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Abstract: In recent years, researches on combining wavelet decomposition and convolutional neural
network (CNN) together to classify hyperspectral images (HSI) have emerged, and some effective
classification models have been proposed and achieved good classification results. However, there
are two problems for most of the proposed models. One is the heavy training parameters and the
other is that there is no distinction between the classification effectiveness of low frequency and
high frequency features after wavelet decomposition. In this paper, a new light-weighted HSI
classification model (LLFWCNN) is proposed, which performs multi-layer wavelet decomposition
for HSI after dimensionality reduction, and only arranges the low frequency features in a specific
stack mode, then classifies them through a well-designed convolutional neural network. Compared
with other classification models, the number of parameters is only 2.5% of that of other models. And
only the low frequency features after wavelet decomposition are used, while the high frequency
features are abandoned. The results showed that compared with the state-of-the-art classification
models, LLFWCNN could obtain the same or even better classification results with fewer network
parameters, and proved that the low frequency features after wavelet decomposition provide
LLFWCNN with more favorable information for HSI classification as well.

Keywords: wavelet; wavelet decomposition; low frequency; light-weighted; hyperspectral;
hyperspectral classification

1. Introduction

Hyperspectral image (HSI) classification is a common but very important task in hyperspectral
image processing. It is widely used in vegetation cover monitoring, ground object classification,
mineral exploration, military reconnaissance, atmospheric environment research, etc. [1-6].
Hyperspectral classification (HSIC) is to identify each pixel on the hyperspectrum as the correct
category, and the spectral and spatial information of each pixel provides effective information for
hyperspectral classification. For example, Hecker etc. used spectral angle for pixel matching to
evaluate the effect of spectral information in HSIC [7]. Demir and Camps-Valls proposed
classification model using the of hyperspectrum on statistics and kernel method [8,9]. while another
main approach combined the spectral information and spatial information of hyperspectrum for
research [10-14]. In recent years, Convolutional Neural networks (CNN) have made remarkable
achievements in the field of image processing. Researchers have introduced convolutional neural
networks into hyperspectral classification. Network models such as 1D-CNN [15,16], 2D-CNN [17-
20], 3D-CNN [21-23] and hybrid CNN [24-26] have been proposed successively, all of which have
achieved good classification results.

In recent years, many researchers have introduced wavelet decomposition into hyperspectral
classification tasks and proposed many novel classification methods [27-30]. For example, in 3DGPC-
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HDM framework [28], a three-dimensional Gabor wavelet (Figure 1) was introduced to extract the
joint spectral-spatial features of HSI, and a phase coding and Hamming-distance matching
framework based on the three-dimensional Gabor wavelet was proposed. Cao etc. [30] proposed an
enhanced 3DDWT (E-3DDWT, Figure 2) method which discarded partial of the sub cubes after
wavelet decomposition to extract features and alleviate the noise simultaneously. SpectralNet [31]
carried out four-layer wavelet decomposition of HSI blocks, extracted further features by CNN and
then classified (Figure 3). It had achieved very good results on the three classical HSI datasets,
however, the number of parameters in the model was relatively large, about 6-7M.

@ I+ o

Figure 1. Three-dimensional Gabor wavelet [28].
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Figure 2. Lth level decomposition procedure of E-3DDWT [30].
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Figure 3. Architecture of SpectralNet [31].

However, there are two problems for most of the above wavelet-based models. One is the
heavy training parameters and the other is that there is no distinction between the classification
effectiveness of low frequency and high frequency features after wavelet decomposition, both low
and high frequency components are used in the classification model.


https://doi.org/10.20944/preprints202402.0243.v1

Preprints.org (Wwww.preprints.org) | NOT PEER-REVIEWED | Posted: 5 February 2024 doi:10.20944/preprints202402.0243.v1

In this paper, a light-weighted low frequency wavelet-based convolutional neural network
model LLFWCNN is proposed. There are two main contributions of this paper:

1. The proposed LLFWCNN using a combination of wavelet decomposition, feature reshape and
a well-designed CNN to obtains comparable or even better results and fewer parameters than
other state-of-the-art models, especially in small samples.

