Pre prints.org

Article Not peer-reviewed version

Research on a SLAM Method Based on
Semantic Information

Ruo-huai SUN * , Xue ZHAO, Zhen-jun DU, Cheng-dong WU , Bin ZHAO i
Posted Date: 7 February 2024
doi: 10.20944/preprints202402.0437v1

Keywords: SLAM; Semantic laser; Point cloud; Occupation probability

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/3404215
https://sciprofiles.com/profile/1616651

Preprints.org (Wwww.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2024 doi:10.20944/preprints202402.0437.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Research on a SLAM Method Based on Semantic
Information

Ruo-huai SUN 123, Xue ZHAO 4, Zhen-jun Du 23, Cheng-dong WU 3 and Bin ZHAOQO 123*

1 College of Information Science and Engineering, Northeastern University, Shenyang 110819,China;
sunruohuai@stumail.neu.edu.cn

2 SIASUN Robot & Automation Co., Ltd., Shenyang, 110168, China; sunruohuai@siasun.com

3 Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110169, China;
zhaobin@stumail.neu.edu.com.cn

4 Daniel L. Goodwin College of Business, Benedict University, Chicago, IL 60601, USA;
20203734@stu.hebmu.edu.cn

* Correspondence: zhaobin@stumail.neu.edu.cn; Tel.: +8615998874918

Abstract: This paper proposes a solution for the problem of mobile robot navigation and trajectory
interpolation in dynamic environments with large scenes. The solution combines a semantic laser SLAM
system that utilizes deep learning and a trajectory interpolation algorithm. The paper first introduces some
open-source laser SLAM algorithms and then elaborates in detail on the general framework of the SLAM
system used in this paper. Secondly, the concept of voxel is introduced into the occupation probability map to
enhance the ability of local voxel maps to represent dynamic objects. Then, in this paper, we propose a
PointNet++ point cloud semantic segmentation network combined with deep learning algorithms to extract
deep features of dynamic point clouds in large scenes and output semantic information of points on static
objects. A descriptor of the global environment is generated based on its semantic information. Closed-loop
completion of global map optimization is performed to reduce cumulative error. Finally, T-trajectory
interpolation is utilized to ensure the motion performance of the robot and improve the smooth stability of the
robot trajectory. The experimental results indicate that the combination of the semantic laser SLAM system
with deep learning and the trajectory interpolation algorithm proposed in this paper yields better graph
building and loop closure effects in large scenes at SIASUN large scene campus. The use of T-trajectory
interpolation ensures vibration-free and stable transitions between target points.

Keywords: SLAM; semantic laser; point cloud; occupation probability

1. Introduction

The significance of simultaneous localization and mapping (SLAM) technology and trajectory
interpolation for mobile robots and autonomous driving has been increasing due to the continuous
development of artificial intelligence technology[1-6]. SLAM algorithms and trajectory interpolation
have been successfully applied in various fields, including campus inspection, logistics and
distribution, and unmanned driving. When dealing with large-scale outdoor environments such as
factories, laser point clouds are less affected by factors such as weather and light, and can perceive a
360-degree range. However, it is important to note that their operation speed is faster. However, laser
point clouds typically only contain the geometric information of the environment. In dynamic
environments, they may generate residual shadows on the map, which can decrease the accuracy of
laser mapping[7-8]. Loopback detection in laser SLAM currently relies on traditional features such as
position and intensity. However, this method is unsatisfactory as it does not take into account the
semantic information of the surrounding environment, which is crucial for human beings to
recognize whether a place has been reached or not[9-10]. Unfortunately, there The significance of
simultaneous localization and mapping (SLAM) technology and trajectory interpolation for mobile
robots and autonomous driving has been increasing due to the continuous development of artificial
intelligence technology[1-6]. SLAM algorithms and trajectory interpolation have been successfully

