (Rubio et al., 2004). 

Given the significance of the concept of mental workload, there is a necessity for precise and 
efficient tools to measure it. However, measuring mental workload directly and effortlessly is not 
feasible due to its multidimensional nature and susceptibility to various factors. Consequently, recent 
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studies have focused on predicting mental workload, primarily approaching it as a classification 
problem with the objective of estimating the level of mental workload categorically. These studies 
differ in terms of the task type employed in the experiments, the techniques utilized to obtain input 
variables for the model, the number of predicted classes, and the algorithms employed to address the 
problem. Despite these efforts, developing a model that can accurately predict mental workload 
remains an unresolved issue in the existing literature. 

One of the primary objectives of this study is to investigate the correlation between physiological 
variables and mental workload, and compare it with existing literature. Another crucial objective is 
to expand the scope of the problem, which is typically categorized into two or three classes in 
previous studies, by considering four classes. This will provide a more detailed understanding of 
workload levels and enable the development of a classification model with the highest possible 
accuracy. Furthermore, this study stands out due to its unique approach of simultaneously collecting 
eye tracking and EEG data from participants. Although synchronizing the data from both devices 
presents challenges during the experiment and analysis process, previous findings have shown that 
combining physiological methods, which are known to be influenced by fluctuations in mental 
workload, enhances the performance of the model. Hence, EEG and eye tracking methods were 
employed together in this study, which is a novel contribution to the literature as no previous studies 
have tested both n-back tasks while utilizing EEG and eye tracking methods simultaneously.  

In this study, we employed EEG and eye tracking as physiological techniques, which were 
further complemented by the subjective evaluation scale NASA-TLX (Hart and Staveland, 1988). 
Additionally, the raw EEG data was processed using the MATLAB software-based EEGLAB tool, 
which not only facilitates the visualization and interpretation of statistical analysis results but also 
serves as an exemplary application of this tool in the literature. 

In summary, this study has three main objectives: 
1. Analyzing the relationship between EEG and eye-related variables with task difficulty level 

and subjective workload evaluation, and comparing them with similar studies in the literature. 
2. Predicting task difficulty level, which is evaluated as the mental workload, using EEG and eye 

tracking data. 
3. Incorporating machine learning algorithms and utilizing the EEGLAB tool to enhance the 

analysis and interpretation of the results, thereby contributing to the existing literature. This research 
was carried out in the order shown in Figure 1. 
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Figure 1. Study Steps. 

The remaining part of this study is structured in the following manner. The literature review is 
provided in the subsequent section titled “Background”. The section titled “Materials and methods” 
outlines the study design and introduces the implementation of machine learning techniques. The 
comparison of the results obtained from the various machine learning methods is discussed in the 
section titled “Results and discussion”. Lastly, the section titled “Conclusions” evaluates the findings 
and provides recommendations for future research endeavors. 
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2. Background 

Mental workload is a “construct that reflects the relation between the environmental demands 
imposed on the human operator and the operator’s capabilities to meet those demands” 
(Parasuraman and Hancock, 2001).  For mental workload assessment, the eye tracking technique is 
favored due to its ability to minimize task interruption compared to other physiological methods. 
Additionally, it can gather multiple types of information about the eye using just one sensor. On the 
other hand, the EEG method is selected for its effectiveness in capturing real-time temporal 
information.  One potential advantage of utilizing eye movements in the assessment of mental 
workload is the ability to capture rapid fluctuations in workload that occur within a short timeframe 
(Ahlstrom and Friedman-Berg, 2006). Eye tracking also offers benefits such as quick device setup, 
precise and sufficient data collection, and the ability to accommodate slight head movements. 
Specifically, studies have demonstrated a correlation between pupil response, blink movement, and 
visual as well as auditory tasks (Benedetto et al., 2011; Gao et al., 2013; Reiner and Gelfeld, 2014; 
Wanyan et al., 2018; Radhakrishnan et al., 2023). 

In contrast to other neuroimaging techniques, EEG exhibits a relatively high temporal resolution. 
It offers a real-time and unbiased assessment, and its ease of application is attributed to its portable 
device. Moreover, EEG is considered a safe method for long-term and repeated use due to its non-
invasive nature. Notably, it does not necessitate the presence of a skilled operator or involve any 
medical procedures (Grimes et al., 2008). EEG indices have demonstrated a remarkable sensitivity to 
fluctuations in brain activity. Several studies applying machine learning algorithms using eye 
tracking and EEG data (Table 1). In the research conducted by Liu et al. (2017), individuals were 
instructed to perform an n-back memory task in order to assess the workload levels of 21 participants 
across 3 distinct scenarios. Simultaneously, the participants' EEG, fNIRS data, and additional 
physiological measurements including heart rate, respiratory rate, and heart rate variability were 
recorded. The findings of the study unveiled that the combination of EEG and fNIRS techniques 
yielded more precise outcomes compared to their individual usage, with an accuracy rate of 65%. 

