Pre prints.org

Article Not peer-reviewed version

Turbulent Channel Flow: Direct
Numerical Simulation-Data-Driven
Modeling

Antonios Liakopoulos “ and Apostolos Palasis

Posted Date: 7 February 2024

doi: 10.20944/preprints202402.0376.v1

Keywords: Wall-bounded turbulence; turbulent boundary layers; higher order statistics; Direct Numerical
Simulation (DNS)

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/2839091
https://sciprofiles.com/profile/3174726

Preprints.org (Wwww.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2024 doi:10.20944/preprints202402.0376.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Turbulent Channel Flow: Direct Numerical
Simulation-Data-Driven Modeling

Antonios Liakopoulos ¥, Apostolos Palasis 12

! Hydromechanics and Environmental Engineering Laboratory, Department of Civil Engineering,
University of Thessaly, Pedion Areos, 38334 Volos, Greece

2 Condensed Matter Physics Laboratory, Department of Physics, University of Thessaly, 35100 Lamia,

Greece; appalasis@uth.gr

Correspondence: aliakop@uth.gr

Abstract: Data obtained by Direct Numerical Simulations (DNS) of pressure-driven turbulent
channel flow are studied in the range 180 < Re; < 10,000. Reynolds number effects on the Mean
Velocity Profile (MVP) and second order statistics are analyzed with a view of finding logarithmic
behavior in the overlap region or even further from the wall, well in the boundary layer’s outer
region. Values of Karman constant for the MVPs and the Townsend-Perry constants for the
streamwise and spanwise fluctuation variances are determined for the Reynolds numbers
considered. A data-driven model of the MVP, proposed and validated for zero pressure gradient
flow over a flat plate, is employed for pressure-driven channel flow by appropriately adjusting
Coles’ strength of the wake function parameter, IT. There is excellent agreement between the
analytic model predictions of MVP and the DNS-computed MVP as well as of the Reynolds shear
stress profile. The skin friction coefficient Cr is calculated analytically. The agreement between the
analytical model predictions and the DNS-based computed discrete values of Cr is excellent.

Keywords: Wall-bounded turbulence; turbulent boundary layers; higher order statistics; Direct
Numerical Simulation (DNS)

1. Introduction

The study of wall turbulence is one of the most challenging topics in turbulence research.
Theoretical, experimental, and computational approaches encounter insurmountable difficulties
especially in the high-Reynolds-number regime. However, the great importance of wall turbulence
in engineering applications and the challenging nature of the physics involved have maintained a
continuous string of efforts to understand, model, and compute such flows.

Fundamental research has focused on several turbulent flows in simple geometries usually
referred as canonical flows. Canonical turbulent flows include turbulent Couette and Poiseuille flows
between parallel plates, flows in straight pipes of constant circular cross section, liquid flows of
uniform depth in wide open channels and zero pressure gradient external flow over a flat plate. The
mean flow field in wall-bounded cases (such as flow in channels and pipes) is parallel and the
thickness of the boundary layers formed is constant. Furthermore, in planar and axisymmetric
Poiseuille flows the gradient of the wall pressure in the streamwise direction is a negative constant.
In contradistinction, in the canonical flat plate boundary layer, the mean flow is not parallel, it is
developing under zero pressure gradient (ZPG) and the boundary layer thickness, 9, is a weak
function of the streamwise coordinate.

Canonical flows have been studied extensively by experimental methods. Important
improvements in experimental techniques have been made over the years. However, the complexity
of the turbulent flows is such that accuracy is still below the desired level especially very close to
solid walls. On the other hand, Direct Numerical Simulations (DNS) provide us with high-quality,
high-resolution data for turbulent flows in simple geometries. Although Direct Numerical
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Simulations are currently limited to relatively low Reynolds numbers their accuracy, especially close
to a rigid wall boundary, makes them invaluable in studying wall turbulence. Nowadays various
authors have reported DNS studies of canonical turbulent flows (see [1-5] and references cited
therein).

Despite the plethora of relevant publications in scientific literature, there are still many open
questions related to wall turbulence. In this work we have compiled a number of DNS datasets in the
range of friction Reynolds number Re, [180 to 10,000]. We have treated the datasets as having
roughly the same accuracy level and proceeded in their analysis. Reynolds number effects on the
Mean Velocity Profile (MVP) and second order statistics have been analyzed with a view of finding
logarithmic behavior in the overlap region or even further from the wall, well into the boundary
layer’s outer region. Values of Kadrman constant for the MVPs and the Townsend-Perry constants for
the streamwise and spanwise fluctuation variances were determined for the Reynolds numbers
considered. A mathematical model of the MVP, thereinafter referred to as AL84, is presented together
with its direct consequences. AL84 was developed for Zero Pressure Gradient Turbulent Boundary
Layers (ZPG-TBL) [6] and recently validated with DNS data for ZPG-TBLs [7]. A number of analytical
results are derived.