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202402.0437.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2024 doi:10.20944/preprints202402.0437.v1

applied in various fields, including campus inspection, logistics and distribution, and unmanned
driving. When dealing with large-scale outdoor environments such as factories, laser point clouds
are less affected by factors such as weather and light, and can perceive a 360-degree range. However,
it is important to note that their operation speed is faster. However, laser point clouds typically only
contain the geometric information of the environment. In dynamic environments, they may generate
residual shadows on the map, which can decrease the accuracy of laser mapping[7-8]. Loopback
detection in laser SLAM currently relies on traditional features such as position and intensity.
However, this method is unsatisfactory as it does not take into account the semantic information of
the surrounding environment, which is crucial for human beings to recognize whether a place has
been reached or not[9-10]. Unfortunately, there are few studies in related papers that incorporate
semantic information into the SLAM loopback detection process and address the related technical
issues.

To address the issues, this paper explores a semantic laser SLAM system that incorporates deep
learning and a trajectory interpolation algorithm. In comparison to existing methods, the SLAM
system presented in this paper incorporates the concept of voxels into the occupation probability
map, thereby improving the ability of local voxel maps to represent dynamic objects. This paper
combines the deep learning semantic laser SLAM system with the trajectory interpolation algorithm
research to solve the problem of the system in which the sensors cannot directly obtain the semantic
information of the point cloud and recognize the points on the dynamic objects. The related
algorithms of the deep learning point cloud semantic segmentation are also incorporated. The article
proposes a PointNet++ network for point cloud semantic segmentation. This network is capable of
recognizing points on dynamic objects and extracting deep features of the dynamic point cloud of a
scene to output semantic information of points on static objects. A global environment descriptor
containing semantic information is generated to identify loops and add loop constraints to the factor
graph for optimization. By adding semantic information, dynamic points in the map can be filtered
out to improve map building quality. Map building and trajectory interpolation experiments were
conducted in SIASUN Campus. The experimental results were compared with satellite maps to
demonstrate the algorithm's ability to build maps and localize in large scenes. The planning curves
of the robot show that the use of T-trajectory optimization effectively ensures vibration-free and
stable transitions between target points. The experiments demonstrate the feasibility of the proposed
algorithm. The time-consuming analysis of the SLAM system shows that it can perform real-time
computation, meeting the real-time localization requirements of mobile robots.

2. Mobile Robotic Systems Overview

2.1. Mobile Robot Navigation Technology Program

As depicted in Figure 1, several open-source laser SLAM algorithm frameworks are available[11-
12].

Figure 1. Laser SLAM system.
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1.LOAM (Lidar Odometry and Mapping):

Front-end odometry: Scan to scan - feature point based alignment L-M nonlinear optimization.

Back-end optimization: Scan to map - map optimization.

2.LEGO-LOAM (Lightweight and Ground Optimized Lidar and Mapping):

Front-end odometry: Point cloud segmentation, scan to scan - two-stage L-M nonlinear
optimization for feature point based alignment.

Back-end optimization: Scan to map - map optimization, graph optimization and loopback
detection.

3.LIO-SAM:

Front-end odometer: Front-end odometer fused with IMU.

Back-end optimization: Graph optimization with added GPS factor and loopback detection.

2.2. General Framework of the SLAM System

SLAM algorithms are essential for enhancing the autonomy and intelligence of mobile robots.
Recent research has identified two types of laser SLAM systems: feature-based alignment and direct
alignment based on point cloud alignment methods. This paper proposes a framework for the SLAM
system, as shown in Figure 2, which receives inputs from 3D LIDAR and outputs 6 DOF attitude
estimates. The system is divided into three modules: front-end odometry, back-end nonlinear
optimization, and loopback detection.

Crapls oyl et

Figure 2. Robotic laser SLAM software platform.

The front-end odometers infer rough radar motion from adjacent frames of radar data and
provide initial values for the back-end. Front-end alignment methods include ICP matching, NDT
matching, PL-P matching, and CSM matching. ICP matching utilizes point cloud data to construct
local geometric features, NDT matching constructs multidimensional variables based on normal
distributions, PL-P matching approximates the actual surfaces using a segmented linear method, and
CSM matching obtains the initial values through correlation scanning and least squares problems.
The nonlinear optimization methods include gradient descent, Gaussian Newton method and L-M
method, where the L-M method introduces the trust region based on Gaussian Newton method.

