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Abstract: Adipose tissue undergoes changes with aging, leading to increased adiposity, inflammatory cell
infiltration, reduced angiogenesis, heightened oxidative stress, and alterations in its metabolic function.
Regular exercise has been recognized as a powerful intervention that can positively influence adipose tissue
health and mitigate the effects of aging. However, the molecular mechanisms underlying the benefits of regular
exercise on aging adipose tissue function remain poorly understood. Adipokines released through regular
exercise play a potential role in mitigating adipose tissue aging, enhancing the metabolism of glucose and
lipids, reducing inflammation and fibrosis, and promoting fat browning and thermogenesis. The goal of this
review is to offer a comprehensive overview of the benefits of regular exercise in addressing the age-related
decline in adipose tissue function. The significance of regular exercise in mitigating metabolic disorders
associated with aged adipose tissue will be discussed.
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1. Introduction

The prevalent prevalence of obesity, coupled with its profound influence on the demographic
composition of the global population, has experienced a notable and concerning escalation over the
last four decades. The most recent national prevalence figures for the years 2015-2019, following
Chinese criteria, indicate rates of 3.6% for obesity in children under 6 years, 7.9% for obesity in
children and adolescents aged 6-17 years, and 16.4% for obesity in adults (=18 years) '. The study
revealed a connection between obesity and the aging process. Further research is imperative to
comprehend the morphological and molecular alterations associated with age in adipose tissue (AT),
aiming to address and combat age-related metabolic diseases.

Aging adipose depots exhibit heightened infiltration of inflammatory cells, enlarged lipid
droplets, and an increased prevalence of senescent cells 2. These age-related changes in AT result in
areduced basal metabolic rate, impaired insulin responsiveness, elevated ectopic deposition of lipids,
and consequent lipotoxicity. Emerging evidence suggests that exercise is a highly effective
intervention in alleviating obesity and plays a significant role in individual metabolism, as evidenced
by its impact on the morphology and function of adipose depots 38. Moreover, circulating factors
induced by exercise, known as exerkines, are involved in the metabolism of AT in response to aging
6911, The goal of this review is to offer a comprehensive overview of the benefits of regular exercise
in counteracting age-related declines in AT function. This includes addressing issues such as adipose
expansion, decreased vascularity and mitochondrial function, fibrosis, inflammatory cells
infiltration. The relevance of regular exercise in mitigating metabolic disorders associated with aging
AT will also be discussed.

2. Morphological Changes in Aged Adipose Tissue

AT, an extraordinary flexible and heterogeneous organ, plays a crucial role in regulating
immune responses, body temperature, energy balance, insulin sensitivity, and overall physiological
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functions 2. AT exhibits an extraordinary capacity to adapt to a range of internal and external signals,
owing to its high degree of plasticity '2. Nevertheless, a newfound understanding of the cellular and
functional remodeling of white adipose tissue (WAT) and brown adipose tissue (BAT) during aging
has surfaced in recent years. Adipose plasticity becomes compromised with age, as indicated by
heightened visceral adiposity, reduced lipolysis and thermogenesis, and an inability to maintain
body temperature during cold stress '314. Current endeavors focus on investigating the potential
underlying mechanisms behind age-related alterations in AT, including hypertrophy, adipogenesis,
hypoxia, angiogenesis, fibrosis, inflammation, mitochondrial biogenesis and function '* (Figure 1).
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Figure 1. The morphological changes in aging adipose tissue. Adipose plasticity becomes
compromised with age, leading to adipocyte hypertrophy, a decline in adipogenesis, decreased
angiogenesis, increased fibrosis, pro-inflammatory macrophage infiltration (M1 macrophage,
Neutrophil, Th1, CD8*), and decreased anti-inflammatory macrophage infiltration (M2 macrophage,
Eosinophil, Th2, T reg).