2. It proves that the influence of low frequency and high frequency after wavelet decomposition
on HSIC is different. The low frequency features include much more advantageous information
for HSIC than high frequency features. Low frequency component is enough.

2. Proposed Model

2.1. Overall Architecture
The overall architecture of LLFWCNN is shown as Figure 4.
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Figure 4. The overall architecture of LLFWCNN.

The LLFWCNN contains the following four stages: dimension reduction, wavelet
decomposition, feature extraction and classification, the first three of which are described in detail
below.

2.2. Dimension Reduction and Wavelet Decomposition

2.2.1. Dimension Reduction

In order to effectively reduce the computational complexity of HSI data, we introduce Principal
Component Analysis (PCA) method as preprocessing to lower the dimensionality of the original HSI.
PCA is one of the most widely used data dimensionality reduction algorithms, which preserve the
most important features of the original high dimensional data and map the high dimensional data to
the low dimensional space.

The original input HSLis X;;q5e € R

, where H, W and B represent the length, width and
spectral dimension of HSI respectively. After PCA dimension reduction, the input Ximag is
transformed to X},q4. € R"*"*? (p<<B).
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2.2.2. Wavelet Decomposition

Wavelet decomposition is carried out on the resized HSI. Wavelet decomposition is a classical
method for signal processing and analysis. Figure 5 illustrates the process of how two-dimensional
discrete wavelet decomposition works on images.

by column by row LL HL

LH HH

Figure 5. Process of two-dimensional discrete wavelet decomposition.

The image is decomposed into four sub-bands by two-dimensional wavelet decomposition, in
which the LL sub-band is the low frequency component, and the HL, LH and HH sub-bands are the
high frequency components in the horizontal, vertical and diagonal directions, respectively. The low
frequency component with a low resolution is an approximation to the original image and describes
the main part of the image. While the high frequency component embodies the details of the image.

The procedure after dimension reduction is divided into three steps as follow:

1) Firstly, extract the hyperspectral input cube X2, € RS*S*P pixel by pixel from the pre-

!
image’

processed input HSI X where S represents the cube size.

2) Secondly, a two-dimensional wavelet decomposition is performed on a single image I,, €
RS*1 (m=1,2, ...,p) extracted from X2, along the spectral dimension, forming the result denoted
as I, (m=1,2,...,p) with the size S/2 x §/2 X 4. pimages from p bands lead to p features I, (
m=1,2,...,p) .

3) Thirdly, the p features I, (m=1,2, ..., p) are stacked in the order of "low frequency + high
frequency”, and then obtain the wavelet decomposition result X2, € RS/2*/2%4? (Figure 6). The low
frequency part of X}, is denoted as X}, and the high frequency part is denoted as X; .

4) The low frequency part X}, is selected and decomposed until the Lt/ layer in the above way
to get the result X%, € RS/2"S/2"X40of the L-layer wavelet decomposition. The complete procedure

is shown in Figure 7.
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Figure 6. Stack mode for the feature of the ith-layer wavelet decomposition.
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Figure 7. Procedure of multilayer wavelet decomposition.

2.2.3. Feature Reshape

Feature reshape is a very important step in the LLFWCNN. Except the results obtained in the
last wavelet decomposition layer, the results of each layer were reshaped to the size of the features
of the last layer.

The commonly used reshape mode for a single image is “reshape by row”. For example, if we
want to reshape a 4x4x1 feature into size of 2x2x4, the reshape mode is shown in Figure 8(a). In this
mode, each row vector of size 1x4x1 is rearranged to a vector of size 1x1x4 (left part of Figure 8(a)).
And then the four new vectors were stacked in the order (right part of Figure 8(a)) to obtain the
feature cube of size 2x2x4.

However, this mode is not suitable when the feature is a result of wavelet decomposition.
Because there is inner relationship among the pixels in a square area not in a row. Therefore, another
reshape mode was used. For the above example, pixels in a specific 2x2 square area are considered
to be intrinsically related. Figure 8(b) shows how the reshaping is executed.