Loopback detection, also known as closed-loop detection, enables robots to recognize previously
visited locations and achieve closed-loop capabilities for mapping. There are various methods for
loopback detection, including feature matching, odometer position-based, and deep learning
methods. Additionally, radar data can be matched using Scan-to-Scan, Scan-to-Map, and Map-to-
Map methods.

Back-end optimization aims to improve the accuracy of estimating the robot's previous bit
positions and waypoints in the presence of noise by reducing estimation errors in motion states and
waypoints. The process of state prediction and measurement updating involves modeling the robot's
motion and applying Kalman filtering. Additionally, graph-based optimization methods are used to
represent the robot's poses as variables to be optimized and construct a graph of the error terms
through the relationships between the poses. These methods are effective in improving the accuracy
of robot localization and map construction in complex environments.

3. Map Organization and Update Strategy
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3.1. Laser Odometry - Nonlinear Optimization Algorithm

Navigation systems use odometry data to estimate changes in robot position over time. In SLAM
problems, both the front-end position optimization problem and the back-end graph optimization
problem are modeled as nonlinear least squares problems. Therefore, nonlinear optimization
algorithms are crucial for SLAM systems. A general nonlinear least squares problem can be defined
with a minimization objective function.

min F(x) = min = || f(x) II? 1)
X x 2

Wherex € R™, f(x) is a nonlinear function.

3.2. Voxel-based Local Map Construction and Updating

Compared to the 2D case, building and utilizing a 3D raster map for point cloud alignment
requires significantly more computational effort, leading to increased burden on the system and
reduced real-time performance. To address the issue of aligning 3D point clouds, we utilize NDT
maps. These maps employ the distribution of points within a voxel to represent the entire voxel. The
NDT algorithm divides the voxel into relatively large sections, treating the points within each voxel
as sampling points of a single Gaussian distribution. The mean and covariance of the distribution of
points within the voxel are then fitted. Additionally, rasters are utilized in the NDT algorithm to
divide the map.

The paper introduces a voxel-based map representation for alignment, where local maps are
voxelized and occupancy probability is incorporated to enhance the representation of dynamic
objects. The environment is modeled using 1m3 square voxels to match the outdoor scene. Figure 3
illustrates the voxel mapping process. When aligning with the local map for the current frame, it is
typically necessary to find the nearest neighbor of the point or voxel raster to establish the alignment
relationship. Utilizing the hash algorithm for local voxels can expedite the voxel finding process and
simplify voxel addition and deletion operations, resulting in lower algorithmic complexity.

m,c,n Pk

=

9

{ Hash_Function(x, y, z) J

i

Figure 3. Schematic of voxel mapping.

When a new sampling point enters the voxel, the distribution of the voxel is corrected using an
iterative update strategy. The traditional method of iterative updating each time is computationally
expensive compared to this scheme, which greatly reduces computation. This correction scheme for
map voxel information is a major research focus for maps. The original mean and covariance will not
reflect the current new distribution within the voxel when a new point enters the voxel. Incremental
corrections can be made to the existing mean and covariance through an iterative approach, rather
than re-calculating them for all points. The data structure of the voxels in this system includes the
mean, covariance, and occupancy probability as core parameters.

4. Combining Deep Learning for a Semantic Laser SLAM System

This paper enhances the network structure of previous research. Firstly, a multi-layer feature
extraction module is used to achieve deep learning-based segmentation of dynamic object point
cloud. Additionally, the output layer of the network is modified and retrained to output the semantic
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categories of static object points. Secondly, the neural network's semantic results are used to create a
global environment descriptor based on semantic information. Geometric and semantic similarity
matching is used to identify loopback candidates, and then map-to-map matching is employed to
precisely customize the loopbacks. This prevents the addition of erroneous constraints to the factor
graph. Finally, in the outdoor environment with dynamic objects, we construct a pure 3D laser
semantic SLAM algorithm to filter dynamic points based on semantic information and create a static
semantic map of the point cloud. We generate a global environment descriptor containing semantic
information and detect loopbacks using the loopback detection method, which are then optimized
using the factor graph.