The paper is structured as follows. In section 2 we summarize some aspects of the pressure-
driven channel flow which are needed for the discussion of the results in the remainder of the paper.
In section 3 we present the findings based on the DNS datasets with a view to compare them with
the mathematical model predictions presented in section 4. Conclusions are summarized in section
5.

2. Pressure-Driven Channel Flow

We consider pressure-driven turbulent flow in a channel formed by two parallel, large,
motionless plates. The channel is sufficiently long so that after a developing length near the channel
entrance, the turbulent flow field becomes homogenous in the streamwise (x) and spanwise (z)
directions. Taking into account the symmetry of the flow about the channel midplane we denote the
distance between the two plates as 2h. In the equations that follow overbars denote averages-in-time
(equivalent to ensemble averages) and primes denote fluctuations-in-time.

Figure 1. Channel geometry and coordinate system.

In this paper (ii,V,Ww) denote the streamwise, wall-normal, and spanwise averaged-in-time
velocity components at a point, (u’,v’,w") the corresponding velocity fluctuations, and p the time--
---averaged pressure. The time-averaged flow is parallel i.e., the mean velocity field is (i , 0, 0), and
the mean streamwise velocity component 1 is a function of the distance from the lower wall.

Simplifying the Reynolds-Averaged Navier-Stokes (RANS) equations for fully developed
incompressible turbulent flow, one obtains

0’ ou'v’

d
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We note that the Reynolds shear stress term in Equation (1) cannot be neglected and that the mean
pressure p at a cross section x = const. is a function of y due to Equation (2).
After some mathematical manipulations of Equations (1) and (2) one finds that

du —
vd—; + (—u'v") = u? (1 - %) 3)

where u, = ./1,/p is the friction velocity, t,, is the mean shear stress at the wall, v the kinematic
viscosity and p the fluid density. The wall pressure gradient in the streamwise direction dp,,/dx is
related to the mean shear stress at the wall, T, by the relation
d
_ Pw @)

Ty = —h———

dx

Equation (3), expressed in terms of the inner-law variables y* = yu,/v, u* = u/u,, is put in the
dimensionless form

du+ - y+
— 4+ (- oyt — 1 _
dy* (=uvh Re,

©)

where Re; =u,h/v is the friction Reynolds number formed using the channel half height as
characteristic length and the friction velocity as characteristic velocity. The term (—u'v’)* =
—u'v’/u? which corresponds to the normalized Reynolds shear stress (—pu'v’)/u?.

3. Analysis of DNS datasets

In this work we consider DNS data published by Lee and Moser [1], Bernardini, Pirozzoli and
Orlandi [2], Lozano-Duran and Jimenez [3], Yamamoto and Tsuji [4], Hoyas, Oberlack et al. [5] and
discuss their salient features. The specific DNS datasets analyzed in the present work are listed in
Table 1 together with the friction Reynolds number corresponding to each dataset.

Table 1. Datasets analyzed in the present study. Re; = u,h/v.

Case Datasets Re-
LM180 Lee and Moser, 2015 [1] 180
LM550 Lee and Moser, 2015 [1] 550
LM1000 Lee and Moser, 2015 [1] 1000
LM2000 Lee and Moser, 2015 [1] 2000

BPO4079 Bernardini, Pirozzoli and Orlandi, 2014 [2] 4079
LDJ4179 Lozano-Duran and Jiménez, 2014 [3] 4179
LM5200 Lee and Moser, 2015 [1] 5200
YT8016 Yamamoto and Tsuji, 2018 [4] 8016

HO10,000 Hoyas, Oberlack et al., 2022 [5] 10,000

3.1. Mean Velocity Profiles (MVPs) and Integration-Based Quantities

Figure 2 shows the velocity profiles in law of the wall variables (u*, y*) while Figure 3 presents
the same data in the standard velocity-defect form. The Reynolds number independence of u*(y*)
near the wall is captured with perfect accuracy for all Reynolds numbers listed in Table 1. On the
other hand, the Reynolds number independence far from the wall in velocity-defect variables shows
small deviations (especially for the smaller Reynolds number cases) from the theoretical collapse to
a single curve demanded by similarity considerations.
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Figure 2. Mean velocity profiles expressed in law of the wall variables.
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Figure 3. Mean velocity profiles expressed in velocity-defect law variables.

