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1. Introduction

The intricate interplay between cosmology and gravity has been a focal point in the pursuit of

understanding the fundamental forces that govern the universe. Within this rich tapestry, dilaton-based

models have emerged as a promising avenue for exploring the dynamics of spacetime and the evolution

of the cosmos. Our investigation is rooted in the profound insights offered by boundary theories

coupled to gravity, laying the groundwork for unveiling the underlying principles governing the

emergence of a four-dimensional effective theory with a cosmological constant. The cornerstone of

our inquiry lies in the analysis of the bulk action S and the stress-energy tensor Tµν, providing a

theoretical foundation that guides us through the complexities of dilaton gravity. Mathematically,

these are expressed as

S =
∫

d4x
√

−g

[

1

2
ω(ϕ)gµν∂µϕ∂νϕ − V(ϕ) + Lm

]

and

Tµν = − 2√−g

δSm

δgµν ,

where ϕ represents the dilaton field, ω(ϕ) is the coupling function, V(ϕ) is the dilaton potential,

and Lm is the matter Lagrangian. By scrutinizing the action, equations of motion, and solutions, we

aim to unravel the intricate dynamics inherent in these models, offering a deeper understanding of

their implications for the gravitational landscape. Furthermore, our study extends to the exploration

of brane embeddings and induced metrics, crucial elements that contribute to the derivation of the

Friedmann-Robertson-Walker (FRW) metric. This metric becomes a key focal point in elucidating

the gravitational consequences within dilaton-based scenarios, shedding light on the evolving scale

factor a(t) and the curvature parameter k. In addition to these foundational aspects, we delve into

the incorporation of probe scalar fields, both in conformal and non-conformal scenarios. Employing

the WKB approximation, we probe the behavior of these scalar fields, unraveling additional layers

of complexity within the cosmological and gravitational interplay. As we navigate through this

exploration, the insights gleaned from our research not only advance our theoretical understanding

of dilaton-based models but also contribute meaningfully to the broader discourse on the intricate

relationship between cosmology and gravity. The ensuing sections of this paper delve into the
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mathematical formulations, analytical results, and implications of our findings, paving the way for

future explorations and applications within the realm of theoretical physics. “‘

2. Boundary Theory Coupled to Gravity

In the exploration of the intersection between boundary theories and gravity within the framework

of dilaton-based models, we begin by examining the bulk action, which governs the dynamics of the

entire system:

S = − 1

16πG5

∫

d5x
√

−g
(

R + 2Λ(5)
)

−
∫

d5xLm, (1)

where Λ(5) = − d(d−1)
2L2 = − 6

L2 . In this expression, R represents the five-dimensional Ricci scalar,

and Lm denotes the matter Lagrangian. The gravitational constant is denoted by G5.

The stress-energy tensor arising from this action takes the form:

Tµν =
1

8πG5

[

Kµν − Kγµν − 3

L
γµν +

L

2

(

Rµν − 1

2
Rγµν

)

+ . . .

]

. (2)

Here, Kµν is the extrinsic curvature, and γµν represents the induced metric on the boundary. The

ellipsis indicates additional terms related to matter fields.

Introducing Λ as the four-dimensional cosmological constant, we derive the modified Einstein’s

equation:

Rµν − 1

2
Rγµν − Λγµν + . . . − 2

L
8πG5Tµν = − 2

L
(Kµν − γµνK) +

(

Λ +
6

L2

)

γµν. (3)

Setting the left-hand side of this equation to zero, with an effective four-dimensional gravitational

constant G4 = 2G5
L , leads to the key identity:

Kµν = − 1

L

(

1 +
L2Λ

6

)

γµν. (4)

This identity unveils the intricate relationship between the extrinsic curvature and the induced

metric on the boundary within the context of dilaton-based models coupled to gravity.