2.1. Hypertrophy and Adipogenesis Declines

AT exhibits a significant degree of plasticity and plays a role in influencing metabolism during
both health and aging in response to various physiological stimuli. These stimuli include obesity,
diabetes, fasting, fatty liver, cardiometabolic disease, cold exposure, local hyperthermia, and
prolonged exercise 215, With advancing age, the plasticity of adipose tissue becomes compromised
16, affecting the ability of preadipocytes to self-renew and the replication of adipocyte progenitors in
the stromovascular fraction (SVF) 7. Adipocytes undergo expansion as body weight increases with
age. Hypertrophic adipocytes exhibit reduced expression of fat identity genes, compromising their
ability to store excess lipid and releasing inflammatory adipokines that exacerbate the adipose tissue
microenvironment 8. Excessive enlargement of WAT and inadequate angiogenesis result in cellular
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hypoxia, triggering a pro-inflammatory response. This cascade effect diminishes adipogenesis,
promotes fibrosis, and hampers metabolic flexibility and thermogenesis in aging and age-related
diseases 192!. BAT, characterized by multilocular fat droplets and abundant mitochondria, serves as
a thermogenic energy-expending tissue. It regulates body temperature through the mediation of
mitochondrial uncoupling protein 1 (UCP1) in response to aging and age-related diseases 22%. The
activation of brown or beige adipocytes contributes to alleviating metabolic disorders 2*.

With advancing age, the decline in adipogenic potential can be associated with cellular
senescence, as indicated by elevated markers of senescence in WAT depots, such as pl6™ and
senescence-associated beta-galactosidase activity °. The activation of the senescent pathway may
compromise adipogenesis. Adipose-derived stem cells from older donors exhibited heightened
expression of pl6k42, which significantly contributes to reduced cellular differentiation 2. However,
cellular senescence, among other aging-related processes, influences the endocrine function of AT.
Functional WAT releases various factors that contribute to maintaining energy homeostasis, such as
leptin, resistin, chemerin, and adiponectin. Furthermore, the secretion of these adipokines is affected
by the aging process.

2.2. Hypoxia and Angiogenesis Disorder

The excessive enlargement of WAT and inadequate angiogenesis create a hypoxic environment
in cells in response to obesity. This condition leads to a pro-inflammatory response and disorder in
angiogenesis. With aging and obesity, the reduced availability of oxygen can trigger cellular hypoxia
and inflammation, contributing to local and systemic metabolic dysfunction. Hypoxia-inducible
factors (HIFs) play a role in various cellular functions, including glucose utilization, angiogenesis,
apoptosis, extracellular matrix (ECM) remodeling, recruitment of macrophages, and fibrosis /2. The
hypertrophic growth associated with aging results in reduced oxygen diffusion, exacerbated by
insufficient compensation from the vasculature. Despite the absence of angiogenesis, HIF-1at seems
to be upregulated in aged AT. However, the instability of the HIF-1a protein can pose a challenge to
quantification 2. Furthermore, HIF-1a plays a role in mitochondrial biogenesis and function in aged
AT. Mitochondrial complex IV (CIV) activity and assembly are already suppressed in white
adipocytes of middle-aged mice, involving a HIF1a-dependent decline of essential CIV components,
such as COX5B 2.

2.3. Fibrosis

Fibrosis has been recognized as a hallmark of dysfunctional AT in aging and obesity. It is a
common pathological consequence of ECM dysregulation and arises from an imbalance between the
synthesis and degradation of ECM fibrillar components %. However, the excessive deposition of
collagen in AT triggers persistent and chronic inflammation, ultimately disrupting AT homeostasis
and exacerbating metabolic dysfunction in aging and obesity 3'32. Importantly, AT fibrosis is linked
to insulin resistance in individuals with obesity %3 The regulation of AT fibrosis involves hypoxia,
which induces the transcription of ECM components and alters cellular redox status to impact
collagen crosslinking enzymes such as lysyl oxidase 3. Furthermore, unresolved inflammation is
frequently linked to the progression of fibrosis in various pathological conditions 3. Mechanistically,
the activation of macrophage toll-like receptor 4 (TLR4) recruits macrophage-inducible C-type lectin,
stimulating pathways involved in ECM production and degradation, as well as fibroblast
proliferation and differentiation 3. Additionally, the accumulation of fibrosis in subcutaneous WAT
is associated with resistance to weight loss one year after bariatric surgery . BAT can selectively
release various cytokines to counteract fibrosis when transplanted into WAT, achieved by
upregulating lipogenesis and fatty acid metabolism 3.