Jusas and Samuvel (2019) conducted a study involving 9 individuals, where they employed 4 
distinct motor imagery tasks. These tasks required participants to engage in mental processes where 
they practiced or simulated specific actions. The study solely utilized EEG physiological data, and 
the highest classification performance achieved was 64% through the implementation of Linear 
Discriminant Analysis. In their research on 7 individuals, Yin and Zhang (2017) performed a 
prediction model for mental workload using binary classification. The study concluded with a 
comparison of the model's estimator accuracy performance, which achieved a remarkable 85.7%, 
against traditional classifiers such as support vector machines and nearest neighbors. The findings 
demonstrated the superiority of this method over static classifiers. Pei et al. (2021) conducted a study 
involving 7 individuals, where they achieved an accuracy performance of 84.3% using the RF 
algorithm. They established a model by utilizing various EEG attributes obtained from a 64-channel 
EEG device during a simulation flight mission. Furthermore, the classification performance of the 3-
level model, which solely utilized band power variables, reached 75.9%. In a study conducted by 
Wang et al. (2012), the hierarchical bayes model's cross-subject classifier was trained and tested using 
EEG data from a cohort of 8 participants. The findings of the research indicate that the performance 
of the cross-subject classifier is similar to that of individual-specific classifiers. 

In the research carried out by Kaczorowska et al. (2021), a number symbol matching test with 
three levels of difficulty was administered to a group of 29 individuals. The accuracy of the 20-
variable model, constructed using eye tracking data, was determined to be 95% using logistic 
regression and Random Forest algorithms. In the research conducted by Sassaroli et al. (2008), the 
fNIRS technique was utilized on three individuals to differentiate various levels of mental workload 
by analyzing the hemodynamic changes in the prefrontal cortex. To determine the mental workload 
levels, the K Nearest Neighbor algorithm was employed, considering the amplitude of 
oxyhemoglobin and deoxyhemoglobin (k=3). The study revealed classification success rates ranging 
from 44% to 72%. Grimes et al. (2008) conducted an early study that classified mental workload 
through n-back tasks, achieving a commendable level of accuracy. By employing the Naive Bayes 
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algorithm, they determined that the 2-difficulty level model had an accuracy rate of 99%, while the 
4-difficulty level model achieved an accuracy rate of 88%. These measurements were obtained using 
a 32-channel EEG device and involved a sample of 8 individuals. 

Wu et al. (2019) conducted a study on prediction using the eye tracking method. The study 
involved 32 non-experts and 7 experts who were tasked with performing operational tasks at 2 
varying difficulty levels. The researchers used pupil diameter, blink rate, focusing speed, and saccade 
speed as inputs in their model, while the NASA-TLX score served as the output. The results showed 
that the accuracy of the model, obtained through the use of ANN, was 97% when tested with the 
data. A research conducted on the cognitive burden of automobile operators demonstrated that a 
feed-forward neural network classifier achieved a prediction accuracy of over 90% in determining 
levels of alertness, drowsiness, and sleep states (Subasi, 2005). In another study, a group of 28 
individuals engaged in a computer-based flight mission. During this study, the brain signals of the 
participants were recorded using a 32-channel EEG device, while eye data was collected using an 
eye-tracking device operating at a frequency of 256 Hz (Li et al., 2023). The study employed various 
algorithms such as linear regression, support vector machines, random forests, and artificial neural 
networks. Among these algorithms, the model that incorporated both eye tracking and EEG variables 
yielded the highest accuracy rate of 54.2% in the 3-category classification task. SVM has been utilized 
in various studies within the literature to obtain mental workload classification results using eye 
tracking or EEG data (Borys et al., 2017; Kaczorowska et al., 2020; Qu et al., 2020; Lim et al., 2018; 
Şaşmaz et al., 2023; Zhou et al., 2022; Plechawska-Wojcik et al., 2019; Le et al., 2018). 

Upon reviewing the pertinent literature, it became evident that both EEG and eye tracking 
techniques have significant implications in the analysis of mental workload. Nevertheless, it was 
observed that there exists incongruity in the findings regarding the correlation between the variables 
in both methods and mental workload. Notably, certain studies have demonstrated an augmentation 
of eye-related variables with increased mental workload, while others have shown a decline. The 
current study distinguishes itself from other studies by incorporating machine learning algorithms 
that have been developed in the past decade (Extreme Gradient Boosting (XGBoost) and Light 
Gradient Boosting Machine (LightGBM)) but have not been previously utilized in studies aiming to 
estimate mental workload using EEG and eye tracking techniques. 

3. Materials and Methods 

3.1. N-Back Task 

Given that cognitive load theory was developed based on the limitations of working memory 
capacity, it is logical to select task types that specifically target working memory for experimental 
studies on mental workload manipulation. N-back tasks are commonly utilized in research literature 
due to their reliability in assessing working memory capacity and their validity, which has been 
demonstrated in numerous studies (Grimes et al., 2008; Herff et al., 2014; Ke et al., 2015; Liu et al., 
2017; Tjolleng et al., 2017; Aksu and Çakıt, 2023; Aksu et al., 2023; Harputlu Aksu and Çakıt, 2022)). 
These memory tests were also employed in this particular study due to their established validity in 
previous research. N-back tasks inherently involve both the storage and manipulation of information, 
surpassing traditional working memory tasks. The level of "n" in the n-back task is directly related to 
the "working memory load," representing the mental demand required for the storage and/or 
manipulation processes involved (Öztürk, 2018). The n-back paradigm is well-established, with 
strong correlations between difficulty level and cortical activation associated with working memory. 
Monod and Kapitaniak (1999) also suggested that task difficulty, an internal cognitive load factor, 
directly influences cognitive load. Previous research has shown that task difficulty, determined by 
the number of items to be remembered, hampers performance in memory tasks and affects 
psychophysiological measurements, particularly components regulated by the autonomic nervous 
system (Galy et al., 2012). As task difficulty is a crucial determinant of mental workload, it was 
selected as the target variable in the classification model developed for this study. 
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3.2. Participants and Experimental Procedure 

A total of 15 healthy undergraduate students (8 males, 7 females) between the ages of 19-25 were 
selected for the experiments. The average age of the participants was 21.6.  

