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Abstract: This study investigates the application of regression neural networks, in particular the 

fitrnet model, in predicting the hardness of steels. The experiments involve extensive tuning of 

hyperparameters using Bayesian optimization and employ 5-fold and 10-fold cross-validation 

schemes. The trained models are rigorously evaluated, and their performances are compared using 

various metrics such as mean square error (MSE), root mean square error (RMSE), mean absolute 

error (MAE), and coefficient of determination (R2). The results provide valuable insights into the 

effectiveness of the models and their ability to generalize to unseen data. In particular, Model 4208 

(8-85-141-1) emerges as the top performer with an impressive RMSE of 1.0790 and an R² of 0.9900. 

The research paper contains an illustrative example that demonstrates the practical application of 

the developed model in determining the hardenability band for a specific steel grade and shows the 

effectiveness of the model in predicting and optimizing heat treatment results. 

Keywords: steel hardenability; Bayesian optimization; k-fold cross-validation; hyperparameter 

tuning; neural networks regression; steel alloy; predictive model; heat treatment; hardenability 

band; Jominy end-quench 

 

1. Introduction 

Remarkable progress has been made in the development of methods and tools for modeling and 

simulating the production, processing, and structural properties of steels and metal alloys. 

Computational modeling, a cost-effective approach to optimize factors such as chemical composition 

and process conditions, is widely used in scientific and industrial research and helps to achieve the 

desired properties of metal materials [1–4]. 

A more cost-effective approach for evaluating the hardness of continuously cooled steel from 

the austenitizing temperature is the Jominy end-quench test. Integrating the results of this test into 

models used for heat treatment simulations requires the computation of cooling rates at specific 

locations on the cooled object, associating them with respective distances from the quenched end of 

the sample [5]. The techniques for computing Jominy hardenability curves are described in detail in 

various studies, including [6–11]. 

Modern steelmaking techniques allow precise regulation of chemical composition and 

hardenability, with some manufacturers advocating strict limitations on hardenability. The widely 

used Jominy end quench hardenability test is an important tool in the production, specification, 

procurement, and application of heat-treatable structural steels, which are critical to modern 

transportation, construction, and agricultural machinery. The delineation of hardenability bands and 

the associated metallurgical methods, which link hardenability to heat treatment response, 
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microstructure evolution, and eventual mechanical properties, form the basis for the economically 

viable selection of steels and the design of components [12]. 

The hardenability of steel depends on its composition, subject to specific limits defined for each 

steel grade. Despite compliance with the compositional specifications, a typical variation in 

hardenability can occur for each steel grade. In certain cases, tighter compositional control is essential 

for the applications for which the steel is used. Therefore, several steels are offered in H-grade 

variants that have tighter compositional control. The extent of control is precisely defined by the 

maximum and minimum hardenability limits [13]. 

In the field of materials engineering, there is growing interest in the use of artificial and 

computational intelligence [4,14,15]. The increasing accessibility of material databases and advances 

in machine learning open up new possibilities for the prediction of material properties and the 

development of next-generation materials [16–19]. One of the best-known methods of computational 

intelligence is the use of artificial neural networks (ANN) [20–22]. Artificial neural networks (ANNs) 

are invaluable for practical applications as they overcome the hurdles associated with formulating 

mathematical models. Their ability to establish connections between studied variables without the 

need for explicit mathematical descriptions is a distinctive feature that enables ANNs to learn 

solutions to problems based on identified patterns from the given experimentally collected data 

[1,23–25]. 

Artificial neural networks (ANNs), especially multilayer perceptron networks (MLPs), are 

widely used in modeling steel and metal alloy problems due to their efficiency in handling 

classification and regression tasks. ANNs are characterized by their ability to learn from labeled data 

sets and are therefore well suited for supervised learning applications [26–28]. The key requirement 

for the development of an effective neural model is the creation of a representative data set. To do 

this, the value range of the variables must be determined, and their statistical distribution evaluated. 

Proper training of the neural network requires the representation of patterns that evenly cover the 

entire range of variables. The analysis emphasizes the importance of precisely defining the range of 

independent variables for neural models to avoid errors when extrapolating beyond the range of the 

training data, especially in multidimensional input domains. Selecting the optimal number of 

neurons in the hidden layer of an MLP network is about finding a balance between approximation 

and generalization, with overfitting being a well-studied problem. There are different approaches to 

determine the optimal number of neurons, often favoring the lowest error value, although the 

arbitrary application of this criterion may increase the risk of overfitting. The evaluation of neural 

models relies heavily on a comprehensive test set that adequately represents the full range of the 

model. Statistical values for the test set, such as the mean absolute error and the correlation 

coefficient, should match those of the training set and thus provide a crucial insight into the quality 

of the model [1,29]. 