4.1. Segmentation Feature Extraction Based on Ground Constraints

Point cloud semantic segmentation is a crucial task in 3D applications as it provides high-
precision localization information for SLAM systems to construct accurate maps. Additionally, it
offers reference targets for buildings and man-made features in building information models.

A neural network framework-based scheme for semantic segmentation of 3D point clouds can
determine the object categories in the point cloud data and provide a more comprehensive
description of the environmental scene. This paper applies the PointNet++ point cloud semantic
segmentation network to outdoor large scene point clouds with uneven density and large data
volume. PointNet++ processes a set of points sampled in the metric space by building a multilayer
neural network and extracts the features of the sampled points through multiple simplified PointNet.
As illustrated in Figure 4, PointNet++ comprises multiple Set Abstraction (SA) layers. For each SA
layer, the input vector is either the original point cloud or the local features extracted from the
previous SA layer. The features of each layer are extracted using PointNet and then combined by a
combination layer in the next SA layer to extract deeper features.
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Figure 4. Schematic diagram of PointNet++ network structure.

The Set Abstraction Layer comprises three main components: the Sampling Layer, the Grouping
Layer, and the PointNet Layer. The Sampling Layer selects a set of points from the input point set to
serve as the center of the local neighborhood. The Grouping Layer constructs the local point set,
which defines the local region of the centers. And the PointNet Layer uses mini PointNet to encode
the local point set and obtain the feature vectors.

4.2. Closed-loop Detection and Position Optimization Flow

Closed-loop detection is a crucial component of the laser SLAM system. It ensures map
consistency and eliminates accumulated errors during point cloud alignment, particularly when
building maps for large scenes. The closed-loop detection strategy of the laser SLAM system can be
divided into two algorithms: descriptor-based closed-loop detection and positional nearest neighbor-
based closed-loop detection. The descriptor-based detection algorithm involves compressing high-
dimensional point cloud data by extracting features from the point cloud. By comparing the low-
dimensional descriptor data of two frames of the point cloud, it can be quickly determined whether
the two frames of the point cloud may have been sampled from the same scene. The closed-loop
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nearest-neighbor detection algorithm compares the error values between the descriptors of the laser
point cloud of the current frame and the descriptors of the point cloud of the historical laser
keyframes. The worst and smallest historical point cloud descriptors are then selected to obtain the
most probable closed-loop point of the current position.

The process of closed-loop detection, also known as scene recognition, involves generating a
global environment descriptor that contains semantic information, which is then used for scene
description and search. Once the closed loop is successfully detected, the bit positions in the global
keyframes are optimized through graph optimization. The closed-loop detection thread can perform
this step separately to complete global map optimization and reduce cumulative errors. The system
extracts the local sub-map from the new global map and uses it to recreate the voxel map, completing
the update operation of the old local map.

5. T-Trajectory Interpolation Strategy

The SLAM system enables the robot to accurately localize and build a map in unknown
environments. Additionally, the trajectory interpolation feature generates smooth paths, ensuring the
smooth motion of the robot. In the manipulation space, paths and poses are planned and interpolated
separately. The resulting per-cycle positions are solved by inverse kinematics based on the model to
obtain the corresponding joint angles for motion control. T-trajectory interpolation is designed to
ensure that the robot exhibits smooth, accurate, and efficient motions when executing T-tracks. T-
trajectory interpolation is the process of generating and optimizing T-trajectories in a robot, CNC
machine, or other automation system. It involves inserting additional points into the path of the robot
to ensure smooth, accurate, and efficient motion.

