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Abstract: This paper proposes a solution for the problem of mobile robot navigation and trajectory 

interpolation in dynamic environments with large scenes. The solution combines a semantic laser SLAM 

system that utilizes deep learning and a trajectory interpolation algorithm. The paper first introduces some 

open-source laser SLAM algorithms and then elaborates in detail on the general framework of the SLAM 

system used in this paper. Secondly, the concept of voxel is introduced into the occupation probability map to 

enhance the ability of local voxel maps to represent dynamic objects. Then, in this paper, we propose a 

PointNet++ point cloud semantic segmentation network combined with deep learning algorithms to extract 

deep features of dynamic point clouds in large scenes and output semantic information of points on static 

objects. A descriptor of the global environment is generated based on its semantic information. Closed-loop 

completion of global map optimization is performed to reduce cumulative error. Finally, T-trajectory 

interpolation is utilized to ensure the motion performance of the robot and improve the smooth stability of the 

robot trajectory. The experimental results indicate that the combination of the semantic laser SLAM system 

with deep learning and the trajectory interpolation algorithm proposed in this paper yields better graph 

building and loop closure effects in large scenes at SIASUN large scene campus. The use of T-trajectory 

interpolation ensures vibration-free and stable transitions between target points. 

Keywords: SLAM; semantic laser; point cloud; occupation probability 

 

1. Introduction 

The significance of simultaneous localization and mapping (SLAM) technology and trajectory 

interpolation for mobile robots and autonomous driving has been increasing due to the continuous 

development of artificial intelligence technology[1-6]. SLAM algorithms and trajectory interpolation 

have been successfully applied in various fields, including campus inspection, logistics and 

distribution, and unmanned driving. When dealing with large-scale outdoor environments such as 

factories, laser point clouds are less affected by factors such as weather and light, and can perceive a 

360-degree range. However, it is important to note that their operation speed is faster. However, laser 

point clouds typically only contain the geometric information of the environment. In dynamic 

environments, they may generate residual shadows on the map, which can decrease the accuracy of 

laser mapping[7-8]. Loopback detection in laser SLAM currently relies on traditional features such as 

position and intensity. However, this method is unsatisfactory as it does not take into account the 

semantic information of the surrounding environment, which is crucial for human beings to 

recognize whether a place has been reached or not[9-10]. Unfortunately, there The significance of 

simultaneous localization and mapping (SLAM) technology and trajectory interpolation for mobile 

robots and autonomous driving has been increasing due to the continuous development of artificial 

intelligence technology[1-6]. SLAM algorithms and trajectory interpolation have been successfully 
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applied in various fields, including campus inspection, logistics and distribution, and unmanned 

driving. When dealing with large-scale outdoor environments such as factories, laser point clouds 

are less affected by factors such as weather and light, and can perceive a 360-degree range. However, 

it is important to note that their operation speed is faster. However, laser point clouds typically only 

contain the geometric information of the environment. In dynamic environments, they may generate 

residual shadows on the map, which can decrease the accuracy of laser mapping[7-8]. Loopback 

detection in laser SLAM currently relies on traditional features such as position and intensity. 

However, this method is unsatisfactory as it does not take into account the semantic information of 

the surrounding environment, which is crucial for human beings to recognize whether a place has 

been reached or not[9-10]. Unfortunately, there are few studies in related papers that incorporate 

semantic information into the SLAM loopback detection process and address the related technical 

issues. 

