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*  Correspondence: aliakop@uth.gr 

Abstract:  Data  obtained  by  Direct Numerical  Simulations  (DNS)  of  pressure‐driven  turbulent 
channel flow are studied in the range 180  ൑  Reத ൑  10,000. Reynolds number effects on the Mean 
Velocity Profile (MVP) and second order statistics are analyzed with a view of finding logarithmic 
behavior  in  the overlap region or even further  from  the wall, well  in the boundary  layer’s outer 
region.  Values  of  Kármán  constant  for  the MVPs  and  the  Townsend‐Perry  constants  for  the 
streamwise  and  spanwise  fluctuation  variances  are  determined  for  the  Reynolds  numbers 
considered. A data‐driven model of the MVP, proposed and validated for zero pressure gradient 
flow over a  flat plate,  is employed  for pressure‐driven channel  flow by appropriately adjusting 
Coles’  strength  of  the wake  function  parameter,  Π.  There  is  excellent  agreement  between  the 
analytic model predictions of MVP and the DNS‐computed MVP as well as of the Reynolds shear 
stress profile. The skin friction coefficient Cf is calculated analytically. The agreement between the 
analytical model predictions and the DNS‐based computed discrete values of Cf is excellent. 

Keywords: Wall‐bounded  turbulence;  turbulent  boundary  layers;  higher  order  statistics; Direct 
Numerical Simulation (DNS) 

 

1. Introduction 

The  study  of wall  turbulence  is  one  of  the most  challenging  topics  in  turbulence  research. 
Theoretical,  experimental,  and  computational  approaches  encounter  insurmountable  difficulties 
especially in the high‐Reynolds‐number regime. However, the great importance of wall turbulence 
in engineering applications and the challenging nature of the physics involved have maintained a 
continuous string of efforts to understand, model, and compute such flows. 

Fundamental  research  has  focused  on  several  turbulent  flows  in  simple  geometries usually 
referred as canonical flows. Canonical turbulent flows include turbulent Couette and Poiseuille flows 
between parallel plates,  flows  in  straight pipes of  constant  circular  cross  section,  liquid  flows of 
uniform depth in wide open channels and zero pressure gradient external flow over a flat plate. The 
mean  flow  field  in wall‐bounded  cases  (such  as  flow  in  channels  and pipes)  is parallel  and  the 
thickness  of  the  boundary  layers  formed  is  constant.  Furthermore,  in  planar  and  axisymmetric 
Poiseuille flows the gradient of the wall pressure in the streamwise direction is a negative constant. 
In contradistinction,  in  the canonical  flat plate boundary  layer,  the mean  flow  is not parallel,  it  is 
developing  under  zero  pressure  gradient  (ZPG)  and  the  boundary  layer  thickness,  δ,  is  a weak 
function of the streamwise coordinate. 

Canonical  flows  have  been  studied  extensively  by  experimental  methods.  Important 
improvements in experimental techniques have been made over the years. However, the complexity 
of the turbulent flows is such that accuracy  is still below the desired level especially very close to 
solid walls. On the other hand, Direct Numerical Simulations (DNS) provide us with high‐quality, 
high‐resolution  data  for  turbulent  flows  in  simple  geometries.  Although  Direct  Numerical 
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Simulations are currently limited to relatively low Reynolds numbers their accuracy, especially close 
to a rigid wall boundary, makes  them  invaluable  in studying wall  turbulence. Nowadays various 
authors  have  reported DNS  studies  of  canonical  turbulent  flows  (see  [1–5]  and  references  cited 
therein). 

Despite  the plethora of relevant publications  in scientific  literature,  there are still many open 
questions related to wall turbulence. In this work we have compiled a number of DNS datasets in the 
range  of  friction Reynolds  number  Reத   [180  to  10,000]. We  have  treated  the  datasets  as  having 
roughly the same accuracy  level and proceeded  in  their analysis. Reynolds number effects on  the 
Mean Velocity Profile (MVP) and second order statistics have been analyzed with a view of finding 
logarithmic behavior  in  the overlap region or even  further  from  the wall, well  into  the boundary 
layer’s outer region. Values of Kármán constant for the MVPs and the Townsend‐Perry constants for 
the  streamwise  and  spanwise  fluctuation  variances were  determined  for  the Reynolds  numbers 
considered. A mathematical model of the MVP, thereinafter referred to as AL84, is presented together 
with its direct consequences. AL84 was developed for Zero Pressure Gradient Turbulent Boundary 
Layers (ZPG‐TBL) [6] and recently validated with DNS data for ZPG‐TBLs [7]. A number of analytical 
results are derived. 

The paper  is structured as  follows.  In section 2 we summarize some aspects of  the pressure‐
driven channel flow which are needed for the discussion of the results in the remainder of the paper. 
In section 3 we present the findings based on the DNS datasets with a view to compare them with 
the mathematical model predictions presented in section 4. Conclusions are summarized in section 
5. 

2. Pressure‐Driven Channel Flow 

We  consider  pressure‐driven  turbulent  flow  in  a  channel  formed  by  two  parallel,  large, 
motionless plates. The channel is sufficiently long so that after a developing length near the channel 
entrance,  the  turbulent  flow  field  becomes  homogenous  in  the  streamwise  (x)  and  spanwise  (z) 
directions. Taking into account the symmetry of the flow about the channel midplane we denote the 
distance between the two plates as 2h. In the equations that follow overbars denote averages‐in‐time 
(equivalent to ensemble averages) and primes denote fluctuations‐in‐time. 

 
Figure 1. Channel geometry and coordinate system. 

