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Abstract: This study investigates the application of regression neural networks, in particular the
fitrnet model, in predicting the hardness of steels. The experiments involve extensive tuning of
hyperparameters using Bayesian optimization and employ 5-fold and 10-fold cross-validation
schemes. The trained models are rigorously evaluated, and their performances are compared using
various metrics such as mean square error (MSE), root mean square error (RMSE), mean absolute
error (MAE), and coefficient of determination (R2). The results provide valuable insights into the
effectiveness of the models and their ability to generalize to unseen data. In particular, Model 4208
(8-85-141-1) emerges as the top performer with an impressive RMSE of 1.0790 and an R? of 0.9900.
The research paper contains an illustrative example that demonstrates the practical application of
the developed model in determining the hardenability band for a specific steel grade and shows the
effectiveness of the model in predicting and optimizing heat treatment results.
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1. Introduction

Remarkable progress has been made in the development of methods and tools for modeling and
simulating the production, processing, and structural properties of steels and metal alloys.
Computational modeling, a cost-effective approach to optimize factors such as chemical composition
and process conditions, is widely used in scientific and industrial research and helps to achieve the
desired properties of metal materials [1-4].

A more cost-effective approach for evaluating the hardness of continuously cooled steel from
the austenitizing temperature is the Jominy end-quench test. Integrating the results of this test into
models used for heat treatment simulations requires the computation of cooling rates at specific
locations on the cooled object, associating them with respective distances from the quenched end of
the sample [5]. The techniques for computing Jominy hardenability curves are described in detail in
various studies, including [6-11].

Modern steelmaking techniques allow precise regulation of chemical composition and
hardenability, with some manufacturers advocating strict limitations on hardenability. The widely
used Jominy end quench hardenability test is an important tool in the production, specification,
procurement, and application of heat-treatable structural steels, which are critical to modern
transportation, construction, and agricultural machinery. The delineation of hardenability bands and
the associated metallurgical methods, which link hardenability to heat treatment response,
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microstructure evolution, and eventual mechanical properties, form the basis for the economically
viable selection of steels and the design of components [12].

The hardenability of steel depends on its composition, subject to specific limits defined for each
steel grade. Despite compliance with the compositional specifications, a typical variation in
hardenability can occur for each steel grade. In certain cases, tighter compositional control is essential
for the applications for which the steel is used. Therefore, several steels are offered in H-grade
variants that have tighter compositional control. The extent of control is precisely defined by the
maximum and minimum hardenability limits [13].

In the field of materials engineering, there is growing interest in the use of artificial and
computational intelligence [4,14,15]. The increasing accessibility of material databases and advances
in machine learning open up new possibilities for the prediction of material properties and the
development of next-generation materials [16-19]. One of the best-known methods of computational
intelligence is the use of artificial neural networks (ANN) [20-22]. Artificial neural networks (ANNSs)
are invaluable for practical applications as they overcome the hurdles associated with formulating
mathematical models. Their ability to establish connections between studied variables without the
need for explicit mathematical descriptions is a distinctive feature that enables ANNs to learn
solutions to problems based on identified patterns from the given experimentally collected data
[1,23-25].

Artificial neural networks (ANNSs), especially multilayer perceptron networks (MLPs), are
widely used in modeling steel and metal alloy problems due to their efficiency in handling
classification and regression tasks. ANNSs are characterized by their ability to learn from labeled data
sets and are therefore well suited for supervised learning applications [26-28]. The key requirement
for the development of an effective neural model is the creation of a representative data set. To do
this, the value range of the variables must be determined, and their statistical distribution evaluated.
Proper training of the neural network requires the representation of patterns that evenly cover the
entire range of variables. The analysis emphasizes the importance of precisely defining the range of
independent variables for neural models to avoid errors when extrapolating beyond the range of the
training data, especially in multidimensional input domains. Selecting the optimal number of
neurons in the hidden layer of an MLP network is about finding a balance between approximation
and generalization, with overfitting being a well-studied problem. There are different approaches to
determine the optimal number of neurons, often favoring the lowest error value, although the
arbitrary application of this criterion may increase the risk of overfitting. The evaluation of neural
models relies heavily on a comprehensive test set that adequately represents the full range of the
model. Statistical values for the test set, such as the mean absolute error and the correlation
coefficient, should match those of the training set and thus provide a crucial insight into the quality
of the model [1,29].