2.4. Inflammation

Adipose tissue exhibits an enrichment of proinflammatory macrophages in response to both
obesity and aging ¥. During the aging process, visceral adiposity is frequently linked to changes in
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AT leukocytes, inflammation, and metabolic dysfunction. In contrast to obesity, the accumulation of
inflammatory factors with age is not dependent on macrophage abundance, as evidenced by the lack
of increase in the number of macrophages with age. Indeed, aging regulates macrophage polarization
by activating TLR4 signaling and influencing transcript levels of inflammatory IL-6 and monocyte
chemoattractant protein 1 (MCP-1). Aging is additionally linked to an expansion of resident immune
cells in AT, including B and T cells, which exhibit distinct transcriptional profiles compared to age-
related splenic B and T cells 441. Studies have demonstrated that mice lacking fat-resident regulatory
T cells are safeguarded against age-related insulin resistance, although they remain vulnerable to
insulin resistance and metabolic diseases associated with obesity 4. Furthermore, inhibiting NLRP3-
dependent B cell accumulation can reverse metabolic impairment in aged AT #.

3. Therapeutic Approaches to Enhance Aging Adipose Tissue

3.1. Cold Exposure

Environmental cold exposure triggers the formation of mitochondria-rich and thermogenic
beige adipocytes in WAT, a process known as browning 44, (Figure 2) It has been reported that cold
exposure is a remarkably potent stimulus for enhancing insulin sensitivity, glucose and lipid
metabolism. This occurs through the reduction of large lipid droplet accumulation, clearance of
serum triacylglycerol, promotion of FFA oxidation, and the delivery of long-chain fatty acids. These
actions contribute to increased expression of UCP1, improvement of mitochondrial biogenesis and
function, and enhancement of browning in white adipocytes within WAT 44445, BAT is characterized
by its capacity to dissipate energy as heat through the action of UCP1, which is activated by the
sympathetic nervous system (SNS) during activities such as exercise or exposure to cold 74647
Nevertheless, triggering the senescence pathway in young beige progenitors induces premature
cellular senescence and hinders their potential to form cold-induced beige adipocytes. On the
contrary, genetically or pharmacologically reversing cellular aging through the p38/MAPK-p16'nks
pathway in aged mouse or human beige progenitor cells rejuvenates cold-induced beiging *.
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Figure 2. Cold exposure enhances adipocyte browning in response to obesity but not in age-related
obesity. Cold exposure is implicated in the prevention and management of obesity, as evidenced by
the increased expression of UCP1, reduced accumulation of large lipid droplets, enhanced
mitochondrial biogenesis and function, promotion of FFA oxidation, increased insulin sensitivity, and
improvement of white adipocyte browning and thermogenesis in WAT. Nevertheless, the potential
to form cold-induced beige adipocytes decline with age. In contrast, reversing cellular aging through
the p38/MAPK-pl6m4 pathway rejuvenates cold-induced beiging. HFD, high fat diet.