After the features of multi-channels were reshaped, they were stacked in the way as in Figure 9.
Hence, in this stage, each X.,,, € RS/2*S/2x40 (i £ L) was finally reshaped to X[, €
RS/2xs/2Ex4575xp that helps to reduce the parameters in the next CNN stage.
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(a) Common Reshape mode for a 4x4x1 feature into size of 2x2x4.


https://doi.org/10.20944/preprints202402.0243.v1

Preprints.org (Wwww.preprints.org) | NOT PEER-REVIEWED | Posted: 5 February 2024

doi:10.20944/preprints202402.0243.v1

6
/16 78
1 I o 7 I a1

Z o= 1 _4_._ |
1 290 ) L4 6 /18
1:___ ! % 1 2 3 4 3:-__ ! :—5——7—{? -
5 6|78 3 /4 7018

———> -

3 - 1
9 |10 1|12 -

114 Q - % 116 1k
I-13-|-I 13|14 ) 15| 16 Iigl_l
(00 (57

9o [ T
(b) Reshape mode used in LLFWCNN for a 4x4x1 feature into size of 2x2x4.
Figure 8. Different Reshape mode.
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Figure 9. Stack mode for all X{,,,(i # L).

2.3. Convolutional Neural Network RM-CNN

Following the wavelet decomposition, there is a specially designed convolutional neural
network RM-CNN. The detailed structure is shown in Figure 10.
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Figure 10. Structure of the RM-CNN.

RM-CNN consists of two different types of modules: Rblock and Mblock. There is one Rblock at
the front and end of the network each. It mainly realizes feature extraction and pooling. The spatial
size of the output feature is reduced to half of the original input feature when passing through Rblock.
Compared with Rblock, Mblock does not have a pooling layer, but adopts skip connection. It brings
two benefits, one of which is to maintain the spatial size of the output feature and the other is to keep
the original input feature information from being lost by adding input information. K is a hyper-
parameter denoting the number of Mblock. The inner structures of Rblock and Mblock are shown in
Figure 11(a) and (b).
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Figure 11. Structure design of the two kinds of blocks.

In Figure 11(a), n is the number of convolutional kernels in convolutional layer. It can be the
same or not the same as b in Rblock, while in Mblock it must be the same as b.

Through the combined use of Reshape and RM-CNN, we achieved the goal of reducing the
number of parameters. Because the spatial size of the last features after wavelet decomposition is
relatively small, and was designed to be 4x4 or 6x6. After spatial dimension reduction twice by
RMCNN, the output size could be restricted to 1x1 or 2x2, so that the number of parameters in the
fully connected layer would be effectively reduced. For example, there is a feature cube of size
16x16x12. The number of convolutional kernels in Rblock and Mblock are 32, and kernel size is 3x3.

The parameter differences between reshaping and non-reshaping are listed in Table 1, and the
parts with the same parameters are omitted.

Table 1. Parameter settings of LLFWCNN for different datasets.

Para in

Input Reshape Output Rblockl Output2 FC Para in FC Total
16x16x12 Yes 4x4x48 13824 1x1x32 1024 32768 46592
No 16x16x12 864 4x4x32 1024 524288 525152

It is clear that the number of parameters after reshaping is only one-tenth of that without

reshaping.
3. Experiment

3.1. Datasets

We did experiments on three classical experimental datasets: Indian Pines, Pavia University and
Salinas. Indian Pines and Salinas were acquired by the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) sensor over the Indian Pines test site in North-western Indiana and Salinas
Valley. And Pavia University was captured by the Reflective Optics System Imaging Spectrometer
(ROSIS-03). AVIRIS provides 224 contiguous spectral bands, covering wavelengths from 0.4 to 2.5pum
and with a spatial resolution of 20m/pixel, while ROSIS-03 delivers 115 bands with a spectral
coverage ranging from 0.43 to 0.86um and with a spatial resolution of 1.3m/pixel. And we used a
corrected version of them by removing some water absorption bands and a blank strip. Indian Pines
consists 145x145 pixels, Salinas consists 512x217 pixels and Paiva University consists of 610x340
pixels. Both Indian Pines and Salinas consist of 16 ground-truth classes while Pavia University

