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Abstract: This paper introduces an innovative approach to numerically model Structure-Soil-

Structure Interaction (SSSI) by integrating the Boundary Element Method (BEM) and the Finite 

Element Method (FEM) in a coupled manner. To assess the accuracy of the proposed method, a 

comparative study is undertaken, comparing its outcomes with those generated by the conventional 

FEM technique. Alongside accuracy, the computational efficiency aspect is crucial for the analysis 

of large-scale SSSI problems. Hence, the computational performance of the coupled BEM-FEM 

method undergoes a thorough examination and is compared with that of the standalone FEM 

method. The results from these comparisons illustrate the superior capabilities of the proposed 

method in comparison to the FEM method. The novel approach provides more reliable results 

compared to traditional FEM methods, serving as a valuable tool for engineers and researchers 

involved in structural analysis and design. 

Keywords: Structure-Soil-Structure Interaction; Boundary Element Method; Finite Element 

Method; Numerical Modeling; Computational Efficiency 

 

1. Introduction 

Soil engineers place significant emphasis on understanding the load-bearing capacity of soil. In 

a notable example, Ajdari and Esmail Pour [1] conducted a comprehensive study, devising a 

specialized bearing capacity device to analyze the load-settlement behavior of circular footings 

situated above the groundwater table. Their experimental findings revealed that conventional 

equations used to estimate footing bearing capacity tend to be overly conservative. As a result, the 

authors proposed a specific empirical relationship tailored for circular footings. Additionally, 

extensive research efforts are dedicated to investigating the performance of footings on various soil 

types. Notably, Veiskarami, Kumar [2] presented a pragmatic approach for assessing the bearing 

capacity of surface footings on non-associative sand, validating this procedure through comparisons 

with data obtained from footing load tests. 

On a different note, site engineers are generally more interested in the behavior of the free 

ground or the site in the existence of structures. For example, Kazemeini, Haghshenas [3] study the 

impact of underground cavities on site seismic response in Karaj city, with a particular focus on areas 

adjacent to under-construction subway tunnels. Their research employed ambient noise 

measurements and numerical modeling at 11 test sites to evaluate the effect of the tunnel on seismic 

site response, revealing variations based on tunnel dimensions and proximity. 

Soil-Structure Interaction (SSI) refers to the interplay between the soil and the structure, where 

both are considered as a single system [4]. The load from the structure is transferred to the soil, which 

responds by deforming or settling, potentially affecting the behavior of the structure and its response 
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to external loads. SSI is a crucial aspect of geotechnical and structural engineering as it significantly 

impacts the economy of construction, safety and performance of structures. The study of SSI is a 

prominent research area for several decades [5–8], primarily motivated by the need to comprehend 

and predict the behavior of structures under different loading conditions. Initial investigations on SSI 

focused on analyzing shallow foundations' reaction to static loads using analytical techniques such 

as elastic half-space theory and Cone method to simulate soil response and evaluate deformation and 

stress distribution beneath the foundation [9]. 

In the realm of structural engineering, the concept of SSI has garnered considerable attention 

due to its impact on the behavior and performance of structures in relation to the surrounding soil. 

However, the role of Structure-Soil-Structure Interaction (SSSI) in determining such behavior and 

performance under various loading conditions has received comparatively less attention. SSSI is a 

phenomenon that occurs when multiple structures are constructed on a common foundation, and 

each structure interacts with both the soil and other structures through their shared foundation. The 

behavior of each structure can affect its neighboring structures, leading to complex interactions 

between them. SSSI is an important consideration in the design and construction of buildings, 

bridges, and other infrastructure projects as it can significantly impact their performance and safety. 

The dynamic behavior of soil and its interaction with structures and other surrounding structures 

strongly influences how structures respond to external loads, including earthquakes, wind, and 

traffic. Therefore, precise modeling of SSSI is essential for designing and analyzing structures, 

particularly in densely populated urban and industrial areas. 

The state of the art in SSSI analysis has advanced significantly in recent years, with researchers 

developing new methods and models to better understand the behavior of multiple structures 

interacting with the soil [10–14]. One such method is the use of Finite Element Analysis (FEA) to 

model the complex interactions between structures and soil, taking into account factors such as soil 

stiffness, foundation shape, and loading conditions [11]. Other researchers have focused on 

developing more accurate soil models, including nonlinear soil models that can better capture the 

behavior of soft soils and the effects of soil liquefaction [13]. 

Recent studies have also investigated the impact of SSSI on different types of structures, 

including high-rise buildings, bridges, and tunnels [10,14]. These studies have highlighted the need 

for accurate modeling and analysis of SSSI to ensure the safety and reliability of these structures. For 

example, researchers have used FEA to analyze the effects of SSSI and SSI on tall buildings during 

earthquakes and fount that adjacent buildings can significantly affect each other's behavior due to 

soil movement and deformation [10]. Bariker and Kolathayar [15] have employed the FEA method to 

analyze a new foundation construction. Other studies have looked at the effects of SSSI on 

underground structures such as tunnels, finding that soil-structure interaction can cause significant 

stress and deformation in the tunnel [16,17]. Overall, the state of the art in SSSI analysis is rapidly 

advancing, with researchers developing new methods and models to better understand the complex 

interactions between structures and soil. 

The coupled FEM-Boundary Element Method (BEM) technique is initially introduced in a 

publication authored by Zienkiewicz, Kelly [18] in 1977. Furthermore, a comprehensive review of 

relevant literature concerning this subject can be found in the work of Hong-Bao, Guo-Ming [19] in 

1986. In recent years, there has been a growing interest in the development and analysis of novel 

methods for coupling FEM-BEM. Extensive research has been conducted in various fields such as 

fluid and solid mechanics, geomechanics, electromagnetics, and acoustics [20–24]. Existing 

approaches for coupling can be broadly classified into three categories: FEM-hosted, BEM-hosted, 

and those that do not fall into either of these two categories. 

The first category involves treating the subdomain governed by the BEM method as a macro-

finite element, or super-element. This entails converting the displacement traction equations that 

govern the boundary element subdomain into displacement force equations, which are then 

combined with those of FEM. This approach has been explored by researchers in studies [24–27]. 

Conversely, the BEM approach treats the Finite Element (FE) subdomain as an equivalent 

subregion governed by BEM-like equations. This involves converting the stiffness equations of the 
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FEM to equations resembling those of the BEM, while ensuring continuity and equilibrium along the 

interface. This methodology was originally proposed by   Zienkiewicz, Kelly [18] and further 

discussed by [28] in 1979. 

Approaches that do not fall within either of these two categories involve direct coupling. 

However, such approaches are challenging and inefficient due to the substantial number of 

unknowns involved, as pointed out by Ganguly, Layton [27] in 2000. One such approach is the 

boundary coupling method proposed by Hsiao [29] in 1988, where the governing equations of one 

subdomain are treated as the boundary conditions for the other subdomain. In a similar vein, an 

alternative method called iterative domain decomposition coupling has been developed by Lin, 

Lawton [30] in 1996 and enhanced by Elleithy, Al-Gahtani [31] in 2001. This iterative approach solves 

the original problem by continuously adjusting the unbalanced forces or displacements from the 

subdomains to the artificial interface until continuity and equilibrium conditions are satisfied. 