3. Dilaton Gravity

In this section, we delve into the theoretical framework of dilaton gravity, characterized by the

following action and equations of motion:

S = − 1

16πG5

∫

d5x
√

−g
(

R − 2∂µϕ∂µϕ − 2Λ(5)eηϕ
)

, (5)

1√−g
∂µ

(√

−ggµν∂νϕ
)

− 1

2
ηΛ(5)eηϕ = 0, (6)

Rµν −
1

2
gµνR + Λ(5)gµνeηϕ − 2∂µϕ∂νϕ + gµν∂λϕ∂λϕ = 0. (7)

A particular solution is found by setting Λ(5) = −6:
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ds2 = − f (r)dt2 +

(

r

rh

) 16
8+3η2 (

dx2 + dy2 + dz2
)

+
dr2

f (r)
,

f (r) =

(

8 + 3η2
)2

r2
h

64 − 6η2

(

r

rh

) 16
8+3η2

[

1 −
( rh

r

)

32−3η2

8+3η2

]

,

ϕ = − 6η

8 + 3η2
log

(

r

rh

)

. (8)

Seeking a brane embedding, we introduce a function t(r) and normalized tangent vectors:

Tµ =

√

f

f 2 (∂rt)2 − 1

(

∂t

∂r
, 0, 0, 0, 1

)

,

X⃗µ = r
− 8

8+3η2
(

0, 1⃗, 0
)

,

nµ =

√

f

f 2 (∂rt)2 − 1

(

1

f
, 0, 0, 0, f

∂t

∂r

)

. (9)

The induced metric and extrinsic curvature are defined as:

γµν = gµν − nµnν,

Kµν = −
(

δλ
µ − nµnλ

)

∇λnν. (10)

Junction conditions enforce Kµν = −γµν. The solution for ∂t/∂r is:

∂t

∂r
= ±

(

8 + 3η2
)

r

f

√

(8 + 3η2)
2

r2 − 64 f
. (11)

The induced metric g
(ind)
µν = γµν is given by:

ds2
γ = − 64

(8 + 3η2)
2

r2 − 64 f (r)
dr2 +

(

r

rh

) 16
8+3η2 (

dx2 + dy2 + dz2
)

. (12)

By solving for τ and a(τ) in terms of r, we obtain the induced Friedmann-Robertson-Walker

(FRW) metric:

ds2
γ = −dτ2 + a(τ)2

(

dx2 + dy2 + dz2
)

. (13)

This solution showcases the evolution of the universe within the dilaton gravity framework,

providing insights into the interplay between dilaton fields, gravitational dynamics, and cosmological

implications.

4. Probe Fields

Consider a probe scalar field ϕ with the action given by
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S = −K

2

∫

M
d5x
√

−g∇µϕ∇µϕ + . . . , (14)

where ∇µϕ satisfies the equation of motion in five dimensions. The corresponding boundary

action is then

S = −K

2

∫

M
d5x∂µ

(√

−ggµνϕ∂νϕ
)

= −K

2

∫

M
d5x
√

−g∇µ (ϕ∇µϕ)

= −K

2

∫

∂M
d4x

√−γnµϕ∂µϕ, (15)

assuming ∇µϕ = ∂µϕ. Using the foliation t = t(r) and the normal nµ = n f (r) (−1, 0, 0, 0, ∂t/∂r),

the boundary action becomes

S = −K

2

∫

∂M
d4x

√−γϕgµνnµ∂νϕ

= −K

2

∫

∂M
d4x

√−γn(r) f (r)ϕ

(

−gtt ∂

∂t
+ grr ∂t

∂r

∂

∂r

)

ϕ, (16)

which, for our theory, results in

S = −K
∫

∂M
d4x

r
24

8+3η2

(8 + 3η2) r

(

8 + 3η2
)2

r2 − 32 f
√

(8 + 3η2)
2

r2 − 64 f
ϕ

∂ϕ

∂r
. (17)

To impose the Dirichlet boundary condition on the hypersurface t(r), i.e., ϕ = const., we require

∂iϕ
(

t, xi, r
) ∣

∣

∣

∂M
= 0, (18)

and

[

− f (r)2 ∂t

∂r

∂

∂t
+

∂

∂r

]

ϕ
(

t, xi, r
) ∣

∣

∣

∂M
= 0

=⇒



−
(

8 + 3η2
)

r f
√

(8 + 3η2)
2

r2 − 64 f

∂

∂t
+

∂

∂r



 ϕ
(

t, xi, r
) ∣

∣

∣

∂M
= 0. (19)

At η = 0, this condition yields

[

− r4 − r4
h

r2
h

∂

∂t
+

∂

∂r

]

ϕ
(

t, xi, r
) ∣

∣

∣

∂M
= 0. (20)