Splitting a dataset into different subsets for training and validation is a fundamental aspect of 

machine learning and plays a crucial role in various tasks such as model evaluation, model 

comparison, and hyperparameter tuning. Common methods such as holdout, bootstrap, and cross-

validation (CV) are often used for this purpose [30]. In this method, the available data set is divided 

into two different subsets: a training set, which is used to determine the model parameters, and a 

separate validation set (test set), also known as the hold-out set or development set. The training set 

is crucial for model parameterization, while the validation set serves as an independent data set for 

evaluating the performance of the model. The selection criterion for the final model is to select the 

one that has the least error in the validation set. This approach ensures that the selected model 

generalizes well to new, unseen data [24]. 

Cross-validation (CV) is a well-known resampling method that is widely used in statistical 

learning methods. It serves as an important tool for estimating the test error associated with a 

particular statistical learning method and makes an important contribution to model evaluation and 

selection. Evaluating the overall performance of a model and selecting an appropriate degree of 

flexibility are integral aspects of cross-validation that are essential for refining and optimizing 

statistical learning models [31]. 
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The selection of k in k-fold cross-validation involves a trade-off between bias and variance. The 

parameter k determines the number of folds into which the data set is divided and influences the 

estimation of the model's test error. It is common to use k = 5 or k = 10, as empirical evidence suggests 

that these values lead to a balance yielding test error rate estimates with moderate bias and variance. 

This choice helps to reduce the risk of underfitting (high bias) or overfitting (high variance) in the 

model evaluation process [31]. Furthermore, a comparison between 5-fold cross-validation and 10-

fold cross-validation shows that 10-fold cross-validation generally performs better in regression 

scenarios [32]. 

Bayesian optimization (BO), known for its efficiency in optimizing expensive black-box 

functions, has attracted considerable attention, especially in the field of hyperparameter 

optimization. The basic concept involves approximating the unknown function, typically using 

Gaussian processes, with initial random estimates and iterative updates with each new observation. 

Success in navigating a multidimensional space with numerous hyperparameters depends on an 

appropriate number of iterations and careful selection of hyperparameter ranges, which are 

influenced by factors such as the size of the data set, expert judgment, intuition, and computational 

resources. Since most machine learning algorithms require the configuration of a range of 

hyperparameters, the careful selection of their values has a significant impact on performance. To 

streamline the time-consuming and non-reproducible manual trial-and-error process of determining 

the optimal hyperparameter configurations, automatic hyperparameter optimization through 

Bayesian optimization can be used [33,34]. 

With limited datasets, BO proves to be more advantageous than grid search for tuning 

hyperparameters. The effectiveness of BO results from the use of a probabilistic model, which enables 

a more efficient search for optimal hyperparameters at a lower computational cost. Bayesian tuning 

of hyperparameters is excellent for exploring the hyperparameter space and strengthening the 

robustness of machine learning models, especially in scenarios with small datasets. Initially, the BO 

approach searches for the initial set of hyperparameters through various combinations, guided by 

considerations of the problem space and presumptions about the potential impact of the model 

hyperparameters. After determining the initial hyperparameters, BO employs a probabilistic model 

to construct a surrogate model that facilitates the estimation of model performance in a large 

hyperparameter space. The model is then trained with the initial set of hyperparameters. This 

iterative process of model training and evaluation with different hyperparameters allows BO to 

accumulate more data points and thus improve the performance and accuracy of the surrogate 

model. As the surrogate model evolves, the algorithm becomes more adept at making informed 

decisions about where to look for the best hyperparameters. This iterative refinement process proves 

invaluable in identifying optimal hyperparameters within limited data sets, leading to improved 

model performance [35–37]. 

During the execution of an experiment, the Experiment Manager actively searches for the 

optimal combination of hyperparameters. Using a trial-and-error approach, a new set of 

hyperparameters is tested at each iteration of the experiment, considering the results of the previous 

experiments. Bayesian optimization plays a central role in this process by gradually building a 

probabilistic model of the objective function. This iterative method guides the selection of subsequent 

sets of hyperparameters, continuously refining the model's estimate of the function's behavior. 

Ultimately, this iterative strategy facilitates the identification of the most advantageous 

hyperparameter configuration for a machine learning model. 