3.2. Local Hyperthermia Therapy

The earlier researches have demonstrated that cold exposure or activation of adrenergic
signaling can be a beneficial method for promoting the generation of beige adipose tissue 244,
Conversely, these treatments have limited applications due to associated cardiovascular risks 5053,
Recent studies have highlighted that local hyperthermia therapy could offer promising scientific
benefits and serve as a potential therapeutic approach for aging-related diseases 5#%. The underlying
molecular mechanism behind these positive outcomes of hyperthermia therapy involves the
expression of heat shock protein 72 (HSP72), a classic stress-responsive protein that plays a role in
stabilizing intracellular proteins. This mechanism is supported by evidence demonstrating enhanced
glucose tolerance and insulin resistance, improved mitochondrial function, and a reduction in lipid
accumulation %. Recent studies have suggested that local hyperthermia therapy stimulates
thermogenesis, enhances fat metabolism, and boosts the activation of beige adipose tissue through
the activation of the HSF1-A2B1 transcriptional axis . Heat shock factor 1 (HSF1) plays a regulatory
role in modulating the levels of PGC-1a both transcriptionally and post-transcriptionally in response
to obesity and aging, contributing to the maintenance of cellular homeostasis. Additionally, non-
lethal hyperthermia-induced perturbations upregulate HSF1 and result in mitohormesis, yielding
beneficial outcomes in the context of aging 5-¢'. (Figure 3)
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Figure 3. Local hyperthermia therapy improves WAT browning in aging-induced obese. Local
hyperthermia therapy stimulates the activation and production of beige adipocytes in individuals
with obesity, enhancing metabolic performance. This includes reductions in lipid accumulation and
body mass, improvements in diabetic neuropathic symptoms, enhanced glucose tolerance, increased
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insulin sensitivity, and the promotion of mitochondrial biogenesis and thermogenesis. These effects
are achieved through the activation of the HSF1-A2BA-PGC-1a pathway.

3.3. Regular Exercise

Epidemiological studies unequivocally demonstrate that physical inactivity is a significant
contributor to abdominal adiposity. Nevertheless, regular exercise has long been recognized as a
therapeutic approach for managing obesity and diabetes, leading to a reduction in abdominal
adiposity and mitigating metabolic syndrome. Serving as a valuable strategy in primary care and
community health, regular exercise proves beneficial in addressing aging and age-related diseases.
The enduring enhancement in glucose clearance induced by long-term exercise training persists for
a considerable duration.

In summary, regular exercise plays a crucial role in counteracting the development of obesity
and diabetes stimulated by aging 2. The research indicates that engaging in physical activity can lead
to a reduction in food intake, low-grade inflammation, and lipogenesis, thereby alleviating insulin
resistance in response to both obesity and aging %. In elderly individuals who engage in prolonged
endurance exercise, there is an observed increase in macrophage content and mitochondrial
respiration in adipose tissue . A 12-month exercise program revealed that prolonged exercise
training may signify a certain degree of remodeling in adipose tissue among older patients with
coronary artery disease and diabetes ¢. Furthermore, both aerobic and resistance exercise not only
decrease the mass of epicardial adipose tissue in individuals with abdominal obesity but also mitigate
obesity-induced cardiac fat accumulation %. Nevertheless, the precise mechanism by which exercise
ameliorates metabolic disorders induced by aging and obesity remains not fully identified.

4. The Potential Role of Regular Exercise in Aged Adipose Tissue

Regular exercise and physical activity have been shown to induce significant alterations in the
morphology and function of AT, particularly in response to metabolic diseases. These changes
include an increase in fat browning, a reduction in adipocyte hypertrophy, and improvements in
glucose and lipid metabolism in AT ¢70. Moreover, regular exercise not only triggers a phenotypic
transformation of AT, shifting it from primarily storing energy as white adipocytes to thermogenic
beige adipocytes, especially in the context of obesity and diabetes. Additionally, it enhances processes
such as FFA oxidation, insulin sensitivity, alleviation of oxidative stress, as well as the promotion of
mitochondrial biogenesis and function 7! (Figure 4).
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Figure 4. Regular exercise mitigates metabolic syndrome. Consistent physical activity promotes the
activation and generation of beige adipocytes in individuals with obesity by regulating associated
exerkines and adipokines. Ultimately, this process enhances metabolic performance, leading to
notable benefits such as decreased inflammation and body mass, heightened energy expenditure,
improved glucose tolerance, increased insulin sensitivity, and the stimulation of mitochondrial
biogenesis and UCP1-dependent thermogenesis. BDNF, brain-derived neurotrophic factor; FGF21,
fibroblast growth factor 21; Metrnl, meteorin-like protein; SFRP5, secreted-frizzled-related protein 5.