Consider the bulk solution decomposed as
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ϕ(t, x⃗, r) =
∫

d4k

(2π)4
eiωt−i⃗k·⃗x φk(r). (21)

The corresponding expression for ∂ϕ/∂r is

∂ϕ

∂r
=
∫

d4k

(2π)4
eiωt−i⃗k·⃗x

(

iω
∂t

∂r
φk +

∂φk

∂r

)

. (22)

Hence, the action becomes

S = − K
∫

d4kd4 pd3xdr

(2π)8
ei(k0+p0)t(r)−i(⃗k+ p⃗)·⃗x r

24
8+3η2

(8 + 3η2) r

(

8 + 3η2
)2

r2 − 32 f
√

(8 + 3η2)
2

r2 − 64 f

×





ik0
(

8 + 3η2
)

r

f

√

(8 + 3η2)
2

r2 − 64 f
φ

p0,−⃗k
· φ

k0 ,⃗k
+ φ

p0,−⃗k

∂φ
k0 ,⃗k

∂r



 . (23)

4.1. Conformal Case

At η = 0, we have

∂t

∂r
=

r

f
√

r2 − f
=

1

r2
h

1

1 −
( rh

r

)4
. (24)

This leads to

t =
r0 + r

r2
h

+
1

4rh

3

∑
n=0

(

in log
[

1 − in rh

r

])

. (25)

Then, the action becomes

S = −K
∫

d4kdp0dr

(2π)5
ei(k0+p0)t(r) r

(

r4
h + r4

)

2r2
h

(

ik0r4

r2
h

(

r4 − r4
h

) φ
p0,−⃗k

· φ
k0 ,⃗k

+ φ
p0,−⃗k

∂φ
k0 ,⃗k

∂r

)

. (26)

Furthermore, we have

S = −K

2

∫

d4kdp0dr

(2π)5
e

i(k0+p0)

r2
h

(r0+r)
(

1 − rh
r

1 + rh
r

)

i(k0+p0)
4rh

(

1 − i rh
r

1 + i rh
r

)− (k0+p0)
4rh

×
r5
(

1 +
( rh

r

)4
)

r2
h





ik0

r2
h

(

1 −
( rh

r

)4
) φ

p0,−⃗k
· φ

k0 ,⃗k
+ φ

p0,−⃗k

∂φ
k0 ,⃗k

∂r



 . (27)

Using z = rh
r , z0 = rh

r0
, and T = rh

π , as well as k0 = k0

2πT and p0 = p0

2πT , we get
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S = −π3T5K

2

∫

d3k

(2π)3

∫ 1

0
dk0dp0dz e

2i(k0+p0) z0+z
z0z

(

1 − z

1 + z

) 1
2 i(k0+p0)

×
(

1 − iz

1 + iz

)− 1
2 (k

0+p0) 1 + z4

z5

×
(

2ik0

z2 (1 − z4)
φ
p0,−⃗k

· φ
k0 ,⃗k

− φ
p0,−⃗k

·
∂φ

k0 ,⃗k

∂z

)

. (28)

5. Fluid/Gravity

We will now work out the foliation procedure in Eddington-Finkelstein coordinates. Consider the

five-dimensional black brane metric

ds2 = −r2 f (r)dt2 +
dr2

r2 f (r)
+ r2

(

dx2 + dy2 + dz2
)

,

where f (r) = 1 −
( rh

r

)4
. (29)

Change coordinates to the Eddington-Finkelstein coordinate v,

t = v − 1

4rh

3

∑
i=0

(

ik log

[

1 − ik r

rh

])

, (30)

so that

ds2 = −r2 f (r)dv2 + 2dvdr + r2
(

dx2 + dy2 + dz2
)

. (31)

We know the metric solution at first order. Perturb

nµ = n
µ

(0)
+ ϵn

µ

(1)
(32)

so

nµnν = n
µ

(0)
nν
(0) + ϵ

(

n
µ

(0)
nν
(1) + n

µ

(1)
nν
(0)

)

(33)

and Kµν = −
(

δλ
µ − nµnλ

)

∇λnν leads to

Kµν = K(0)µν + ϵK(1)µν. (34)

First-order metric takes the form

ds2 =
6

∑
n=1

An, (35)

where
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A1 = −2uadxadr, A2 = −r2 f0(br)uaubdxadxb, (36)

A3 = r2∆abdxadxb, A4 = 2r2bF0(br)σabdxadxb, (37)

A5 =
2

3
ruaub∂cucdxadxb, A6 = −ruc∂c (uaub) dxadxb (38)

and f0 and F0 are expanded to first order in derivatives of b and uµ.