2. Materials and Methods 

Feed-forward neural networks, a subtype of artificial neural networks, are used for modeling 

classification and regression problems. A two-layer feed-forward network, often referred to as a 

shallow neural network, consists of an input layer, a hidden layer, and an output layer. In this 

architecture, the input layer receives data and the hidden layer utilizing an activation function, 

applies weights and biases to the inputs. The final output is generated by the output layer. The hidden 

layer is critical for capturing complex patterns in the data and the network refines its understanding 
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by adjusting the weights and biases during the training process. Despite their relative simplicity 

compared to deeper architectures, two-layer feed-forward networks can prove effective for certain 

problems, especially when dealing with less complex data or limited computational resources. 

A RegressionNeuralNetwork object is a trained, feedforward and fully connected neural 

network for regression. The first fully connected layer of the neural network has a connection from 

the network input (predictors) and each subsequent layer has a connection from the previous layer. 

Each fully connected layer multiplies the input by a weight matrix (LayerWeights) and then adds a 

bias vector (LayerBiases). An activation function follows each fully connected layer, except for the 

last layer (Activations and OutputLayerActivation). The last fully connected layer generates the 

output of the network, namely the predicted response values. The solver utilized for training the 

neural network model is referred to as 'LBFGS". In the context of creating the 

RegressionNeuralNetwork model, fitrnet employs the limited-memory Broyden-Fletcher-Goldfarb-

Shanno quasi-Newton algorithm (LBFGS) as an optimization algorithm to minimize the loss function. 

Specifically, the software aims to minimize the mean squared error (MSE) during the training process. 

 

Figure 1. Typical feed-forward, fully connected neural networks for regression [38] (left) and 

activation functions used in the modeling task (right). 

Bayesian optimization is an iterative algorithm with a probabilistic surrogate model and an 

acquisition function to select the next evaluation point. Each iteration involves fitting the surrogate 

model to all past observations of the objective function. The acquisition function uses the predictive 

distribution of the probabilistic model to guide the selection of candidate points and balance 

exploration and exploitation. This approach, which is less costly than directly evaluating the 

expensive black box function, allows for comprehensive optimization of the acquisition function. 

Although various acquisition functions are available, the expected improvement (EI) is often 

preferred because it can be calculated analytically if the model prediction y for the configuration λ 

follows a normal distribution, Equations (1) and (2) [39–41]. 𝔼ሾ𝕀ሺ𝜆ሻሿ = 𝔼⌊𝑚𝑎𝑥ሺ𝑓௠௜௡ − 𝑦, 0ሻ⌋ (1) 

𝔼ሾ𝕀ሺ𝜆ሻሿ = ൫𝑓௠௜௡ − 𝜇ሺ𝜆ሻ൯Φ ቆ𝑓௠௜௡ − 𝜇ሺ𝜆ሻ𝜎 ቇ ൅ σ∅ ቆ𝑓௠௜௡ − 𝜇ሺ𝜆ሻ𝜎 ቇ (2) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 February 2024                   doi:10.20944/preprints202402.0312.v1

https://doi.org/10.20944/preprints202402.0312.v1


 5 

 

here, ∅ሺ∙ሻ and Φሺ∙ሻ denote the standard normal density and standard normal distribution function, 

respectively, and 𝑓௠௜௡ represents the best observed value thus far. 

When searching for optimal values for the regression hyperparameters, MATLAB offers various 

optimization techniques, including Bayesopt, grid search, and random search, with Bayesian 

optimization (bayesopt) being the default setting. When selecting the hyperparameters for the 

subsequent experiment, any of the acquisition functions can be used, such as expected improvement per 

second plus, expected improvement, expected improvement plus, expected improvement per second, lower 

confidence bound, or probability of improvement, as optimization option. 

There are many alternative CV schemes, of which k-fold CV is one of the most popular. The k-

fold CV is a widely used resampling method in the practical application of statistical learning 

methods. The set of observations is randomly divided into k groups (folds) of approximately equal 

size. In each iteration, the first fold is designated as the validation set and the model is trained on the 

remaining k−1 folds. The mean square error (MSE) is then calculated for the observations in the 

remaining group. This process is repeated k times, resulting in k estimates of the test error (MSE1, 

MSE2, ..., MSEk). The final k-fold CV estimate is obtained by averaging these values, Equation (3) [31]: 

𝐶𝑉௞ = 1𝑘 ෍ 𝑀𝑆𝐸௜௞
௜ୀଵ  (3)

Finally, the observations of the test set are used as an independent data set to evaluate the 

performance of the model and select the model. The model with the smallest test RMSE and the 

smallest mean absolute error (MAE) is selected as the final model, as these metrics ensure that the 

selected model generalizes well to a new data set. In addition to RMSE, mean square error (MSE), 

mean absolute error (MAE), and coefficient of determination (R2) are used to evaluate the model 

during the test performance analysis, Equations (4)-(7). 