The experimental protocol for this study were approved by the Institutional Ethics Committee 
(2020-483 and 08.09.2020) of Gazi University, Ankara, Türkiye. All participants provided informed 
consent in accordance with human research ethics guidelines. All experiments took place in the 
Human Computer Interaction Laboratory, under consistent physical conditions. The laboratory is 
well-lit with fluorescent lighting and is sound insulated. Participants were verbally briefed on the 
study's purpose and the n-back tests they would be performing, as well as the required actions. Prior 
to starting the task, written instructions were displayed on the screen, explaining how to perform the 
task and its difficulty level. To ensure participants understood the tests, a trial test was conducted 
twice, once off-record and once after recording began. However, the trial test data included in the 
recording was excluded from the analysis. Experiments were only initiated after confirming the 
quality of the EEG signals and eye tracking calibration. Figure 2 depicts a photograph taken during 
the implementation of the experiment. 

 

Figure 2. A shot taken from the experiment. 

A standard visual n-back task set was utilized in the Inquisit Lab 6 software, offering four 
different difficulty levels (0-back, 1-back, 2-back, 3-back). The task becomes more challenging as the 
value of “n” increases. Each difficulty level was repeated three times, resulting in a total of 12 trials 
per participant. The order of the trials was randomized to prevent any bias caused by knowing the 
difficulty level in advance. Participants were instructed to press the “M” key when they saw the letter 
“M” in the 0-back task, and the “L” key if the letter was not “M”. In the 1-back, 2-back, and 3-back 
difficulty levels, they were required to press the “M” key if the letter on the screen matched the letter 
from 1, 2, or 3 positions back, respectively (target/match condition). If the letter did not match (non-
target/non-match condition), they were instructed to press the “L” key. The task rules are provided 
in Figure 3. Each letter was displayed for 500 milliseconds, with a 2000 millisecond interval until the 
next letter appeared. Therefore, participants had a total response time of 2500 milliseconds.  
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Figure 3. N-back task levels: (a) 0-back (b) 1-back (c) 2-back (d) 3-back. 

After each block, participants were asked to subjectively assess their mental workload using the 
NASA-TLX scale. Additionally, they were asked to prioritize the six sub-dimensions of the NASA-
TLX through pairwise comparison tables. Weighted total NASA-TLX scores were calculated based 
on the weights derived from the 15 pairwise comparisons. The duration of the experiment with one 
participant was approximately 20 minutes. 

3.3. Data Acquisition and Pre-Processing 

3.3.1. EEG Data 

The EEG data was captured using the EMOTIV EPOC X device, which has a resolution of 14 bits 
and a sampling rate of 128 Hertz (Hz). This device is equipped with 14 channels, and the sensor 
placements adhere to the international 10-20 system. The EMOTIV Pro software conducts real-time 
frequency analysis on each channel and also allows for analysis of recorded data. It visually presents 
the power in different frequency bands for each selected channel. The power changes of each 
frequency can be displayed in decibels (dB). The power densities obtained for each frequency band 
of the EEG signals, which are divided into sub-bands using FFT (Fast Fourier Transform), can be 
observed in the "Band Power" graph located at the bottom of the screen. 

The frequency ranges for different bands in the software are as follows: theta band (4-8 Hz), 
alpha band (8-12 Hz), gamma band (25-45 Hz), low beta (12-16 Hz), and high beta (16-25 Hz). The 
variables analyzed in the study were aligned with these band intervals. The “FFT/Band Power” data 
can be transferred to an external environment, allowing access to power data for five frequency bands 
per channel. Unlike raw EEG data, which has a frequency of 128 Hz, the band power data is 
transferred with a frequency of 8 Hz. For EEG recordings with a quality measurement above 75%, 
the average values of band power variables provided by the software were obtained based on stimuli. 
The variable “AF3.Theta” represents the average theta power from the AF3 channel, while 
“AF3.HighBeta” represents the average high beta power from the same channel. A total of 70 EEG 
variables, representing power in five frequency bands (theta, alpha, low beta, high beta, gamma), 
were used for 14 channels. Additionally, based on previous studies indicating a positive relationship 
between the theta/alpha power ratio and difficulty level, 14 more variables corresponding to this ratio 
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were included in the analysis for each channel (Guan et al., 2021; Lim et al., 2018). For example, the 
variable indicating the theta/alpha power ratio for the AF3 channel is labeled as “AF3.ThetaAlpha”. 
The unit of measurement for EEG variables is given as dB. 