contains 9 different classes.
3.2. Settings

3.2.1. Hyper-parameter Settings

There are six hyper-parameters of LLFWCNN, which are input spatial size, PCA value, depth
of wavelet decomposition, number of Rblock and Mblock and nodes in fully connected layer.
Different configurations for different datasets are listed in Table 2.
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Table 2. Hyper-parameter settings of LLFWCNN for different datasets.

Datasets Spatial Size PCA L* Rblock Mblock FC
Indian Pines 64x64 3 4 2 2 1024
Pavia University 32x32 3 3 2 2 1024
Salinas 48x48 3 3 2 2 1024

*L is the depth of wavelet decomposition.

3.2.2. Training parameter Settings

Parameters related to training are shown in Table 3. The stochastic gradient descent (SGD)
method was chosen for optimization. Batch size and learning rate were the same for all datasets that
were 8 and 0.02, but the epoch was different. Training proportion was set to 10% and 30% to illustrate
performance of all the six compared models. Tables 4-6 give the detailed split of training and testing
on the three datasets.

The running environment is: CPU i7-10700, GPU Nvidia GeForce RTX 2070, 8G video memory.

Table 3. Training parameter settings of LLFWCNN for different datasets.

. Learning Optimization Training Proportion
Datasets Batch size rate Drop Epoch Method 1 >
Indian Pines 16 0.002 0.4 150 SGD 10% 30%
Pavia University 16 0.002 0.4 50 SGD 10% 30%
Salinas 16 0.002 0.4 50 SGD 10% 30%

Table 4. Training set split on Indian Pines.

(a) training proportion=10% (b) training proportion=30%
Classes Train Test
Alfalfa 5 41

Corn-notill 143 1285
Corn-mintill 83 747
Corn 24 213
Grass-pasture 48 435
Grass-trees 73 657
Grass-pasture-mowed 3 25
Hay-windrowed 48 430
Oats 2 18
Soybean-notill 97 875
Soybean-mintill 245 2210
Soybean-clean 59 534
Wheat 20 185
Woods 126 1139
Buildings-Grass-Trees-Drives 39 347
Ston-Steel-Towers 9 84

Total 1024 9225
Classes Train Test
Alfalfa 14 32

Corn-notill 428 1000
Corn-mintill 249 581
Corn 71 166
Grass-pasture 145 338
Grass-trees 219 511

Grass-pasture-mowed 8 20
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Hay-windrowed 143 335
Oats 6 14
Soybean-notill 292 680
Soybean-mintill 736 1719
Soybean-clean 178 415
Wheat 62 143
Woods 379 886
Buildings-Grass-Trees-Drives 116 270
Ston-Steel-Towers 28 65
Total 3074 7175

Table 5. Training set split on Pavia University.

(a) training proportion=10% (b) training proportion=10%
Classes Train Test
Asphalt 663 5968

Meadows 1865 16784
Gravel 210 1889
Trees 306 2758
Painted metal sheets 134 1211
Bare-Soil 503 4526
Bitumen 133 1197
Self-Blocking Bricks 368 3314
Shadows 95 852
Total 4277 38499
Classes Train Test
Asphalt 1989 4642
Meadows 5594 13055
Gravel 630 1469
Trees 919 2145
Painted metal sheets 403 942
Bare-Soil 1509 3520
Bitumen 399 931
Self-Blocking Bricks 1105 2577
Shadows 284 663
Total 12832 29944

Table 6. Training set split on Salinas.