𝑀𝑆𝐸 = 1𝑛 ෍ሺ𝑦௜ − 𝑦ො௜ሻଶ௡
௜ୀଵ  (4)

𝑅𝑀𝑆𝐸 =  ඩ1𝑛 ෍ሺ𝑦௜ − 𝑦ො௜ሻଶ௡
௜ୀଵ  (5)

𝑅ଶ = 1 − ∑ ሺ𝑦௜ − 𝑦ො௜ሻଶ௡௜ୀଵ∑ ሺ𝑦௜ − 𝑦തሻଶ௡௜ୀଵ  (6)

𝑀𝐴𝐸 =  1𝑛 ෍|𝑦௜ − 𝑦ො௜|௡
௜ୀଵ  (7)

where n is the total number of experimental observations, 𝑦௜ is the experimental values for each of 

the runs, 𝑦ො௜  is the predicted value for each of the observed values, and 𝑦ത  is the mean of the 

experimental values of the runs. 

We assessed the cross-validation loss of neural network regression models by examining various 

hyperparameter settings, including regularization strengths (lambda), activation functions ('relu', 

'tanh', 'sigmoid', 'none'), hidden layer sizes, and hidden node sizes. We then fine-tuned the 

hyperparameters using Bayesian optimization to find the optimal configuration that minimizes 

model error and improves performance. 
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2.1. Analysis of the Dataset 

The data set contains data on measurements on the Rockwell Hardness scale C at distances of 

1.5, 3, 5, 7, 9, 11, 13, 15, 20, 25, 30, 40 and 50 mm. It also contains information on the percentage of 

mass fraction of concentration of the seven basic alloying elements found in the group of alloyed 

structural alloy steel, namely C, Mn, Si, Cr, Ni, Mo, and Cu. Table 1 outlines the ranges of predictors 

and response parameters used in modeling the hardenability of steels. 

Table 1. Ranges of predictors and response parameters used in the modeling hardenability of steels. 

Range (% mass) C Mn Si Cr Ni Mo Cu Jominy Distance (mm) 

Minimum 0.12 0.36 0.12 0.09 0.04 0.0098 0.07 1.50 

Maximum 0.70 1.40 0.41 1.92 2.739 0.43 0.34 50 

The goal of predictive hardenability modeling is to create a model based on the training dataset 

and then apply this model to the test dataset. However, to achieve the best results, the training dataset 

must be a representative sample of the data we want to apply it to (i.e. the test dataset). Otherwise, 

our model will be inadequate at best or completely useless at worst. The Kolmogorov-Smirnov test 

checks whether the distributions of the two samples (training and test data sets) differ significantly 

from each other. The null hypothesis is that the samples come from the same distribution [42]. Table 

2 presents the results of the Kolmogorov-Smirnov test, which is used to assess the goodness of fit of 

the training and test data sets. 

Table 2. Kolmogorov-Smirnov test results of goodness of fit of the training and test data sets. 

Features C Mn Si Cr Ni Mo Cu 
Jominy 

Distance 
Hardness 

KS test value 0.026 0.025 0.027 0.026 0.022 0.027 0.020 0.033 0.023 

p-value 0.65 0.70 0.62 0.67 0.82 0.60 0.91 0.37 0.81 

To assess the similarity of the feature distributions between the training and test datasets, we 

performed Kolmogorov-Smirnov (KS) tests at a 5% significance level for each feature. The KS test 

values, which represent the maximum absolute differences between the cumulative distribution 

functions, were calculated for the features C, Mn, Si, Cr, Ni, Mo, Cu, Jominy distance, and hardness 

(HRC). The KS test values obtained are between 0.020 and 0.033, indicating relatively small 

differences between the distributions. In addition, p-values were calculated for each test, ranging 

from 0.37 to 0.91. Significantly, all calculated p-values were relatively high, indicating that there is no 

substantial evidence to reject the null hypothesis of similarity between the distributions. These results 

provide confidence in the similarity of the feature distributions between the training and test datasets 

and confirm the robustness of our partitioning of the datasets for training and evaluating the models, 

i.e. the model is likely to generalize well to the unseen test dataset. 
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Figure 2. Training and test data sets splits distribution. 

Five distinct experiments with different hyperparameter settings were conducted for the 

hyperparameter optimization process. The experiments were run for 1500 trials and validation RMSE 

was recorded as the performance metric. 