The raw EEG signals underwent pre-processing to remove noise using the EEGLAB toolbox 
(Delorme and Makeig, 2004). Following the pre-processing, the STUDY functionality of EEGLAB was 
utilized to investigate the EEG mechanisms across subjects under different task conditions. This 
approach aimed to complement the statistical findings obtained from SPSS and provide a visual 
representation of the group analysis of the raw EEG data. The raw EEG data, acquired through 
EMOTIV Pro 3 software, was converted into a .set file and imported into the program along with the 
.ced file containing the coordinate data for the 14 electrode channels. Filtering and data pre-
processing techniques were applied to eliminate noise from the raw data. The recommended 
procedure, as suggested by the developers of EEGLAB and employed in various studies (Borys et al., 
2017a; Borys et al., 2017b; Lim et al., 2018; Sareen et al., 2020), was followed. 

Noise is an undesirable distortion that occurs in the EEG signal, compromising the reliability of 
the obtained results. In order to eliminate this noise, a filtering process was conducted during the 
pre-processing stage of the study. A finite impulse response (FIR) filter was utilized to perform a 
band-pass filtering, specifically ranging from 1 to 50 Hz. Additionally, to address the interference 
caused by line noise in the raw EEG signal (Rashid and Qureshi, 2015), another filtering procedure 
was carried out using the CleanLine plugin in EEGLAB. Subsequently, the "Independent Component 
Analysis - ICA" technique was employed to separate the data into independent components, enabling 
the identification and removal of noise. This method was implemented in EEGLAB through the 
utilization of the "runica" function. Techniques like Independent Components Analysis are valuable 
in uncovering EEG processes that exhibit dynamic characteristics associated with behavioral changes. 
It is commonly employed to identify and eliminate noise originating from eye and muscle 
movements (Delorme and Makeig, 2004). The ICLabel function was used to assess the attributes of 
the components, and those components that were determined to be ocular, muscular, or originating 
from another source with a probability exceeding 90% were discarded. Figure 4 illustrates the signal 
image before and after the filtering process. 

 

Figure 4. EEG signal comparison (a) before pre-processing (b) after pre-processing. 
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3.3.2. Eye Tracking Data 

The Tobii X2-60 device was used to collect eye tracking data. Tobii Studio software recorded 
three types of eye events: “fixation”, “saccade”, and “unclassified”. The software can detect fixation 
and saccade movements, but blink data cannot be directly obtained. As a result, a separate analysis 
was developed for records classified as “unclassified”. The software allows for direct measurement 
of the sizes of the right and left pupils. Additionally, the analysis includes variables that were 
calculated by taking the mean and maximum values of both eyes. Prior to adding the fixation 
variables to the analysis, records with fixation durations below 80 ms and above 1200 ms were 
excluded. This exclusion was based on the studies conducted by Borys et al. (2017a), Borys et al. 
(2017b), Wu et al., (2019), and Yan et al. (2019). 

Blinking refers to the action of either fully or partially closing the eye, as stated by Ahlstrom and 
Friedman-Berg (2006). In a study focused on detecting blinking movements, the center of the pupil 
was used as a reference point. If the eye was open, the pupil center could be calculated, and a value 
of 1 was assigned to the relevant variable. Conversely, if the eye was closed, the center point could 
not be determined, resulting in a value of 0 for the variable, as explained by Naveed et al. (2012). 
Following this methodology, the Tobii Studio software provided variables for the right pupil 
(“PupilRight”) and left pupil (“PupilLeft”). If calculations could be performed using these variables, 
it was assumed that the eye was open. On the other hand, if there was no data available for either 
variable, it indicated that the eye was closed. To represent the open and closed states of the eye, a 
variable named “BlinkValid” was introduced, with values of 1 and 0 assigned, respectively. 

A blink typically lasts between 100-300 ms, with blinks lasting over 500 ms considered as 
drowsiness (Johns, 2003). In this study, the device used had a frequency of 60 Hz, meaning that the 
duration of a recording line was 1/60 second. To classify situations as blinking for durations of 100 
ms and above, the “BlinkValid” variable, indicating the number of records where the eye remained 
closed, must be at least six. Additionally, recordings identified as fixation by the Tobii Studio 
software should be excluded from the blink analysis, as blinks occur between two fixation 
movements. Using Excel Visual Basic for Applications (VBA), records meeting the specified 
conditions were identified and assigned a “BlinkIndex” value, representing the number of blinks. 
The durations of the blink recordings were calculated by multiplying the duration of a recording 
(1/60 second) by the number of recordings in each blink event, and these values were stored in the 
“BlinkDuration” variable. The number of records identified as "blink" were also counted for each 
stimulus, and the total durations were determined on a stimulus basis.  

In total, 27 eye tracking variables were used, including the total, average, maximum, minimum, 
and standard deviation of fixation numbers, fixation durations, saccade numbers, saccade 
amplitudes, pupil sizes, and blink movements. These variables were used to create an eye-related 
dataset for each stimulus, consisting of the calculated values. 

3.4. Datasets for Analysis 

Two distinct sets of data were examined. The initial two objectives of the study focused on 
analyzing the first dataset, which comprised 2700 stimulus-based samples (15 subjects x 12 sessions 
x 15 stimuli). This dataset aimed to investigate changes in EEG and eye-related variables during tests 
of varying difficulty levels and to develop machine learning algorithms for predicting mental 
workload levels. The reason for considering the dataset on a stimulus basis is that the mental 
processes of visual perception, recall, matching, and reaction occur within a 2500-millisecond 
timeframe after each stimulus is presented on the screen. Statistical analysis was conducted using 
SPSS 21.0, while Python 3.8 was utilized to establish classification models. 