Splitting a dataset into different subsets for training and validation is a fundamental aspect of
machine learning and plays a crucial role in various tasks such as model evaluation, model
comparison, and hyperparameter tuning. Common methods such as holdout, bootstrap, and cross-
validation (CV) are often used for this purpose [30]. In this method, the available data set is divided
into two different subsets: a training set, which is used to determine the model parameters, and a
separate validation set (test set), also known as the hold-out set or development set. The training set
is crucial for model parameterization, while the validation set serves as an independent data set for
evaluating the performance of the model. The selection criterion for the final model is to select the
one that has the least error in the validation set. This approach ensures that the selected model
generalizes well to new, unseen data [24].

Cross-validation (CV) is a well-known resampling method that is widely used in statistical
learning methods. It serves as an important tool for estimating the test error associated with a
particular statistical learning method and makes an important contribution to model evaluation and
selection. Evaluating the overall performance of a model and selecting an appropriate degree of
flexibility are integral aspects of cross-validation that are essential for refining and optimizing
statistical learning models [31].
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The selection of k in k-fold cross-validation involves a trade-off between bias and variance. The
parameter k determines the number of folds into which the data set is divided and influences the
estimation of the model's test error. It is common to use k=5 or k=10, as empirical evidence suggests
that these values lead to a balance yielding test error rate estimates with moderate bias and variance.
This choice helps to reduce the risk of underfitting (high bias) or overfitting (high variance) in the
model evaluation process [31]. Furthermore, a comparison between 5-fold cross-validation and 10-
fold cross-validation shows that 10-fold cross-validation generally performs better in regression
scenarios [32].

Bayesian optimization (BO), known for its efficiency in optimizing expensive black-box
functions, has attracted considerable attention, especially in the field of hyperparameter
optimization. The basic concept involves approximating the unknown function, typically using
Gaussian processes, with initial random estimates and iterative updates with each new observation.
Success in navigating a multidimensional space with numerous hyperparameters depends on an
appropriate number of iterations and careful selection of hyperparameter ranges, which are
influenced by factors such as the size of the data set, expert judgment, intuition, and computational
resources. Since most machine learning algorithms require the configuration of a range of
hyperparameters, the careful selection of their values has a significant impact on performance. To
streamline the time-consuming and non-reproducible manual trial-and-error process of determining
the optimal hyperparameter configurations, automatic hyperparameter optimization through
Bayesian optimization can be used [33,34].

With limited datasets, BO proves to be more advantageous than grid search for tuning
hyperparameters. The effectiveness of BO results from the use of a probabilistic model, which enables
a more efficient search for optimal hyperparameters at a lower computational cost. Bayesian tuning
of hyperparameters is excellent for exploring the hyperparameter space and strengthening the
robustness of machine learning models, especially in scenarios with small datasets. Initially, the BO
approach searches for the initial set of hyperparameters through various combinations, guided by
considerations of the problem space and presumptions about the potential impact of the model
hyperparameters. After determining the initial hyperparameters, BO employs a probabilistic model
to construct a surrogate model that facilitates the estimation of model performance in a large
hyperparameter space. The model is then trained with the initial set of hyperparameters. This
iterative process of model training and evaluation with different hyperparameters allows BO to
accumulate more data points and thus improve the performance and accuracy of the surrogate
model. As the surrogate model evolves, the algorithm becomes more adept at making informed
decisions about where to look for the best hyperparameters. This iterative refinement process proves
invaluable in identifying optimal hyperparameters within limited data sets, leading to improved
model performance [35-37].

During the execution of an experiment, the Experiment Manager actively searches for the
optimal combination of hyperparameters. Using a trial-and-error approach, a new set of
hyperparameters is tested at each iteration of the experiment, considering the results of the previous
experiments. Bayesian optimization plays a central role in this process by gradually building a
probabilistic model of the objective function. This iterative method guides the selection of subsequent
sets of hyperparameters, continuously refining the model's estimate of the function's behavior.
Ultimately, this iterative strategy facilitates the identification of the most advantageous
hyperparameter configuration for a machine learning model.