However, one drawback of this technique is that it requires solving the boundary problems in both 

the BEM and FEM subregions at each iteration step. Due to the potentially slow convergence of the 

process, this can lead to long computational times. 

This paper presents a new approach to SSSI analysis that combines the FEM and BEM based on 

the method proposed by Aour, Rahmani [26]. By leveraging the strengths of both methods, the 

proposed approach offers improved accuracy and computational efficiency. The effectiveness of this 

method is demonstrated through a case study of structures, where the behavior of the structure is 

accurately predicted using the proposed approach. Furthermore, the computational effort required 

by the proposed approach is significantly reduced compared to traditional methods. Overall, the 

results highlight the benefits of the novel FEM-BEM coupled approach in accurately analyzing SSSI 

while achieving computational efficiency, making it a valuable tool for engineers and researchers in 

the field of structural analysis and design. 

2. Finite Element Method (FEM) 

FEM is a fundamental numerical technique that has emerged as a crucial method in modern 

computational science. FEM is employed for solving partial differential equations by dividing 

complex systems into smaller, simpler parts known as finite elements. Each element is characterized 

by a set of equations that establish its behavior in relation to its neighboring elements. The system as 

a whole is then solved by assembling these equations into a large matrix and employing numerical 

methods. FEM finds extensive application in engineering and physics to analyze the intricate 

behavior of complex systems, encompassing areas such as structures, fluids, and electromagnetic 

fields. 

Despite FEM popularity and wide applications in diverse fields of engineering, FEM suffers 

from a few drawbacks. Firstly, the accuracy of the results can be affected by the choice of the element 

size and mesh density, which can lead to errors in the solution. Secondly, the computational cost of 

FEM can be high, especially for large-scale problems. This can be attributed to the need for significant 

computational resources and the time-consuming pre-processing stage for generating the mesh. 

These challenges make it difficult to use FEM for certain applications. As noted by Bathe [32], 

accuracy and computer time often conflict in FEM simulations. Additionally, Hughes [33] highlights 

the difficulties in FEM analysis for problems with complex geometries and material behavior. 

2.1. Transient Finite Element Methods (TFEM) 

Within the FEM method, the resolution of complex boundary value problems entails the 

subdivision of the problem into discrete and solvable elements. The subsequent reassembly of these 

elements culminates in the comprehensive solution to the boundary value problem. Dynamic FEM 

analyses are commonly classified into three distinct types: Natural Frequency Analysis (NFA), 

Harmonic Analysis (HA), and Transient Analysis (TA). NFA is specifically focused on elucidating 

the natural harmonic response of a structure, while HA scrutinizes the system's behavior across 

repeated time intervals. In the context of TA, time-varying conditions are applied to a system-

structure, and its response is extracted. 
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In the realm of FEM, Transient Analysis (TA) undergoes further categorization into Implicit and 

Explicit analyses, with due consideration given to diverse formulations [33]. For a system 

characterized by a single degree of freedom, the equations of motion can be succinctly expressed as 

outlined in references [33,34]: 𝑚𝑑̈ + 𝑐𝑑̇ + 𝑘𝑑 = 𝑓 (1) 

Here, d denotes the displacement of the system, while m, c, and k represent the mass, damping, 

and stiffness of the system, respectively. Additionally, f signifies the external force acting on the 

system. The upper dot denotes differentiation with respect to time. For a system with multiple 

degrees of freedom, Equation (1) can be transformed into Equation (2) as outlined in references 

[33,34]: [𝑚]{𝑑}̈ + [𝑐]{𝑑}̇ + [𝑘]{𝑑} = {𝑓} (2) 

where {𝑑} represents the displacement vector of the multi-degree of freedom system, matrices of [𝑚], [𝑐], and [𝑘] represent the mass, damping, and stiffness matrices of the system, respectively. The 

vector {𝑓} represents the external force vector of the system. It should be noted that the displacement 

vector {𝑑} is a function of time, denoted as {𝑑} =  {𝑑(𝑡)}, and upper dots indicate derivatives of 

displacement with respect to time. Therefore, {𝑑}̈  represents the acceleration vector, and {𝑑̇} 
represents the velocity vectors. 

The stiffness matrix [k] is initially defined as the static stiffness matrix, with subsequent 

definition and assembly of element stiffness matrices contributing to the overall stiffness matrix while 

maintaining system continuity. Simultaneously, matrices of mass [m] and damping [c] are derived. 

Within the Transient Finite Element Method (TFEM), displacement at a given time step is expressed 

using information from previous steps and the current time. Figure 1 depicts this predictive process, 

determining displacement at 𝑑𝑛+1 as an unknown value by integrating current 𝑑𝑛 and previous 𝑑𝑛−1  displacement information. Two primary formulations, explicit and implicit, govern this 

process, to be detailed later, with Table 1 offering a comprehensive comparison of their main 

specifications [34]. 

 

Figure 1. Displacement versus time in an arbitrary transient displacement. 

Table 1. Comparison of the explicit and implicit methods. 

 
Implicit Transient Finite 

Element Method 

Explicit Transient Finite Element 

Method 

Matrix inversion Required 
Not required (In case of Nilpotent 

damping matrix) 

Time Integration Euler Central difference method 
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Stability 

Stable for all time 

increments (Precision 

improves with smaller time 

increments.) 

Stable for relatively small-time 

increments (Accurate with stable time 

increments) 

2.1.1. Implicit Transient Finite Element Method (ITFEM)  

In this section, a brief explanation of the ITFEM is provided. Considering Equation (1) as the 

equation of motion, which is valid for all time steps, the equation of motion for the unknown time 

step, n + 1, can be expressed as follows: 𝑚𝑑̈𝑛+1 + 𝑐𝑑̇𝑛+1 + 𝑘𝑑𝑛+1 = 𝑓𝑛+1 (3) 

where 𝑛 + 1 represents the step of the loading and other parameters are defined as the same as 

Equation (1). The velocity and acceleration of the system can be determined using Euler's formula. 