The second dataset aimed to explore changes in band power across different brain regions under 
various task conditions and visualize the statistical findings. It consisted of 180 set extension files of 
raw EEG data obtained through EEG device software. These files were converted into set extension 
files using MATLAB for each participant's session and underwent data pre-processing with EEGLAB. 
The dimensions of the files for the 0-back task were 4800 x 14, for the 1-back task were 5120 x 14, for 
the 2-back task were 5440 x 14, and for the 3-back task were 5760 x 14. The number of observations 
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varied based on the number of stimuli in each task. As the EEG device had 14 channels, the columns 
in the dataset corresponded to the electrodes. 

3.5. Brief Overview of Machine Learning 

The term “Machine Learning” (ML) was initially coined in 1959 by Arthur Samuel, a pioneering 
figure in the fields of artificial intelligence and computer games. Samuel's definition of ML was “the 
field of study that gives computers the ability to learn without being explicitly programmed” 
(Mahesh, 2020). However, there is no universally agreed-upon definition for ML, as different authors 
have their own interpretations. Some authors emphasize the significance of learning from experience 
and the ability to apply knowledge to new situations. Others focus on the statistical nature of ML 
models and the importance of data for training and validation. Certain definitions highlight the 
distinction between supervised, unsupervised, and reinforcement learning, while others describe ML 
as a means of optimization or function approximation. ML involves programming computers to 
enhance performance by utilizing example data or past experiences. A model is established with 
parameters, and the learning process involves optimizing those parameters through the execution of 
a computer program using training data or past experiences (Alpaydin, 2020). ML is a field that 
focuses on the development of algorithms and techniques that allow computer programs to learn 
from data and enhance their performance through experience (Mitchell, 2007). By implementing 
suitable ML algorithms, the effectiveness of data analysis and processing can be improved, 
addressing practical challenges arising from the increasing volume of data across various domains 
(Lou et al., 2021). Figure 5 illustrates the three main types of ML: supervised learning, unsupervised 
learning, and reinforcement learning. Numerous comprehensive texts delve into the intricacies of ML 
(Alpaydin, 2020; Mohri et al., 2018; Marsland, 2015). In this section, we present the eight ML 
techniques employed in our study, namely “k-nearest neighbors, random forests, artificial neural 
network, support vector machine, gradient boosting machines (GBM), extreme gradient boosting 
(XGBoost), and light gradient boosting machine (LightGBM).” 

 

Figure 5. Types of Machine Learning (Adapted from (Swamynathan, 2019)). 

3.5.1. K-Nearest Neighbors (KNN) 

The k-nearest neighbor (k-NN) algorithm is widely used in pattern recognition or classification 
tasks. Its approach involves analyzing the k-nearest training samples in the problem space to 
ascertain the class of a new, unlabeled data point. The k-NN algorithm operates under the 
assumption that points with similar features are likely to belong to the same class. KNN is categorized 
as an instance-based learning method as it depends on the specific instances or examples in the 
training dataset to classify new data points (Raikwal and Saxena, 2012). 
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3.5.2. Random Forests 

The random forest (RF) technique, introduced by Breiman in 2001, offers a wide range of 
applications including regression, classification, and variable selection, as highlighted by Genuer et 
al. (2010). By employing ensemble learning, RF combines multiple trees into a single algorithm, as 
explained by Cun et al. (2021). The prediction for a new observation is then determined by 
aggregating the predicted values from each individual tree in the forest. The key parameters for RF 
algorithms are the number of trees, the minimum number of observations in the terminal node, and 
the number of suitable features for splitting. In the existing literature, comprehensive mathematical 
explanations for RFs can be found (Breiman, 2001). 

3.5.3. Artificial Neural Networks (ANNs) 

Artificial Neural Network (ANN) is a mathematical technique that utilizes the principles of the 
human brain's nervous system to analyze data and make predictions (Rucco et al., 2019; Çakıt and 
Dağdeviren, 2023; Çakıt et al., 2015). These networks are capable of efficiently processing large and 
intricate datasets (Noori, 2021; Çakıt et al., 2014). The complexity of a neural network is greatly 
influenced by the number of hidden layers it possesses. Typically, a neural network architecture 
consists of an input layer to receive initial data, one or more hidden layers to process the data, and 
an output layer to generate the final prediction or output (Haykin, 2007). To ensure accurate 
predictions, it is crucial to select the appropriate design for the neural network (Gnana Sheela and 
Deepa, 2014). For further explanations on ANN, there are additional resources available in the 
literature (Zurada, 1992; Haykin, 2007; Fausett, 2006). 

3.5.4. Support Vector Machine (SVM) 

The objective of pattern classification is to develop a model that surpasses the performance of 
existing models on the training data. Traditional training methods in machine learning aim to find 
models that accurately classify each input-output pair within their respective class. However, if the 
model is overly tailored to the training data, it may start memorizing the data instead of learning to 
generalize, resulting in a decline in its ability to correctly classify future data (Carvantes et al., 2020). 
The Support Vector Machine (SVM) is a supervised machine learning technique that has been widely 
utilized in the machine learning community since the late 1990s (Brereton and Lloyd, 2010). SVM is 
a powerful tool that can be applied to both classification and regression problems. It is particularly 
well-suited for binary classification problems. In SVM, the decision boundary is determined by 
selecting a hyperplane that effectively separates the classes. The hyperplane is chosen in a manner 
that maximizes the distance or margin between the support vectors, which are the data points closest 
to the decision boundary. 