2. Materials and Methods

Feed-forward neural networks, a subtype of artificial neural networks, are used for modeling
classification and regression problems. A two-layer feed-forward network, often referred to as a
shallow neural network, consists of an input layer, a hidden layer, and an output layer. In this
architecture, the input layer receives data and the hidden layer utilizing an activation function,
applies weights and biases to the inputs. The final output is generated by the output layer. The hidden
layer is critical for capturing complex patterns in the data and the network refines its understanding
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by adjusting the weights and biases during the training process. Despite their relative simplicity
compared to deeper architectures, two-layer feed-forward networks can prove effective for certain
problems, especially when dealing with less complex data or limited computational resources.

A RegressionNeuralNetwork object is a trained, feedforward and fully connected neural
network for regression. The first fully connected layer of the neural network has a connection from
the network input (predictors) and each subsequent layer has a connection from the previous layer.
Each fully connected layer multiplies the input by a weight matrix (LayerWeights) and then adds a
bias vector (LayerBiases). An activation function follows each fully connected layer, except for the
last layer (Activations and OutputLayerActivation). The last fully connected layer generates the
output of the network, namely the predicted response values. The solver utilized for training the
neural network model is referred to as 'LBFGS". In the context of creating the
RegressionNeuralNetwork model, fitrnet employs the limited-memory Broyden-Fletcher-Goldfarb-
Shanno quasi-Newton algorithm (LBFGS) as an optimization algorithm to minimize the loss function.
Specifically, the software aims to minimize the mean squared error (MSE) during the training process.

Predictors

4 t relu(z) = max(0.z)

[

|

|

First Fully Connected (FC) layer 3 |
«LayerSizes « Mdl.LayerBiases{1} = |
« Mdl.LayerWeights{1} ES ‘

Activations |
(‘relu’, 'tanh’, 'sigmoid’, 'none’) |
\

Final Fully Connected (FC) layer 5 0 5
« Mdl.LayerBiases{end} T
« Mdl.LayerWeights{end}

Response | purelin(z) = z

I e

1
0.8 | sigmoid(z) = —”
+e

|

|
e |
06 | |

o(x)
o

04

0.2

\
{
|
\
0 l -5
o g

Figure 1. Typical feed-forward, fully connected neural networks for regression [38] (left) and
activation functions used in the modeling task (right).

Bayesian optimization is an iterative algorithm with a probabilistic surrogate model and an
acquisition function to select the next evaluation point. Each iteration involves fitting the surrogate
model to all past observations of the objective function. The acquisition function uses the predictive
distribution of the probabilistic model to guide the selection of candidate points and balance
exploration and exploitation. This approach, which is less costly than directly evaluating the
expensive black box function, allows for comprehensive optimization of the acquisition function.
Although various acquisition functions are available, the expected improvement (EI) is often
preferred because it can be calculated analytically if the model prediction y for the configuration A
follows a normal distribution, Equations (1) and (2) [39-41].

E[I(D] = Elmax(fmin — ¥, 0)] @™

E[I(D)] = (fuin — (D) ® (M) +op (M) 2
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here, () and ®(-) denote the standard normal density and standard normal distribution function,
respectively, and f,;, represents the best observed value thus far.

When searching for optimal values for the regression hyperparameters, MATLAB offers various
optimization techniques, including Bayesopt, grid search, and random search, with Bayesian
optimization (bayesopt) being the default setting. When selecting the hyperparameters for the
subsequent experiment, any of the acquisition functions can be used, such as expected improvement per
second plus, expected improvement, expected improvement plus, expected improvement per second, lower
confidence bound, or probability of improvement, as optimization option.

There are many alternative CV schemes, of which k-fold CV is one of the most popular. The k-
fold CV is a widely used resampling method in the practical application of statistical learning
methods. The set of observations is randomly divided into k groups (folds) of approximately equal
size. In each iteration, the first fold is designated as the validation set and the model is trained on the
remaining k-1 folds. The mean square error (MSE) is then calculated for the observations in the
remaining group. This process is repeated k times, resulting in k estimates of the test error (MSE;,
MSE, ..., MSEx). The final k-fold CV estimate is obtained by averaging these values, Equation (3) [31]:

k
1
CV, = ;Z MSE, ®)
i=1

Finally, the observations of the test set are used as an independent data set to evaluate the
performance of the model and select the model. The model with the smallest test RMSE and the
smallest mean absolute error (MAE) is selected as the final model, as these metrics ensure that the
selected model generalizes well to a new data set. In addition to RMSE, mean square error (MSE),
mean absolute error (MAE), and coefficient of determination (R2) are used to evaluate the model
during the test performance analysis, Equations (4)-(7).