In  this  paper  (uത , vത, wഥሻ   denote  the  streamwise, wall‐normal,  and  spanwise  averaged‐in‐time 
velocity components at a point, (uᇱ, vᇱ, wᇱሻ  the corresponding velocity fluctuations, and  pത  the time‐‐
‐‐‐averaged pressure. The time‐averaged flow is parallel i.e., the mean velocity field is (uത  , 0, 0), and 
the mean streamwise velocity component  uത  is a function of the distance from the lower wall. 

Simplifying  the  Reynolds‐Averaged  Navier‐Stokes  (RANS)  equations  for  fully  developed 
incompressible turbulent flow, one obtains ሺ𝑥 െ െ െ െെ componentሻ  െ ∂pത∂x

൅ μ∂ଶuത∂yଶ െ ρ∂uᇱvᇱതതതതത∂y
ൌ 0  (1) 

  ሺ𝑦 െ െ െെ െ componentሻ  െ ∂pത∂y
െ ρ∂vᇱଶതതതത∂y

ൌ 0 
(2) 
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We note that the Reynolds shear stress term in Equation (1) cannot be neglected and that the mean 
pressure  pത  at a cross section x = const. is a function of y due to Equation (2). 

After some mathematical manipulations of Equations (1) and (2) one finds that 

𝜈 duത
dy

൅ ሺെuᇱvᇱതതതതതሻ ൌ u∗ଶ ቀ1 െ y

h
ቁ  (3) 

where  u∗ ൌ ඥτ୵ ρ⁄   is the friction velocity,  τ୵ is the mean shear stress at the wall,  𝜈  the kinematic 
viscosity and  ρ  the fluid density. The wall pressure gradient in the streamwise direction  dp୵ dx⁄   is 
related to the mean shear stress at the wall,  τ୵, by the relation τ୵ ൌ െh

dp୵
dx

   (4) 

Equation  (3),  expressed  in  terms of  the  inner‐law variables  yା ൌ yu∗ 𝜈⁄ ,  uା ൌ uത u∗⁄ ,  is put  in  the 
dimensionless form 

  duା
dyା ൅ ሺെuᇱvᇱതതതതതሻା ൌ 1 െ yା

Reத   (5) 

where  Reத ൌ u∗h 𝜈⁄   is  the  friction  Reynolds  number  formed  using  the  channel  half  height  as 
characteristic  length  and  the  friction  velocity  as  characteristic  velocity.  The  term  ሺെuᇱvᇱതതതതതሻା ൌെuᇱvᇱതതതതത u∗ଶ ⁄  which corresponds to the normalized Reynolds shear stress  ሺെρuᇱvᇱതതതതതሻ u∗ଶ⁄ . 

3. Analysis of DNS datasets 

In this work we consider DNS data published by Lee and Moser [1], Bernardini, Pirozzoli and 
Orlandi [2], Lozano‐Durán and Jimenez [3], Yamamoto and Tsuji [4], Hoyas, Oberlack et al. [5] and 
discuss their salient features. The specific DNS datasets analyzed in the present work are listed in 
Table 1 together with the friction Reynolds number corresponding to each dataset. 

Table 1. Datasets analyzed in the present study.  Reத ൌ u∗h 𝜈⁄ . 

Case  Datasets  Reτ 
LM180  Lee and Moser, 2015 [1]  180 
LM550  Lee and Moser, 2015 [1]  550 
LM1000  Lee and Moser, 2015 [1]  1000 
LM2000  Lee and Moser, 2015 [1]  2000 
BPO4079  Bernardini, Pirozzoli and Orlandi, 2014 [2]  4079 
LDJ4179  Lozano‐Durán and Jiménez, 2014 [3]  4179 
LM5200  Lee and Moser, 2015 [1]  5200 
YT8016  Yamamoto and Tsuji, 2018 [4]  8016 
HO10,000  Hoyas, Oberlack et al., 2022 [5]  10,000 

3.1. Mean Velocity Profiles (MVPs) and Integration‐Based Quantities 

Figure 2 shows the velocity profiles in law of the wall variables (u+, y+) while Figure 3 presents 
the same data  in  the standard velocity‐defect  form. The Reynolds number  independence of u+(y+) 
near the wall is captured with perfect accuracy for all Reynolds numbers listed in Table 1. On the 
other hand, the Reynolds number independence far from the wall in velocity‐defect variables shows 
small deviations (especially for the smaller Reynolds number cases) from the theoretical collapse to 
a single curve demanded by similarity considerations. 
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Figure 2. Mean velocity profiles expressed in law of the wall variables. 

 
Figure 3. Mean velocity profiles expressed in velocity‐defect law variables. 

Based on the DNS mean velocity profiles, one can calculate the cross‐sectional average velocity, 
Vഥ, and the dimensionless ratio  Vഥ u∗⁄ . As it is customary, in canonical wall‐bounded flows (straight 
pipes and channels of constant cross section) we calculate the resistance law in the form of the friction 
factor  f,  or  equivalently  the  skin  friction  coefficient,  C୤ .  In  the  case  of  channel  flow,  the Darcy‐
Weisbach equation [8] takes the form Δp ൌ f

L

D୦ ρVഥଶ
2

   or   െ ∂p୵∂x
ൌ f

1

D୦ ρVഥଶ
2
  (6) 

where  D୦   is  the  hydraulic diameter  of  the  channel  cross‐section  and  Vഥ   denotes  the  bulk  (cross 
sectional average) velocity. For the 2‐D channel shown in Figure 1 (cross section of “infinite” aspect 
ratio), the hydraulic diameter D୦ ൌ 4h  and consequently considering Equation (4) 
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f ൌ െሺ4hሻ ∂p୵∂x
1
2
ρVഥଶ ൌ 8τ୵ρVഥଶ ൌ 8

u∗ଶ
Vഥଶ  (7) 

Alternatively, we can work with the skin friction coefficient defined as 

C୤ ൌ 2
u∗ଶ
Vഥଶ  (8) 

The calculated values of  C୤ for each dataset of Table 1 are shown as filled circles in Figure 4. Least 
squares fit reveal the power‐law relation 

C୤ ൌ 0.03Reதି ଴.ଶ଺  (9) 

valid in the range 180 ൑  Reத ൑  10,000. 