3.5.5. Gradient Boosting Machines (GBM) 

Friedman (2001) introduced gradient boosting machines (GBMs) as an alternative method for 
implementing supervised machine learning techniques. The "gbm" model consists of three primary 
tuning parameters: "ntree" for the maximum number of trees, "tree depth" for the maximum number 
of interactions between independent values, and "learning rate" (Kuhn and Johnson, 2013).  

3.5.6. Extreme Gradient Boosting (XGBoost) 

The XGBoost technique also follows the fundamental principles of the gradient boosting 
machine algorithm (Chen and Guestrin., 2016). Achieving the optimal model performance frequently 
relies on finding the most suitable combination of the different parameters required by XGBoost. As 
follows is how the XGBoost algorithm works: consider a dataset with m features and an n number of 
instances 𝐷𝑆 = {(𝑥𝑖 , 𝑦𝑖): 𝑖 = 1 … … 𝑛, 𝑥𝑖𝜖ℝ𝑚, 𝑦𝑖𝜖ℝ}. By lowering the loss and regularization goal, we 
should ascertain the ideal mix of functions. ℒ(𝜙) = ∑ 𝑙(𝑦𝑖 , 𝜙(𝑥𝑖) + ∑ 𝛺(𝑓𝑘)                                               (3)𝑘 ̇

𝑖  
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where l represents the loss function, 𝑓𝑘 represents the (k-th tree), to solve the above equation, while  𝛺  is a measure of the model’s complexity, this prevents over-fitting of the model (Çakıt and 
Dağdeviren., 2022). 

3.5.7. Light Gradient Boosting Machine (LightGBM) 

LightGBM, a gradient-boosting decision tree method, is an open-source implementation that 
employs a leaf-wise approach to identify optimal splits for maximizing profits (Ke et al., 2017). To 
enhance prediction accuracy, various model parameters such as the number of leaves, learning rate, 
maximum depth, and boosting type need to be fine-tuned (Ke et al., 2017). 

4. Results and Discussion 

4.1. Statistical Results 

The investigation aimed to determine whether there was a correlation between eye tracking 
variables and NASA-TLX scores and task difficulty levels. The analysis revealed that the number and 
total duration of blinks, the number and total duration of saccades, and the mean of the left and right 
pupil diameter had the highest correlation with task difficulty level (rho > 0.1, p < 0.01). Similarly, the 
number and total duration of blinks, the mean, maximum value, and standard deviation of saccade 
amplitude, and the number and total duration of saccades were found to be the variables most 
correlated with the weighted NASA-TLX score (rho > 0.1, p < 0.01). All variables, except for fixation 
duration, exhibited a positive correlation with mental workload. Furthermore, the Kruskal-Wallis (K-
W) test demonstrated significant differences in all eye tracking variables based on task difficulty 
levels. Figure 6 presents graphs illustrating the changes in the mean values of blink, saccade, and 
pupil-related variables in relation to the difficulty level. 

 

Figure 6. Change in eye tracking variables according to difficulty level. 

The Spearman correlation test yielded results indicating that the EEG variables associated with 
theta power from the AF3, AF4, F7, F8, and FC5 channels exhibited the strongest correlation with the 
level of task difficulty (rho > 0.3, p < 0.01). These findings demonstrate that as the task difficulty 
increases, theta power in the prefrontal, frontal, and frontal central regions also increase. 
Additionally, the correlation coefficients for variables related to theta/alpha power ratios were 
slightly higher in these same brain regions. Furthermore, it was observed that the level of task 
difficulty had a negative correlation with alpha power measured in the O1, O2, T7, and P7 channels, 
while it had a positive correlation with alpha power measured in the F7 and F8 channels. Specifically, 
as task difficulty increased, alpha power in the frontal regions increased, whereas alpha power in the 
temporal, parietal, and occipital regions decreased. 
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The decrease in low beta power is a noticeable trend across various brain regions as the task 
difficulty increases. A significant correlation was found between the weighted NASA-TLX total score 
and 75 EEG variables, with a confidence level of 99%. The EEG variables that exhibited the strongest 
correlation with the weighted NASA-TLX total score were theta power from AF4 and F8, as well as 
theta/alpha power from AF3, AF4, and F8 (correlation coefficient > 0.3, p < 0.01). Essentially, as the 
perceived mental workload intensifies, there is an increase in prefrontal and frontal theta power. 
Conversely, as the perceived workload increases, there is a decrease in low beta power in the 
prefrontal, frontal, parietal, and occipital brain regions (rho > 0.2, p < 0.01). The K-W test was 
employed to assess whether there were significant differences in EEG variables across different 
difficulty levels. The results revealed that there were indeed differences in difficulty levels at a 
confidence level of 99% for 49 EEG variables. Upon examining the rank values of these variables, it 
was observed that 34 out of the 49 variables exhibited a smooth increase or decrease in accordance 
with the change in task difficulty. This suggests that these variables may play a role in decomposing 
mental workload into four levels. In more challenging task conditions (2-back and 3-back), prefrontal, 
frontal, and central regions displayed higher theta power, while temporal, parietal, and occipital 
regions exhibited lower alpha power. Additionally, beta power was lower in almost all brain regions. 