1w .
MSE == (=9 )
i=1
1 n
RMSE = |2 (3, - 9,)? ©)
i=1
n . —9.)2
R2 =1- Zlnzl(yl 311)2 (6)
2 (i —¥)
1 n
MAE =~ Iy, - | )
i=1

where n is the total number of experimental observations, y; is the experimental values for each of
the runs, 9; is the predicted value for each of the observed values, and ¥ is the mean of the
experimental values of the runs.

We assessed the cross-validation loss of neural network regression models by examining various
hyperparameter settings, including regularization strengths (lambda), activation functions ('relu’,
'tanh’, 'sigmoid’, none'), hidden layer sizes, and hidden node sizes. We then fine-tuned the
hyperparameters using Bayesian optimization to find the optimal configuration that minimizes
model error and improves performance.
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2.1. Analysis of the Dataset

The data set contains data on measurements on the Rockwell Hardness scale C at distances of
15,3,5,7,9 11, 13, 15, 20, 25, 30, 40 and 50 mm. It also contains information on the percentage of
mass fraction of concentration of the seven basic alloying elements found in the group of alloyed
structural alloy steel, namely C, Mn, Si, Cr, Ni, Mo, and Cu. Table 1 outlines the ranges of predictors
and response parameters used in modeling the hardenability of steels.

Table 1. Ranges of predictors and response parameters used in the modeling hardenability of steels.

Range (% mass) C Mn Si Cr Ni Mo Cu  Jominy Distance (mm)
Minimum 0.12 0.36 0.12 0.09 0.04 0.0098 0.07 1.50
Maximum 0.70 1.40 0.41 192 2739 043 0.34 50

The goal of predictive hardenability modeling is to create a model based on the training dataset
and then apply this model to the test dataset. However, to achieve the best results, the training dataset
must be a representative sample of the data we want to apply it to (i.e. the test dataset). Otherwise,
our model will be inadequate at best or completely useless at worst. The Kolmogorov-Smirnov test
checks whether the distributions of the two samples (training and test data sets) differ significantly
from each other. The null hypothesis is that the samples come from the same distribution [42]. Table
2 presents the results of the Kolmogorov-Smirnov test, which is used to assess the goodness of fit of
the training and test data sets.

Table 2. Kolmogorov-Smirnov test results of goodness of fit of the training and test data sets.

Features C Mn Si Cr Ni Mo Cu ](?mlny Hardness
Distance
KS test value 0.026 0.025 0.027 0.026 0.022 0.027 0.020 0.033 0.023
p-value 0.65 0.70 0.62 0.67 0.82 0.60 0.91 0.37 0.81

To assess the similarity of the feature distributions between the training and test datasets, we
performed Kolmogorov-Smirnov (KS) tests at a 5% significance level for each feature. The KS test
values, which represent the maximum absolute differences between the cumulative distribution
functions, were calculated for the features C, Mn, Si, Cr, Ni, Mo, Cu, Jominy distance, and hardness
(HRC). The KS test values obtained are between 0.020 and 0.033, indicating relatively small
differences between the distributions. In addition, p-values were calculated for each test, ranging
from 0.37 to 0.91. Significantly, all calculated p-values were relatively high, indicating that there is no
substantial evidence to reject the null hypothesis of similarity between the distributions. These results
provide confidence in the similarity of the feature distributions between the training and test datasets
and confirm the robustness of our partitioning of the datasets for training and evaluating the models,
i.e. the model is likely to generalize well to the unseen test dataset.
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Figure 2. Training and test data sets splits distribution.

Five distinct experiments with different hyperparameter settings were conducted for the
hyperparameter optimization process. The experiments were run for 1500 trials and validation RMSE
was recorded as the performance metric.

1. Experiment 1 (10-fold CV): NumLayers [1, 2], Activations [‘relu’, ‘tanh’, ‘sigmoid’, ‘none’],

Standardize ['true’, ‘false’], lambda [1.9172e-09, 0.1], Layer 1 [1, 300] and Layer 2 [1, 300].

2.  Experiment 2 (5-fold CV): NumLayers [1, 2], Activations [‘relu’, ‘tanh’, ‘sigmoid’, ‘none’],

Standardize ['true’, ‘false’], lambda [1.9172e-09, 0.1], Layer 1 [1, 300] and Layer 2 [1, 300].