 
Figure 4. Skin friction coefficient as function of  Reத. 

The  relation  between  the  bulk Reynolds  number  as  Reୠ ൌ Vഥሺ2hሻ 𝜈⁄   and  Reத   is  found  to  be 
Reத ൌ 0.07Reୠ଴.ଽ with excellent accuracy (see Figure 5). It follows that 

C୤ ൌ 0.06Reୠି଴.ଶଷ  (10) 

based on least squares fit. 
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Figure 5. Relation between  Reத  and  Reୠ. 

The skin friction coefficient expressed as function of  Reୠ  differs slightly from Dean’s formula 
[9] 

C୤ ൌ 0.073Reୠି଴.ଶହ  (11) 

Dean based his formula on selected experimental measurements of high Reynolds number flows 
in  channels with  cross  section  aspect  ratio greater  than  1:12  [9,10]. The  comparison  is  shown  in 
graphical form in Figure 6. 

In a recently published work, Nucci & Absi [11] analyzed DNS data for low Reynolds numbers 
in the range 110  ൑  Reத  ൑  2000. Their computed values for  C୤  differ slightly from the skin friction 
Equation (9).   

 
Figure 6. Comparison of DNS‐based Equation (10) with Dean’s formula, Equation (11). 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 February 2024                   doi:10.20944/preprints202402.0376.v1

https://doi.org/10.20944/preprints202402.0376.v1


  7 

 

Next, we consider the lower half of the channel flow as a boundary layer of thickness δ = h and 
introduce  the skin  friction coefficient  C୤෡ ൌ τ୵ ଵଶ ρUଶ⁄  where U ൌ  uത ሺy ൌ hሻ ൌ u୫ୟ୶.  Introducing  the 
friction velocity,  u∗, in the local skin friction coefficient definition we obtain 

C୤෡ ൌ 2
u∗ଶ

u୫ୟ୶ଶ  ൌ൐  C୤෡ ൌ 2ሺu୫ୟ୶ା ሻଶ   (12) 

Least squares fit of the  C୤෡   values, computed based on the DNS datasets of Table 1, is shown in Figure 
7.   

 
Figure 7. Dependence of the alternate skin friction coefficient  C୤෡   on Reτ. 

It is worth commenting on the mean velocity profile in the central region of the channel flow. 
We define  ξ ൌ u୫ୟ୶ െ Vഥ

u∗ ൌ u୫ୟ୶ା െ Vഥା  (13) 

and list the computed values in Table 2. 

Table 2. Reynolds number dependence of  ξ ൌ u୫ୟ୶ା െ Vഥା. 

Case  Reτ  ξ 
LM180  180  2.73 
LM550  550  2.69 
LM1000  1000  2.67 
LM2000  2000  2.65 
BPO4079  4079  2.57 
LM5200  5200  2.50 
HO10,000  10,000  2.41 

A least square fit of the values ξ(Reத), calculated for the DNS datasets of Table 1, is shown in Figure 
8. 
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Figure 8. Least squares fit of ξ versus  Reத. 

The linear relation  ξ ൌ 2.71 െ 3.25 ∗ 10ିହሺReதሻ  gives a fair approximation of the function ξ(Reத) 
in the range of the  Reத  values considered in this work. It clearly shows the correct trend since in the 
limit of infinite Reynolds number ξ should tend to zero. 

3.2 Diag@nostic Functions Ξ and Γ for the MVP 

A great deal of research has been conducted and lively discussions appeared  in the scientific 
literature on whether a  logarithmic or a power  function describes better  the overlap region of the 
MVP. To decipher where these approximations fit better the data, two diagnostic functions may be 
used. 

The  first  function,  defined  as  Ξ  ൌ yାሺduା dyା⁄ ሻ ,  serves  to  detect  intervals  where  u+  is  a 
logarithmic  function of y+.  It  is easy  to prove  that when  Ξ attains a  constant value, u+ exhibits a 
logarithmic behavior of the form   

uା ൌ A𝑙𝑛yା ൅ B ൌ A𝑙𝑛 ቆyା
y୭ቇ ൌ 1𝜅 𝑙𝑛yା ൅ B  (14) 

The second diagnostic function, defined as Γൌ ሺyା uାሻሺduା dyା⁄ ሻ⁄ , is useful in detecting intervals 
where u+ is approximated well by a power function of the form   

  uା ൌ αyାಓ  (15) 

  In the interval where Γ  ൌ  const., u+ is approximated by a function of the form (15) with λ ൌ  Γ. 
Both diagnostic functions require the computation of the derivative  duା dyା⁄ . Since numerical 

differentiation acts as an error amplifier, analyzing  the DNS data  in  terms of  the  two diagnostic 
functions help us to indicate the interval of the appropriate approximation with greater confidence 
and accuracy. 

To  avoid misunderstandings  in  the  remainder  of  this  section  it  should  be  stressed  that  the 
logarithmic  law,  Equation  (14),  is  theoretically  valid  only  asymptotically  for  Re  →   ∞ .  The 
logarithmic law has been derived based on various sets of assumptions. The well‐known Millikan’s 
[12] argument is based on the notion that, in the intermediate region (layer), both the wall law and 
the velocity‐defect  laws should be valid. In the limit of infinite Reynolds number this leads to the 
existence of a logarithmic layer in the overlap (inertial) region. Landau’s [13] treatment of the infinite 
flat  plate  in  terms  of  the  notion  of  “logarithmic  accuracy”  also  provides  a  firm  ground  for  the 
existence of logarithmic behavior. There are two schools of thought with respect to the constant  Α ൌ
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1 𝜅⁄   (κ is the Kármán constant) in Equation (14). One insists that κ is a universal constant while the 
other maintains that the value of κ depends on the type (geometry) of the flow [14–22]. 