Based on the DNS mean velocity profiles, one can calculate the cross-sectional average velocity,
V, and the dimensionless ratio V/u,. As it is customary, in canonical wall-bounded flows (straight
pipes and channels of constant cross section) we calculate the resistance law in the form of the friction
factor f, or equivalently the skin friction coefficient, C;. In the case of channel flow, the Darcy-
Weisbach equation [8] takes the form

=f{—p— —_ 0 — 6
Ap thp 2 or 0x thp 2 ( )

where Dy, is the hydraulic diameter of the channel cross-section and V denotes the bulk (cross
sectional average) velocity. For the 2-D channel shown in Figure 1 (cross section of “infinite” aspect
ratio), the hydraulic diameter D;, = 4h and consequently considering Equation (4)
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Alternatively, we can work with the skin friction coefficient defined as

Cr=250 ®)

The calculated values of Cgfor each dataset of Table 1 are shown as filled circles in Figure 4. Least
squares fit reveal the power-law relation

C¢ = 0.03Re; %20 9)
valid in the range 180 < Re. < 10,000.

0.009

----- Power law DNS data

Te ® DNS data Table 1
0.008 -
\
1

0.007 4

1 C,=0.03Re "%
0.006 4 ! E

1N R*=0.993
0.005 .. ~

C, 0.004- LAl
0.003 | o ¥

0.002

0.001

0.000 ! . . , !
0.0 2.0x10° 4.0x10° 6.0x10° 8.0x10°

T
1.0x10*
Re

T

Figure 4. Skin friction coefficient as function of Re;.

The relation between the bulk Reynolds number as Rep, = V(2h)/v and Re, is found to be
Re; = 0.07Rep? with excellent accuracy (see Figure 5). It follows that

Cs = 0.06Re; %3 (10)

based on least squares fit.
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Figure 5. Relation between Re; and Rey,.

The skin friction coefficient expressed as function of Re, differs slightly from Dean’s formula
4]
C¢ = 0.073Re;%%° (11)

Dean based his formula on selected experimental measurements of high Reynolds number flows
in channels with cross section aspect ratio greater than 1:12 [9,10]. The comparison is shown in
graphical form in Figure 6.

In a recently published work, Nucci & Absi [11] analyzed DNS data for low Reynolds numbers
in the range 110 < Re; < 2000. Their computed values for C¢ differ slightly from the skin friction

Equation (9).
0.009
T ‘ ® DNS data Table 1
0008 4 Present computation Cf=O.O6Reb’”‘23
0.007 ! —-—--Dean's formula Cf=0.073Reb_0'25
0.006
0.005
C; 0.004
0.003
0.002
0.001
0.000 : I A I N |
0 K00 2100 3x10°  4x10°  5x10°  6x10°
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b

Figure 6. Comparison of DNS-based Equation (10) with Dean’s formula, Equation (11).
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Next, we consider the lower half of the channel flow as a boundary layer of thickness ® =h and
introduce the skin friction coefficient C; = 1,/ ; pU? where U = U (y = h) = Upay. Introducing the

friction velocity, u,, in the local skin friction coefficient definition we obtain

G2 o2 (12)
f — — f —_— —
urznax (ul'-'l—‘laX)Z

Least squares fit of the C; values, computed based on the DNS datasets of Table 1, is shown in Figure
7.

0.007

¢ DNS data Table 1
----LSQ fit of DNS data
0.006 ¢
0.005 4\
]l & \ ¢, =0.0187Re, %
00044 % 1 R’=0.993
A = \‘ ~_ | /
C 0003 L/
e
S Y
0.002 |
|
0.001
0.000 . I . l . . I . I
0.0 2.0x10° 4.0x10° 6.0x10° 8.0x10° 1.0x10"
Re,
Figure 7. Dependence of the alternate skin friction coefficient C; on Re-.
It is worth commenting on the mean velocity profile in the central region of the channel flow.
We define
Umax — V -
g= = = e =V (13)

and list the computed values in Table 2.

Table 2. Reynolds number dependence of & = uf,, — V™.

Case Re- 3
LM180 180 2.73
LM550 550 2.69
LM1000 1000 2.67
LM2000 2000 2.65

BPO4079 4079 2.57
LM5200 5200 2.50
HO10,000 10,000 2.41

A least square fit of the values £(Re.), calculated for the DNS datasets of Table 1, is shown in Figure
8.
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Figure 8. Least squares fit of £ versus Re;.

The linear relation § = 2.71 — 3.25 = 1075(Re,) gives a fair approximation of the function &(Re,)
in the range of the Re; values considered in this work. It clearly shows the correct trend since in the
limit of infinite Reynolds number & should tend to zero.

3.2 Diag@nostic Functions = and I for the MVP

A great deal of research has been conducted and lively discussions appeared in the scientific
literature on whether a logarithmic or a power function describes better the overlap region of the
MVP. To decipher where these approximations fit better the data, two diagnostic functions may be
used.

The first function, defined as E =y*(du*/dy*), serves to detect intervals where u* is a
logarithmic function of y*. It is easy to prove that when E attains a constant value, u* exhibits a

logarithmic behavior of the form

y"\_1
ut = Alny* +B=Aln|— | =—Iny* +B (14)
Yo K
The second diagnostic function, defined asT'= (y*/u*)(du*/dy™), is useful in detecting intervals
where u*is approximated well by a power function of the form

ut = ay* (15)

In the interval whereI' = const., u* is approximated by a function of the form (15) withA = T.