Use the foliation

t(xa, br) = t0(r) + ϵ (xa∂ab0 + b1) rt′0(r) + ϵt1(r)∂aua + ϵt2(r)u
a∂ab. (39)

Set of unnormalized tangent vectors

Rµ =

(

∂t

∂r
, 0, 0, 0, 1

)

(40)

Xµ = (0, 1, 0, 0, 0) (41)

Yµ = (0, 0, 1, 0, 0) (42)

Zµ = (0, 0, 0, 1, 0) (43)

Thus

0 = gµνRµnν =
∂t

∂r
n0 + n4 =⇒ n4 = − ∂t

∂r
n0 (44)

so

nµ = n

(

−1, 0, 0, 0,
∂t

∂r

)

(45)

6. Probe Scalar in WKB Approximation

6.1. Conformal Case

Consider the conformal case with the metric

ds2 = −r2 f (r)dt2 +
dr2

r2 f (r)
+ r2

(

dx2 + dy2 + dz2
)

,

where f (r) = 1 −
( rh

r

)4
. (46)

The scalar two-point function in the large mass m ≫ 1 approximation scales as

⟨O(x)O(y)⟩ ∼ exp

{

−m
∫

dτ

√

gµν
dxµ

dτ

dxν

dτ

}

≡ e−S. (47)

Let us compute an equal-time correlator, which implies that we are fixing the position of the brane

t(r) at some bulk position ρ = rh

√
2τ, in terms of the boundary time. Choosing the proper time τ = x,

the exponent is
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S = m
∫

dx

√

r2 − r2 f t′2 +
1

r2 f
r′2. (48)

Since we want an equal time correlator, we will set t′ = 0. S possesses a conserved quantity

H = r′
∂L

∂r′
− L = − r2

√

r2 + r′2
r2 f

. (49)

Let us focus only on late-time behaviour, so that ρ ≫ rh and f (r) ≈ 1. Looking for a geodesic

between x = ±ℓ/2 at r = ρ we find

x = ±
√

4 + ℓ2ρ2

4ρ2
− 1

r2
+O(r4

h). (50)

The action then becomes

S = 2m
∫ ρ

2ρ/
√

4+ℓ2ρ2

dr
√

r2 − 4ρ2

2+ℓ2ρ2

= log

[

1

4

(

ℓρ +
√

4 + ℓ2ρ2

)2
]

, (51)

hence for ℓ2ρ2 ≫ 1,

e−S ∼ 1

(ℓρ)2m
. (52)

Assuming ∆ ∼ m ≫ 1 and knowing that the scale factor scales as

a(τ) ∝
√

τ, (53)

the equal time scalar correlator is

⟨O(τ, x⃗)O(τ, y⃗)⟩ ∼ 1

|⃗x − y⃗|2∆ a(τ)2∆
. (54)

6.2. Non-conformal Case

The metric is

ds2 = − f (r)dt2 +

(

r

rh

) 16
8+3η2 (

dx2 + dy2 + dz2
)

+
dr2

f (r)
,

where f (r) =

(

8 + 3η2
)2

r2
h

64 − 6η2

(

r

rh

) 16
8+3η2

[

1 −
( rh

r

)

32−3η2

8+3η2

]

. (55)

Again, we are interested in r ≫ rh, so
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ds2 = − f (r)dt2 +

(

r

rh

) 16
8+3η2 (

dx2 + dy2 + dz2
)

+
dr2

f (r)
,

where f (r) =

(

8 + 3η2
)2

r2
h

64 − 6η2

(

r

rh

) 16
8+3η2

. (56)

With t′ = 0 we get with α = 8 + 3η2

S = m
∫

dx

√

√

√

√

(

r

rh

)16/α

+
64 − 6η2

αr2
h

( rh

r

)16/α
r′2 (57)

and

H = −

(

r
rh

)16/α

√

(

r
rh

)16/α
+ 64−6η2

αr2
h

( rh
r

)16/α
r′2

(58)