To address the issues, this paper explores a semantic laser SLAM system that incorporates deep 

learning and a trajectory interpolation algorithm. In comparison to existing methods, the SLAM 

system presented in this paper incorporates the concept of voxels into the occupation probability 

map, thereby improving the ability of local voxel maps to represent dynamic objects. This paper 

combines the deep learning semantic laser SLAM system with the trajectory interpolation algorithm 

research to solve the problem of the system in which the sensors cannot directly obtain the semantic 

information of the point cloud and recognize the points on the dynamic objects. The related 

algorithms of the deep learning point cloud semantic segmentation are also incorporated. The article 

proposes a PointNet++ network for point cloud semantic segmentation. This network is capable of 

recognizing points on dynamic objects and extracting deep features of the dynamic point cloud of a 

scene to output semantic information of points on static objects. A global environment descriptor 

containing semantic information is generated to identify loops and add loop constraints to the factor 

graph for optimization. By adding semantic information, dynamic points in the map can be filtered 

out to improve map building quality. Map building and trajectory interpolation experiments were 

conducted in SIASUN Campus. The experimental results were compared with satellite maps to 

demonstrate the algorithm's ability to build maps and localize in large scenes. The planning curves 

of the robot show that the use of T-trajectory optimization effectively ensures vibration-free and 

stable transitions between target points. The experiments demonstrate the feasibility of the proposed 

algorithm. The time-consuming analysis of the SLAM system shows that it can perform real-time 

computation, meeting the real-time localization requirements of mobile robots. 

2. Mobile Robotic Systems Overview 

2.1. Mobile Robot Navigation Technology Program 

As depicted in Figure 1, several open-source laser SLAM algorithm frameworks are available[11-

12]. 

 

Figure 1. Laser SLAM system. 
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1.LOAM (Lidar Odometry and Mapping):  

Front-end odometry: Scan to scan - feature point based alignment L-M nonlinear optimization.  

Back-end optimization: Scan to map - map optimization. 

2.LEGO-LOAM (Lightweight and Ground Optimized Lidar and Mapping): 

Front-end odometry: Point cloud segmentation, scan to scan - two-stage L-M nonlinear 

optimization for feature point based alignment.  

Back-end optimization: Scan to map - map optimization, graph optimization and loopback 

detection. 

3.LIO-SAM:  

Front-end odometer: Front-end odometer fused with IMU.  

Back-end optimization: Graph optimization with added GPS factor and loopback detection. 

2.2. General Framework of the SLAM System 

SLAM algorithms are essential for enhancing the autonomy and intelligence of mobile robots. 

Recent research has identified two types of laser SLAM systems: feature-based alignment and direct 

alignment based on point cloud alignment methods. This paper proposes a framework for the SLAM 

system, as shown in Figure 2, which receives inputs from 3D LIDAR and outputs 6 DOF attitude 

estimates. The system is divided into three modules: front-end odometry, back-end nonlinear 

optimization, and loopback detection. 

 

Figure 2. Robotic laser SLAM software platform. 

The front-end odometers infer rough radar motion from adjacent frames of radar data and 

provide initial values for the back-end. Front-end alignment methods include ICP matching, NDT 

matching, PL-P matching, and CSM matching. ICP matching utilizes point cloud data to construct 

local geometric features, NDT matching constructs multidimensional variables based on normal 

distributions, PL-P matching approximates the actual surfaces using a segmented linear method, and 

CSM matching obtains the initial values through correlation scanning and least squares problems. 

The nonlinear optimization methods include gradient descent, Gaussian Newton method and L-M 

method, where the L-M method introduces the trust region based on Gaussian Newton method. 

Loopback detection, also known as closed-loop detection, enables robots to recognize previously 

visited locations and achieve closed-loop capabilities for mapping. There are various methods for 

loopback detection, including feature matching, odometer position-based, and deep learning 

methods. Additionally, radar data can be matched using Scan-to-Scan, Scan-to-Map, and Map-to-

Map methods.  

Back-end optimization aims to improve the accuracy of estimating the robot's previous bit 

positions and waypoints in the presence of noise by reducing estimation errors in motion states and 

waypoints. The process of state prediction and measurement updating involves modeling the robot's 

motion and applying Kalman filtering. Additionally, graph-based optimization methods are used to 

represent the robot's poses as variables to be optimized and construct a graph of the error terms 

through the relationships between the poses. These methods are effective in improving the accuracy 

of robot localization and map construction in complex environments. 