Both diagnostic functions require the computation of the derivative du*/dy*. Since numerical
differentiation acts as an error amplifier, analyzing the DNS data in terms of the two diagnostic
functions help us to indicate the interval of the appropriate approximation with greater confidence
and accuracy.

To avoid misunderstandings in the remainder of this section it should be stressed that the
logarithmic law, Equation (14), is theoretically valid only asymptotically for Re — oo. The
logarithmic law has been derived based on various sets of assumptions. The well-known Millikan’s
[12] argument is based on the notion that, in the intermediate region (layer), both the wall law and
the velocity-defect laws should be valid. In the limit of infinite Reynolds number this leads to the
existence of a logarithmic layer in the overlap (inertial) region. Landau’s [13] treatment of the infinite
flat plate in terms of the notion of “logarithmic accuracy” also provides a firm ground for the
existence of logarithmic behavior. There are two schools of thought with respect to the constant A =
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1/x (x is the Kdrman constant) in Equation (14). One insists that « is a universal constant while the
other maintains that the value of ¥ depends on the type (geometry) of the flow [14-22].
For finite Reynolds number turbulent flows, a number of researchers [23-27] have argued that a
power law (with Reynolds number dependent coefficients) fits better experimental and DNS results.
In this work the numerical evaluation of the derivative is performed using the following formula
for unequally spaced data

du” _ u* (yity) ol [ W u* (i) M [
dy* YO —yDOE - v VO —yED O —yik)
2yt -y -yt i
+ut (k) Ter

(CAREEN AR AP AP

3.2.1. Diagnostic Function &

Figure 9 depicts the calculated Z(y*; Rex) curves for the cases listed in Table 1. As Re. increases
the y* intervals where E is approximately constant become longer, which implies an increase of the
log-law region. In Table 3 our estimates of « are listed together with the intervals where E = const. =

1/k.

6
——LM180
———LMB550

5 ——LM1000
———LM2000
——LDJ4179

LM5200

e YT8016

——HO10,000

[1]

Figure 9. Diagnostic function E based on DNS datasets of Table 1.

Table 3. Estimation of Karman constant.

Case Re- K [Views Yiigh) [(y/h)1ow, (y/h)hign]
LM180 180 0.40 [52,72] [0.29, 0.40]
LM550 550 0.429 (65, 75] [0.12, 0.14]
LM1000 1000 0.429 (70, 95] [0.07, 0.095]
LM2000 2000 0.429 [75,100] [0.0375 , 0.05]

LDJ4179 4179 0.385 [550 , 750] [0.13,0.18]
LM5200 5200 0.383 [400 , 800] [0.08,0.15]
YT8016 8016 0.386 [500, 1100] [0.06, 0.14]
HO10,000 10,000 0.397 [1000 , 2400] [0.1,0.24]

For Re, = 180 our estimate of the Karman constant is k = 0.40 while for Re, = 550, 1000, 2000
Kk = 0.429. For higher values of friction Reynolds number in the range [4000 ----- 10,000], a good


https://doi.org/10.20944/preprints202402.0376.v1

Preprints.org (Wwww.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2024 doi:10.20944/preprints202402.0376.v1

10

representative value for «x is 0.388. Finally, a good overall approximation of « in the Re; range [180 -
----10,000] is found to be 0.405 (see Figure 10).

0.430

0.425

0.420
0.415 4 ——1——-

0.410

0.405

0.400 |

X

0.395

0.390

w I -

i ¥
0.380 T . . —— ————
0 1x10° 2x10° 3x10° 4x10° 5x10° 6x10° 7x10° 8x10° 9x10° 1x10*

0.385

Re,

Figure 10. Karman constant estimates.

3.2.2. Diagnostic Function T’

Figure 11 depicts the variation of I' function for each dataset listed in Table 1. Analyzing the
behavior of these curves we identify intervals [y, , Vaign] Where I attains a constant value. These
intervals together with the implied values of the exponent A in Equation (15) are listed in Table 4.

1.0
LM180
~———LMS550
——LM1000
0.8 ——1LM2000 |
——LDJ4179
1 ——LM5200
\ YT8016
0.6 ——HO10,000
r
0.4 4
0.2 4
0.0
10°
y+
Figure 11. Diagnostic function I based on the DNS datasets of Table 1.
Table 4. Estimates of the A exponent in the power-law Equation (15).
Case Re- A [View: Yhigh) [(y/h)1ow, (y/h)nign]

LM180 180 0.156 (=1/6) [60, 110] [0.33, 0.61]
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LM550 550 0.153 (~1/7) [80, 200] [0.15, 0.37]
LM1000 1000 0.148 (~1/7) [100, 550] [0.10, 0.55]
LM2000 2000 0.139 (~1/7) [100 , 1000] [0.05, 0.50]
LDJ4179 4179 0.115 (~1/9) [1000 , 1500] [0.24, 0.36]
LM5200 5200 0.117 (~1/9) [800 , 3200] [0.15, 0.62]
YT8016 8016 0.114 (~1/9) [1200, 4500] [0.15, 0.56]
HO10,000 10,000 0.11 (~1/9) [2000, 6500] [0.20, 0.65]

3.3. Second Order Statistics

Typical profiles of the normal and shear Reynolds stresses as well as of the turbulence kinetic
energy are shown in Figure 12 for Re; = 5200.