(a) training proportion=10% (b) training proportion=10%
Classes Train Test
Brocoli_green_weeds_1 201 1808
Brocoli_green_weeds_2 372 3354
Fallow 197 1779
Fallow_rough_plow 139 1255
Fallow_smooth 268 2410
Stubble 396 3563
Celery 358 3221
Grapes_untrained 1127 10144
Soil_vinyard_develop 620 5583
Corn_senesced_green_weeds 328 2950

Lettuce_romaine_ 4wk 107 961
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Lettuce_romaine_5wk 193 1734
Lettuce_romaine_6wk 91 825
Lettuce_romaine_7wk 107 963
Vinyard_untrained 727 6541
Vinyard_vertical_trellis 181 1626
Total 5412 48717
lasses Train Test
Brocoli_green_weeds_1 603 1406
Brocoli_green_weeds_2 1118 2608
Fallow 593 1383
Fallow_rough_plow 418 976
Fallow_smooth 803 1875
Stubble 1188 2771
Celery 1074 2505
Grapes_untrained 3381 7890
Soil_vinyard_develop 1861 4342
Corn_senesced_green_weeds 983 2295
Lettuce_romaine_4wk 320 748
Lettuce_romaine_5wk 578 1349
Lettuce_romaine_6wk 275 641
Lettuce_romaine_7wk 321 749
Vinyard_untrained 2180 5088
Vinyard_vertical_trellis 542 1265
Total 16238 37891

3.3. Results and Analysis of the Experiment

Experiments on each dataset were carried out 5 to 10 times to ensure the accuracy and reliability.
Three commonly used measurement indicators: Overall Accuracy (OA), Average Accuracy (AA) and
Kappa Coefficient (Kappa) were adopted. And their corresponding data listed in all the following
tables are multiplied by 100.

3.3.1. Comparisons of classification results

We compared the classification results of LLFWCNN and SpectralNet [31], 2D CNN [32], 3D
CNN [32], M3D CNN [33], FuSENET [34].

Tables 7 and 8 list the results under proportion 1 and 2. Optimal results are shown in bold, and
sub-optimal results are shown in italics.

Table 7. Results under proportion 1.

Datasets Indicators 2DCNN* 3DCNN* M3DCNN* FuSENet* SpectralNet* LLFWCNN
OA 80.27¢1.2  82.62+0.1  81.39+2.6  97.11+0.2  98.76x0.2  98.59+0.2

I;i::: AA  6832+41 7651201 7522407  97.32+02  9859+0.1  97.820.6
Kappa  78.26:21 79.25:03 8120:2.0 97.25:02  98.61:0.1  98.39+0.2
Pavia OA 966302 9634:02 95.95:0.6  97.65:03  99.7120.1  99.50+0.1

University AA 94.84+1.4  97.03x0.6  97.52+1.0 97.68+0.4  99.62%0.1  98.85+0.2
Kappa 95.53+0.2  94.90+1.2  93.40+0.4 97.69+0.3  99.43#0.2  99.34+0.1

OA 96.34+0.3  85.00+0.1  94.20+0.8  99.23+0.1  99.96+0.2 99.97+0.0

Salinas AA 94.36+0.5  89.63x0.2  96.66+0.5  99.16+0.1  99.96+0.1 99.97+0.0
Kappa 95.93+0.9  83.20+0.7  93.61+0.3  99.97+0.2  99.97+0.2 99.97+0.0

*Classification results of the models with * are based on the data provided in [31].
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Table 8. Results under proportion 2.

Datasets Indicators 2DCNN* 3DCNN* M3DCNN* FuSENet* SpectralNet LLFWCNN
OA 88.90£1.3  90.23+0.2  95.67+0.1  99.01+0.2  99.81+x0.1  99.70%0.1

Indi
Ir)lidnlzsn AA 87.01+1.6  89.87+0.1  94.60+0.6  98.64+0.1 99.40+0.5 99.51+0.3

Kappa 85.70+1.0 89.70+0.3 94.70+0.3  98.60+0.1 99.79+0.1 99.66x0.1

Pavia OA 96.50£0.4  97.90+0.3  97.60+0.2  99.42+0.2 99.94+0.1 99.88+0.0

University AA 96.00+0.1  97.30+£0.1  98.00+0.1  99.33+0.2 99.97+0.0 99.78+0.0
Kappa  96.55+0.3 97.22+0.1  96.50+0.6  99.21+0.3 99.92+0.1 99.85+0.0

OA 96.75+0.6  95.54+0.5 94.99+0.3  99.68+0.2  99.991%0.0 = 99.995x0.0

Salinas AA 98.57£0.2  97.09+0.6  96.28+0.2  99.69+0.1  99.992+0.0  99.990+0.0
Kappa 96.71x0.7 94.81+0.3  95.40+0.1  99.74+0.1  99.990+0.0  99.994+0.0

*Classification results of the models with * are based on the data provided in [31].