3. Map Organization and Update Strategy 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 February 2024                   doi:10.20944/preprints202402.0437.v1

https://doi.org/10.20944/preprints202402.0437.v1


 4 

 

3.1. Laser Odometry - Nonlinear Optimization Algorithm 

Navigation systems use odometry data to estimate changes in robot position over time. In SLAM 

problems, both the front-end position optimization problem and the back-end graph optimization 

problem are modeled as nonlinear least squares problems. Therefore, nonlinear optimization 

algorithms are crucial for SLAM systems. A general nonlinear least squares problem can be defined 

with a minimization objective function.  minx   F(x) = minx  12 ∥ f(x) ∥2                          (1) 

Where𝑥 ∈ 𝑅𝑛, 𝑓(𝑥) is a nonlinear function.  

3.2. Voxel-based Local Map Construction and Updating 

Compared to the 2D case, building and utilizing a 3D raster map for point cloud alignment 

requires significantly more computational effort, leading to increased burden on the system and 

reduced real-time performance. To address the issue of aligning 3D point clouds, we utilize NDT 

maps. These maps employ the distribution of points within a voxel to represent the entire voxel. The 

NDT algorithm divides the voxel into relatively large sections, treating the points within each voxel 

as sampling points of a single Gaussian distribution. The mean and covariance of the distribution of 

points within the voxel are then fitted. Additionally, rasters are utilized in the NDT algorithm to 

divide the map. 

The paper introduces a voxel-based map representation for alignment, where local maps are 

voxelized and occupancy probability is incorporated to enhance the representation of dynamic 

objects. The environment is modeled using 1m3 square voxels to match the outdoor scene. Figure 3 

illustrates the voxel mapping process. When aligning with the local map for the current frame, it is 

typically necessary to find the nearest neighbor of the point or voxel raster to establish the alignment 

relationship. Utilizing the hash algorithm for local voxels can expedite the voxel finding process and 

simplify voxel addition and deletion operations, resulting in lower algorithmic complexity. 

 

Figure 3. Schematic of voxel mapping. 

When a new sampling point enters the voxel, the distribution of the voxel is corrected using an 

iterative update strategy. The traditional method of iterative updating each time is computationally 

expensive compared to this scheme, which greatly reduces computation. This correction scheme for 

map voxel information is a major research focus for maps. The original mean and covariance will not 

reflect the current new distribution within the voxel when a new point enters the voxel. Incremental 

corrections can be made to the existing mean and covariance through an iterative approach, rather 

than re-calculating them for all points. The data structure of the voxels in this system includes the 

mean, covariance, and occupancy probability as core parameters. 

4. Combining Deep Learning for a Semantic Laser SLAM System 

This paper enhances the network structure of previous research. Firstly, a multi-layer feature 

extraction module is used to achieve deep learning-based segmentation of dynamic object point 

cloud. Additionally, the output layer of the network is modified and retrained to output the semantic 

   ,  ,  
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categories of static object points. Secondly, the neural network's semantic results are used to create a 

global environment descriptor based on semantic information. Geometric and semantic similarity 

matching is used to identify loopback candidates, and then map-to-map matching is employed to 

precisely customize the loopbacks. This prevents the addition of erroneous constraints to the factor 

graph. Finally, in the outdoor environment with dynamic objects, we construct a pure 3D laser 

semantic SLAM algorithm to filter dynamic points based on semantic information and create a static 

semantic map of the point cloud. We generate a global environment descriptor containing semantic 

information and detect loopbacks using the loopback detection method, which are then optimized 

using the factor graph. 

4.1. Segmentation Feature Extraction Based on Ground Constraints 

Point cloud semantic segmentation is a crucial task in 3D applications as it provides high-

precision localization information for SLAM systems to construct accurate maps. Additionally, it 

offers reference targets for buildings and man-made features in building information models.  