Additionally, after rearranging the known terms to the right-hand side of Equation (3), the 

information of the current and previous time steps is as follows: 𝑘𝑑𝑛+1 = 𝑓𝑛+1 − 𝑚𝑑̈𝑛+1 − 𝑐𝑑̇𝑛+1 (4) 

or, in other terms, it can be expressed as follows: 𝑘𝑒𝑓𝑓𝑑𝑛+1 = 𝑓𝑒𝑓𝑓𝑛+1 (5) 

Using Euler's formulation, the values of velocity and acceleration at time step 𝑛 + 1  are 

established, as expressed in the following formulation. It is important to note that by accounting for 

the variation in acceleration during a time increment, the accuracy of the method is enhanced [34]. 𝑑𝑛+1(𝑡) = 𝑑𝑛 + 𝑑̇𝑛∆𝑡 + 0.5∆𝑡2 (2𝛽𝑑̈𝑛+1 + (1 − 2𝛽) 𝑑𝑛̈) (6) 𝑑̇𝑛+1(𝑡) = 𝑑𝑛̇ + ∆𝑡(𝛼𝑑̈𝑛+1 + (1 − 𝛼) 𝑑𝑛̈) (7) 

Various values for 𝛼 and 𝛽 are suggested in the literature. In this paper, we adopt conventional 

values of 𝛼 = 0.5 and 𝛽 = 0.25. The velocity and acceleration at time step 𝑛 + 1, using Equations (6) 

and (7), can be expressed as follows: 𝑑̈𝑛+1 = 1𝛽∆𝑡2 (𝑑𝑛+1−𝑑𝑛 − 𝑑̇𝑛∆𝑡) + (1 − 12𝛽)𝑑𝑛̈ (8) 

𝑑̇𝑛+1(𝑡) = 𝑑𝑛̇ + ∆𝑡 (𝛼 ( 1𝛽∆𝑡2 (𝑑𝑛+1−𝑑𝑛 − 𝑑𝑛∆̇ 𝑡) + (1 − 12𝛽)𝑑𝑛̈) + (1 − 𝛼)𝑑𝑛̈) 
(9) 

or 𝑑̇𝑛+1(𝑡) = (1 − 𝛼𝛽)𝑑𝑛̇ + ∆𝑡(1 − 𝛼2𝛽)𝑑𝑛̈ + ( 𝛼𝛽Δ𝑡)(𝑑𝑛+1 − 𝑑𝑛)  

By substituting Equations (8) and (9) into Equation (4) and simplifying, we obtain: ( 𝑚𝛽Δ𝑡2 + 𝑐𝛼𝛽Δ𝑡 + 𝑘)𝑑𝑛+1= 𝑓𝑛+1 + ( 𝑚𝛽Δ𝑡2 + 𝑐𝛼𝛽Δ𝑡) 𝑑𝑛 − ( 𝑚𝛽Δ𝑡 + 𝑐(𝛼𝛽 − 1))𝑑𝑛̇+ (𝑚 ( 12𝛽 − 1) + 𝑐Δ𝑡( 𝛼2𝛽 − 1))𝑑𝑛̈ 

(10) 

By using Equations (5) and (10), we can calculate the value of 𝑑𝑛+1 using the known information 

from the current time step, such as 𝑑𝑛, 𝑑𝑛̇ and 𝑑𝑛̈. The same concept can be applied to the matrix 

formulation by substituting the terms of Equations (5) and (10) into the matrix form as follows [33,34]: 
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( 1𝛽Δ𝑡2 [𝑚] + 𝛼𝛽Δ𝑡 [𝑐] + [𝑘]) {𝑑}𝑛+1= {𝑓}𝑛+1 + ( 1𝛽Δ𝑡2 [𝑚] + 𝛼𝛽Δ𝑡 [𝑐]) {𝑑}𝑛 − ( 1𝛽Δ𝑡 [𝑚] + (𝛼𝛽− 1)[𝑐]){𝑑}𝑛̇ + (( 12𝛽 − 1) [𝑚] + Δ𝑡( 𝛼2𝛽 − 1)[𝑐]){𝑑}𝑛̈  

(11) 

[𝑘𝑒𝑓𝑓]{𝑑}𝑛+1 = {𝑓𝑒𝑓𝑓}𝑛+1 (12) 

The resemblance between Equations (5) and (12) is noteworthy, albeit with the former expressed 

in matrix form. Within this context, it is imperative to emphasize that the solution procedure 

mandates the inversion of the matrix [𝑘𝑒𝑓𝑓], introducing a potential for relative time-consuming 

computations in the method. Nevertheless, a notable merit of this approach lies in its inherent 

stability across all time increments. This pivotal characteristic underscores the rationale for the 

implementation of ITFEM in the proposed methodology. 

2.1.2. Explicit Transient Finite Element Method (ETFEM)  

In this section, the Explicit Transient Finite Element Method (ETFEM) is briefly explained. For 

time step 𝑛, Equation (1) yields as follows: 𝑚𝑑𝑛̈ + 𝑐𝑑̇𝑛 + 𝑘𝑑𝑛 = 𝑓𝑛 (13) 

In the ETFEM, the velocity and acceleration at the current time step are expressed in relation to 

displacements at the preceding and subsequent time steps (the unknown time step). Subsequently, 

the equations are rearranged to facilitate the solution for 𝑑𝑛+1 . Employing the central difference 

method to achieve this objective, the form of Equation (13) can be represented in matrix form as 

follows: ([𝑚] 1Δ𝑡2 + [𝑐] 12Δ𝑡) {𝑑}𝑛+1= {𝑓}𝑛 + ([𝑚] 2Δ𝑡2 − [𝑘]) {𝑑}𝑛 − ([𝑚] 1Δ𝑡2 − [𝑐] 12Δ𝑡){𝑑}𝑛−1 

(14) 

In this methodology, it is imperative to posit a hypothetical value for the displacement at the 

time step preceding the initial displacement. This assumption is established according to the Euler 

formula and expressed in matrix form as follows: {𝑑}−1 = {𝑑}0 + Δ𝑡{𝑑}0̇ + (12) Δ𝑡2{𝑑}0̈  
(15) 

In this context, it is noteworthy that when utilizing a lumped mass matrix and neglecting 

damping, matrix inversion becomes unnecessary, leading to the categorization of this method as 

“Explicit”. Consequently, the computational effort required for each time step is significantly 

reduced. Another salient feature of this method is the imperative selection of a very small time step 

to ensure a stable solution for the problem. This characteristic renders the explicit method particularly 

suitable for analyzing short-duration phenomena, such as forging and explosions. However, it is 

essential to highlight that, for the proposed method in this paper, it exhibits certain limitations in 

comparison to the ITFEM method. 

3. Boundary Elements Method (BEM) 

The Boundary Elements Method is a numerical technique that is frequently used to solve partial 

differential equations over arbitrary geometries. According to Wrobel and Aliabadi [35], BEM applies 

various equations such as elastodynamic, Laplace, Helmholtz, or Poisson equations to solve problems 

in engineering, physics and applied mathematics. One of the key advantages of BEM is its ability to 

eliminate the need for discretizing the entire domain, thus reducing the computational complexity of 
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the problem. Furthermore, BEM offers an accurate and efficient approach for modeling problems 

with complex geometries or boundary conditions. This makes it a valuable tool for a wide range of 

applications [36]. 