The objective of T-trajectory interpolation is to enable the robot to display desirable motion
characteristics while executing T-trajectories using suitable mathematical algorithms and control

strategies.
Acceleration:
ADLt<t,
A) =1 0t; <t <ty 2)
_Atz < t < t3
Speed :
AT,0 <t <ty
V(t) = ATsztl S t < tz (3)
ATlTZ —_ AT3t2 S t < t3
Distance:

Ss+2ATH0 <t <ty
S(t) = 501 + AT]_thl S t < tz (4)
Soz — AT St <ty

T-trajectory interpolation is a technique that helps to prevent robot instability when switching
paths. Its key features include:

1. Smooth transitions: Ensure that the transitions of the robot between connecting target points
are smooth to avoid erratic motion.

2. Trajectory Optimization: Interpolation algorithms can be used to generate T-trajectories that
optimize the trajectory for a given motion condition, ensuring the shortest path, minimum
acceleration/deceleration, and minimum mechanical stress.

3. Velocity Planning: The interpolation algorithm must consider the velocity changes in each
part of the T-trajectory to maintain system stability by avoiding excessive speed or slowness.

6. Experimental Results and Analysis

A common use case involves a vast industrial complex located in SIASUN, comprising of fixed
structures (static features), parked vehicles (semi-static features), pedestrians, and moving vehicles
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(dynamic features) in a typical dynamic environment. Figure 5 showcases an outdoor experimental
vehicle system that verifies the proposed navigation architecture in this paper on the SIASUN Smart
Park campus. The experiment is based on the outdoor security inspection robot developed by
SIASUN. The robot is a four-wheeled ground mobile vehicle with Ackerman structure and is
equipped with sensors such as LIDAR, camera, GPS, and IMU.

Jii)

B S ——

Figure 5. Outdoor experimental vehicle system.

The study used a 3D LiDAR as a data source and an RTK-GPS system, which was constructed
using GPS combined with a self-built base station, to provide trajectory truth data for the experiment.
Table 1 displays the specifications of the equipped LiDAR model, the Sprint 16-line LiDAR RS-
LiDAR-16.

Table 1. RS-LiDAR-16 parameter specifications.

Parameters Specification
Horizontal field of view 360°
Vertical field of view 30°
Horizontal Angular Resolution ~ 0.1°/0.2°/0.4°
Frame Rate 5Hz/10Hz/20Hz
Ranging Capability 150m
Accuracy (typical) £2cm

6.1. Trajectory Interpolation Test

Firstly, the curves of the mobile robot for trajectory interpolation are collected and tested to
verify the key features such as smooth transition, trajectory optimization, and velocity planning.

Location

4] 10 0 30 a0 50


https://doi.org/10.20944/preprints202402.0437.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2024 doi:10.20944/preprints202402.0437.v1

8
Velocity
; -8
L] I'l°
L ] L]
L] -
3 L L)
a L]
= o .
I' ‘.
L L]
5 L] o
° L
l. .I
10 o L
.' 'I
.. .I
‘9 L
10 1]
(b)
Acceleration
L3 o
10 0
L e e ]
(c)

Figure 6. a). Location curve for T planning. b). Velocity curve for T planning. c). Acceleration curve
for T planning.

The aim of T-trajectory interpolation is to achieve optimal motion characteristics by utilizing
appropriate mathematical algorithms and control strategies when executing T-trajectories. This
improves the accuracy and efficiency of the automation system. Figure 6(a~c) demonstrates that T-
trajectory interpolation results in a vibration-free and stable transition between target points,
preventing robot instability during path switching. Trajectory optimization shapes the trajectory to
meet specific motion conditions, considering factors such as shortest path, minimum
acceleration/deceleration, and minimum mechanical stress. Velocity planning ensures appropriate
velocity variations in different parts of the T-shaped trajectory to avoid excessively fast or slow
movements, thereby improving system stability.

6.2. Semantic Maps and Closed-Loop Detection Experiments

The experiments on graph building were conducted using the ALOAM algorithm, Lego-LOAM
algorithm, and our algorithm on the KITTI dataset sequence 05. The resulting trajectories were
compared to the true values, and the results are presented in Figure 7a,b.