From the data of Tables 2 and 3 we found that both LLFWCNN and SpectralNet can perform
well, outperforming other models. Then, we further reduced the proportion of training samples to
5% and 1% to evaluate the classification effects of the two models under even smaller samples. The
results are given in Table 9.

Table 9. Classification results of LLFWCNN and SpectralNet under proportion 5% and 1%.

. 5% 1%
Datasets  Indicators =5 0 INet LLFWCNN _ SpectralNet  LLEWCNN
OA 94.38+0.9 95.75+0.4 62.56+2.3 79.38+1.1
Indian Pines ~ AA 91.08+1.3 91.56£0.9 48.17+2.2 63.52+1.2
Kappa 93.59+1.0 95.15:0.4 57.5542.6 76.46£1.3
Pavia OA 98.57+0.3 98.66£0.1 79.62+0.9 93.3720.1
Univeraity A 97.34+0.5 97.28+0.4 67.73+1.5 87.24+0.2
Kappa 98.11:0.4 98.16£0.3 7221413 91.15+0.1
OA 98.73+1.0 99.89+0.1 82.45+2.1 98.91+0.3
Salinas AA 99.38+0.4 99.88+0.1 85.35+1.1 98.62+0.2
Kappa 98.59+1.2 99.88+0.1 80.43+2.3 98.79+0.4

3.3.2. Comparison of the parameters

We compared the number of parameters of LLFWCNN with that of SpectralNet. And the results
are shown in Table 10.

Table 10. Parameters of LLFWCNN and SpectralNet.

Datasets LLFWCNN SpectralNet Ratio
Indian Pines 181264~0.173M 7591504~7.240M 1:42
Pavia University 168905=0.161M 6797897~6.483M 1:40
Salinas 176080~0.168M 6805072~6.490M 1:39

Based on the data in Tables 7-10, it can be seen that with only about 1/40 of the parameters of
SpectralNet, LLFWCNN obtains the same classification results as SpectralNet, and even better
classification results under small sample (training sample proportion 5%, 1%).

3.3.3. Ablation experiment

Ablation experiments were done to evaluate the performance of the low frequency component
and high frequency component. In the next tables, X/, represented using only low frequency, X}; gh
represented using only high frequency and Xj,,,+ Xj;,,, represented using both. The training sample
proportions were set to 10%, 5%, and 1% for all the three datasets. The classification indicators of the

doi:10.20944/preprints202402.0243.v1
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three datasets were shown in Tables 11-19. And Figure 11(a)-(i) show the variation of the overall
accuracy at the ratio of 10%, 5% and 1%, respectively.

Table 11. Classification results of different frequency for Indian Pines (training sample
proportion=10%).

%ow ;tigh iow+ X;tigh
OA AA Kappa OA AA Kappa OA AA Kappa
1 98.35+0.2 97.74+0.8 98.12+0.2 93.22+0.6 88.25+2.3 92.27+0.6 98.27+0.2 97.12+0.9 98.03+£0.3
2 98.36+0.2 97.78+0.6 98.13+0.3 94.29+0.3 89.89+2.2 93.48+0.3 98.29+0.2 97.48+0.8 98.05+0.3
3 98.59+0.2 97.82+0.6 98.39+0.2 94.96+0.9 91.05+2.2 94.25+1.1 98.20+0.2 96.53+0.9 97.93+0.2
4 98.43£0.1 97.56+0.4 98.21+0.1 95.22+0.5 90.35+0.7 94.55+0.5 97.49+1.1 93.85+1.2 96.91+1.0
All* OA: 98.01+0.2 AA: 96.73x0.9 Kappa: 97.88+0.2

*All indicates that all the four results (Xl,;., i=12,3,4) of wavelet decomposition (including low frequency and

Layer

high frequency) are taken as inputs.