3. Experiment 3 (10-fold CV): Layer 1 [1, 300], Activations [‘relu’, ‘tanh’, ‘sigmoid’, ‘none’],

Standardize [‘true’, ‘false’] and lambda [1.9172e-09, 0.1].

4. Experiment 4 (10-fold CV): Layer 1 [1, 100], Activations [‘relu’, ‘tanh’, ‘sigmoid’], Standardize

[‘true’, ‘false’] and lambda [1.9172e-09, 0.1].

5. Experiment 5 (10-fold CV): Layer 1 [1, 30], Activations [‘relu’, ‘tanh’, ‘sigmoid’], Standardize

[‘true’, ‘false’] and lambda [1.9172e-09, 0.1].

For the tuning of hyperparameter process 5-fold and 10-fold CV were employed to protect the
model against overfitting. Experiment 1 and Experiment 2 have the same hyperparameter settings
with different cross-validation folds.

In this study, the main data set of 6136 observations is randomly split into two sets: A training
dataset contains 85% of the observations used to determine the model parameters and
hyperparameters, and a separate model test set contains the remaining 15% of the observations. The
training dataset is then used for k-fold cross-validation during the training and validation phase of
model development. The training dataset containing the observations is randomly split into k
mutually exclusive folds of approximately equal size. In each iteration, the first fold is determined as
the validation set, and the model is trained on the remaining k-1 folds. The root mean square error
(RMSE) is then calculated for the observations in the remaining fold. This process is repeated k times,
resulting in k estimates of the validation error. The average of these results is the final estimate of the
k-fold CV and is reported as the validation RMSE of the model.
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3. Results

This section provides a comprehensive overview of model training and tuning, performance
analysis, and model evaluation and selection to obtain the best-performing model for prediction and
deployment. The performance of the various neural network configurations was evaluated using the
root mean square error (RMSE) and the configuration with the lowest RMSE was selected for
subsequent model testing using a separate test dataset. The tuned models were thoroughly evaluated
to determine the most appropriate configuration for accurate hardness prediction. All models use
standardized data sets and the sigmoid activation function that appears to be effective for the
modeling task.

3.1. Experimental Results Analysis

Table 3 presents five optimal models determined by Bayesian optimization of the
hyperparameters in five different experiments, and their performance evaluations. These results
indicate the performance of each model. The RMSE and R? values for both the training and test
datasets show how well the models generalize to unseen data set.

Table 3. Optimal models were determined through Bayesian optimization of the hyperparameters in
the five experiments.

RMSE R? MSE MAE

Train Test Train Test Test Test

I (10-fold CV) 8-110-104-1 0.0001 1.0324 1.1201 0.9914 0.9892 1.2546 0.7214
IT (5-fold CV) 8-93-120-1 0.0002 1.0690 1.0976 0.9907 0.9896 1.2046 0.7101
III (10-fold CV) 8-298-1 1.0816E-07 1.1544 1.3222 0.9892 0.9849 1.7483 0.8560
IV (10-fold CV) 8-100-1 0.0001 1.2083 1.3529 0.9882 0.9842 1.8305 0.8897
V (10-fold CV) 8-30-1 2.3675E-05 1.5505 1.6299 0.9805 0.9771 2.6565 1.1553

Model Architecture Lambda

All models perform well, as shown by the relatively low RMSE values for both the training and
test datasets. The R? values, which represent the proportion of variance explained, are consistently
high, indicating that the models capture a significant portion of the variability in the data.

Model 1II is characterized by the lowest RMSE in the test data set (1.0976), indicating a higher
predictive accuracy compared to the other models. Model V has shown the highest RMSE on the test
data set (1.6299), indicating that it is less effective when generalizing to new data.

The differences in architecture (number of hidden layers and nodes) between the models do not
consistently correlate with performance. Models I, III, IV and V show similar performance values
despite their different architectures. The lambda values for regularization vary, indicating the
influence of regularization strength on model performance.

Of the top models from each experiment, Model II proves to be the most promising, as it has the
lowest RMSE for the test set and high R? values. It appears to be the best-performing model among
the options offered and shows superior predictive accuracy for the new unseen test set.

doi:10.20944/preprints202402.0312.v1
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Figure 3. Comparison of the training loss of the best five models from the five experimental runs.
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Figure 4. Performance evaluation of Model II (model4301) on an unseen new test data set.

