Submitted:
02 February 2024
Posted:
05 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Energetics
2.2. Geometries
2.3. Electronic Structure
2.4. Electron Transitions
3. Discussion
4. Methods
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Urbani, M.; Ragoussi, M.-E.; Nazeeruddin, M. K.; Torres, T. Phthalocyanines for dye-sensitized solar cells. Coord. Chem. Rev. 2019, 381, 1–64. [Google Scholar] [CrossRef]
- Kaliya, O. L.; Lukyanets, E. A.; Vorozhtsov, G. N. Catalysis and Photocatalysis by Phthalocyanines for Technology, Ecology, and Medicine. J. Porphyrins Phthalocyanines 1999, 3, 592–610. [Google Scholar] [CrossRef]
- Sorokin, A. B. Phthalocyanine Metal Complexes in Catalysis. Chem. Rev. 2013, 113, 8152–8191. [Google Scholar] [CrossRef]
- Juzenas, P. Lasers in Therapy of Human Diseases. Trends Cancer Res. 2005, 1, 93−110.
- O’Riordan, K.; Akilov, O. E.; Hasan, T. The Potential for Photodynamic Therapy in the Treatment of Localized Infections. Photodiagn. Photodyn. Ther. 2005, 2, 247−262. [CrossRef]
- Sekkat, N.; van den Bergh, H.; Nyokong, T.; Lange, N. Like a Bolt from the Blue: Phthalocyanines in Biomedical Optics. Molecules 2012, 17, 98−144. [CrossRef]
- Allen, C. M.; Sharman, W. M.; Van Lier, J. E. Current Status of Phthalocyanines in the Photodynamic Therapy of Cancer. J. Porphyrins Phthalocyanines 2001, 5, 161–169. [Google Scholar] [CrossRef]
- Lukyanets, E. A. Phthalocyanines as Photosensitizers in the Photodynamic Therapy of Cancer. J. Porphyrins Phthalocyanines 1999, 3, 424–432. [Google Scholar] [CrossRef]
- da Silva, R. N.; Cunha, A.; Tomé, A. C. Phthalocyaninesulfonamide Conjugates: Synthesis and Photodynamic Inactivation of Gram-negative and Gram-positive Bacteria. Eur. J. Med. Chem. 2018, 154, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Elemans, J. A. A. W.; van Hameren, R.; Nolte, R. J. M.; Rowan, A. E. Molecular Materials by Self-assembly of Porphyrins, Phthalocyanines, and Perylenes. Adv. Mater. 2006, 18, 1251–1266. [Google Scholar] [CrossRef]
- Gsaenger, M.; Bialas, D.; Huang, L.; Stolte, M.; Wuerthner, F. Organic Semiconductors Based on Dyes and Color Pigments. Adv. Mater. 2016, 28, 3615–3645. [Google Scholar] [CrossRef]
- Ndiaye, A. L.; Delile, S.; Brunet, J.; Varenne, C.; Pauly, A. Electrochemical Sensors Based on Screen-printed Electrodes: The Use of Phthalocyanine Derivatives for Application in VFA Detection. Biosensors-Basel 2016, 6, 0046. [Google Scholar] [CrossRef]
- Liang, Y.; Lv, W.; Luo, X.; He, L.; Xu, K.; Zhao, F.; Huang, F.; Lu, F.; Peng, Y. A Comprehensive Investigation of Organic Active Layer Structures Toward High Performance Near-infrared Phototransistors. Synth. Met. 2018, 240, 44–51. [Google Scholar] [CrossRef]