Table 12. Classification results of different frequency for Indian Pines (training sample
proportion=5%).

Xfow ;.tigh %ow+ X;;igh
OA AA Kappa OA AA Kappa OA AA Kappa
1 92.92+0.6 84.24+0.7 91.92+0.7 75.58+0.6 58.20+1.4 71.94+0.8 93.54+0.4 84.67+2.0 92.61+0.5
2 94.61£0.4 88.85+1.0 93.84+0.4 77.02+0.9 62.25+0.9 73.66+1.0 93.32+0.3 83.34+1.7 92.38+0.3
3 95.75%0.4 91.56+0.9 95.15+0.4 84.27+0.8 69.70+2.5 81.98+0.9 93.70+0.4 84.43+2.1 92.81+0.5
4 95.63+£0.2 92.64+1.0 95.01+0.3 87.45+0.2 76.77+1.1 85.58+0.3 94.31+0.4 86.49+3.1 93.50+0.5
All OA: 94.19+0.2 AA: 85.53+1.2 Kappa: 93.37£0.2

Layer

Table 13. Classification results of different frequency for Indian Pines (training sample
proportion=1%).

i i Xi 4+ xi.

low high low high
OA AA Kappa OA AA Kappa OA AA Kappa
1 66.99+1.7 49.41+1.2 62.09£1.9 42.70+2.3 25.53+1.5 32.64+3.1 68.86+0.9 49.16+0.7 64.20+1.1
2 70.87£1.7 53.83+1.4 66.65+2.0 42.29+1.4 27.38+1.8 32.97+1.8 68.80+1.6 49.58+1.6 64.16+1.9
3  76.07+1.3 59.63+1.8 72.65+1.5 52.46+1.3 36.30+1.0 44.79+1.4 71.18+1.8 52.63+3.0 66.77+2.1
4  79.38+1.1 63.52+1.2 76.46+1.3 61.70+1.7 43.65£1.6 55.78+2.0 73.19+0.9 53.89+0.8 69.26+1.0
All OA: 69.04£1.0 AA: 50.51#1.1 Kappa: 64.39+1.1

Layer

Table 14. Classification results of different frequency for Pavia University (training sample
proportion=10%).

fow ;.1igh f0w+ X;.u'gh
OA AA Kappa OA AA Kappa OA AA Kappa
1 99.29+0.1 98.37+0.2 99.06+0.1 94.25+0.4 90.16+2.0 92.38+0.5 99.39+0.1 98.81+0.2 99.19+0.2
2 99.41£0.1 98.59+0.3 99.22+0.1 95.95+0.3 93.59+2.6 94.63+0.4 99.21+0.2 98.47+0.1 98.96+0.3
3 99.38+0.1 98.42+0.2 99.18+0.1 94.97+0.6 90.23+0.6 93.24+0.8 99.24+0.1 98.29+0.2 99.00+0.1
All* OA: 99.50+0.1 AA: 98.850.2 Kappa: 99.34+0.1

*All indicates that all the three results (XL, i=12,3) of wavelet decomposition (including low frequency and

Layer

high frequency) are taken as inputs.
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Table 15. Classification results of different frequency for Pavia University (training sample
proportion=5%).

;ow ;.1igh fow+ X;.u'gh
OA AA Kappa OA AA Kappa OA AA Kappa
1 98.15+0.2 96.49+0.4 97.56+0.3 89.98+1.3 81.33+1.0 86.70+1.8 98.42+0.1 97.10+0.2 97.91+0.2
2 98.56+0.1 97.10+0.2 98.09+0.1 92.43+0.5 85.91+1.3 89.97+0.7 98.45+0.2 96.89+0.4 97.94+0.3
3 98.74+0.1 97.43+0.2 98.33+0.1 91.12+0.8 85.69+0.7 88.21+1.0 98.65+0.1 97.48+0.7 98.21+0.1
All OA: 98.69+0.1 AA: 97.38+0.2 Kappa: 98.26+0.2

Layer

Table 16. Classification results of different frequency for Pavia University (training sample
proportion=1%).