Re =5200
10 :

Second order statistics

10*

Figure 12. Second order statistics of turbulence fluctuations for Rex= 5200. All data are normalized
with u?. Case: LM5200.

In the remainder of section 3 we explore the Reynolds number effects on second order statistics of
turbulence fluctuations. A logarithmic region is expected in the streamwise and spanwise normal
Reynolds stresses at sufficiently high Reynolds number [28-33]. We also discuss below the Reynolds
number dependence (or independence) of the Reynolds stresses and turbulence kinetic energy [34—
36].

33.1. u?

The normalized variance profiles of the streamwise fluctuations are shown in Figure 13. A clear
maximum characterizes each curve. Least squares fit gives the following expression for the near wall
maxima of the normalized variance profiles of streamwise fluctuations

(W) = 0.56In(Re,) + 4.2 (17)

Turning now to the search for logarithmic behavior in (u'u’)*, we search for a relation of the
form

72

c

— =B, —An(3) (18)
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where A; is the Townsend-Perry constant and B, an additive parameter that depends on Reynolds
number [31]. The term “sufficiently high Reynolds number” in this case means Re; > 7000 [4].
Calculating and plotting the indicator function

L4 () (19)

we have identified regions of logarithmic variation in the cases YT8016 and HO10,000 (see Figure 13
and Table 5).

10
——LMI80
1 /\ ——— LM550
8 ——1M1000 ||
// \\\ —— LM2000
/\ —— LM5200

. . / \\ =N
f N\

10° 02 10° 10*

fet}

Figure 13. Streamwise fluctuations. Normalized variance profiles.

Table 5. (u'u’)*. Estimates of Townsend-Perry parameters.

Case Ax B: “Region” (y*) “Region” (y/h)
HO10,000 1.56 145 [1200 ----- 2000] [0.119 -——--0.199]
YT8016 1.65 1.24 [1200 ----- 2000] [0.149 ----- 0.249]
HO10,000 1.76 1.13 [2000 ----- 3000] [0.199 ----- 0.299]
YT8016 1.83 0.98 [2000 ----- 2800] [0.249 ——-- 0.349]
HO10,000 1.91 0.93 [3400 ----- 4000] [0.339 ----- 0.398]
HO10,000 2.01 0.85 [4000 ----- 5400] [0.398 - 0.538]
YT8016 2.07 0.72 [4000 ----- 4800] [0.499 ----- 0.599]
HO10,000 2.42 0.63 [6400 ----- 7000] [0.637 ----- 0.697]

The values on the top 2 lines compare quite well with the values given in the literature for
A;(Rey) and B;(Re.) [4,28-30]. However, we have opted to list additional intervals at larger
distances from the wall where behavior of the form (18) can be identified.

332 w?

The variance profiles of the spanwise fluctuations are shown in Figure 14. A near wall maximum
characterizes each profile. Least squares fit gives the following dependence on Re,

(W'w)iax = 0.41In(Re,) — 0.78 (20)

Next, we search for regions of logarithmic behavior of the form
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w'?

(1)

oz C; —DyIn (%)

With the help of the appropriate indicator function we estimate the constant D, and the additive
parameter C; as shown in Table 6.

3.0
\
LM180
25 |7 LMs50 //\\
— LM1000
1 | —— LM2000 ///—\\\\
2.0 4| — LM5200 /—\ ‘
S/

A

10"

10°
y
Figure 14. Normalized spanwise fluctuations. Variance profiles.

Table 6. (w'w’)*. Estimates of Townsend-Perry parameters.

Case D1 C “Region” (y*) “Region” (y/h)
YT8016 0.31 1.37 [140 ----- 260] [0.0175 ----- 0.032]
HO10,000 0.35 2 [150 ----- 400] [0.015 ----- 0.04]
LM5200 0.41 1.04 [200 ----- 500] [0.04 ----- 0.096]
LM2000 0.47 0.82 [180 ----- 400] [0.09 ----- 0.20]
YT8016 0.50 0.85 [1100 ----- 1500] [0.137 ----- 0.187]
HO10,000 0.50 0.80 [1400 ----- 2000] [0.139 ----- 0.199]
HO10,000 0.90 0.42 [5400 ----- 6200] [0.538 ----- 0.617]
LM5200 0.99 0.35 [3100 ----- 3500] [0.598 ----- 0.676]
LM2000 0.99 0.32 [1270 ----- 1400] [0.635 ----- 0.70]
YT8016 1.01 0.34 [4600 ----- 4900] [0.574 ----- 0.611]

Obviously, some regions can be merged by relaxing the tolerance allowed on deviations from
the requirement of constancy of the diagnostic function. We also note that in (W'w")*we observe
logarithmic behavior for Re; as low as 2000. As in Table 5 we have opted to list additional intervals
where behavior of the form (21) can be identified.