The formulation of the Elastodynamic equation in the time domain, for solving the system of 

equations at all boundary nodes, is expressed in matrix form. The system of equations is represented 

as the sum of the product of matrix 𝐻 and vector 𝑢, which is equal to the sum of the product of 

matrix 𝐺 and vector 𝑝. In this context, the variables 𝑢 and 𝑝 represent displacement and traction 

in two distinct directions, respectively [36]. ∑ 𝐻𝑛𝑚𝑢𝑚𝑛𝑚=1 = ∑ 𝐺𝑛𝑚𝑝𝑚𝑛𝑚=1   (16) 

In the initial time step, Equation (16) can be deduced as 𝐻11 ∗  𝑢1 = 𝐺11 ∗  𝑝1. Similarly, in the 

subsequent time step an additional equation is augmented to the equation from the previous time 

step, resulting in the following equation: 𝐻21 𝑢1 + 𝐻22 𝑢2  =  𝐺21 𝑝1 + 𝐺22 𝑝2 (17) 

The aforementioned can be expressed as follows: 𝐻21 𝑢1 = 𝐺22 𝑝2 + (𝐺21 𝑝1 − 𝐻21 𝑢1 ) (18) 

At the third time step, the equation can be obtained by adding the third equation to the equation 

from the preceding time step. This mathematical operation results in a new equation that captures 

the changes between these two-time steps. By iteratively applying this method, a series of equations 

can be generated that describe the evolution of the system over time, as follows: 𝐻31 𝑢1 + 𝐻32 𝑢2 + 𝐻33 𝑢3 = 𝐺31 𝑝1 + 𝐺32 𝑝2 + 𝐺33 𝑝3 ) (19) 

The formula can be organized as follows: 𝐻33 𝑢3 = 𝐺33 𝑝3 + 𝑍3 (20) 𝑍3 = 𝐺31 𝑝1 +  𝐺32 𝑝2 − 𝐻31 𝑢1 − 𝐻32 𝑢2 (21) 

It is important to acknowledge that the values of 𝐻 and 𝐺 depend on the difference between 𝑛 

and 𝑚, rather than the specific values of 𝑛 and 𝑚 themselves. As a result, the equations can be 

reformulated as follows: 𝐻11 𝑢3 = 𝐺11 𝑝3 + (𝐺31 𝑝1 + 𝐺21 𝑝2 − 𝐻31 𝑢1 − 𝐻21 𝑢2 ) (22) 

4. Hybrid Finite Element/Boundary Element Method (FEM/BEM) 

The coupling of the finite element method and the boundary element method has become a topic 

of great interest in the field of computational mechanics. This coupling is particularly useful when 

dealing with problems involving unbounded domains, as it allows for the accurate modeling of both 

the finite and semi finite objects. According to recent research conducted by Gwinner and Stephan 

[37], the coupled finite element-boundary element method has shown to be successful in solving 

various engineering problems, such as acoustic radiation and fluid-structure interaction. The 

combination of these two methods provides significant advantages over the use of either method, 

and has the potential to revolutionize the analysis of complex engineering systems. 

BEM exhibits limitations when analyzing behaviors within discrete domains; however, it 

demonstrates notable proficiency in analyzing infinite and semi-infinite domain behaviors. By 

integrating the FEM method with BEM, it becomes possible to preserve the advantages of both 

methods while alleviating their respective drawbacks. The coupling of FEM and BEM can be achieved 

through two primary schemes: BEM-hosted and FEM-hosted. In the BEM-hosted scheme, equations 

derived from the FEM formulation are converted into BEM equations. Conversely, in the more 

extensively explored FEM-hosted scheme, the BEM formulation is converted into the FEM 

formulation. This study is specifically dedicated to the implementation of the latter approach, known 

as the FEM-hosted methodology. 
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4.1. FEM Hosted Coupling of FEM and BEM  

In the FEM-hosted approach, the equations utilized in both FEM and BEM are transformed to 

align with the structure of FEM equations. This transformation process is illustrated in Figure 2.  

 

Figure 2. Schematic expression of fem hosted BEM-FEM coupling approach. 

While the ultimate sets of equations resulting from the FEM and BEM approaches may initially 

exhibit disparities, it is possible to manipulate them into a unified formulation. Specifically, for two 

subdomains, these transformed equations can be expressed as follows: [𝐾]𝐹𝐸{𝑢}𝐹𝐸 = {𝐹}𝐹𝐸  (23) [𝐻]𝐵𝐸{𝑢}𝐵𝐸 = [𝐺]𝐵𝐸{𝑡}𝐵𝐸  (24) 

where [𝐾]𝐹𝐸  represents the stiffness matrix for the finite element subdomain, {𝑢}𝐹𝐸  and {𝐹}𝐹𝐸 

denote the nodal displacement and force vectors, respectively. Similarly, [𝐻]𝐵𝐸 and [𝐺]𝐵𝐸 represent 

the influence coefficient matrices, while {𝑢}𝐵𝐸  and {𝑡}𝐵𝐸  represent the displacement and traction 

vectors of the boundary element subdomain. 

In the initial step, the nodal forces and the equivalent stiffness matrix of the boundary element 

subdomain are determined. Applying the virtual work principle, the nodal work of the forces on the 

boundary can be expressed as follows: 𝛿𝑊𝑒 = (𝛿𝑢𝑒)𝑇𝐹𝑒  
(25) 

The work done by the applied tractions is considered as follows: 

𝛿𝑊𝑒 = ∫(𝑡𝑥𝛿𝑢 + 𝑡𝑦𝛿𝑣)𝑑ΓΓ  (26) 

If the traction and displacements are distributed on the boundary, taking into account the shape 

functions as follows: 𝛿𝑢(𝜉) =  ∑𝑁𝑖(𝜉). 𝛿𝑢𝑖𝑒 ,      𝛿𝑣(𝜉) =  ∑𝑁𝑖(𝜉). 𝛿𝑣𝑖𝑒     3
𝑖=1

3
𝑖=1  (27) 

𝑡𝑥(𝜉) =  ∑𝑁𝑗(𝜉). (𝑡𝑥𝑒)𝑗 ,      𝑡𝑦(𝜉) =  ∑𝑁𝑗(𝜉). (𝑡𝑦𝑒)𝑗      3
𝑗=1

3
𝑗=1  

(28) 

The work of the applied tractions can be expressed in the following form: 
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𝛿𝑊 = ∑[𝛿𝑢𝑖 ∑{(𝑡𝑥)𝑖 ∫ 𝑁𝑖(𝜉)𝑁𝑗(𝜉)𝑑ΓΓ }3
𝑗=1

3
𝑖=1 + ∑{(𝑡𝑦)𝑖 ∫ 𝑁𝑖(𝜉)𝑁𝑗(𝜉)𝑑ΓΓ }𝛿𝑣𝑖3

𝑗=1 ] 

(29) 

The corresponding work done by the equivalent nodal force can be formulated as follows: 𝜹𝑾 = ∑[(𝑭𝒙)𝒊𝜹𝒖𝒊 + (𝑭𝒚)𝒊𝜹𝒗𝒊]𝟑
𝒊=𝟏  (30) 

(𝑭𝒙)𝒊 = ∑(𝒕𝒙)𝒊 ∫ 𝑵𝒊(𝝃)𝑵𝒋(𝝃)𝒅𝚪𝚪
𝟑

𝒋=𝟏  

(31) 

(𝑭𝒚)𝒊 = ∑(𝒕𝒚)𝒊 ∫ 𝑵𝒊(𝝃)𝑵𝒋(𝝃)𝒅𝚪𝚪
𝟑

𝒋=𝟏  

(32) 

or in matrix form, it can be written as follows: 𝐹𝑒 = 𝑀𝑒𝑡𝑒  (33) 

where 𝑀𝑒 is the converting matrix, which depends on the interpolation functions as follows: 