1. Experiment 1 (10-fold CV): NumLayers [1, 2], Activations [‘relu’, ‘tanh’, ‘sigmoid’, ‘none’], 

Standardize [‘true’, ‘false’], lambda [1.9172e-09, 0.1], Layer 1 [1, 300] and Layer 2 [1, 300]. 

2. Experiment 2 (5-fold CV): NumLayers [1, 2], Activations [‘relu’, ‘tanh’, ‘sigmoid’, ‘none’], 

Standardize [‘true’, ‘false’], lambda [1.9172e-09, 0.1], Layer 1 [1, 300] and Layer 2 [1, 300]. 

3. Experiment 3 (10-fold CV): Layer 1 [1, 300], Activations [‘relu’, ‘tanh’, ‘sigmoid’, ‘none’], 

Standardize [‘true’, ‘false’] and lambda [1.9172e-09, 0.1]. 

4. Experiment 4 (10-fold CV): Layer 1 [1, 100], Activations [‘relu’, ‘tanh’, ‘sigmoid’], Standardize 

[‘true’, ‘false’] and lambda [1.9172e-09, 0.1]. 

5. Experiment 5 (10-fold CV): Layer 1 [1, 30], Activations [‘relu’, ‘tanh’, ‘sigmoid’], Standardize 

[‘true’, ‘false’] and lambda [1.9172e-09, 0.1]. 

For the tuning of hyperparameter process 5-fold and 10-fold CV were employed to protect the 

model against overfitting. Experiment 1 and Experiment 2 have the same hyperparameter settings 

with different cross-validation folds. 

In this study, the main data set of 6136 observations is randomly split into two sets: A training 

dataset contains 85% of the observations used to determine the model parameters and 

hyperparameters, and a separate model test set contains the remaining 15% of the observations. The 

training dataset is then used for k-fold cross-validation during the training and validation phase of 

model development. The training dataset containing the observations is randomly split into k 

mutually exclusive folds of approximately equal size. In each iteration, the first fold is determined as 

the validation set, and the model is trained on the remaining k−1 folds. The root mean square error 

(RMSE) is then calculated for the observations in the remaining fold. This process is repeated k times, 

resulting in k estimates of the validation error. The average of these results is the final estimate of the 

k-fold CV and is reported as the validation RMSE of the model. 
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3. Results 

This section provides a comprehensive overview of model training and tuning, performance 

analysis, and model evaluation and selection to obtain the best-performing model for prediction and 

deployment. The performance of the various neural network configurations was evaluated using the 

root mean square error (RMSE) and the configuration with the lowest RMSE was selected for 

subsequent model testing using a separate test dataset. The tuned models were thoroughly evaluated 

to determine the most appropriate configuration for accurate hardness prediction. All models use 

standardized data sets and the sigmoid activation function that appears to be effective for the 

modeling task. 

3.1. Experimental Results Analysis 

Table 3 presents five optimal models determined by Bayesian optimization of the 

hyperparameters in five different experiments, and their performance evaluations. These results 

indicate the performance of each model. The RMSE and R2 values for both the training and test 

datasets show how well the models generalize to unseen data set. 

Table 3. Optimal models were determined through Bayesian optimization of the hyperparameters in 

the five experiments. 

Model Architecture Lambda 
RMSE R2 MSE MAE 

Train Test Train Test Test Test 

I (10-fold CV) 8-110-104-1 0.0001 1.0324 1.1201 0.9914 0.9892 1.2546 0.7214 

II (5-fold CV) 8-93-120-1 0.0002 1.0690 1.0976 0.9907 0.9896 1.2046 0.7101 

III (10-fold CV) 8-298-1 1.0816E-07 1.1544 1.3222 0.9892 0.9849 1.7483 0.8560 

IV (10-fold CV) 8-100-1 0.0001 1.2083 1.3529 0.9882 0.9842 1.8305 0.8897 

V (10-fold CV) 8-30-1 2.3675E-05 1.5505 1.6299 0.9805 0.9771 2.6565 1.1553 

All models perform well, as shown by the relatively low RMSE values for both the training and 

test datasets. The R2 values, which represent the proportion of variance explained, are consistently 

high, indicating that the models capture a significant portion of the variability in the data. 

Model II is characterized by the lowest RMSE in the test data set (1.0976), indicating a higher 

predictive accuracy compared to the other models. Model V has shown the highest RMSE on the test 

data set (1.6299), indicating that it is less effective when generalizing to new data. 

The differences in architecture (number of hidden layers and nodes) between the models do not 

consistently correlate with performance. Models I, III, IV and V show similar performance values 

despite their different architectures. The lambda values for regularization vary, indicating the 

influence of regularization strength on model performance. 