333. v?

The variance profiles of wall-normal fluctuations (Figure 15) exhibit a different behavior for high
Reynolds number. Specifically,
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12

<

-z = By~ 130 (22)

in the interval 150 < y+ < 550 for Re; = 8016 and Re, = 10,000. In particularly, case YT8016
displays a constant B, = 1.29 in the region 250 < y* < 550 while in case HO10,000 B, = 1.30in the
interval 150 < y* < 450.

14

Tl =
Bi==1E0Y AN\
S o \\\ \ |
(he) s A WA\ VN
/SN
//

10° 10" 10 10° 10*

Figure 15. Normalized wall-normal fluctuations. Variance profiles.

In the lower Reynolds number cases a plateau is not formed. Instead, clear maxima are formed

for 180 < Re, < 5200. A least square fit approximates the (v'v')},, dependence on Re, by

(V'VDiax = 0.07In(Rey) + 0.642 (23)
in the range 550 < Re; < 10,000.

3.3.4. Turbulence Kinetic Energy, k

Each nondimensional turbulence kinetic energy profile is characterized by a maximum at
approximately y* =~ 18. The exact location of the maximum is weakly influenced by Re. (see Table
7). The normalized k., value is strongly influenced by Re, in the range of the Reynolds number
values considered (see Figure 16 and Table 7).
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Figure 16. Normalized turbulence kinetic energy profiles.

+
max s

Re.) pairs of values gives the relation

ki = 0.46In(Re,) + 1.8

(24)

and describes the function kj,x = f(Re;) with very good approximation.

Table 7. Reynolds number effect on ki ..

Case Re: Kfhax y*location of ki,
LM180 180 4.15 15.84
LM550 550 4.72 15.87
LM1000 1000 5.08 17.45
LM2000 2000 5.44 17.45
LM5200 5200 5.87 18.66
YT8016 8016 5.81 18.96

HO10,000 10,000 6.09 18.98

Turning to the question of existence or not of logarithmic behavior in the turbulence kinetic

energy profiles of the form

y
t=— _ —F — z
k= =E—Fn (h) (25)
we have identified the regions listed in Table 8.
Table 8. Logarithmic behavior regions in k* = k/u?.
Case F1 E: “Region” (y*) “Region” (y/h)
HO10,000 1.03 1.73 [1200 ----- 1300] [0.119 ----- 0.129]
YT8016 1.18 1.45 [1400 ----- 1600] [0.175 ----- 0.20]
HO10,000 1.35 1.21 [2850 ----- 3000] [0.284 — 0.299]
YT8016 1.40 1.13 [2350 ----- 2450] [0.293 ----- 0.306]
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HO10,000 1.74 0.86 [5100 ----- 5350] [0.508 - 0.532]
YT8016 1.79 0.76 [3600 ----- 4200] [0.449 ----- 0.524]
HO10,000 1.99 0.72 [6500 ----- 7300] [0.647 ----- 0.727]

3.3.5. Reynolds Shear Stress

Profiles of the normalized covariance of streamwise and wall-normal fluctuations are shown in
Figures 17 and 18. They are strongly influenced by Reynolds number. For Re; equal to 8016 and
10,000 a clear plateau is formed. Specifically

at Re; = 8016: —u'v’/u? = 0.963 in the interval y* = [100 - 200]

at Re; =10,000: —u'v’/u? = 0.969 in the interval y* = [100 - 250]

The maxima of the curves in the range 550 < Re; < 10,000 follow the relation

(—u'v)}ax = 0.03In(Re,) + 0.66 (26)
obtained by least squares fit, while the location of the (—u'v’)},, varies with Re, according to
relation

YVT/here maxappears — 0'01ln(ReT) +41.21 (27)
for the same range of Re;.
1.0
LM180
1 |——1wmss0 '
0.8 4| ——LM1000 /\
—— LM2000
1 |——1Lms200
| YT8016 )
’ —— HO10,000
_ (u'v/ug)
0.4 )
0.2 —
0.0 - -
10’ 10' 10° 10° 10*

Figure 17. Normalized covariance profiles of streamwise and wall-normal fluctuations in law of the
wall variables.