𝑀𝑒 =

[  
   
   
   
   ∫ 𝑁1+1

−1 𝑁1𝐽𝑑𝜉 0 ∫ 𝑁1+1
−1 𝑁2𝐽𝑑𝜉

0 ∫ 𝑁1+1
−1 𝑁1𝐽𝑑𝜉 0

∫ 𝑁2+1
−1 𝑁1𝐽𝑑𝜉 0 ∫ 𝑁2+1

−1 𝑁2𝐽𝑑𝜉
0 ∫ 𝑁1+1

−1 𝑁3𝐽𝑑𝜉 0
∫ 𝑁1+1
−1 𝑁2𝐽𝑑𝜉 0 ∫ 𝑁1+1

−1 𝑁3𝐽𝑑𝜉
0 ∫ 𝑁2+1

−1 𝑁3𝐽𝑑𝜉 0
0 ∫ 𝑁2+1

−1 𝑁1𝐽𝑑𝜉 0
∫ 𝑁3+1
−1 𝑁1𝐽𝑑𝜉 0 ∫ 𝑁3+1

−1 𝑁2𝐽𝑑𝜉
0 ∫ 𝑁3+1

−1 𝑁1𝐽𝑑𝜉 0
∫ 𝑁2+1
−1 𝑁2𝐽𝑑𝜉 0 ∫ 𝑁2+1

−1 𝑁3𝐽𝑑𝜉
0 ∫ 𝑁3+1

−1 𝑁3𝐽𝑑𝜉 0
0∫ 𝑁3+1

−1 𝑁2𝐽𝑑𝜉 0 ∫ 𝑁3+1
−1 𝑁3𝐽𝑑𝜉]  

   
   
   
   
 

(34a) 

𝐹𝑒𝑇 = {(𝐹𝑥)1 (𝐹𝑦)1 (𝐹𝑥)2 (𝐹𝑦)2 (𝐹𝑥)3 (𝐹𝑦)3} (34b) 

 𝑡𝑒𝑇 = {(𝑡𝑥)1 (𝑡𝑦)1 (𝑡𝑥)2 (𝑡𝑦)2 (𝑡𝑥)3 (𝑡𝑦)3} (34c) 

Using the principle of total potential energy minimization, the equivalent stiffness matrix is 

defined as follows: [𝐾]𝐵𝐸 = [𝑀][𝐺]−1[𝐻]   and   {𝐹}𝐵𝐸 = ∫ [𝑁]𝑇[𝑁]{𝑡𝑛}𝑑ΓΓ𝐵𝐸  
(35) 

 [𝐾]𝐵𝐸{𝑢𝑛}𝐵𝐸 = {𝐹}𝐵𝐸  

(36) 

where [𝐾]𝐵𝐸  is the equivalent rigidity matrix of the super-element BE and {𝐹}𝐵𝐸 its equivalent nodal 

forces. 

The total boundary of the model in the BEM and FEM domains is now divided into two parts: 

the interaction boundary and the remaining parts of the domain's boundary, as expressed in 

Equations (37) and (38). Subsequently, the global stiffness matrix can be formulated as follows: [𝐾𝐹𝐹 𝐾𝐹𝐼𝐾𝐼𝐹 𝐾𝐼𝐼 ] {𝑢𝐹𝑢𝐼 } =  {𝐹𝐹𝐹𝐼𝐹}     

(37) [𝐾𝐵𝐵 𝐾𝐵𝐼𝐾𝐼𝐵 𝐾𝐼𝐼 ] {𝑢𝐵𝑢𝐼 } =  {𝐹𝐵𝐹𝐼𝐵}   (38) 
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[𝐾𝐵𝐵 𝐾𝐵𝐼 0𝐾𝐼𝐵 𝐾𝐼 𝐾𝐹𝐼0 𝐾𝐼𝐹 𝐾𝐹𝐹 ] {𝑢𝐵𝑢𝐼𝑢𝐹} =  { 𝐹𝐵𝐹𝐼𝐵 + 𝐹𝐼𝐹𝐹𝐹 } 
(39) 

where superscripts 𝐹 , 𝐵  and 𝐼  represent finite element, boundary element and interface, 

respectively.  

5. Evaluation of The Proposed Approach  

In this research, a novel code is formulated to analyze the behavior of SSSI. The proposed 

method is compared with the conventional FEM in solving a specific problem. The results of the 

comparison demonstrate that the proposed method is highly accurate and acceptable for analyzing 

SSSI. Furthermore, the developed code can be extended to investigate other types of soil structure 

interaction problems. The proposed method has the potential to improve the efficiency and accuracy 

of structural analysis, which can lead to safer and more cost-effective designs.  

In order to guarantee the precision and effectiveness of the proposed scheme, two structures 

have been analyzed using the FEM and the proposed method. The results obtained from the proposed 

method are compared with those obtained from the FEM, and a comparison of their respective 

computational efforts is also presented. 

5.1. Numerical Example Definition for Comparative Analysis  

The problem involves two structures positioned at a distance of 6 meters from each other, 

possessing identical characteristics. These structures are assumed to be made of reinforced concrete, 

comprising single-span and one-story frameworks. The span length is 6 meters, while the height of 

the structures measures 3 meters. Both the columns and beams are presumed to be constructed using 

rectangular reinforced concrete with dimensions of 0.4 meters by 0.4 meters. Two specific loadings 

are applied in this problem, which will be elaborated upon subsequently. 

It is assumed that the concrete used in the structures has an elastic modulus of 35 gigapascals, a 

Poisson's ratio of 0.2, and a mass density of 2500 kilograms per cubic meter. 

The soil model in this analysis is represented by a rectangular domain in two-dimensional space, 

assumed to exhibit elastic plain strain behavior. The dimensions of the soil model are set to 300 meters 

in width and 30 meters in depth for both the BEM and FEM simulations. This configuration is 

considered appropriate for structures with a 6-meter span as it helps to minimize the effects of soil 

reflection and refraction at the boundaries. Furthermore, the soil is assumed to have a shearing 

velocity of 687 meters per second, a shear modulus of 0.85 gigapascals, and a Poisson's ratio of 0.3. 

The mass density of the soil is estimated to be 1800 kilograms per cubic meter. 

In this problem, the structures are positioned at a distance of 6 meters from each other. The first 

structure is subjected to a force, and the displacement of the first node in the first structure is 

observed. Figure 3 provides a graphical representation illustrating the schematic model under 

investigation. 

 

Figure 3. Schematic representation of the first SSSI problem model. 

Two external loads are exerted on the model under consideration. Figure 4 illustrates a schematic 

representation depicting the first applied load, known as the Heaviside load. The load in the figure 

is scaled to a unit load and further modified by the loading factor. 
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Figure 4. The initial or primary applied load for the evaluation problem. 

Figure 5 showcases the depiction of the second load, appropriately scaled to a value of 1. This 

load is constructed through the sequential application of two step functions, with the second step 

function being activated 5 seconds after the initiation of the first step function. 

 

Figure 5. The subsequent or secondary applied load for the evaluation problem. 