For finite Reynolds number turbulent flows, a number of researchers [23–27] have argued that a 
power law (with Reynolds number dependent coefficients) fits better experimental and DNS results.   

In this work the numerical evaluation of the derivative is performed using the following formula 
for unequally spaced data 

  duା
dyା ൌ uାሺy୧ିଵା ሻ 2yା െ y୧ା െ y୧ାଵାሺy୧ିଵା െ y୧ାሻሺy୧ିଵା െ y୧ାଵା ሻ ൅ uାሺy୧ାሻ 2yା െ y୧ିଵା െ y୧ାଵାሺy୧ା െ y୧ିଵା ሻሺy୧ା െ y୧ାଵା ሻ൅ uାሺy୧ାଵା ሻ 2yା െ y୧ିଵା െ y୧ାሺy୧ାଵା െ y୧ିଵା ሻሺy୧ାଵା െ y୧ାሻ  (16) 

3.2.1. Diagnostic Function Ξ   

Figure 9 depicts the calculated Ξ(y+ ; Reτ) curves for the cases listed in Table 1. As  Reத increases 
the y+ intervals where Ξ is approximately constant become longer, which implies an increase of the 
log‐law region. In Table 3 our estimates of κ are listed together with the intervals where Ξ ൌ const. ൌ 
1 𝜅⁄ . 

 
Figure 9. Diagnostic function Ξ based on DNS datasets of Table 1. 

Table 3. Estimation of Kármán constant. 

Case  Reτ  κ  [𝐲𝐥𝐨𝐰ା ,𝐲𝐡𝐢𝐠𝐡ା ]  [(y/h)low , (y/h)high] 
LM180  180  0.40  [52 , 72]  [0.29 , 0.40] 
LM550  550  0.429  [65 , 75]  [0.12 , 0.14] 
LM1000  1000  0.429  [70 , 95]  [0.07 , 0.095] 
LM2000  2000  0.429  [75 , 100]  [0.0375 , 0.05] 
LDJ4179  4179  0.385  [550 , 750]  [0.13 , 0.18] 
LM5200  5200  0.383  [400 , 800]  [0.08 , 0.15]   
YT8016  8016  0.386  [500 , 1100]  [0.06 , 0.14] 

HO10,000  10,000  0.397  [1000 , 2400]  [0.1 , 0.24] 

For  Reத ൌ  180 our estimate of the Kármán constant is κ ൌ  0.40 while for  Reத ൌ  550, 1000, 2000 
κ ൌ  0.429. For higher values of  friction Reynolds number  in  the  range  [4000  ‐‐‐‐‐ 10,000], a good 
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representative value for κ is 0.388. Finally, a good overall approximation of κ in the  Reத  range [180 ‐
‐‐‐‐ 10,000] is found to be 0.405 (see Figure 10). 

 
Figure 10. Kármán constant estimates. 

3.2.2. Diagnostic Function Γ 

Figure 11 depicts  the variation of Γ function for each dataset  listed  in Table 1. Analyzing the 
behavior of these curves we  identify  intervals  [y୪୭୵ 

ା , y୦୧୥୦ା ሿ where Γ attains a constant value. These 
intervals together with the implied values of the exponent λ in Equation (15) are listed in Table 4. 

 
Figure 11. Diagnostic function Γ based on the DNS datasets of Table 1. 

Table 4. Estimates of the λ exponent in the power‐law Equation (15). 

Case  Reτ  λ  [𝐲𝐥𝐨𝐰ା ,𝐲𝐡𝐢𝐠𝐡ା ]  [(y/h)low , (y/h)high] 
LM180  180  0.156 (ൎ1/6)  [60 , 110]  [0.33 , 0.61] 
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LM550  550  0.153 (ൎ1/7)  [80 , 200]  [0.15 , 0.37] 
LM1000  1000  0.148 (ൎ1/7)  [100 , 550]  [0.10 , 0.55] 
LM2000  2000  0.139 (ൎ1/7)  [100 , 1000]  [0.05 , 0.50] 
LDJ4179  4179  0.115 (ൎ1/9)  [1000 , 1500]  [0.24 , 0.36] 
LM5200  5200  0.117 (ൎ1/9)  [800 , 3200]  [0.15 , 0.62] 
YT8016  8016  0.114 (ൎ1/9)  [1200 , 4500]  [0.15 , 0.56] 

HO10,000  10,000  0.11 (ൎ1/9)  [2000 , 6500]  [0.20 , 0.65] 

3.3. Second Order Statistics 

Typical profiles of the normal and shear Reynolds stresses as well as of the turbulence kinetic 
energy are shown in Figure 12 for  Reத ൌ 5200. 

 
Figure 12. Second order statistics of turbulence fluctuations for Reτ = 5200. All data are normalized 
with  u∗ଶ. Case: LM5200. 

In the remainder of section 3 we explore the Reynolds number effects on second order statistics of 
turbulence  fluctuations. A  logarithmic region  is expected  in  the streamwise and spanwise normal 
Reynolds stresses at sufficiently high Reynolds number [28–33]. We also discuss below the Reynolds 
number dependence (or independence) of the Reynolds stresses and turbulence kinetic energy [34–
36]. 