Of the top models from each experiment, Model II proves to be the most promising, as it has the 

lowest RMSE for the test set and high R2 values. It appears to be the best-performing model among 

the options offered and shows superior predictive accuracy for the new unseen test set. 
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Figure 3. Comparison of the training loss of the best five models from the five experimental runs. 
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Figure 4. Performance evaluation of Model II (model4301) on an unseen new test data set. 

3.2. Experiment 1 and Experiment 2 Comparative Analysis 

In Experiment 1, a 10-fold cross-validation approach was used to evaluate the performance of 

the model under different hyperparameter configurations. The parameters considered include the 

number of layers (NumLayers) from 1 to 2, activation functions (Activations) including 'relu', 'tanh', 

'sigmoid' and 'none', standardization (Standardize) options of 'true' or 'false', regularization 

parameter (lambda) with values between 1.9172e-09 and 0.1, and the size of Layer 1 and Layer 2 

ranging from 1 to 300. In Experiment 2, a 5-fold cross-validation was performed to evaluate the 

robustness of the model under the same hyperparameter variations. These experiments aimed to 

systematically investigate the effects of different configurations on the predictive performance of the 

model and to gain insights into the optimal hyperparameter settings for each regression task. 

The process of identifying the optimal model for predicting hardness in the regression task 

involved three important steps. First, the fifteen best-performing models from each experiment were 

selected, highlighting their performance in the test datasets. Then, the selection was refined to the 

five best models. The results are shown in Tables 4 and 5. In the final stage, a comparative analysis 

was performed between the best model from each experiment and the best models from the training 

datasets. Ultimately, the most effective test model was identified for subsequent prediction and 

deployment. 

Table 4. The five best models from Experiment 1 (10-fold CV). 

Models Activation Lambda L1 L2 
RMSE R2 MSE MAE 

Train Test Train Test Test Test 

Model 4204 'sigmoid' 0.000214222 125 148 1.0388 1.1125 0.9913 0.9893 1.2376 0.7407 

Model 4208 'sigmoid' 6.93E-05 85 141 1.0426 1.0790 0.9912 0.9900 1.1643 0.6938 

Model 4210 'tanh' 0.001612633 82 154 1.0451 1.1023 0.9912 0.9895 1.2150 0.6988 

Model 4211 'tanh' 0.00199953 74 175 1.0460 1.1083 0.9911 0.9894 1.2284 0.7068 

Model 4212 'sigmoid' 7.22E-05 73 112 1.0463 1.0963 0.9911 0.9896 1.2019 0.7184 

Table 5. The five best models from Experiment 1 (5-fold CV). 

Models Activation Lambda L1 L2 
RMSE R2 MSE MAE 

Train Test Train Test Test Test 

Model 4301 'sigmoid' 0.000185376 93 120 1.0690 1.0976 0.9907 0.9896 1.2046 0.7101 

Model 4303 'sigmoid' 0.000136655 116 112 1.0768 1.0826 0.9906 0.9899 1.1720 0.6885 

Model 4307 'sigmoid' 0.000224495 82 123 1.0968 1.1109 0.9903 0.9894 1.2340 0.7269 

Model 4308 'sigmoid' 8.70E-05 91 153 1.0971 1.0830 0.9903 0.9899 1.1729 0.6937 

Model 4314 'sigmoid' 0.000146841 87 167 1.1033 1.0982 0.9901 0.9896 1.2059 0.7040 

These results provide a comprehensive insight into the performance of the models under 

different cross-validation schemes and help to select the most effective models for predicting 

hardness in the regression task. 

Based on the metrics provided on Table 6, and Figures 5 and 6, Model 4208 appears to 

outperform the other models, except for the mean absolute error (MAE). It achieves a relatively low 

MSE of 1.1643, indicating its ability to minimize the squared differences between predicted and actual 

values. The Root Mean Squared Error (RMSE) is also comparatively low at 1.0790, indicating accurate 

predictions with less variability. Although the MAE is slightly higher compared to some other 

models, it is still reasonable at 0.6938, indicating a relatively small average absolute error. 

In addition, the Model 4208 has a high correlation coefficient (R) of 0.9950, indicating a strong 

linear relationship between the predicted and actual values. The coefficient of determination (R2) is 

0.98996, which means that the model captures a substantial portion of the variance in the data. The 

standard deviation (STD) is 1.07898, which indicates a relatively low dispersion of the residuals. 
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Table 6. Comparing the results of the best model from each experiment and the best models from the 

training datasets. 