5.2. Finite Element Model: Structural Analysis and Results 

The finite element model is constructed using the ABAQUS software package, renowned for its 

robust capabilities in structural analysis. This model consists of three distinct components: the first 

and second parts represent the structures, while the third part represents the soil element. 

The modeling of each structure involves the utilization of 12 linear line elements of type B21, 

enabling an accurate representation of their geometrical and mechanical properties. In parallel, the 

soil domain is discretized using 1000 quadratic quadrilateral elements of type CPE8REL, allowing for 

a refined analysis of the soil's behavior. The combined domain encompasses a total of 1024 elements, 

providing a comprehensive representation of the entire system. 

In order to maintain a coherent and consistent modeling approach, it is postulated that the 

damping characteristics within the domain align with the damping principles employed in the BEM, 

specifically the Rayleigh damping method [38]. By adopting this assumption, the damping 

coefficients utilized in both the BEM and the current model are treated as identical. This congruity in 

damping coefficients ensures the preservation of system integrity and enables a unified treatment of 

damping effects throughout the entirety of the analysis process. 

In order to establish contact between the structures and the soil domain, a hierarchical 

arrangement is employed, wherein the soil body is designated as the master part, while the structures 

are regarded as slave parts within the model. At the interface between the soil and the structures, the 

degrees of freedom pertaining to the contact points are tightly coupled, ensuring that any 

displacement or motion in one entity is faithfully transmitted to the other. Additionally, it is 

postulated that the rotational degrees of freedom in both structures remain unrestricted, allowing for 

free rotation without constraint. 

The elements employed within the FEM are depicted in Figure 6. This illustration exhibits the 

soil domain positioned beneath the structures, characterized by quadratic plain strain elements, while 

the structures themselves are represented by linear beam elements. The coordination of these 

domains is focused on the spatial region between the two structures, and the coordinate center is also 

displayed in Figure 6. 

-0.5

0

0.5

1

1.5

0 5 10 15 20

U
n
it

 l
o

ad

Time (second)

-0.5

0

0.5

1

1.5

0 5 10 15 20

U
n
it

 l
o

ad

Time (second)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 February 2024                   doi:10.20944/preprints202402.0328.v1

https://doi.org/10.20944/preprints202402.0328.v1


 12 

 

 

Figure 6. Elements utilized in the fem model for the initial problem. 

5.3. The Proposed Method (FEM/BEM): Structural Analysis and Results 

In the proposed coupled finite element-boundary element method (FEM-BEM) approach, the 

body of the soil is modeled using the BEM, while the structures are modeled using the FEM. The soil 

body is discretized into a total of 66 elements, while each structure is represented by 4 beam elements. 

Thus, the overall model in the proposed approach consists of 74 elements. Figure 7 visually illustrates 

the model created by the proposed approach, highlighting the reduced number of elements 

compared to other methods and resulting in decreased computational effort. 

Furthermore, Figure 7 demonstrates that the density of elements is higher at the top of the soil 

compared to the sides and base of the soil. The structures, similar to the FEM model, are centrally 

positioned within the model and are located adjacent to each other with a spacing of 6 meters. 

 

Figure 7. A schematic illustration of the constituent elements encompassed in the model developed 

through the proposed method for the evaluation problem. 

5.4. Comparison of the Results in Transient Domain 

The comparative evaluation of the results for the initial problem in the transient domain reveals 

a notable alignment between the results obtained through both approaches. The proposed method 

demonstrates a reduced computational effort without compromising the accuracy compared to the 

FEM. Conversely, the FEM exhibits a slower convergence rate in comparison. Figure 8 illustrates the 

outcome of the first loading for the initial problem. 

Similar to the initial loading phase, a significant similarity is observed in the displacement 

observed at the first node of the primary structure between the proposed method and the FEM. This 

parallelism becomes evident when comparing the outcomes obtained from both approaches. To 

visually represent this comparison, Figure 9 presents the results for the second loading scenario 

within the context of the evaluation problem. 

 

Figure 8. Displacement comparison of the first node in the first structure during initial loading. 
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Figure 9. Displacement comparison of the first node in the first structure during second loading. 

5.4.1. Dimension Less Comparison 

In order to facilitate a dimensionless comparison of results, the dimensionless frequency of a0 is 

introduced. This frequency is obtained by dividing the angular frequency, expressed in hertz, by pi 

and the velocity of the soil, and then multiplying it by the inter-column spacing within the structure. 

The calculation can be expressed as follows: 𝑎0 = 𝜔𝑏/𝜋𝑐 (40) 

The variable a0 is used to represent the dimensionless frequency, where ω denotes the angular 
frequency, b indicates the span of the frames, and c represents the shearing wave velocity of the soil. 

In light of this, Figure 10 illustrates the displacement results obtained for the first node of the primary 

structure during the initial loading phase of the evaluation problem. 

 

Figure 10. Displacement comparison of the first node in the first structure during initial loading in 

unit less domain. 

The alteration of the loading conditions has the potential to impact the behavioral pattern of the 

structures. Consequently, the same principle is applied to examine the response of the structure 

under the second loading scenario. To elucidate this comparison, Figure 11 presents the displacement 

results obtained for the first node of the primary structure during the second loading phase of the 

evaluation problem. 

 

Figure 11. Displacement comparison of the first node in the first structure during second loading in 

unit less domain. 
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5.4.2. Result of the Deformation on the Soil 

The influence of soil deformation holds considerable importance in shaping the behavior of the 

system. This study investigates a proposed coupling method to evaluate the impact of soil 

deformation on the surface. Figure 12 exhibits the deformation outcomes of the soil at different 

distances from the structure's center for the initial load pattern outlined in Figure 3, at a frequency of 

1 hertz, as indicated in the figure. With the exception of the regions adjacent to the boundaries, the 

observed values of soil deformation are deemed reasonable and fall within acceptable thresholds. 

 

Figure 12. Deformation results of the soil at various distances from the center of the structure during 

the first loading phase of the problem in 1 hertz frequency. 

5.4.3. Comparison of the Computational Effort 

The computational effort of the proposed scheme is evaluated in comparison to that of the FEM. 

The initial analysis indicates that the proposed method exhibits reduced computational effort 

compared to the FEM, resulting in faster convergence times. However, it should be noted that the 

proposed scheme, despite addressing certain limitations of the BEM, experiences a significant 

increase in computational effort with an increase in the number of time steps. Therefore, it can be 

concluded that the effectiveness of the proposed method is particularly notable for a lower number 

of time steps, while the benefits may diminish as the number of time steps increases. Table 2 provides 

a comparative analysis of the computational effort between the two methods, while Table 3 visually 

depicts the progressive increase in computation time associated with the proposed method. 

Table 2. Comparative analysis of computational effort: proposed scheme vs. FEM. 

Item Method Problem Computational Effort (seconds) 

1 Proposed method 1 276 

2 FEM 1 1201 

3 Proposed method 2 269 

4 FEM 2 1200 

Table 3. Computational effort for initial and final time steps in two 500-step analyses. 