- Woehrle, D.; Schnurpfeil, G.; Makarov, S. G.; Kazarin, A.; Suvorova, O. N. Practical Applications of Phthalocyanines – from Dyes and Pigments to Materials for Optical, Electronic and Photoelectronic Devices. Makrogeterotsikly 2012, 5, 191–202. [Google Scholar] [CrossRef]
- de la Torre, G.; Vazquez, P.; Agullo-Lopez, F.; Torres, T. Phthalocyanines and Related Compounds: Organic Targets for Nonlinear Optical Applications. J. Mater. Chem. 1998, 8, 1671–1683. [Google Scholar] [CrossRef]
- Chen, Y.; Hanack, M.; Blau, W. J.; Dini, D.; Liu, Y.; Lin, Y.; Bai, J. Soluble Axially Substituted Phthalocyanines: Synthesis and Nonlinear Optical Response. J. Mater. Sci. 2006, 41, 2169–2185. [Google Scholar] [CrossRef]
- Wrobel, D.; Dudkowiak, A. Porphyrins and Phthalocyanines − Functional Molecular Materials for Optoelectronics and Medicine. Mol. Cryst. Liq. Cryst. 2006, 448, 15–38. [Google Scholar] [CrossRef]
- Wu, Z.; Jung, K.; Boyer, C. Effective Utilization of NIR Wavelengths for Photo-Controlled Polymerization: Penetration Through Thick Barriers and Parallel Solar Syntheses. Angew. Chem. 2020, 59, 2013–2017. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, N.; Xu, J.; Boyer, C. A Photoinitiation System for Conventional and Controlled Radical Polymerization at Visible and NIR Wavelengths. Macromolecules 2016, 49, 3274–3285. [Google Scholar] [CrossRef]
- Korkut, S. E.; Temel, G.; Balta, D. K.; Arsu, N.; Şener, M. K. Type II photoinitiator substituted zinc phthalocyanine: Synthesis, photophysical and photopolymerization studies. J. Lumin. 2013, 136, 389–394. [Google Scholar] [CrossRef]
- Breloy, L.; Brezová, V.; Blacha-Grzechnik, A.; Presset, M.; Yildirim, M. S.; Yilmaz, I.; Yagci, Y.; Versace, D.-L. Visible Light Anthraquinone Functional Phthalocyanine Photoinitiator for Free-Radical and Cationic Polymerizations. Macromolecules 2020, 53, 112–124. [Google Scholar] [CrossRef]
- Wang, Y.; Han, B.; Shi, R.; Pan, L.; Zhang, H.; Shen, Y.; Li, C.; Huang, F.; Xie, A. Preparation and characterization of a novel hybrid hydrogel shell for localized photodynamic therapy. J. Mater. Chem. B 2013, 1, 6411–6417. [Google Scholar] [CrossRef]
- Breloy, L.; Alcay, Y.; Yilmaz, I.; Breza, M., Bourgon, J.; Brezová, V.; Yagci, Y., Versace, D.-L. Dimethyl amino phenyl substituted silver phthalocyanine as a UV- and visible-light absorbing photoinitiator: in situ preparation of silver/polymer nanocomposites. Polym. Chem. 2021, 12, 1273-1285. [CrossRef]