3.2. Experiment 1 and Experiment 2 Comparative Analysis

In Experiment 1, a 10-fold cross-validation approach was used to evaluate the performance of
the model under different hyperparameter configurations. The parameters considered include the
number of layers (NumLayers) from 1 to 2, activation functions (Activations) including 'relu’, 'tanh’,
'sigmoid' and 'none', standardization (Standardize) options of 'true' or 'false, regularization
parameter (lambda) with values between 1.9172e-09 and 0.1, and the size of Layer 1 and Layer 2
ranging from 1 to 300. In Experiment 2, a 5-fold cross-validation was performed to evaluate the
robustness of the model under the same hyperparameter variations. These experiments aimed to
systematically investigate the effects of different configurations on the predictive performance of the
model and to gain insights into the optimal hyperparameter settings for each regression task.

The process of identifying the optimal model for predicting hardness in the regression task
involved three important steps. First, the fifteen best-performing models from each experiment were
selected, highlighting their performance in the test datasets. Then, the selection was refined to the
five best models. The results are shown in Tables 4 and 5. In the final stage, a comparative analysis
was performed between the best model from each experiment and the best models from the training
datasets. Ultimately, the most effective test model was identified for subsequent prediction and
deployment.

Table 4. The five best models from Experiment 1 (10-fold CV).

RMSE R2 MSE MAE

Train Test Train Test Test Test

Model 4204 'sigmoid' 0.000214222 125 148 1.0388 1.1125 0.9913 0.9893 1.2376 0.7407
Model 4208 'sigmoid’  6.93E-05 85 141 1.0426 1.0790 0.9912 0.9900 1.1643 0.6938
Model 4210 'tanh’ 0.001612633 82 154 1.0451 1.1023 0.9912 0.9895 1.2150 0.6988
Model 4211 'tanh’ 0.00199953 74 175 1.0460 1.1083 0.9911 0.9894 1.2284 0.7068
Model 4212 'sigmoid'  7.22E-05 73 112 1.0463 1.0963 0.9911 0.9896 1.2019 0.7184

Models Activation Lambda L1 L2

Table 5. The five best models from Experiment 1 (5-fold CV).

RMSE R2 MSE MAE

Train Test Train Test Test Test

Model 4301 'sigmoid’ 0.000185376 93 120 1.0690 1.0976 0.9907 0.9896 1.2046 0.7101
Model 4303 'sigmoid’ 0.000136655 116 112 1.0768 1.0826 0.9906 0.9899 1.1720 0.6885
Model 4307 'sigmoid’ 0.000224495 82 123 1.0968 1.1109 0.9903 0.9894 1.2340 0.7269
Model 4308 'sigmoid’ 8.70E-05 91 153 1.0971 1.0830 0.9903 0.9899 1.1729 0.6937
Model 4314 'sigmoid’ 0.000146841 87 167 1.1033 1.0982 0.9901 0.9896 1.2059 0.7040

Models Activation Lambda L1 L2

These results provide a comprehensive insight into the performance of the models under
different cross-validation schemes and help to select the most effective models for predicting
hardness in the regression task.

Based on the metrics provided on Table 6, and Figures 5 and 6, Model 4208 appears to
outperform the other models, except for the mean absolute error (MAE). It achieves a relatively low
MSE of 1.1643, indicating its ability to minimize the squared differences between predicted and actual
values. The Root Mean Squared Error (RMSE) is also comparatively low at 1.0790, indicating accurate
predictions with less variability. Although the MAE is slightly higher compared to some other
models, it is still reasonable at 0.6938, indicating a relatively small average absolute error.

In addition, the Model 4208 has a high correlation coefficient (R) of 0.9950, indicating a strong
linear relationship between the predicted and actual values. The coefficient of determination (R?) is
0.98996, which means that the model captures a substantial portion of the variance in the data. The
standard deviation (STD) is 1.07898, which indicates a relatively low dispersion of the residuals.
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Table 6. Comparing the results of the best model from each experiment and the best models from the

training datasets.