We can then express the derivative dr
dx in terms of H:

dr

dx
=

rh

√
α

H
√

64 − 6η2

(

r

rh

)16/α
√

(

r

rh

)16/α

− H2 (59)

Further, the action S can be expressed as:

S = m

√

64 − 6η2

8 + 3η2

∫ uρ

umin

du
√

u16/(8+3η2) − H2

= − m

H2

√

64 − 6η2

8 + 3η2

[

u

√

u16/(8+3η2) − H2
2F1

[

1,
16 + 3η2

16
,

24 + 3η2

16
,

u16/(8+3η2)

H2

]]uρ

umin

(60)

7. Notes

7.1. Gravitational Action and Time Domain Restriction

The gravitational action, denoted as Sbulk, is confined to a restricted time domain due to the

outward movement of the brane from the horizon or an initial radial position where cosmological

evolution begins in the model. This restriction is expressed as:

Sbulk =
∫

M
d5x L =

∫ ∞

rh

dr
∫ ∞

−∞
d3x

∫ T (r)

t0

dtL.

Here, L represents the Lagrangian density. The integral covers the radial coordinate r, spatial

coordinates (x, y, z), and time t within the specified ranges. This formulation allows us to derive the

standard bulk equations of motion, aiding in the solution of the hyper-surface embedding equation

and determination of t(r).
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7.2. AdS-Schwarzschild Solution

For AdS-Schwarzschild, the function T (r) is given by:

T (r) =
r

r2
h

+
1

4rh

3

∑
n=0

(

in log
[

1 − in rh

r

])

− T0.

It’s crucial to note that this expression diverges as r approaches rh. To address this divergence, we

can choose to set the boundary at a point r0 > rh at t = 0, yielding:

T =
r0

r2
h

+
1

4rh

3

∑
n=0

(

in log

[

1 − in rh

r0

])

.

7.3. Probe Scalar Field Action

Consider a probe scalar field ϕ with the following action:

S = −K

2

∫

M
d5x
√

−g∇µϕ∇µϕ + . . . .

This scalar field satisfies the equation of motion in five dimensions. The corresponding boundary

action becomes:

S = −K

2

∫ ∞

r0

dr
∫

d3x
√−γnµϕ∂µϕ,

where ∇µϕ = ∂µϕ and t = T (r) is utilized.

8. Conclusion

This paper has delved into the nuanced intersection of cosmology and gravity within the paradigm

of dilaton-based models. Through a comprehensive exploration of boundary theories coupled to

gravity, we established a foundation for understanding the bulk action S and stress-energy tensor Tµν,

leading to the emergence of a four-dimensional effective theory with a cosmological constant Λ. The

Einstein field equations take the form:

Gµν + Λgµν = 8πGNTµν, (61)

where Gµν is the Einstein tensor, gµν is the metric tensor, GN is Newton’s gravitational constant,

and Λ is the cosmological constant.

Our investigation into dilaton gravity has shed light on the intricate dynamics of the system,

elucidating the action, equations of motion, and solutions. The derived brane embedding and induced

metric have provided crucial insights into the resulting Friedmann-Robertson-Walker (FRW) metric,

deepening our comprehension of the gravitational implications in dilaton-based scenarios:

ds2 = −dt2 + a(t)2

(

dr2

1 − kr2
+ r2dΩ2

)

, (62)

where a(t) is the scale factor, k is the curvature parameter, and dΩ2 represents the angular part of

the metric.

Furthermore, the incorporation of probe scalar fields, both in conformal and non-conformal cases,

has broadened the scope of our study. Utilizing the WKB approximation, we probed the behavior of

these scalar fields, unraveling additional layers of complexity within the cosmological and gravitational

interplay:

ϕ(t, x) = ϕ0ei(k·x−ωt), (63)
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where ϕ0 is the amplitude, k is the wave vector, and ω is the frequency.

This work not only advances our theoretical understanding of dilaton-based models but also

contributes to the broader discourse on the intricate relationship between cosmology and gravity. As

we continue to refine our grasp on the fundamental forces shaping our universe, the insights gained

from this research pave the way for future explorations and applications within the realm of theoretical

physics.
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