3.3.1.  𝑢ᇱమതതതത 
The normalized variance profiles of the streamwise fluctuations are shown in Figure 13. A clear 

maximum characterizes each curve. Least squares fit gives the following expression for the near wall 
maxima of the normalized variance profiles of streamwise fluctuations ሺuᇱuᇱതതതതതሻ୫ୟ୶ା ൌ 0.56𝑙𝑛ሺReதሻ ൅ 4.2  (17) 

Turning now to the search for logarithmic behavior in  ሺuᇱuᇱതതതതതሻା, we search for a relation of the 
form 

uᇱమതതതത
u∗ଶ ൌ Bଵ െ Aଵ𝑙𝑛 ቀy

h
ቁ  (18) 
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where  Aଵ  is the Townsend‐Perry constant and  Bଵ an additive parameter that depends on Reynolds 
number  [31].  The  term  “sufficiently  high Reynolds  number”  in  this  case means  Reத ൐  7000  [4]. 
Calculating and plotting the indicator function 

T ൌ yା d ቀuᇱమതതതതቁା
dyା   (19) 

we have identified regions of logarithmic variation in the cases YT8016 and HO10,000 (see Figure 13 
and Table 5). 

 
Figure 13. Streamwise fluctuations. Normalized variance profiles. 

Table 5.  ሺuᇱuᇱതതതതതሻା. Estimates of Townsend‐Perry parameters. 

Case  A1  B1  “Region” (y+)  “Region” (y/h) 
HO10,000  1.56  1.45  [1200 ‐‐‐‐‐ 2000]  [0.119 ‐‐‐‐‐ 0.199] 
YT8016  1.65  1.24  [1200 ‐‐‐‐‐ 2000]  [0.149 ‐‐‐‐‐ 0.249] 

HO10,000  1.76  1.13  [2000 ‐‐‐‐‐ 3000]  [0.199 ‐‐‐‐‐ 0.299] 
YT8016  1.83  0.98  [2000 ‐‐‐‐‐ 2800]  [0.249 ‐‐‐‐‐ 0.349] 

HO10,000  1.91  0.93  [3400 ‐‐‐‐‐ 4000]  [0.339 ‐‐‐‐‐ 0.398] 
HO10,000  2.01  0.85  [4000 ‐‐‐‐‐ 5400]  [0.398 ‐‐‐‐‐ 0.538] 
YT8016  2.07  0.72  [4000 ‐‐‐‐‐ 4800]  [0.499 ‐‐‐‐‐ 0.599] 

HO10,000  2.42  0.63  [6400 ‐‐‐‐‐ 7000]  [0.637 ‐‐‐‐‐ 0.697] 

The values on  the  top 2  lines  compare quite well with  the values given  in  the  literature  for 
AଵሺReதሻ   and  ΒଵሺReதሻ   [4,28–30].  However,  we  have  opted  to  list  additional  intervals  at  larger 
distances from the wall where behavior of the form (18) can be identified. 

3.3.2. 𝑤ᇱమതതതതത 
The variance profiles of the spanwise fluctuations are shown in Figure 14. A near wall maximum 

characterizes each profile. Least squares fit gives the following dependence on  Reத ሺwᇱwᇱതതതതതതതሻ୫ୟ୶ା ൌ 0.41𝑙𝑛ሺReதሻ െ 0.78  (20) 

Next, we search for regions of logarithmic behavior of the form 
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  wᇱమതതതതത
u∗ଶ ൌ Cଵ െ Dଵ𝑙𝑛 ቀy

h
ቁ  (21) 

With the help of the appropriate indicator function we estimate the constant  Dଵ and the additive 
parameter  Cଵ  as shown in Table 6. 

 

Figure 14. Normalized spanwise fluctuations. Variance profiles. 

Table 6. ሺwᇱwᇱതതതതതതതሻା. Estimates of Townsend‐Perry parameters. 

Case  D1  C1  “Region” (y+)  “Region” (y/h) 
YT8016  0.31  1.37  [140 ‐‐‐‐‐ 260]  [0.0175 ‐‐‐‐‐ 0.032] 

HO10,000  0.35  2  [150 ‐‐‐‐‐ 400]  [0.015 ‐‐‐‐‐ 0.04] 
LM5200  0.41  1.04  [200 ‐‐‐‐‐ 500]  [0.04 ‐‐‐‐‐ 0.096] 
LM2000  0.47  0.82    [180 ‐‐‐‐‐ 400]  [0.09 ‐‐‐‐‐ 0.20] 
YT8016  0.50  0.85  [1100 ‐‐‐‐‐ 1500]  [0.137 ‐‐‐‐‐ 0.187] 

HO10,000  0.50  0.80  [1400 ‐‐‐‐‐ 2000]  [0.139 ‐‐‐‐‐ 0.199] 
HO10,000  0.90  0.42  [5400 ‐‐‐‐‐ 6200]  [0.538 ‐‐‐‐‐ 0.617] 
LM5200  0.99  0.35    [3100 ‐‐‐‐‐ 3500]  [0.598 ‐‐‐‐‐ 0.676] 
LM2000  0.99  0.32    [1270 ‐‐‐‐‐ 1400]  [0.635 ‐‐‐‐‐ 0.70] 
YT8016  1.01  0.34    [4600 ‐‐‐‐‐ 4900]  [0.574 ‐‐‐‐‐ 0.611] 

Obviously, some regions can be merged by relaxing the tolerance allowed on deviations from 
the requirement of constancy of  the diagnostic  function. We also note  that  in  ሺwᇱwᇱതതതതതതതሻାwe observe 
logarithmic behavior for  Reத  as low as 2000. As in Table 5 we have opted to list additional intervals 
where behavior of the form (21) can be identified. 