4.2. EEGLAB Study Results 

The band power data provided by the EEG device software was supported through the 
processing and visual analysis of the raw EEG data. By utilizing the EEGLAB STUDY tool, changes 
in EEG signals under different task conditions were examined graphically. Figure 7 presents the 
frequency ranges that exhibit significant differences in band power based on task conditions, on a 
channel basis. The power spectra graphs illustrate the frequency range of 4-45 Hz. Notably, there is 
a substantial power change, particularly in the low-frequency theta band, in channels AF3, AF4, F7, 
F8, FC5, and FC6, which correspond to the prefrontal, frontal, and central regions. Additionally, a 
significant power change is observed in channels O1, O2, P7, P8, T7, and T8, representing the 
temporal, parietal, and occipital regions, particularly in the alpha band. 

 

Figure 7. Significant frequencies in band power depending on task difficulty. 

4.3. Classification Results 

Different algorithms such as kNN, SVM, ANN, RF, GBM, LightGBM, XGBoost were utilized for 
modeling purposes. Table 1 presents the classification performance measures of 111-variable, 4-class 
classification models performed by using various algorithms. The values provided represent the 
average of five distinct performance outcomes achieved through 5-fold cross validation. It is evident 
that the Light-GBM algorithm yielded the highest accuracy performance (71.96%), while xGBoost, 
SVM, and GBM also demonstrated commendable results. 
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Table 1. Performance results of four-class models. 

Model Accuracy (%) Kappa 
Matthews Correlation Coefficient 

(MCC) 
AUC 

KNN 54.85 0.40 0.40 0.80 

SVM 62.15 0.49 0.50 0.85 

ANN 59.00 0.45 0.45 0.82 

RF 61.44 0.49 0.49 0.85 

GBM 61.93 0.49 0.49 0.85 

xGBoost 70.22 0.60 0.60 0.91 

Light-GBM 71.96 0.63 0.63 0.92 

The performance of models using only EEG or only eye variables was investigated using the 
Light-GBM algorithm. The findings revealed that the model incorporating both EEG and eye 
variables yielded superior results, as anticipated, compared to the models that utilized them 
separately. Notably, the model solely based on eye variables exhibited better performance (accuracy: 
65.67%) than the model solely based on EEG variables (accuracy: 56.15%).  

Upon examining the classification performances of the five models obtained through cross-
validation, it was observed that the model mostly made incorrect predictions for observations 
belonging to the 1-coded class. Additionally, the misclassification predictions were predominantly 
observed between classes 0-1 and 2-3. To investigate the impact of reducing the complexity of the 
problem by reducing the number of classes, the problem was also analyzed as a three-class and two-
class scenario. Initially, the observations related to the class coded 1, which had the lowest sensitivity 
value, were removed from the dataset. The aim was to classify the mental workload as low-medium-
high by considering only the observations for the 0-back, 2-back, and 3-back tasks. The accuracy of 
the three-class model, which included all variables, was determined to be 80.49%. In the two-class 
model, where only observations for the 0-back and 3-back tasks were considered, an accuracy 
performance of 89.63% was achieved. Notably, both the three-class and two-class models exhibited 
strong classifier characteristics, as indicated by Kappa and MCC values exceeding 0.70. 

We performed dimension reduction procedure to improve both the classification performance 
and the comprehensibility of the model. The classification performance exhibited a noticeable shift 
after implementing dimension reduction and adjusting hyper-parameters, as depicted in Figure 8. It 
was noted that the accuracy performance experienced a more significant change when a larger 
number of variables were eliminated, particularly in the four-class model. Through five-fold cross 
validation, the average accuracy performance of the Light-GBM algorithm achieved a commendable 
76.59% in the 34-variable model. 

 

Figure 8. Performance change after dimension reduction and hyper-parameter tuning. 
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The LightGBM algorithm demonstrated superior prediction accuracy compared to other 
machine learning methods in the preceding section. The impact of the input parameters on the 
determination of the output parameter was assessed through a sensitivity analysis utilizing the 
LightGBM technique. The Light-GBM algorithm determined the importance ranking of the 34 
features, which is presented in Figure 9. The key variables that significantly contributed to the 
performance of the four-class model, as determined by the LightGBM algorithm, included right and 
left pupil diameter, variables associated with blink, saccade and saccadic amplitude, prefrontal and 
frontal theta and theta/alpha, occipital alpha, and temporal, parietal, and occipital gamma power. 

 

Figure 9. Importance ranking of the 34 features selected by the LightGBM algorithm. 