Item Time Step Problem Computational Effort (seconds) 

1 First  1 0.46 

2 Last 1 0.75 

3 First  2 0.45 

4 Last 2 0.80 

6. Numerical Analysis of the Influence of Inter-Structure Spacing on SSSI Magnitude  

The distance between two structures is recognized as a pivotal factor influencing the magnitude 

of structure -soil-structure interaction, constituting a crucial aspect of analysis [39]. In the 

forthcoming section, an examination is conducted through numerical analysis to investigate the 

influence of inter-structure spacing on the magnitude of soil-structure interaction.  
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The model employed for investigating the effect of inter-structure spacing is a two-dimensional 

model. In this model, the soil is simulated using a two-dimensional domain of elastic plane strain 

with dimensions of 300 meters by 30 meters. In the realm of structural modeling, the utilization of 

two-dimensional static elastic beam elements has been adopted. The modeling framework 

encompasses two distinct structures, each possessing unique characteristics. The initial structure is 

characterized as a single-story entity, exhibiting a vertical extent of 3 meters and a horizontal span of 

6 meters. In contrast, the second structure is designed as a four-story construct, wherein each floor 

features a height of 3 meters, while maintaining a consistent span of 6 meters between successive 

floors. These structures are positioned atop the ground surface, in close proximity to one another. 

To comprehensively explore the influence of inter-structure spacing, a total of nine models were 

investigated in this study. To achieve this, three different types of soil were employed, along with 

three distinct inter-structure spacing configurations. In the initial model, the distance between the 

structures was assumed to be 0.5 meters, while the second model involved a spacing of 1 meter. 

Finally, the last model considered a larger separation between the structures, with a distance of 2 

meters. This systematic variation in inter-structure spacing allowed for a comprehensive examination 

of the effects and trends associated with different distances on the studied parameters. 

The construction of these models involved the use of C30 concrete, exhibiting a specific 

compressive strength of 30 megapascals and an elastic modulus of 30 gigapascals. The concrete, 

inclusive of embedded reinforcement, was assumed to possess an average unit weight of 2500 

kilograms per cubic meter. Three distinct soil types were employed, distinguished by their respective 

shear wave velocities. The first soil type corresponds to soft soil, characterized by a shear wave 

velocity of 471.40 meters per second. The second soil type represents medium soil, exhibiting a shear 

wave velocity of 666.67 meters per second. Lastly, the third soil type is classified as stiff soil, with a 

shear wave velocity of 1333.33 meters per second. The elastic properties associated with these soil 

types are detailed in Table 4. Figure 13 presents schematic representations of the three 

aforementioned model types. 

Table 4. Elastic properties of the three assumed soils beneath the structures. 

Specification Unit Stiff Soil  Medium Soil Soft Soil 

Shear Modulus G N/m2 3.2E+09 8E+08 4E+08 

Young's Modulus E N/m2 8E+09 2E+09 1E+09 

Specific Mass ρ Kg/m3 1800 1800 1800 

Poisson's Ratio ν - 0.25 0.25 0.25 

Shear Wave Velocity Cs m/s 1333.33 666.67 471.40 

 

Figure 13. Models of the structures with varying inter-structure distances. 
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The procedure of analysis is as follows: The initial structure assumes the burden of the externally 

applied load, localized specifically on the leftward region of its roof. Displacement measurements are 

obtained from the roofs of both the first and second structures. A graphical representation, denoted 

as Figure 14, showcases the load distribution pattern. Subsequently, this distribution pattern is 

subjected to amplification by a multiplicative factor of 10,000, and subsequently, it is imposed upon 

the roof of the first structure. The duration of this load application persists for a period of one second, 

and the overall analysis encompasses a time span of ten seconds, encompassing the precise segment 

in which the load is applied. 

 

Figure 14. Loading configuration throughout the analysis duration. 

6.1. The Effects of Dynamic Wave Propagation between Two Structures in Hard Soil 

The shear wave velocity exhibits a significant influence on the dynamic response of soil. In this 

investigation, the hard soil is presumed to possess a shear wave velocity of 1333.33 meters per second. 

The inter-structural spacing encompasses a range from 0.5 meters to 2 meters, and the consequential 

deformation of both the first and second structures, moving from left to right, is quantified on the 

roof of said structures. The measured deformations are presented both in the time domain and in the 

dimensionless domain denoted as a0. As depicted in Figure 15, a comparative analysis of roof 

deformation is presented specifically for the first structure. 

 

Figure 15. Deformation patterns over time with varied inter-structural spacings in the first structure. 

The results derived from the deformation analysis performed on the first structure reveal that 

the inter-structural spacing exerts an influence on the deformation experienced by the first structure, 

albeit with a relatively modest degree of modification. This effect can be attributed to two possible 

factors: the impact of the second structure on the soil's stiffness or the inertial wave generated by the 

second structure, affecting the first structure. Figure 16 illustrates the impact of the second structure 

on the deformation characteristics of the first structure, specifically observed within the 

dimensionless domain denoted as a0. 
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Figure 16. Influence of the second structure on deformation characteristics of the first structure in the 

dimensionless domain (a0). 

The subsequent analysis explores the deformation patterns observed in the second structure 

under different inter-structural spacings. Similar to the first structure, the deformation results are 

presented both in the time domain and in the dimensionless domain represented by a0. Figure 17 

depicts a comparative analysis of deformation patterns within the time domain for the roof of the 

second structure, considering various inter-structural spacings. 

 

Figure 17. Comparative analysis of deformation patterns over time with varied inter-structural 

spacings for the second structure. 

The outcomes derived from the analyses presented in Figure 18 demonstrate a significant 

decrease in the influence of the first structure as the inter-structural distance between the two 

structures increases. Figure 17 illustrates the impact of progressively increasing the inter-structural 

distance between two structures on the deformation of the roof in the second structure, considering 

a Hard soil condition in unit less domain of a0. 
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Figure 18. Comparison of deformation patterns within the a0 domain across varied inter-structural 

spacings for the second structure. 

As evidenced in Figures 15 to 18, augmenting the inter-structural distance between structures 

subjected to external loading significantly impacts the deformation of the recipient structure that 

receives the wave from the loaded structure. Conversely, the structural element on which the load is 

applied exhibits a relatively minor response to the increasing inter-structural distance. 

6.2. The Effects of Dynamic Wave Propagation between Two Structures in Medium Soil 

This investigation assumes a shear wave velocity of 666.67 meters per second for the medium 

soil. The inter-structural spacing ranges from 0.5 meters to 2 meters, and the resulting deformation 

of both structures is quantified on their respective roofs, progressing from left to right. The measured 

deformations are presented in both the time domain and the dimensionless domain (a0). Figure 19 

provides a comparative analysis of roof deformation specifically for the first structure in medium 

soil. 

 

Figure 19. Detailed comparative analysis of roof deformation patterns in the first structure under 

medium soil conditions. 

The findings of the deformation analysis conducted on the first structure reveal that, even in a 

medium soil condition, the inter-structural spacing exerts a noticeable but moderate influence on its 

deformation of the loaded structure. Figure 20 graphically illustrates the effect of the second structure 

on the deformation characteristics of the first structure, specifically within the dimensionless domain 

represented as a0. 