Model MSE RMSE MAE R R2 STD MaxAE 

Model 4201 1.2546 1.1201 0.7214 0.9946 0.9892 1.1204 11.0010 

Model 4208 1.1643 1.0790 0.6938 0.9951 0.9900 1.0790 9.8748 

Model 4301 1.2046 1.0976 0.7101 0.9948 0.9896 1.0979 10.0270 

Model 4303 1.1720 1.0826 0.6885 0.9950 0.9899 1.0827 11.1998 

The table displays the performance metrics of different models in predicting hardness. Each 

model is assessed based on various metrics, including Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), Correlation Coefficient (R), Coefficient of 

Determination (R2), Standard Deviation (STD), and Maximum Absolute Error (MaxAE). 

 

Figure 5. Comparison of training losses for the two best models from the training and test data sets. 
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Figure 6. Performance evaluation of Model 4208 on an unseen new test dataset. 

To summarize, the Model 4208 is a promising candidate for hardness prediction. It shows a 

balanced performance on various metrics, with a particularly notable strength in minimizing the 

squared error and a high correlation with the actual data. 

3.3. Illustrative Example of Model 4208 to Determine Hardenability Curves 

To evaluate the performance of the model, the hardenability curves of the 41Cr4 and 42CrMo4 

steel grades are compared by examining the experimental and predicted results. 

In this particular example, the performance of the model is evaluated by comparing the 

predicted hardness values with the observed (experimental) values for the 41Cr4 and 42CrMo4 steel 

grades. As evident from Table 7 and Figure 7, the results show close agreement between the 

experimental and predicted values. The close agreement between the experimental and predicted 

hardness values indicates a high degree of accuracy and reliability in the model's ability to predict 

the hardenability of the steels. This robust predictive capability indicates the model's potential for 

optimizing heat treatment processes, assisting in material selection, and improving overall efficiency 

in the design and manufacture of steel components. 
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Table 7. Experimental and predicted hardness for 41Cr4 and 42CrMo4 steel grades. 

Steel grade 

Distance in mm from quenched end 

Hardness in HRC 

1.5 3 5 7 9 11 13 15 20 25 30 40 50 

41Cr4 
Exp. 58.50 57.50 56.75 55.25 54.00 51.75 49.25 45.50 40.50 38.00 37.75 29.00 24.00 

Pred. 58.38 57.71 56.57 55.49 54.05 51.69 48.70 45.61 40.64 38.34 36.39 29.39 23.90 

42CrMo4 
Exp. 56.33 55.33 54.17 53.50 52.00 49.00 45.17 42.00 37.67 35.17 34.00 31.83 28.67 

Pred. 56.17 55.55 54.55 53.57 51.94 48.91 45.41 42.33 37.57 35.42 33.96 31.24 29.02 

 

Figure 7. The target and predicted hardenability curves of 41Cr4 and 42CrMo4 steel grades. 

3.4. Illustrative Example of Model 4208 to Determine Restricted Hardenability band of 42CrMo4 Steel Grade 

In this section, the use case of the model in determining the hardenability band is discussed. 

Determining the H-band offers numerous advantages, including optimized material selection, 

enhanced component performance, cost-effective manufacturing, prevention of defects and failures, 

improved consistency and quality control, tailored material properties, and customization to specific 

customer requirements. Moreover, it aids in restricting the chemical composition ranges for 

applications and ensures the desired performance characteristics. 

Due to variations in chemical composition among different heats of the same steel grade, 

hardenability bands are defined using the Jominy end-quench test. The upper curve indicates 

maximum hardness values corresponding to the upper composition limits, while the lower curve 

represents minimum hardness values for the lower composition limits. Hardenability bands are 

valuable for both suppliers and customers with most steels now purchased based on these bands. 

Suppliers ensure that a significant percentage, typically 93 or 95%, of mill heats meeting chemical 

specifications fall within the specified hardenability band [43]. 

The model can be used either manually or can be combined with Bayesian Optimization or 

Genetic Algorithm [14] to determine the limiting chemical compositions values within the required 

hardness stated by the customer. The integration of artificial neural networks with various modeling 

techniques such as mathematical modeling, computational intelligence, and artificial intelligence is a 

common practice. The amalgamation of different methods within a single model enables the 

exploration of a larger problem space and leads to a synergistic effect that utilizes the strengths of the 

individual methods [23,44]. Table 8 shows the chemical compositions determined comparing the 

42CrMo4 steel grade hardness with DIN EN 10083-3 technical standard.  
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Table 8. 42CrMo4 steel grade and its chemical composition for calculating H-band. 