High accuracy rates were obtained in the analysis of mental workload classification using 
recently developed algorithms such as LightGBM, XGBoost, and GBM. These algorithms are not 
commonly used in studies on this subject in the literature. The study demonstrated the extent to 
which performance improvement can be achieved through dimension reduction and hyper-
parameter tuning. Furthermore, it was observed that reducing the number of classes leads to 
significantly better classification performance. As expected, the three-class and two-class models 
performed better. Feature selection, hyper-parameter tuning, and early stopping methods were 
applied only to the focal model, while the other algorithms were initially used for comparison 
purposes. In the four-class classification model, which utilized both EEG and eye variables as input, 
an accuracy performance of 76.59% was achieved after dimension reduction, hyper-parameter 
adjustment, and early stopping. The analysis revealed that the models made the most errors in 
classifying observations related to the 1-back task. Therefore, three-class models excluding the data 
class obtained during the 1-back task were studied. These models achieved an accuracy rate of 
approximately 80% after early stopping. The two-class classification model, which aimed to predict 
low and high mental workload, achieved an accuracy rate of approximately 90%. 

4.4. Comparison with Previous Studies 

A comparison summary of the nineteen applications of machine learning algorithms in the field 
of mental workload assessment and the current study is presented in Table 2, including author 
names, publication years, number of participants, number of classes, measurement tools, methods, 
and performance accuracy. The performance results of the current study surpass those of several 
other studies (Jusas and Samuvel, 2019; Li et al., 2023; Lim et al., 2018; Qu et al., 2020; Yin and Zhang, 
2017), as shown in Table 2. Conversely, it has been observed that certain studies (Grimes et al., 2008; 
Kaczorowska et al., 2021) achieved better results than this study. Upon examining EEG studies with 
superior outcomes, it is evident that the device used in those studies had a higher number of channels, 
which differs from the current study. When eye tracking studies that yield better results are 
examined, higher participant numbers are noteworthy. Although the number of participants used in 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 February 2024                   doi:10.20944/preprints202402.0452.v1

https://doi.org/10.20944/preprints202402.0452.v1


 16 

 

this study is sufficient for the reliability of the analyses, increasing the number of participants is 
deemed crucial for obtaining even more dependable data to be incorporated in the analysis. 

Table 2. Performance comparison with previous studies. 

Authors, 
year 

Number of 
participants 

 Number of 
classes 

Measurement  
Tool 

Method Accuracy 

Subasi 
(2005) 

30  3 EEG ANN 87-98% 

Grimes et 
al. (2008) 

8 2-4 EEG NB 
 

88- 99% 
 

Sassaroli 
et al. 

(2008) 
3 3 fNIRS KNN (k=3) 44–72% 

Wang et 
al. (2012) 

8 3 EEG 
 

ANN, NB 
 

30-84% 

Borys et 
al. (2017a) 

13 2-3 EEG +Eye tracking 
DT, LDA, LR, 
SVM, KNN 

73-90% 
 

Liu et al. 
(2017) 

21 3 EEG+fNIRS LDA, NB 65% 

Yin and 
Zhang 
(2017) 

7 2 EEG DL 85,7% 

Le et al. 
(2018) 

5 3 fNIRS 
DT, LDA, LR, 
SVM, KNN 

81,3-95,4% 
 

Lim et al. 
(2018) 

48 3 EEG SVM 69% 

Jusas and 
Samuvel 

(2019) 
9 4 EEG 

 
LDA 

 
64% 

Plechawsk
a-Wojcik 

et al. 
(2019) 

11 3 EEG 
SVM, DT, KNN, 

RF 
70,4-91,5% 

Wu et al. 

(2019) 
39 2 Eye tracking ANN 97% 

Kaczorow
ska et al. 

(2020) 
26 2 Eye tracking SVM, KNN, RF 97% 

Qu et al. 
(2020) 

10 3 EEG SVM 79,8% 

Kaczorow
ska et al. 

(2021) 
29 3 Eye tracking LR, RF 97% 

Pei et al. 
(2021) 

7 3 EEG RF 75.9-84.3% 

Zhou et 
al. (2022) 

45 7 EEG 
KNN, SVM,LDA, 

ANN 
56% 

Li et al. 
(2023) 

28 2-3 EEG +Eye tracking  SVM, RF, ANN 54,2-82,7% 

Şaşmaz et 
al. (2023) 

45 3 EEG 
SVM, RF, LDA, 

ANN 
 

83,4% 

Current 
study 

15 2-3-4 EEG +Eye tracking 
KNN,SVM,ANN,

RF,GBM, 
76-90% 
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XGBoost, 
LightGBM 

* EEG: Electroencephalography; fNIRS: functional near-infrared spectroscopy; KNN: k-nearest neighbors; NB: 
naive bayes DT: decision trees; SVM: support vector machines; RF: random forest; ANN: artificial neural 
network; DL: deep learning; LDA: linear discriminant analysis; LR: logistic regression . 

5. Conclusions 

This study introduced the combined use of EEG and eye tracking methods in an experimental 
procedure alongside the NASA-TLX scale and performance-based methods. The data was collected 
during n-back tasks. By simultaneously recording EEG and eye data, the study successfully 
developed mental workload prediction models using machine learning algorithms. The model 
performances were found to be satisfactory, particularly in the four-class model, which achieved a 
high level of accuracy compared to existing literature. Furthermore, the study introduced a unique 
approach to deriving the blink variable. Additionally, the research provides an application example 
to the literature by showcasing the use of the EEGLAB STUDY program and interpreting its results. 
In future research, the models can be evaluated by testing them with a diverse group of participants 
or by using data collected under varying task conditions. Although the number of participants used 
in this study is sufficient for the reliability of the analyses, increasing the number of participants is 
considered important in order to obtain more reliable data that can be included in the analysis. 
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