4.1. White Adipose Tissue

WAT, being a highly prevalent form of AT, is distributed throughout nearly every region of the
body 72. Nevertheless, the functional decline of AT in the context of obesity and diabetes is involved
in a reduction in AT plasticity. This is evident in the significant decrease in AT metabolism and
alterations in phenotype to meet the demands of the organism 2. The maladaptive remodeling of AT,
marked by heightened fibrosis proliferation and a pro-inflammatory response, is triggered by a
breakdown in angiogenesis and local hypoxia 7374 As a result, adipose tissue becomes insulin
resistant, inflamed, fibrotic, and dysfunctional, particularly in the context of aging.

Numerous studies have demonstrated that exercise has a profound impact on systemic
metabolism by adapting to various tissues, including the heart 7577, liver 7, skeletal muscle 7%, and
AT 6628184 AT depots, which play crucial roles in metabolism, are implicated in mitochondrial
biogenesis, glucose metabolism, and FFA oxidation and uptake in response to exercise. These depots
include inguinal WAT, perigonadal WAT, and interscapular BAT . Routine aerobic exercise brings
about a significant reduction in WAT and a substantial increase in BAT in both mice and humans.
This effect is achieved through the stimulation of various growth factors and cytokines, fostering the
proliferation and differentiation of brown preadipocytes 85%. In WAT, regular exercise leads to a
considerable decrease in adipocyte size ¥, an increase in mitochondrial biogenesis %, regulation of
adipokine secretion 92, and an overall enhancement of whole-body metabolic health %. Long-term
exercise training induce adaptability in WAT, as indicated by elevated FFA oxidation and a reduction
in the impact of inflammation, achieved through the regulation of pro/anti-inflammatory gene
expression and the infiltration of macrophages . Furthermore, exercise training contributes to the
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improvement of mitochondrial biogenesis and thermogenesis by facilitating the transformation of
white adipocytes into beige adipocytes in WAT, counteracting the effects of aging and obesity %.

4.2. Brown Adipose Tissue

BAT, a specialized heat-generating organ rich in mitochondria, is crucial for maintaining body
temperature in cold conditions . Mitochondrial biogenesis and function in BAT play a pivotal role
in thermoregulation and metabolic processes. Regular exercise has been shown to enhance UCP1
content, mitochondprial respiration and activity, and upregulate genes associated with mitochondrial
biogenesis in BAT 4. Consistent physical activity significantly reduces fat mass and body weight gain,
enhances energy expenditure, and elevates UCP1 expression in BAT by activating the AMP-activated
protein kinase (AMPK) signaling pathway . UCP1, responsible for dissipating the proton motive
force as heat, augments the energy metabolism of mitochondria in BAT, contributing to adaptive non-
shivering thermogenesis (NST) %. The presence and function of BAT are reported to be diminished
by metabolic diseases 7 and aging °-1°.. Nonetheless, functional BAT has been shown to reduce
oxidative stress, alleviate pathological cardiac hypertrophy, and enhance cardiac function by
promoting the release of exerkines such as FGF-21 and IL-6 102103,

Exercise training or physical activity in young sedentary adults enhances BAT volume, playing
a significant role in regulating glucose metabolism in an intensity-dependent manner. This study
demonstrates that the BAT response becomes stronger with increasing exercise intensity 7.
Furthermore, exercise training induces alterations in lipid metabolism in AT by modifying the
lipidomes of both WAT and BAT. This is evident in the reduction of specific molecular species of
phosphatidic acid (PA), phosphatidylcholines (PC), phosphatidylethanolamines (PE), and
phosphatidylserines (PS) in WAT, and the increase in specific molecular species of PC and PE in BAT.
There is also a decrease in the majority of triacylglycerols (TAGs) in both WAT and BAT 3.
Additionally, physical activity or exercise training enhances mitochondrial activity, glucose uptake,
insulin sensitivity, and thermogenesis in BAT 67082104107 Cardiolipin (CL), a mitochondrial
phospholipid, is essential for mitochondrial metabolism and structural integrity 15112, Moreover, CL
serves as a key effector in the thermogenic programs of brown and beige adipocytes and is involved
in insulin sensitivity in AT 3. Conversely, the depletion of CL in brown and beige adipocytes impairs
thermogenesis and glucose metabolism, resulting in reduced insulin sensitivity 2.