Model MSE RMSE MAE R R? STD MaxAE
Model 4201 1.2546 1.1201 0.7214 0.9946 0.9892 1.1204 11.0010
Model 4208 1.1643 1.0790 0.6938 0.9951 0.9900 1.0790 9.8748
Model 4301 1.2046 1.0976 0.7101 0.9948 0.9896 1.0979 10.0270
Model 4303 1.1720 1.0826 0.6885 0.9950 0.9899 1.0827 11.1998

The table displays the performance metrics of different models in predicting hardness. Each
model is assessed based on various metrics, including Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), Correlation Coefficient (R), Coefficient of
Determination (R2), Standard Deviation (STD), and Maximum Absolute Error (MaxAE).
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Figure 5. Comparison of training losses for the two best models from the training and test data sets.
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Figure 6. Performance evaluation of Model 4208 on an unseen new test dataset.

To summarize, the Model 4208 is a promising candidate for hardness prediction. It shows a
balanced performance on various metrics, with a particularly notable strength in minimizing the
squared error and a high correlation with the actual data.

3.3. lllustrative Example of Model 4208 to Determine Hardenability Curves

To evaluate the performance of the model, the hardenability curves of the 41Cr4 and 42CrMo4
steel grades are compared by examining the experimental and predicted results.

In this particular example, the performance of the model is evaluated by comparing the
predicted hardness values with the observed (experimental) values for the 41Cr4 and 42CrMo4 steel
grades. As evident from Table 7 and Figure 7, the results show close agreement between the
experimental and predicted values. The close agreement between the experimental and predicted
hardness values indicates a high degree of accuracy and reliability in the model's ability to predict
the hardenability of the steels. This robust predictive capability indicates the model's potential for
optimizing heat treatment processes, assisting in material selection, and improving overall efficiency
in the design and manufacture of steel components.
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Table 7. Experimental and predicted hardness for 41Cr4 and 42CrMo4 steel grades.

Distance in mm from quenched end
Steel grade Hardness in HRC
1.5 3 5 7 9 11 13 15 20 25 30 40 50
Exp. 58.50 57.50 56.75 55.25 54.00 51.75 49.25 45.50 40.50 38.00 37.75 29.00 24.00

41Cr4
™ Pred. 58.38 57.71 56.57 55.49 54.05 51.69 48.70 45.61 40.64 38.34 36.39 29.39 23.90
42CrMod Exp. 56.33 55.33 54.17 53.50 52.00 49.00 45.17 42.00 37.67 35.17 34.00 31.83 28.67
Pred. 56.17 55.55 54.55 53.57 51.94 48.91 45.41 42.33 37.57 35.42 33.96 31.24 29.02
60 T T T " 60 . . : :
—e—41Cr4 Hardness (Exp) —e—42CrMo4 Hardness (Exp)
55| —=—41Cr4 Hardness (Pred)|| 55 —e—42CrMo4 Hardness (Pred)
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Figure 7. The target and predicted hardenability curves of 41Cr4 and 42CrMo4 steel grades.

3.4. lllustrative Example of Model 4208 to Determine Restricted Hardenability band of 42CrMo4 Steel Grade

In this section, the use case of the model in determining the hardenability band is discussed.
Determining the H-band offers numerous advantages, including optimized material selection,
enhanced component performance, cost-effective manufacturing, prevention of defects and failures,
improved consistency and quality control, tailored material properties, and customization to specific
customer requirements. Moreover, it aids in restricting the chemical composition ranges for
applications and ensures the desired performance characteristics.

Due to variations in chemical composition among different heats of the same steel grade,
hardenability bands are defined using the Jominy end-quench test. The upper curve indicates
maximum hardness values corresponding to the upper composition limits, while the lower curve
represents minimum hardness values for the lower composition limits. Hardenability bands are
valuable for both suppliers and customers with most steels now purchased based on these bands.
Suppliers ensure that a significant percentage, typically 93 or 95%, of mill heats meeting chemical
specifications fall within the specified hardenability band [43].

The model can be used either manually or can be combined with Bayesian Optimization or
Genetic Algorithm [14] to determine the limiting chemical compositions values within the required
hardness stated by the customer. The integration of artificial neural networks with various modeling
techniques such as mathematical modeling, computational intelligence, and artificial intelligence is a
common practice. The amalgamation of different methods within a single model enables the
exploration of a larger problem space and leads to a synergistic effect that utilizes the strengths of the
individual methods [23,44]. Table 8 shows the chemical compositions determined comparing the
42CrMo4 steel grade hardness with DIN EN 10083-3 technical standard.
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Table 8. 42CrMo4 steel grade and its chemical composition for calculating H-band.