 

Figure 20. Impact of the second structure on deformation characteristics of the first structure in the 

dimensionless domain (a0) under medium soil conditions. 
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The subsequent analysis investigates the deformation patterns exhibited by the second structure 

across varying inter-structural spacings. Similar to the first structure, the deformation results are 

presented in both the time domain and the dimensionless domain, represented by a0. Figure 21 

portrays a comparative analysis of deformation patterns within the time domain specifically for the 

roof of the second structure, encompassing a range of inter-structural spacings. 

The analysis presented in Figure 21 like the results presented in Figure 17 demonstrates a 

significant decrease in the influence of the first structure as the inter-structural distance between the 

two structures increases. Figure 22 provides a visual representation of the impact of progressively 

increasing the inter-structural distance between two structures on the deformation of the roof in the 

second structure. This analysis considers the presence of a hard soil condition and is evaluated within 

the dimensionless domain of a0 in medium soil. 

 

Figure 21. Comparative assessment of deformation patterns over time with varied inter-structural 

spacings in the second structure under medium soil conditions. 

 

Figure 22. Comparative assessment of deformation patterns in the a0 domain with varied inter-

structural spacings in the second structure in a medium soil environment. 

The analysis depicted in Figs. 19 to 22 demonstrates that augmenting the inter-structural 

distance between loaded structures has a significant impact on the deformation of the receiving 

structure influenced by the wave from the loaded structure. In contrast, the structure on which the 

load is applied exhibits a relatively minor response to the expanding inter-structural distance, 

exhibiting a behavior pattern similar to that observed in hard soil conditions. 
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6.3. The Effects of Dynamic Wave Propagation between Two Structures in Soft Soil 

This section presupposes a shear wave velocity of 471.40 meters per second for the soft soil. The 

distance between structures like other soils varies between 0.5 meters and 2 meters, and the resultant 

deformation of each structure is evaluated on their respective rooftops, proceeding from left to right. 

The recorded deformations are reported in both the temporal domain and the dimensionless domain 

(a0). Figure 23 presents a comprehensive examination of roof deformation specifically for the initial 

structure situated in soft soil. 

 

Figure 23. Comparative assessment of deformation patterns over time with varied inter-structural 

spacings in the first structure under soft soil conditions. 

The results derived from the deformation analysis performed on the initial structure 

demonstrate that, despite the soft soil condition, the inter-structural spacing exhibits a discernible yet 

moderate impact on the deformation behavior of the loaded structure. To visually portray the 

influence of the second structure on the deformation characteristics of the first structure, particularly 

in the dimensionless domain denoted as a0, Figure 24 provides a graphical representation. 

The present investigation examines the deformation patterns displayed by the second structure 

under different inter-structural spacings. Similar to the analysis conducted on the first structure, the 

deformation outcomes are showcased in both the temporal domain and the dimensionless domain, 

denoted by a0. Figure 25 depicts a comparative assessment of deformation patterns in the temporal 

domain, specifically focusing on the roof of the second structure, encompassing a variety of inter-

structural spacings. 

 

Figure 24. Influence of the second structure on deformation characteristics of the first structure in the 

dimensionless domain (a0) under soft soil conditions. 

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

0 2 4 6 8 10 12

D
ef

o
rm

at
io

n
 (

m
)

Time (sec)

The inter-structural spacing is set at 0.5 meters The inter-structural spacing is set at 1.0 meters

The inter-structural spacing is set at 2.0 meters

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

8.00E-03

9.00E-03

1.00E-02

0 0.5 1 1.5 2 2.5

D
ef

o
rm

at
io

n
 (

m
)

a0

The inter-structural spacing is set at 0.5 meters The inter-structural spacing is set at 1.0 meters

The inter-structural spacing is set at 2.0 meters

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 February 2024                   doi:10.20944/preprints202402.0328.v1

https://doi.org/10.20944/preprints202402.0328.v1


 21 

 

 

Figure 25. Comparative assessment of deformation patterns in the temporal domain with varied inter-

structural spacings in the second structure, emphasizing the influence of soft soil conditions. 

The investigation illustrated in Figure 25, similar to the observations presented in Figures 17 and 

21, demonstrates a notable decrease in the influence exerted by the first structure as the inter-

structural distance between the two structures increases. Figure 26 offers a visual depiction of the 

influence exerted by incrementally increasing the inter-structural distance between the two structures 

on the deformation of the roof in the second structure. This analysis takes into account the existence 

of a rigid soil condition and is assessed within the dimensionless domain of a0 in soft soil. 

 

Figure 26. Comparative assessment of deformation patterns in the a0 domain for the second structure, 

considering diverse inter-structural spacings in a soft soil setting. 

The analysis presented in Figures 23–26 reveals a noteworthy effect of increasing the inter-

structural distance between loaded structures on the deformation of the receiving structure under 

the influence of the wave propagated from the loaded structure. Conversely, the structure subjected 

to the applied load demonstrates a comparatively minor response to the widening inter-structural 

distance, displaying a behavior reminiscent of that observed in rigid soil conditions. This 

phenomenon is applicable across various soil types and is independent of the soil type upon which 

the structure is built. 

7. Conclusions 

This research paper introduces an innovative technique for the numerical simulation of 

Structure-Soil-Structure Interaction (SSSI) through the synergistic integration of the Boundary 

Element Method (BEM) and Finite Element Method (FEM) within a coupled framework. The study 

focuses on conducting a numerical analysis to investigate the influence of inter-structural distance on 

the phenomenon of soil-structure interaction. The proposed methodology is subjected to rigorous 
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accuracy assessment, employing a comprehensive comparative analysis against the results obtained 

solely from the FEM method. Furthermore, the computational efficiency of the coupled BEM-FEM 

approach is thoroughly evaluated and compared to that of the standalone FEM method. 

The comparative analysis presented in this study highlights the superior capabilities of the 

proposed methodology, thereby underscoring its potential as a highly effective and efficient 

approach for addressing challenges related to SSSI encountered in engineering applications. The 

effectiveness of the proposed method is demonstrated by its capacity to yield precise results while 

concurrently alleviating computational burden, as evidenced by the reduced convergence time 

compared to the FEM. However, it is important to acknowledge that the computational effort 

required by the proposed method increases as the number of time steps increases. Moreover, the 

results obtained from the performed analyses demonstrate that the augmentation in the inter-

structural distance, especially in scenarios involving dynamic loading, exerts a substantial influence 

on the behavior of the non-loaded structure, regardless of the soil type upon which the structure is 

constructed. In contrast, the impact on the loaded structure is comparatively minor. 

In conclusion, this study makes a significant contribution to the progression of numerical 

modeling methodologies in the realm of SSSI, providing a valuable technique that resonates with 

both engineers and researchers in this field. The proposed method's capacity to deliver accurate and 

efficient outcomes, while effectively addressing the intricate challenges associated with SSSI, renders 

it a promising tool for a wide array of engineering applications that involve the interaction between 

structures and soil. Furthermore, the presented results of the numerical examples aim to provide 

engineers with valuable insights into the magnitude and nature of the effects that SSSI can exert on 

the structural behavior. 
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