For large values of y*/Re; = y*/8* the derivative of the mean velocity is small compared to
the Reynolds stress term in Equation (5). Consequently, we expect

+

y
Re,

(—u'v)t=1- (28)

i.e., the Reynolds shear stress varies linearly with distance from the wall in the region further than
the layer closest to the wall [37]. This behavior is captured very accurately by the DNS data as shown
in Figure 18.
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Figure 18. Normalized covariance profiles of the streamwise and wall-normal fluctuations in law of
the wall variables.

4. The AL84 Model

In this section the most important aspects of AL84 model are outlined. The reader is referred to
[6] for detailed description of the model construction and to reference [7] for a discussion on the
accuracy of the AL84 model predictions for ZPG-TBL flows over a flat plate.

In the AL84 model the nondimensionalized mean velocity profile (MVP) is approximated by
superposing two functions f and g, i.e.,

ot y

=) +g(I3) (29)
where
(y+ + 11)4.02 B
o 1 +_ -
fy*) = In [ G773y T aaay| 563t (012y" — 0.441) — 381 (30)
yy 1 1 V3

g(l'[,g) =—(1+6) (3) ——(1+4M) (5) (1)

« is the von Karman constant and IT Coles’ [38] parameter.
Considering the channel cross section as a whole, the flow rate per unit width of the channel is
+
given by q = fOZh udy or, in terms of inner law variables, q = 2vq} where q} = foh utdy*. This
integral is calculated as the sum of two terms i.e.,, qf = q,/v + q,/v where

q (M @ _ (!
L [ eyt and L= [ g (32)
v 0 v 0

In the case of fully developed channel flow the boundary layer thickness & is equal to the half
channel “height” (8§ =h) and in wall-law variables §* = h* = u,h/v = Re,. Analytical evaluation
of the two integrals leads to the expressions
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% — (3391 — 5.63Re,) tan~1(0.441 — 0.12Re,)
— (2055 + 0.79Re,) In(Re? — 7.37Re, + 83.3) (33)
+ (44.22 + 4.02Re,) In(Re, + 11) — (6.25Re, + 29.26)
and
92 Re‘[ 1
9 _ L 34
v K (H+ 12) (34)

The average velocity at a channel cross section is then given as V = q/2h and, taking again into
account the symmetry of the channel flow,

+

V_ qf

+

_ _ Ya
u, 6t Re

(35)

In turn, the Darcy-Weisbach friction factor defined as f = 8u?/V? can be calculated analytically
based on Equation (35). The same information can be expressed in terms of the skin-friction
coefficient Cp = 2u?/V?.

We note that for pressure-driven channel flow, Equation (5) allows us to evaluate the Reynolds
shear stress based on the AL84 model by inserting the derivative of the mean velocity with respect to
y* (evaluated analytically based on Equation (30) and (31)) into Equation (5). This topic is discussed
further in Section 4.3.

4.1. Global Absolute Error and Local Relative Error in AL84 Predictions

As explained in Reference [6], the values x = 0.41 and the additive constant in the MVP
logarithmic law B = 5.0 (see Equation 14) are incorporated in Equations (30) and (31) while the third
parameter in AL84, I, is free to vary with Reynolds number. Estimates of IT obtained from the DNS
datasets analyzed are listed in Table 9.

Table 9. Estimates of Coles’ parameter IT for channel flow.

Case Re- IT (Coles’ parameter)
LM180 180 0.10
LM550 550 0.14
LM1000 1000 0.14
LM2000 2000 0.14
BPO4079 4179 0.13
LM5200 5200 0.13
HO10,000 10,000 0.10

The AL84 model performance is evaluated with these parameter values. The error at a distance
y* from the lower channel wall is defined as e(y*) = u*(y*) — [{(y*) + g(v/h, IT)].

Representative local relative error profiles are shown in Figure 19 for three cases (low, moderate,
and high) Re; = 550, 4079 and 10,000.
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Figure 19. Profiles of relative error in u* computed with AL84.

The maximum local relative error is located approximately at y* = 26 as shown in Table 10. In
the range 2000 < Re. < 10,000 it is less than 3%eo.

Table 10. Maximum local relative error in AL84-based u*.

Re- 180 550 1000 2000 4079 5200 10,000
Max relative error 0.057 0.036 0.035 0.032  0.023 0.031  0.028
Position y*, where max appears  25.69 25.70 26.46 2720  26.97 2733 27.02

The global statistics of the absolute error in the MVP approximation are summarized in Table
11.

Table 11. Statistics of absolute error in the lower half of the channel 0 < y < h.