- Breza, M. On the Jahn–Teller Effect in Silver Complexes of Dimethyl Amino Phenyl Substituted Phthalocyanine. Molecules 2023, 28, 7019. [Google Scholar] [CrossRef]
- Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimer. J. Chem. Phys. 1981, 74, 5737–5743. [Google Scholar] [CrossRef]
- Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [Google Scholar] [CrossRef] [PubMed]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Marenich, A.; Cramer, C.; Truhlar, D. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
- Foster, J. P.; Weinhold, F. Natural Hybrid Orbitals. J. Am. Chem. Soc. 1980, 102, 7211–7218. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
















| Compound | q | m | G298 [Hartree] | ΔG298 [kJ/mol] |
| 1[dmaphPcAg]+ | +1 | 1 | -4733.24222 | 453.4 |
| 3[dmaphPcAg]+ | +1 | 3 | -4733.25119 | 429.9 |
| 2[dmaphPcAg]0 | 0 | 2 | -4733.41492 | 0.0 |
| 4[dmaphPcAg]0 | 0 | 4 | -4733.38011 | 91.4 |
| 1[dmaphPcAg]- | -1 | 1 | -4733.51744 | -269.2 |
| 3[dmaphPcAg]- | -1 | 3 | -4733.51527 | -263.5 |
| 2[dmaphPcAg]2- | -2 | 2 | -4733.59008 | -459.9 |
| 4[dmaphPcAg]2- | -2 | 4 | -4733.57970 | -432.6 |
| 1[dmaphPcH2]0 | 0 | 1 | -4587.58495 | 0.0 |
| 1[dmaphPcH]- | -1 | 1 | -4587.08582 | 1310.5 |
| 2[dmaphPcH]0 | 0 | 2 | -4586.94941 | 1668.6 |
| 1[dmaphPc]2- | -2 | 1 | -4586.54403 | 2732.9 |
| 2[dmaphPc]- | -1 | 2 | -4586.43712 | 3013.6 |
| q | +1 | +1 | 0 | 0 | -1 | -1 | -2 | -2 |
| m | 1 | 3 | 2 | 4 | 1 | 3 | 2 | 4 |
| Bond length [Å] | ||||||||
| Ag-Npy | 2.000(4×) | 2.056(4×) | 2.059(4×) | 2.058(2×) 2.062(2×) |
2.067(2×) 2.133(2×) |
2.063(2×) 2.067(2×) |
2.072(4×) | 2.071(4×) |
| Ag – plane distance [Å] | ||||||||
| Npy plane | 0.001 | 0.019 | 0.007 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 |
| Bond angle [deg] | ||||||||
| (Npy-Ag-Npy)adj | 90.0(4×) | 90.0(4×) | 90.0(4×) | 90.0(4×) | 89.9(2×) 90.1(2×) |
90.0(4×) | 90.0(4×) | 90.0(4×) |
| (Npy-Ag-Npy)op | 179.9(2×) | 178.9(2×) | 179.7(2×) | 180.0(2×) | 179.2 179.5 |
180.0(2×) | 180.0(2×) | 180.0(2×) |
| Bond order | ||||||||
| Ag-Npy | 0.448(4×) | 0.377(4×) | 0.379(4×) | 0.379(2×) 0.377(2×) |
0.363(2×) 0.330(2×) |
0.382(2×) 0.381(2×) |
0.383(4×) | 0.384(4×) |
| Charge | ||||||||
| Ag | 1.023 | 0.857 | 0.843 | 0.833 | 0.713 | 0.814 | 0.787 | 0.785 |
| Npy | -0.574(4×) | -0.623(4×) | -0.614(4×) | -0.613(2×) -0.662(2×) |
-0.637(2×) -0.614(2×) |
-0.603(2×) -0.647(2×) |
-0.633(2×) -0.637(2×) |
-0.634(4×) |
| Nbr | -0.533(4×) | -0.553(4×) | -0.550(4×) | -0.587(4×) | -0.566(4×) | -0.579(4×) | -0.617(4×) | -0.610(4×) |
| Cα |
0.497(8×) |
0.528(8×) | 0.485(8×) | 0.484(4×) 0.532(4×) |
0.464(4×) 0.435(4×) |