  Chemical Composition (% mass) C Mn Si Cr Ni Mo Cu 

42CrMo4 

+HH 
Max 0.45 0.81 0.28 1.08 0.12 0.23 0.22 

Min 0.4 0.68 0.22 0.91 0.13 0.16 0.11 

+HL 
Max 0.45 0.82 0.28 1.12 0.12 0.25 0.25 

Min 0.4 0.61 0.18 0.95 0.04 0.18 0.07 

Table 9 shows the predicted maximum (Max) and minimum (Min) hardness values for the 

restricted hardenability towards the top of the scale (+HH) and restricted hardenability towards the 

bottom of the scale (+HL) bands of 42CrMo4 steel grade. The predicted values were determined using 

the developed model. In addition, the DIN EN 10083-3 provides reference values for the 42CrMo4 

(+H) maximum (Max) and minimum (Min) hardness for comparison. This is visually depicted in 

Figure 8 for enhanced clarity. 

Table 9. 42CrMo4 steel grades hardness with restricted hardenability scatter bands (+HH and +HL 

grades). 

42CrMo4 

Distance in mm from quenched end 

Hardness in HRC 

1.5 3 5 7 9 11 13 15 20 25 30 40 50 

+HH 
Max 59.37 58.97 58.19 57.48 56.99 56.70 56.35 55.84 54.23 51.95 49.67 44.65 40.49 

Min 54.84 54.20 53.20 52.24 50.45 47.29 43.66 40.66 37.15 35.87 34.68 32.41 30.58 

+HL 
Max 57.67 57.14 56.23 55.45 54.92 54.58 54.15 53.53 51.61 49.16 46.78 42.31 38.69 

Min 52.88 52.32 51.34 50.00 47.41 43.67 40.11 37.24 33.35 32.34 31.82 30.36 28.31 

 

Figure 8. Restricted hardenability scatter band (RH-Band) for 42CrMo4 steel grade. 

Comparing the predicted values with the standard reference values shows that the predictions 

of the model are generally within the specified hardness ranges, both for the Hardenability and 

Hardenability-Limited bands. The close agreement between the predicted values and standard 

values indicates that the model performs well in estimating the hardenability properties of the 

42CrMo4 steel grade. This information is critical to ensure that the steel meets the specified hardness 
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requirements for various applications and contributes to effective material selection and component 

design. 

4. Discussion 

The results obtained from the neural networks regression (fitrnet) models, particularly Model 

4208 (8-85-141-1), demonstrate their remarkable effectiveness in predicting the hardness of steels. The 

rigorous hyperparameter tuning, facilitated by Bayesian optimization, contributes significantly to the 

performance of the models. The 5-fold and 10-fold cross-validation schemes ensure the reliability and 

generalizability of the models and provide robust insights into their predictive capabilities. When 

comparing various evaluation metrics such as mean square error (MSE), root mean square error 

(RMSE), mean absolute error (MAE), and coefficient of determination (R²), the 4208 model comes out 

on top. With an impressive RMSE of 1.0790 and an R² of 0.9900, the model demonstrates excellent 

accuracy and reliability across the assessment measures. 

The illustrative example in the research paper shows the practical application of Model 4208 in 

determining the hardenability band for a particular steel grade. This application highlights the 

effectiveness of the model in predicting and optimizing heat treatment results and underscores its 

practical utility in materials engineering. 

In summary, the experiments highlight the predictive capabilities of fitrnet models in 

determining the hardenability of steel, with Model 4208 demonstrating exceptional accuracy and 

robustness. The inclusion of Bayesian optimization improves the efficiency of hyperparameter tuning 

and highlights its importance in improving model performance. 

5. Conclusions 

The experiments conducted shed light on the effectiveness of the regression neural network 

(fitrnet) models in predicting steel hardness. The models, which were rigorously tuned using 

Bayesian optimization, have impressive predictive capabilities for steel hardness. Among the models, 

Model 4208 (8-85-141-1) stands out, demonstrating excellent accuracy and robustness across a range 

of assessment measures. The comprehensive cross-validation schemes (5-fold and 10-fold) ensure the 

reliability of the models and their generalization to unseen data. The inclusion of Bayesian 

optimization not only improves the efficiency of hyperparameter tuning but also highlights its 

importance in refining model performance. The performance of the model is also demonstrated 

through examples which show its effectiveness in tackling practical problems. This research provides 

valuable insights into the field of modeling material science and engineering properties. It highlights 

the potential of Regression Neural Networks in improving hardenability prediction and lays the 

foundation for future advances. 
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