Chemical Composition (% mass) C Mn Si Cr Ni Mo Cu

THH Max 045 081 028 108 012 023 022

42CrMod Min 0.4 068 022 091 013 016 0.11
THL Max 045 082 028 112 012 025 025

Min 0.4 061 018 095 004 018 0.07

Table 9 shows the predicted maximum (Max) and minimum (Min) hardness values for the
restricted hardenability towards the top of the scale (+HH) and restricted hardenability towards the
bottom of the scale (+HL) bands of 42CrMo4 steel grade. The predicted values were determined using
the developed model. In addition, the DIN EN 10083-3 provides reference values for the 42CrMo4
(+H) maximum (Max) and minimum (Min) hardness for comparison. This is visually depicted in
Figure 8 for enhanced clarity.

Table 9. 42CrMo4 steel grades hardness with restricted hardenability scatter bands (+HH and +HL
grades).

Distance in mm from quenched end
42CrMo4 Hardness in HRC
1.5 3 5 7 9 11 13 15 20 25 30 40 50
Max 59.37 5897 58.19 57.48 56.99 56.70 56.35 55.84 54.23 51.95 49.67 44.65 40.49
Min 54.84 54.20 53.20 52.24 50.45 47.29 43.66 40.66 37.15 35.87 34.68 32.41 30.58
Max 57.67 57.14 56.23 55.45 5492 5458 54.15 53.53 51.61 49.16 46.78 42.31 38.69
Min 52.88 52.32 51.34 50.00 47.41 43.67 40.11 37.24 33.35 32.34 31.82 30.36 28.31

+HH

+HL

65 T T T T T T T T
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Figure 8. Restricted hardenability scatter band (RH-Band) for 42CrMo4 steel grade.

Comparing the predicted values with the standard reference values shows that the predictions
of the model are generally within the specified hardness ranges, both for the Hardenability and
Hardenability-Limited bands. The close agreement between the predicted values and standard
values indicates that the model performs well in estimating the hardenability properties of the
42CrMo4 steel grade. This information is critical to ensure that the steel meets the specified hardness
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requirements for various applications and contributes to effective material selection and component
design.

4. Discussion

The results obtained from the neural networks regression (fitrnet) models, particularly Model
4208 (8-85-141-1), demonstrate their remarkable effectiveness in predicting the hardness of steels. The
rigorous hyperparameter tuning, facilitated by Bayesian optimization, contributes significantly to the
performance of the models. The 5-fold and 10-fold cross-validation schemes ensure the reliability and
generalizability of the models and provide robust insights into their predictive capabilities. When
comparing various evaluation metrics such as mean square error (MSE), root mean square error
(RMSE), mean absolute error (MAE), and coefficient of determination (R?), the 4208 model comes out
on top. With an impressive RMSE of 1.0790 and an R? of 0.9900, the model demonstrates excellent
accuracy and reliability across the assessment measures.

The illustrative example in the research paper shows the practical application of Model 4208 in
determining the hardenability band for a particular steel grade. This application highlights the
effectiveness of the model in predicting and optimizing heat treatment results and underscores its
practical utility in materials engineering.

In summary, the experiments highlight the predictive capabilities of fitrnet models in
determining the hardenability of steel, with Model 4208 demonstrating exceptional accuracy and
robustness. The inclusion of Bayesian optimization improves the efficiency of hyperparameter tuning
and highlights its importance in improving model performance.

5. Conclusions

The experiments conducted shed light on the effectiveness of the regression neural network
(fitrnet) models in predicting steel hardness. The models, which were rigorously tuned using
Bayesian optimization, have impressive predictive capabilities for steel hardness. Among the models,
Model 4208 (8-85-141-1) stands out, demonstrating excellent accuracy and robustness across a range
of assessment measures. The comprehensive cross-validation schemes (5-fold and 10-fold) ensure the
reliability of the models and their generalization to unseen data. The inclusion of Bayesian
optimization not only improves the efficiency of hyperparameter tuning but also highlights its
importance in refining model performance. The performance of the model is also demonstrated
through examples which show its effectiveness in tackling practical problems. This research provides
valuable insights into the field of modeling material science and engineering properties. It highlights
the potential of Regression Neural Networks in improving hardenability prediction and lays the
foundation for future advances.
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