4.3. Beige Adipose Tissue

In addition to BAT, cells within WAT undergo adaptive thermogenesis in response to cold
exposure or prolonged exercise training, and are referred to as beige adipocytes. The development of
beige adipocytes is regulated by factors such as PR domain containing 16 (PRDM16), peroxisome
proliferator-activated receptor gamma (PPARY), and CCAAT-enhancer-binding proteins (C/EBP) 14,
Beige cells represent an inducible profile of thermogenic adipocytes that can be activated by various
stimuli, enhancing their capacity for fuel oxidation and thermogenesis. These stimuli include
exercise, cold exposure, local hyperthermia therapy, and P-adrenergic intervention 57114116, The
research has shown that sustained physical activity and exercise induce the beiging of WAT by
modulating the secretion of brain-derived neurotrophic factor (BDNF), irisin, PGC-1a, interleukin-6
(IL-6), and meteorin-like protein (Metrnl) 9117118, Moreover, exercise activates signaling pathways
associated with beiging in WAT, including the Wnt/p-catenin signaling pathway-a novel pathway
crucial for driving the adipocyte population required for beiging. Additionally, exercise influences
PGC-1a-related pathways, which mediate mitochondrial biogenesis and function .

Regrettably, aging results in a reduction in the mass of BAT in adult humans 20122, and it
diminishes cold and exercise-induced beiging in aged mice. This is evidenced by a decrease in the
expression of transcriptional markers associated with beige adipocytes 46114123124, The number of
senescent cells increases while the differentiation of beige adipocytes decreases in aged mice and
middle-aged humans. This is indicated by elevated transcriptional factors of senescence in WAT,
including p16™k4, p21, and insulin-like growth factor binding protein 5 (IGFBP5). Furthermore, this
phenomenon leads to an increase in glucose content and mitophagy, coupled with an incapacity to
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regulate the adaptation of body temperature in response to cold exposure. These findings
demonstrate that cellular senescence plays a pivotal role in the age-induced decline of beige
adipocyte generation *251%7, The study revealed that sustained stimulation of (3-adrenergic agonists
induces beiging in middle-aged mice 4128, Various factors act as transcriptional regulators influencing
differentiation in adipose tissues in response to aging.

5. Effect of Exercise-induced Adipokine in Aged Adipose Tissue

Aging induces structural, compositional, and functional changes in AT, characterized by
reduced adipogenesis, alterations in the immune cell profile, and increased inflammation 2. As the
largest endocrine gland, AT releases various cytokines that regulate metabolic responses,
encompassing pre-production, adipogenesis, glucose and lipid homeostasis, inflammation, and
several other physiological functions 3. Aging exerts a negative regulatory impact on the secretion
of adipokines, as evidenced by an increase in proinflammatory adipokines (e.g., leptin, resistin,
chemerin, retinol binding protein 4, lipocalin 2, CCL2, IL-13, IL-6, IL-12, IL-18, and TNF-a) 13113,
coupled with a decline in anti-inflammatory mediators (e.g., adiponectin, vaspin, secreted-frizzled-
related protein 5, omentin-1, and Clq/TNF-related proteins) 13140 (Table 1). Nevertheless, regular
exercise can enhance the secretion of adipokines and mitigate the morphology and function of AT in
response to metabolic diseases. This includes promoting fat browning, reducing adipocyte
hypertrophy, improving FFA oxidation, insulin resistance, and enhancing mitochondrial
homeostasis in aging AT 6770,