A neural network framework-based scheme for semantic segmentation of 3D point clouds can 

determine the object categories in the point cloud data and provide a more comprehensive 

description of the environmental scene. This paper applies the PointNet++ point cloud semantic 

segmentation network to outdoor large scene point clouds with uneven density and large data 

volume. PointNet++ processes a set of points sampled in the metric space by building a multilayer 

neural network and extracts the features of the sampled points through multiple simplified PointNet. 

As illustrated in Figure 4, PointNet++ comprises multiple Set Abstraction (SA) layers. For each SA 

layer, the input vector is either the original point cloud or the local features extracted from the 

previous SA layer. The features of each layer are extracted using PointNet and then combined by a 

combination layer in the next SA layer to extract deeper features.  

 

Figure 4. Schematic diagram of PointNet++ network structure. 

The Set Abstraction Layer comprises three main components: the Sampling Layer, the Grouping 

Layer, and the PointNet Layer. The Sampling Layer selects a set of points from the input point set to 

serve as the center of the local neighborhood. The Grouping Layer constructs the local point set, 

which defines the local region of the centers. And the PointNet Layer uses mini PointNet to encode 

the local point set and obtain the feature vectors.  

4.2. Closed-loop Detection and Position Optimization Flow 

Closed-loop detection is a crucial component of the laser SLAM system. It ensures map 

consistency and eliminates accumulated errors during point cloud alignment, particularly when 

building maps for large scenes. The closed-loop detection strategy of the laser SLAM system can be 

divided into two algorithms: descriptor-based closed-loop detection and positional nearest neighbor-

based closed-loop detection. The descriptor-based detection algorithm involves compressing high-

dimensional point cloud data by extracting features from the point cloud. By comparing the low-

dimensional descriptor data of two frames of the point cloud, it can be quickly determined whether 

the two frames of the point cloud may have been sampled from the same scene. The closed-loop 
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nearest-neighbor detection algorithm compares the error values between the descriptors of the laser 

point cloud of the current frame and the descriptors of the point cloud of the historical laser 

keyframes. The worst and smallest historical point cloud descriptors are then selected to obtain the 

most probable closed-loop point of the current position. 

The process of closed-loop detection, also known as scene recognition, involves generating a 

global environment descriptor that contains semantic information, which is then used for scene 

description and search. Once the closed loop is successfully detected, the bit positions in the global 

keyframes are optimized through graph optimization. The closed-loop detection thread can perform 

this step separately to complete global map optimization and reduce cumulative errors. The system 

extracts the local sub-map from the new global map and uses it to recreate the voxel map, completing 

the update operation of the old local map. 

5. T-Trajectory Interpolation Strategy 

The SLAM system enables the robot to accurately localize and build a map in unknown 

environments. Additionally, the trajectory interpolation feature generates smooth paths, ensuring the 

smooth motion of the robot. In the manipulation space, paths and poses are planned and interpolated 

separately. The resulting per-cycle positions are solved by inverse kinematics based on the model to 

obtain the corresponding joint angles for motion control. T-trajectory interpolation is designed to 

ensure that the robot exhibits smooth, accurate, and efficient motions when executing T-tracks. T-

trajectory interpolation is the process of generating and optimizing T-trajectories in a robot, CNC 

machine, or other automation system. It involves inserting additional points into the path of the robot 

to ensure smooth, accurate, and efficient motion.  

The objective of T-trajectory interpolation is to enable the robot to display desirable motion 

characteristics while executing T-trajectories using suitable mathematical algorithms and control 

strategies.  

Acceleration: 𝐴(𝑡) = { 𝐴0 ⩽ 𝑡 < 𝑡10𝑡1 ⩽ 𝑡 < 𝑡2−𝐴𝑡2 ⩽ 𝑡 < 𝑡3                                    (2) 

Speed : 𝑉(𝑡) = {𝐴𝜏10 ≤ 𝑡 < 𝑡1𝐴𝑇1𝜏2𝑡1 ≤ 𝑡 < 𝑡2𝐴𝑇1𝜏2 − 𝐴𝜏3𝑡2 ≤ 𝑡 < 𝑡3                        (3) 

Distance: 

𝑆(𝑡) = {𝑆𝑠 + 12𝐴𝜏120 ≤ 𝑡 < 𝑡1𝑆01 + 𝐴𝑇1𝜏2𝑡1 ≤ 𝑡 < 𝑡2𝑆02 − 12𝐴𝜏32𝑡2 ≤ 𝑡 < 𝑡3                          (4) 

T-trajectory interpolation is a technique that helps to prevent robot instability when switching 

paths. Its key features include:  

1. Smooth transitions: Ensure that the transitions of the robot between connecting target points 

are smooth to avoid erratic motion. 