0.422(4×) 0.476(4×) |
0.422(8×) | 0.418(8×) |
| Cβ | -0.083(8×) | -0.092(8×) | -0.085(8×) | -0.101(4×) -0.086(4×) |
-0.083(4×) -0.091(4×) |
-0.100(4×) -0.081(4×) |
-0.101(8×) | -0.101(8×) |
| Namin | -0.482(8×) | -0.475(8×) | -0.492(8×) | -0.489(8×) | -0.497(8×) | -0.497(8×) | -0.502(8×) | -0.502(8×) |
| Cmet | -0.418(16×) | -0.418(16×) | -0.418(16×) | -0.418(16×) | -0.418(16×) | -0.418(16×) | -0.418(16×) | -0.418(16×) |
| d electron population | ||||||||
| Ag | 9.23 | 9.43 | 9.43 | 9.44 | 9.58 | 9.44 | 9.45 | 9.45 |
| Spin population | ||||||||
| Ag | - | 0.426 | 0.422 | 0.426 | - | 0.420 | 0.412 | 0.415 |
| Npy | - | 0.119(4×) | 0.148(4×) | 0.080(2×) 0.206(2×) |
- | 0.120(2×) 0.234(2×) |
0.259(2×) 0.039(2×) |
0.208(4×) |
| Nbr | - | -0.037(4×) | 0.002(4×) | 0.009(4×) | - | 0.054(4×) | -0.001(4×) | 0.115(4×) |
| Cα | - | 0.086(8×) | -0.007(8×) | 0.237(4×) 0.100(4×) |
- | 0.104(4×) -0.016(4×) |
-0.106(4×) 0.096(4×) |
0.079(8×) |
| Cβ | - | -0.007(8×) | 0.006(8×) | 0.016(4×) -0.002(4×) |
- | 0.037(4×) 0.004(4×) |
-0.043(4×) 0.054(4×) |
0.047(8×) |
| Namin | - | 0.016(8×) | 0.000(8×) | 0.005(8×) | - | 0.000(8×) | 0.000(8×) | 0.001(4×) |
| Cmet | - | -0.001(16×) | 0.000(16×) | -0.000(16×) | - | 0.000(16×) | 0.000(16×) | 0.000(16×) |
| Compound | 1[dmaphPcH2]0 | 1[dmaphPcH]- | 2[dmaphPcH]0 | 1[dmaphPc]2- | 2[dmaphPc]- |
|---|---|---|---|---|---|
| q | 0 | -1 | 0 | -2 | -1 |
| m | 1 | 1 | 2 | 1 | 2 |
| Bond length [Å] | |||||
| H-Npy | 1.017(2×) | 1.028 | 1.029 | - | - |
| Bond order | |||||
| H-Npy | 0.659(2×) | 0.648 | 0.645 | - | - |
| Charge | |||||
| Npy | -0.607(2×) -0.656(2×) |
-0.577 -0.613 -0.615 -0.611 |
-0.579 -0.617(2×) -0.628 |
-0.560(4×) | -0.566(4×) |
| Nbr | -0.550(4×) |
-0.571(2×) -0.565(2×) |
-0.566(2×) -0.571(2×) |
-0.588(4×) | -0.592(4×) |
| Cα | 0.488(4×) 0.475(4×) |
0.461(2×) 0.462(4×) 0.450(2×) |
0.513(2×) 0.519(2×) 0.510(2×) 0.529(2×) |
0.434(8×) | 0.500(8×) |
| Cβ | -0.084(4×) -0.090(4×) |
-0.087(2×) -0.085(4×) -0.092(2×) |
-0.094(2×) -0.089(2×) -0.097(2×) -0.086(2×) |
-0.087(8×) | -0.089(8×) |
| Namin | -0.490(4×) -0.492(4×) |
-0.497(6×) -0.495(2×) |
-0.490(2×) -0.488(4×) -0.486(2×) |
-0.503(8×) |
-0.496(8×) |
| Cmet | -0.418(16×) | -0.418(16×) | -0.418(16×) | -0.419(16×) | -0.418(16×) |
| Spin | |||||
| Npy | - | - | -0.050 -0.042(2×) -0.023 |
- | -0.049(4×) |
| Nbr | - | - | -0.050(2×) -0.040(2×) |
- | -0.054(4×) |
| Cα | 0.125(8×) | 0.140(8×) | |||
| Cβ | -0.007(8×) | -0.002(8×) | |||
| Namin | - | - | 0.004(4×) 0.003(4×) |
- | 0.002(8×) |
| Cmet | - | - | 0.000(16×) | - | 0.000(16×) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