Adipokines such as adiponectin and spexin, which decrease with aging in AT, play a crucial role
in insulin resistance and are associated with the onset of diabetes and other metabolic disorders
62141142 Aging adipose tissue impacts the secretion of adipokines, promoting a chronic state of low-
grade systemic inflammation ¥7. The exerkine IL-6, when exposed to acute inflammatory stress, is
significantly increased with aging in AT. The age-dependent secretion of IL-6 is regulated by the
autocrine/paracrine action of IL-1f in aged AT 3. BAT, fulfilling endocrine functions, also releases
hormones known as batokines, which play a role in regulating energy balance, glucose uptake, lipid
metabolism, and thermogenesis #+14, Batokines are exercise-related humoral factors originating from
BAT, exerting local autocrine or paracrine effects. These factors include peptides, metabolites, lipids,
or microRNAs 0. Multiple studies demonstrate that exercise training or physical activity induces the
differentiation of white adipocytes into functionally equivalent brown adipocytes, enhancing BAT
function. Additionally, brown adipose tissue plays a role in mediating exercise performance 9144145,
Nevertheless, exercise training enhances energy metabolism in response to cold exposure, as
demonstrated by the promotion of mitochondrial biogenesis, reduction in oxidative stress, and
increased exercise capacity $2. Moreover, the study reveals that small extracellular vesicles secreted
from BAT not only promote metabolism within BAT but also regulate cardiomyocyte survival and
participate in the response to exercise and myocardial ischemia/reperfusion injury. This is evidenced
by the suppression of the proapoptotic MAPK pathway ¢.

Table 1. The impact of adipokine in aged AT.

Adipokines Main mechanism Main biological action Target Refs
Leptin Srebp-1c/FGF21/ Regulates FA biosynthesis and AT Kobayashi, M.,
P PGC-1ax mitochondrial biogenesis etal.l¥”

Associates with aging-related Gencer, B., et

Resistin CRP/IL-6/TNF-o . ) Heart
cardiovascular disease al.133
. PRDM16/CPT1/ Regulates formation and function of Zhang, Y., et
Chemerin DIO2 BAT BAT oL 154
Causes insulin resistance and Moraes-Vieira
RBP4 JNK/TNF/IL-13 inflammation by activating innate AT !

. . P. M., et al.135
Immunity
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Regulates mitochondrial

LCN2 mTORC1/ERK . . BAT  Su, H,, et al.136
bioenergetics
L6 IL.-1/TNF-a 'Impact age—ass9c1ated AT Starr, M. E., et
inflammatory diseases al.1#
i h i-infl ff, E. C.
Aedlizemastn ARG1/TNF Mediates the anti 1r.1 e'ammatory AT Graff, E. C,, et
effects of niacin al.148
. ANGPTL4/DNA  Reduces inflammation and activists Weiner, J., et
Vaspin . BAT
methylation BAT al.1%
SFRPS JNK/Wnt Regl.llates 1nﬂammat1F)n ?nd AT Koutaki, D., et
obesity-related complication al.140
CTRPs AMPK/Akt, ERK Mitigates ht?art fallure' by improving Heart Shanaki, M., et
inflammation al.1#
Omentin-1 AMPK/Akt Improves cardiovascular disease by Heart Xu, F., et al i

mitigating inflammation
CRP, C-reactive protein; RBP4, retinol binding protein 4; LCN2, lipocalin 2; SFRP5, secreted-frizzled-related
protein 5; CTRPs, C1q/TNF-Related Proteins; ARG, arginase 1; CPT1, carnitine palmitoyltransferase 1.

6. Conclusions

Aging of adipose tissue is linked to alterations in structure, composition, and function,
encompassing changes in adipokine secretion, reduced adipogenesis, shifts in immune cell profile,
heightened cellular senescence, increased insulin resistance, elevated inflammation, and enhanced
fibrosis. As the largest endocrine gland, adipose tissue releases a variety of cytokines that regulate
metabolic responses. Adipokines released through regular exercise play potential roles in mitigating
metabolic diseases, improving glucose and lipid metabolism, reducing inflammation and fibrosis,
and promoting fat browning and thermogenesis in adipose tissue. In this review, we delve into the
molecular and cellular mechanisms that underlie the aging process of adipose tissue. Furthermore,
the purpose of this review is to provide a comprehensive overview of the benefits of regular exercise
in addressing the age-related decline in adipose tissue function. The relevance of regular exercise in
mitigating metabolic disorders associated with aging adipose tissue will be explored.
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