2. Trajectory Optimization: Interpolation algorithms can be used to generate T-trajectories that 

optimize the trajectory for a given motion condition, ensuring the shortest path, minimum 

acceleration/deceleration, and minimum mechanical stress. 

3. Velocity Planning: The interpolation algorithm must consider the velocity changes in each 

part of the T-trajectory to maintain system stability by avoiding excessive speed or slowness.  

6. Experimental Results and Analysis 

A common use case involves a vast industrial complex located in SIASUN, comprising of fixed 

structures (static features), parked vehicles (semi-static features), pedestrians, and moving vehicles 
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(dynamic features) in a typical dynamic environment. Figure 5 showcases an outdoor experimental 

vehicle system that verifies the proposed navigation architecture in this paper on the SIASUN Smart 

Park campus. The experiment is based on the outdoor security inspection robot developed by 

SIASUN. The robot is a four-wheeled ground mobile vehicle with Ackerman structure and is 

equipped with sensors such as LIDAR, camera, GPS, and IMU. 

 

Figure 5. Outdoor experimental vehicle system. 

The study used a 3D LiDAR as a data source and an RTK-GPS system, which was constructed 

using GPS combined with a self-built base station, to provide trajectory truth data for the experiment. 

Table 1 displays the specifications of the equipped LiDAR model, the Sprint 16-line LiDAR RS-

LiDAR-16. 

Table 1. RS-LiDAR-16 parameter specifications. 

Parameters Specification 

Horizontal field of view 360° 

Vertical field of view 30° 

Horizontal Angular Resolution 0.1°/0.2°/0.4° 

Frame Rate 5Hz/10Hz/20Hz 

Ranging Capability 150m 

Accuracy (typical) ±2cm 

6.1. Trajectory Interpolation Test 

Firstly, the curves of the mobile robot for trajectory interpolation are collected and tested to 

verify the key features such as smooth transition, trajectory optimization, and velocity planning. 

 

(a) 
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(b) 

 

(c) 

Figure 6. a). Location curve for T planning. b). Velocity curve for T planning. c). Acceleration curve 

for T planning. 

The aim of T-trajectory interpolation is to achieve optimal motion characteristics by utilizing 

appropriate mathematical algorithms and control strategies when executing T-trajectories. This 

improves the accuracy and efficiency of the automation system. Figure 6(a~c) demonstrates that T-

trajectory interpolation results in a vibration-free and stable transition between target points, 

preventing robot instability during path switching. Trajectory optimization shapes the trajectory to 

meet specific motion conditions, considering factors such as shortest path, minimum 

acceleration/deceleration, and minimum mechanical stress. Velocity planning ensures appropriate 

velocity variations in different parts of the T-shaped trajectory to avoid excessively fast or slow 

movements, thereby improving system stability. 

6.2. Semantic Maps and Closed-Loop Detection Experiments 

The experiments on graph building were conducted using the ALOAM algorithm, Lego-LOAM 

algorithm, and our algorithm on the KITTI dataset sequence 05. The resulting trajectories were 

compared to the true values, and the results are presented in Figure 7a,b. 
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(a) 

 

(b) 

Figure 7. (a). Original semantic map without dynamic point filtering. (b). Static semantic map after 

dynamic point filtering. 