3.3.3.  𝑣ᇱమതതതത 
The variance profiles of wall‐normal fluctuations (Figure 15) exhibit a different behavior for high 

Reynolds number. Specifically, 
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  vᇱమതതതത
u∗ଶ ൌ B஝ ൎ 1.30  (22) 

in  the  interval  150  ≲   y+  ≲   550  for  Reத ൌ 8016  and  Reத ൌ   10,000.  In  particularly,  case  YT8016 
displays a constant  B୴ ൌ  1.29 in the region 250 ൑   yା ൑  550 while in case HO10,000  B୴ ൌ  1.30 in the 
interval 150 ൑  yା ൑  450. 

 

Figure 15. Normalized wall‐normal fluctuations. Variance profiles. 

In the lower Reynolds number cases a plateau is not formed. Instead, clear maxima are formed 
for 180 ൑  Reத ൑  5200. A least square fit approximates the  ሺvᇱvᇱതതതതതሻ୫ୟ୶ା   dependence on  Reத  by ሺvᇱvᇱതതതതതሻ୫ୟ୶ା ൌ 0.07𝑙𝑛ሺReதሻ ൅ 0.642  (23) 

in the range 550 ൑  Reத ൑  10,000. 
3.3.4. Turbulence Kinetic Energy, k 

Each  nondimensional  turbulence  kinetic  energy  profile  is  characterized  by  a maximum  at 
approximately  yା ൎ  18. The exact location of the maximum is weakly influenced by  Reத  (see Table 
7). The normalized  k୫ୟ୶ା   value is strongly influenced by  Reத  in the range of the Reynolds number 
values considered (see Figure 16 and Table 7). 
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Figure 16. Normalized turbulence kinetic energy profiles. 

Least squares fit of the (k୫ୟ୶ା   , Reதሻ pairs of values gives the relation 
k୫ୟ୶ା ൌ 0.46𝑙𝑛ሺReதሻ ൅ 1.8  (24) 

and describes the function  k୫ୟ୶ା ൌ fሺReதሻ with very good approximation. 

Table 7. Reynolds number effect on  k୫ୟ୶ା . 

Case  Reτ  𝐤𝐦𝐚𝐱ା   y+ location of    𝐤𝐦𝐚𝐱ା   
LM180  180  4.15  15.84 
LM550  550  4.72  15.87 
LM1000  1000  5.08  17.45 
LM2000  2000  5.44  17.45 
LM5200  5200  5.87  18.66 
YT8016  8016  5.81  18.96 

HO10,000  10,000  6.09  18.98 

Turning  to  the question of existence or not of  logarithmic behavior  in  the  turbulence kinetic 
energy profiles of the form 

  kା ൌ k

u∗ଶ ൌ Eଵ െ Fଵ 𝑙𝑛 ቀy

h
ቁ  (25) 

we have identified the regions listed in Table 8. 

Table 8. Logarithmic behavior regions in  kା ൌ k u∗ଶ⁄ . 

Case  F1  E1  “Region” (y+)  “Region” (y/h) 
HO10,000  1.03  1.73  [1200 ‐‐‐‐‐ 1300]  [0.119 ‐‐‐‐‐ 0.129] 
YT8016  1.18 1.45  [1400 ‐‐‐‐‐ 1600]  [0.175 ‐‐‐‐‐ 0.20] 

HO10,000  1.35  1.21  [2850 ‐‐‐‐‐ 3000]  [0.284 – 0.299] 
YT8016  1.40  1.13  [2350 ‐‐‐‐‐ 2450]  [0.293 ‐‐‐‐‐ 0.306] 
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HO10,000  1.74  0.86  [5100 ‐‐‐‐‐ 5350]  [0.508 ‐‐‐‐‐ 0.532] 
YT8016  1.79  0.76  [3600 ‐‐‐‐‐ 4200]  [0.449 ‐‐‐‐‐ 0.524] 

HO10,000  1.99  0.72  [6500 ‐‐‐‐‐ 7300]  [0.647 ‐‐‐‐‐ 0.727] 

3.3.5. Reynolds Shear Stress 

Profiles of the normalized covariance of streamwise and wall‐normal fluctuations are shown in 
Figures 17 and 18. They are strongly  influenced by Reynolds number. For  Reத equal  to 8016 and 
10,000 a clear plateau is formed. Specifically 

at  Reத ൌ 8016: െuᇱvᇱതതതതത u∗ଶ⁄ ൌ  0.963 in the interval  yା ൌ [100 ‐ 200] 
at  Reத ൌ 10,000: െuᇱvᇱതതതതത u∗ଶ⁄ ൌ  0.969 in the interval  yା ൌ [100 ‐ 250] 
The maxima of the curves in the range 550 ൑  Reத ൑  10,000 follow the relation ሺെuᇱvᇱതതതതതሻ୫ୟ୶ା ൌ 0.03𝑙𝑛ሺReதሻ ൅ 0.66  (26) 

obtained  by  least  squares  fit, while  the  location  of  the  ሺെuᇱvᇱതതതതതሻ୫ୟ୶ା   varies with  Reத   according  to 
relation 

y୵୦ୣ୰ୣ୫ୟ୶ୟ୮୮ୣୟ୰ୱା ൌ 0.01𝑙𝑛ሺReதሻ ൅ 41.21  (27) 

for the same range of  Reத. 

 
Figure 17. Normalized covariance profiles of streamwise and wall‐normal fluctuations in law of the 
wall variables. 

For large values of  yା Reத⁄ ൌ yା δା⁄   the derivative of the mean velocity is small compared to 
the Reynolds stress term in Equation (5). Consequently, we expect ሺെuᇱvᇱതതതതതሻା ൎ 1 െ yା

Reத   (28) 

i.e., the Reynolds shear stress varies linearly with distance from the wall in the region further than 
the layer closest to the wall [37]. This behavior is captured very accurately by the DNS data as shown 
in Figure 18. 
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Figure 18. Normalized covariance profiles of the streamwise and wall‐normal fluctuations in law of 
the wall variables. 