AT,
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Figure 7. (a). Original semantic map without dynamic point filtering. (b). Static semantic map after
dynamic point filtering.

Figure 7a displays the original semantic map without dynamic point filtering. It is evident that
the blue section represents the residual shadow left by dynamic objects, which negatively impacts
the quality of the map. In contrast, Figure 7b shows the map generated after dynamic object filtering
during construction. The blue dynamic points have been filtered out, resulting in a reduction in the
number of dynamic points in the map and an improvement in its quality. The conventional SLAM
laser algorithm that uses feature point cloud building is unable to process dynamic points, which
leads to residual shadows in the generated map.

Figure 8 shows the final global path of the robot, which has the same start and end points,
indicating that the algorithm can effectively detect closed loops. Experimental tests on the STASUN
C1 building dataset demonstrate that the system can accurately identify closed-loop constraints and
perform graph optimization.

Global Path

-10 -5 0 5 10 15 20 25

Figure 8. Closed-loop path trajectory.

The experiments demonstrate that the combination of a semantic laser SLAM system with deep
learning and a trajectory interpolation algorithm can effectively utilize semantic information to
identify loopbacks and perform global graph optimization, resulting in reduced cumulative errors
and smoother robot trajectories.

6.3. Large-Scale Mapping Experiment for a Corporate Campus

The SIASUN outdoor mobile robot platform was used to extensively survey the periphery of the
SIASUN campus. The effectiveness of whole-map building in a large scene was analyzed in this
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experiment. The first and last trajectories were connected to complete the experiment. An outdoor
security inspection robot was used to patrol the periphery of the SIASUN campus, as depicted in
Figure 9a. The route covered a total distance of approximately 1.8km, forming a long-distance loop.
The environment consisted of typical outdoor features such as trees, buildings, and open roads. The
robot's specific route is depicted by the red curve in Figure 9b. The global map, built by the robot, is
shown in yellow-green, while the relative position of the trajectory calculated by the algorithm and
the built map is shown in red.

(b)

Figure 9. a). Experimental scenarios and trajectories for the global map. Figure 9 (b) . Experimental

scenarios and trajectories for the global map.

Figure 9a,b shows that the point cloud map aligns accurately with the satellite map, including
the building edges, road edges, and tree shadows. The color change in the point cloud map reflects
the height difference and confirms the color block change in the grayscale map. The results indicate
that the proposed SLAM system achieves high positioning accuracy while maintaining good
mapping efficiency.

7. Conclusion

This paper presents a complete solution for SLAM systems by combining a semantic laser SLAM
system with deep learning and a trajectory interpolation algorithm. The work includes the following
points:

(1) This paper proposes a general framework for a SLAM system based on open-source laser
SLAM algorithms.

(2) The NDT algorithm is utilized to address the issue of aligning 3D point cloud alignments. It
employs the feature point method for feature extraction and scan-to-map alignment of the point
cloud to obtain the robot position with high accuracy. This enhances the ability of local voxel maps
to represent dynamic objects.

(3) The semantic categories of the points are labeled as the point cloud is dynamically segmented
using PointNet++. A global environment descriptor is generated based on the semantic information,
and loopbacks are detected using a loopback detection method. The loopbacks are then optimized
using a factor graph.
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(4) The SLAM navigation algorithm employs T-trajectory interpolation for global and local
planning to ensure the performance of the robot motion, resulting in a smooth and stable trajectory.

Experiments demonstrate that the semantic laser SLAM system can accurately recognize
semantic information of points on both moving and static objects, meeting the basic requirements of
the SLAM system in terms of operational speed. Combining the deep learning semantic laser SLAM
system with the trajectory interpolation algorithm reduces cumulative error and provides a solid
foundation for generating high-precision maps. The deep learning algorithm was tested on public
datasets and compared with other SLAM algorithms. The results demonstrate that this algorithm
satisfies the requirements of SLAM algorithms and is practical and feasible in outdoor scenes with
dynamic objects.

8. Patents
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