Figure 7a displays the original semantic map without dynamic point filtering. It is evident that 

the blue section represents the residual shadow left by dynamic objects, which negatively impacts 

the quality of the map. In contrast, Figure 7b shows the map generated after dynamic object filtering 

during construction. The blue dynamic points have been filtered out, resulting in a reduction in the 

number of dynamic points in the map and an improvement in its quality. The conventional SLAM 

laser algorithm that uses feature point cloud building is unable to process dynamic points, which 

leads to residual shadows in the generated map. 

Figure 8 shows the final global path of the robot, which has the same start and end points, 

indicating that the algorithm can effectively detect closed loops. Experimental tests on the SIASUN 

C1 building dataset demonstrate that the system can accurately identify closed-loop constraints and 

perform graph optimization. 

 

Figure 8. Closed-loop path trajectory. 

The experiments demonstrate that the combination of a semantic laser SLAM system with deep 

learning and a trajectory interpolation algorithm can effectively utilize semantic information to 

identify loopbacks and perform global graph optimization, resulting in reduced cumulative errors 

and smoother robot trajectories. 

6.3. Large-Scale Mapping Experiment for a Corporate Campus 

The SIASUN outdoor mobile robot platform was used to extensively survey the periphery of the 

SIASUN campus. The effectiveness of whole-map building in a large scene was analyzed in this 
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experiment. The first and last trajectories were connected to complete the experiment. An outdoor 

security inspection robot was used to patrol the periphery of the SIASUN campus, as depicted in 

Figure 9a. The route covered a total distance of approximately 1.8km, forming a long-distance loop. 

The environment consisted of typical outdoor features such as trees, buildings, and open roads. The 

robot's specific route is depicted by the red curve in Figure 9b. The global map, built by the robot, is 

shown in yellow-green, while the relative position of the trajectory calculated by the algorithm and 

the built map is shown in red. 

 
(a) 

 
(b) 

Figure 9. a). Experimental scenarios and trajectories for the global map.  Figure 9 (b) . Experimental 

scenarios and trajectories for the global map. 

Figure 9a,b shows that the point cloud map aligns accurately with the satellite map, including 

the building edges, road edges, and tree shadows. The color change in the point cloud map reflects 

the height difference and confirms the color block change in the grayscale map. The results indicate 

that the proposed SLAM system achieves high positioning accuracy while maintaining good 

mapping efficiency.  

7. Conclusion 

This paper presents a complete solution for SLAM systems by combining a semantic laser SLAM 

system with deep learning and a trajectory interpolation algorithm. The work includes the following 

points: 

(1) This paper proposes a general framework for a SLAM system based on open-source laser 

SLAM algorithms.  

(2) The NDT algorithm is utilized to address the issue of aligning 3D point cloud alignments. It 

employs the feature point method for feature extraction and scan-to-map alignment of the point 

cloud to obtain the robot position with high accuracy. This enhances the ability of local voxel maps 

to represent dynamic objects.  

(3) The semantic categories of the points are labeled as the point cloud is dynamically segmented 

using PointNet++. A global environment descriptor is generated based on the semantic information, 

and loopbacks are detected using a loopback detection method. The loopbacks are then optimized 

using a factor graph.  
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(4) The SLAM navigation algorithm employs T-trajectory interpolation for global and local 

planning to ensure the performance of the robot motion, resulting in a smooth and stable trajectory. 

Experiments demonstrate that the semantic laser SLAM system can accurately recognize 

semantic information of points on both moving and static objects, meeting the basic requirements of 

the SLAM system in terms of operational speed. Combining the deep learning semantic laser SLAM 

system with the trajectory interpolation algorithm reduces cumulative error and provides a solid 

foundation for generating high-precision maps. The deep learning algorithm was tested on public 

datasets and compared with other SLAM algorithms. The results demonstrate that this algorithm 

satisfies the requirements of SLAM algorithms and is practical and feasible in outdoor scenes with 

dynamic objects. 

8. Patents 

Funding: This research was funded by the National Natural Science Foundation of China under Grants 

U20A20197 and the Provincial Key Research and Development for Liaoning under Grant 2020JH2/10100040. 
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