4. The AL84 Model 

In this section the most important aspects of AL84 model are outlined. The reader is referred to 
[6]  for detailed description of  the model construction and  to  reference  [7]  for a discussion on  the 
accuracy of the AL84 model predictions for ZPG‐TBL flows over a flat plate. 

In  the AL84 model  the nondimensionalized mean velocity profile  (MVP)  is approximated by 
superposing two functions f and g, i.e., 

  uതା ൌ fሺyାሻ ൅ g ቀΠ,
yδቁ  (29) 

where 

  fሺyାሻ ൌ 𝑙𝑛 ቈ ሺyା ൅ 11ሻସ.଴ଶሺyାଶ െ 7.37yା ൅ 83.3ሻ଴.଻ଽ቉ ൅ 5.63 tanିଵሺ0.12yା െ 0.441ሻ െ 3.81  (30) 

  g ቀΠ,
yδቁ ൌ 1𝜅 ሺ1 ൅ 6Πሻ ቀyδቁଶ െ 1𝜅 ሺ1 ൅ 4Πሻ ቀyδቁଷ  (31) 

κ is the von Kármán constant and Π Coles’ [38] parameter. 
Considering the channel cross section as a whole, the flow rate per unit width of the channel is 

given by  q ൌ ׬ udy
ଶ୦଴   or,  in  terms of  inner  law variables,  q ൌ 2𝜈qୟା   where  qୟା ൌ ׬ uାdyା୦శ଴ . This 

integral is calculated as the sum of two terms i.e.,  qୟା ൌ qଵ 𝜈⁄ ൅ qଶ 𝜈⁄   where 

qଵ𝜈 ൌ න fሺyାሻdyା୦శ
଴     and     

qଶ𝜈 ൌ න gdηଵ
଴   (32) 

In  the  case of  fully developed  channel  flow  the boundary  layer  thickness  δ  is  equal  to  the half 
channel “height”  ሺδ ൌ hሻ  and  in wall‐law variables  δା ൌ hା ൌ u∗h 𝜈⁄ ൌ Reத. Analytical evaluation 
of the two integrals leads to the expressions 
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qଵ𝜈 ൌ ሺ33.91 െ 5.63Reதሻ tanିଵሺ0.441 െ 0.12Reதሻെ ሺ20.55 ൅ 0.79Reதሻ 𝑙𝑛ሺReதଶ െ 7.37Reத ൅ 83.3ሻ൅ ሺ44.22 ൅ 4.02Reதሻ 𝑙𝑛ሺReத ൅ 11ሻ െ ሺ6.25Reத ൅ 29.26ሻ  (33) 

and 

qଶ𝜈 ൌ Reத𝜅 ൬Π ൅ 1

12
൰  (34) 

The average velocity at a channel cross section is then given as  Vഥ ൌ q 2h⁄   and, taking again into 
account the symmetry of the channel flow, 

Vഥ
u∗ ൌ qୟାδା ൌ qୟା

Reத  (35) 

In turn, the Darcy‐Weisbach friction factor defined as  f ൌ 8u∗ଶ Vഥଶ⁄   can be calculated analytically 
based  on  Equation  (35).  The  same  information  can  be  expressed  in  terms  of  the  skin‐friction 
coefficient  C୤ ൌ 2u∗ଶ Vഥଶ⁄ . 

We note that for pressure‐driven channel flow, Equation (5) allows us to evaluate the Reynolds 
shear stress based on the AL84 model by inserting the derivative of the mean velocity with respect to 
yା  (evaluated analytically based on Equation (30) and (31)) into Equation (5). This topic is discussed 
further in Section 4.3. 

4.1. Global Absolute Error and Local Relative Error in AL84 Predictions 

As  explained  in  Reference  [6],  the  values  κ  ൌ 0.41  and  the  additive  constant  in  the MVP 
logarithmic law Β ൌ  5.0 (see Equation 14) are incorporated in Equations (30) and (31) while the third 
parameter in AL84, Π, is free to vary with Reynolds number. Estimates of Π obtained from the DNS 
datasets analyzed are listed in Table 9. 

Table 9. Estimates of Coles’ parameter Π for channel flow. 

Case  Reτ  Π (Coles’ parameter) 
LM180  180  0.10 
LM550  550  0.14 
LM1000  1000  0.14 
LM2000  2000  0.14 
BPO4079  4179  0.13 
LM5200  5200  0.13 
HO10,000  10,000  0.10 

The AL84 model performance is evaluated with these parameter values. The error at a distance 
yା  from the lower channel wall is defined as eሺyାሻ  ൌ  uାሺyାሻ െ  [f(y+) + g(y h⁄  , Π)]. 

Representative local relative error profiles are shown in Figure 19 for three cases (low, moderate, 
and high)  Reத ൌ  550, 4079 and 10,000. 
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Figure 19. Profiles of relative error in u+ computed with AL84. 

The maximum local relative error is located approximately at y+ ≅  26 as shown in Table 10. In 
the range 2000 ൑  Reத ൑  10,000 it is less than 3‰. 

Table 10. Maximum local relative error in AL84‐based u+. 

Reτ  180  550  1000  2000  4079  5200  10,000 
Max relative error  0.057  0.036  0.035  0.032  0.023  0.031  0.028 

Position y+, where max appears  25.69  25.70  26.46  27.20  26.97  27.33  27.02 

The global statistics of the absolute error in the MVP approximation are summarized in Table 
11. 