Statistics Re-=180 Re-=550 Re-=1000
Mean 0.2708 0.0535 0.0861
Standard Error 0.0277 0.0127 0.0078
Root Mean Square Error 0.3827 0.1834 0.1518
Mean Square Deviation 0.2719 0.1759 0.1253
Variance 0.0739 0.0309 0.0157
Range 0.8101 0.5841 0.4792
Min —0.0397 —0.1040 —0.0220
Max 0.7704 0.4801 0.4572
Number of data points 96 192 256
Statistics Re-=2000 Re-=4079 Re:-=5200 Re-=10,000
Mean 0.1522 0.0873 0.1530 0.1049
Standard Error 0.0040 0.0030 0.0034 0.0036
Root Mean Square Error 0.1714 0.1105 0.1792 0.1561
Mean Square Deviation 0.0789 0.0679 0.0935 0.1156
Variance 0.0062 0.0046 0.0087 0.0134
Range 0.4498 0.2998 0.4316 0.3968

Min —0.0222 0.0009 —0.0237 —0.0283
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Max 0.4276 0.3007 0.4079 0.3686
Number of data points 384 512 768 1051

4.2. Crbased on AL84

Comparing AL84-based results with those based solely on DNS we find that the agreement is
excellent. The analytically computed C¢ curve passes exactly through the filled circles representing
the C¢ values calculated directly from the datasets of Table 1 (see Figure 20).

0.009

] ) AL84 Model
0.008 -
\ ® DNS data Table 1

0.007

0.006 \,\
0.005

C 0.004 \\\\

0.003

0.002

0.001

0.000 . ; : . . ; ; ;
0.0 2.0x10° 4.0x10° 6.0x10° 8.0x10° 1.0x10*

Re,

Figure 20. Skin friction coefficient Ct. Comparison of AL84 model predictions with Ctcomputed for
the DNS datasets of Table 1.

4.3. Reynolds Shear Stress (—u'v")

Using Equation (5), the covariance of fluctuations u" and v’ as function of the distance from the
wall can be calculated providing us with an AL84-based analytic approximation of the Reynolds
shear stress profile. Such profiles are shown in Figure 21 together with DNS Reynolds shear stress
data per se for three Reynolds numbers.

The approximation is excellent in all three cases. We note that the approximation is best for the
moderate Reynolds number Re; = 5200 while the agreement between AL84 prediction and DNS
data for Re; = 10,000 is better than the one for the low Reynolds number case Re, = 550.
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Figure 21. Normalized Reynolds shear stress profiles. Comparison of AL84-based calculation with
DNS data per se. (i) Rex = 550 (ii) Rex = 5200 and (iii) Rex = 10,000. (a) linear-linear plots (b) semi log
plots.

5. Conclusions

In the first part of the paper, we concentrated on high accuracy DNS datasets in the range 180
< Re; < 10,000. We have identified logarithmic regions in the mean velocity profiles and the
corresponding values of the von Karman constant for each Reynolds number based on the diagnostic
function E. Karman constant estimates based on the DNS data range from x = 0.429 for 550 < Re.
< 2000 to ¥ = 0.388 for 4179 < Re. < 10,000. Similarly, based on the diagnostic function I', we
identified the intervals where the power law approximates well the MVP and determined the
corresponding exponent as function of the Reynolds number which ranges from 1/6 to 1/9. The
calculated skin friction coefficient differs slightly from Dean’s least squares fit of selected
measurements of high Reynolds number flows in channels with cross section aspect ratio greater than
1:12.

For the higher order statistics, we have determined the logarithmic regions in the variance
profiles of streamwise (u'u’)* and spanwise (w'w’)* fluctuations and the corresponding values of
the Townsend-Perry constants. We have listed logarithmic regions beyond the one expected by the
Townsend'’s attached eddy hypothesis. In the region 150 < y* < 450 the variance of the wall-normal
fluctuations (v'v')* takes the value B, =1.30 for Re, = 8016 and 10,000. The peak values of the
Wu)t, w'w)*, (v'v))*, ki, have been approximated as functions of Re, with logarithmic
dependence. In contradistinction, the normalized Reynolds shear stress attains a constant value
(approximately =~ 0.96) in the interval 100 < y* <250 for Re; higher than 8000.

In the second part of the paper, a data-driven model (AL84), developed for ZPG-TBL, is
calibrated for pressure-driven channel flow. It is shown that AL84 describes very accurately the mean
velocity profile as well as the Reynolds shear stress profile for pressure-driven channel flow. In the
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framework of AL84 the skin friction coefficient is expressed analytically as function of Re; and in
various comparisons is in excellent agreement with the DNS data least squared fits.

The ALS84-Model accuracy can be further improved, and its range of applicability can be
extended as higher Reynolds number DNS data become available. We expect that the accuracy of the
ALB84 model will be further enhanced since it incorporates the logarithmic law in the overlap region
of the boundary layer which is expected to be approached asymptotically as Re — oo. We conclude
that, in addition to its pertinence to theoretical developments and in providing guidance in searching
for the asymptotic structure of turbulent boundary layers, AL84 is useful in developing and
calibrating turbulence models of the flow very near to the wall [39].
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