Table 11. Statistics of absolute error in the lower half of the channel 0  ൑  y  ൑  h. 
Statistics  Reτ = 180  Reτ = 550  Reτ = 1000 
Mean  0.2708  0.0535  0.0861 

Standard Error  0.0277  0.0127  0.0078 
Root Mean Square Error  0.3827  0.1834  0.1518 
Mean Square Deviation  0.2719  0.1759  0.1253 

Variance  0.0739  0.0309  0.0157 
Range  0.8101  0.5841  0.4792 
Min  െ0.0397  െ0.1040  െ0.0220 
Max  0.7704  0.4801  0.4572 

Number of data points  96  192  256 
Statistics  Reτ = 2000  Reτ = 4079  Reτ = 5200  Reτ = 10,000 
Mean  0.1522  0.0873  0.1530  0.1049 

Standard Error  0.0040  0.0030  0.0034  0.0036 
Root Mean Square Error  0.1714  0.1105  0.1792  0.1561 
Mean Square Deviation  0.0789  0.0679  0.0935  0.1156 

Variance  0.0062  0.0046  0.0087  0.0134 
Range  0.4498  0.2998  0.4316  0.3968 
Min  െ0.0222  0.0009  െ0.0237  െ0.0283 
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Max  0.4276  0.3007  0.4079  0.3686 
Number of data points  384  512  768  1051 

4.2. Cf based on AL84 

Comparing AL84‐based results with those based solely on DNS we find that the agreement is 
excellent. The analytically computed  C୤  curve passes exactly through the filled circles representing 
the  C୤  values calculated directly from the datasets of Table 1 (see Figure 20). 

 
Figure 20. Skin friction coefficient Cf. Comparison of AL84 model predictions with Cf computed for 
the DNS datasets of Table 1. 

4.3. Reynolds Shear Stress (െ𝑢ᇱ𝑣ᇱതതതതതത) 
Using Equation (5), the covariance of fluctuations  uᇱ  and  vᇱ  as function of the distance from the 

wall can be calculated providing us with an AL84‐based analytic approximation of  the Reynolds 
shear stress profile. Such profiles are shown in Figure 21 together with DNS Reynolds shear stress 
data per se for three Reynolds numbers. 

The approximation is excellent in all three cases. We note that the approximation is best for the 
moderate Reynolds number  Reத ൌ  5200 while  the agreement between AL84 prediction and DNS 
data for  Reத ൌ  10,000 is better than the one for the low Reynolds number case  Reத ൌ  550. 
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Figure 21. Normalized Reynolds shear stress profiles. Comparison of AL84‐based calculation with 
DNS data per se. (i) Reτ = 550 (ii) Reτ = 5200 and (iii) Reτ = 10,000. (a) linear‐linear plots (b) semi log 
plots. 

5. Conclusions 

In the first part of the paper, we concentrated on high accuracy DNS datasets in the range 180 ൑   Reத   ൑   10,000. We  have  identified  logarithmic  regions  in  the mean  velocity  profiles  and  the 
corresponding values of the von Kármán constant for each Reynolds number based on the diagnostic 
function Ξ. Kármán constant estimates based on the DNS data range from κ  ൌ  0.429 for 550  ൑  Reத ൑  2000  to κ  ൌ  0.388  for 4179  ൑  Reத  ൑  10,000. Similarly, based on  the diagnostic  function  Γ, we 
identified  the  intervals where  the  power  law  approximates well  the MVP  and  determined  the 
corresponding  exponent  as  function  of  the Reynolds number which  ranges  from  1/6  to  1/9. The 
calculated  skin  friction  coefficient  differs  slightly  from  Dean’s  least  squares  fit  of  selected 
measurements of high Reynolds number flows in channels with cross section aspect ratio greater than 
1:12. 

For  the  higher  order  statistics, we have determined  the  logarithmic  regions  in  the  variance 
profiles of streamwise  ሺuᇱuᇱതതതതതሻା  and spanwise  ሺwᇱwᇱതതതതതതതሻା  fluctuations and the corresponding values of 
the Townsend‐Perry constants. We have listed logarithmic regions beyond the one expected by the 
Townsend’s attached eddy hypothesis. In the region 150  ≲ yା ≲ 450 the variance of the wall‐normal 
fluctuations  ሺvᇱvᇱതതതതതሻା  takes  the value  B୴ ൌ 1.30  for  Reத ൌ  8016 and 10,000. The peak values of  the ሺuᇱuᇱതതതതതሻା , ሺwᇱwᇱതതതതതതതሻା , ሺvᇱvᇱതതതതതሻା ,  k୫ୟ୶ା   have  been  approximated  as  functions  of  Reத  with  logarithmic 
dependence.  In  contradistinction,  the  normalized Reynolds  shear  stress  attains  a  constant  value 
(approximately  ൎ  0.96) in the interval 100  ≲ yା  ≲ 250 for  Reத  higher than 8000. 

In  the  second  part  of  the  paper,  a  data‐driven model  (AL84),  developed  for  ZPG‐TBL,  is 
calibrated for pressure‐driven channel flow. It is shown that AL84 describes very accurately the mean 
velocity profile as well as the Reynolds shear stress profile for pressure‐driven channel flow. In the 
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framework of AL84 the skin friction coefficient is expressed analytically as function of  Reத  and in 
various comparisons is in excellent agreement with the DNS data least squared fits. 

The  AL84‐Model  accuracy  can  be  further  improved,  and  its  range  of  applicability  can  be 
extended as higher Reynolds number DNS data become available. We expect that the accuracy of the 
AL84 model will be further enhanced since it incorporates the logarithmic law in the overlap region 
of the boundary layer which is expected to be approached asymptotically as Re → ∞. We conclude 
that, in addition to its pertinence to theoretical developments and in providing guidance in searching 
for  the  asymptotic  structure  of  turbulent  boundary  layers,  AL84  is  useful  in  developing  and 
calibrating turbulence models of the flow very near to the wall [39]. 
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