Xfow ;.tigh %ow+ X;.dgh
OA AA Kappa OA AA Kappa OA AA Kappa
1 90.47+0.3 82.36x+0.6 87.23+0.4 73.07+1.1 51.86+1.2 63.43+1.9 90.10£0.5 80.60+0.8 86.73+0.6
2 92.32£0.9 84.75+1.0 89.73x1.1 76.86+£1.6 61.28+1.4 68.65+2.5 91.73+0.8 83.32+1.5 88.94x1.1
3 93.37+0.1 87.24+0.2 91.15+0.1 77.532£0.4 64.03+0.6 69.89+0.6 92.05+0.6 84.89+0.6 89.37+0.8
All OA: 91.40+04 AA: 82.81%0.7 Kappa: 88.51+0.6

Layer

Table 17. Classification results of different frequency for Salinas (training sample proportion=10%).

Xfow ;.1igh Xfow+ X;.u'gh
OA AA Kappa OA AA Kappa OA AA Kappa
1 99.97+0.0 99.97+0.0 99.97+0.0 99.33+0.2 99.57+0.1 99.25+0.3 99.77+0.4 99.79+0.4 99.74+0.5
2 99.97£0.0 99.97+0.0 99.97+0.0 99.61+0.1 99.74+0.1 99.56+0.1 99.97+0.0 99.97£0.0 99.97+0.0
3 99.97£0.0 99.96+0.0 99.96+0.0 99.65+0.1 99.72+0.1 99.61+0.1 99.98+0.0 99.97+0.0 99.97+0.0
All OA: 99.97+0.0 AA: 99.970.0 Kappa: 99.97+0.0

Layer

Table 18. Classification results of different frequency for Salinas (training sample proportion=5%).

fow ;.1igh fow+ X;.u'gh
OA AA Kappa OA AA Kappa OA AA Kappa
1 99.65+0.1 99.79+0.0 99.61£0.1 97.87+0.5 98.55+0.6 97.62+0.5 99.70+0.3 99.81+0.1 99.67+0.3
2 99.88+£0.0 99.89+0.0 99.87+0.0 98.16+0.4 98.94+0.2 97.95+0.4 99.73+0.3 99.82+0.1 99.70+0.3
3 99.89+0.1 99.88+0.1 99.88+0.1 98.47+0.4 99.03+0.3 98.29+0.5 99.87+0.0 99.88+0.0 99.86+0.0
All OA: 99.84+0.0 AA: 99.86x0.1 Kappa: 99.82+0.1

Layer

Table 19. Classification results of different frequency for Salinas (training sample proportion=1%).

;'ow ;.1igh ;.ow+ X;.u'gh
OA AA Kappa OA AA Kappa OA AA Kappa
1 97.59+0.3 98.09+£0.2 97.31+0.3 83.28+1.0 83.94+1.0 81.28+1.2 97.33+0.5 97.96+0.4 97.03+0.6
2 98.16+0.4 98.32+0.3 97.95+0.5 88.19+0.8 89.93+1.1 86.79+0.9 98.48+0.3 98.40+0.2 98.30+0.3
3 98.91+0.3 98.62+0.2 98.79+0.4 91.00+£0.5 92.45+0.5 89.96+0.6 98.60+0.3 98.43+0.2 98.44+0.4
All OA: 97.67+0.5 AA: 98.14+0.5 Kappa: 97.41+0.6

Layer
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Figure 11. Variation of the Overall Accuracy on the three datasets.

As can be seen from the experiment results in Tables 11-19 and Figure 11, the effects of low
frequency and high frequency components after wavelet decomposition on HSIC are indeed
significantly different.

1) The classification result of low frequency features is better or much better than that of high
frequency features;

2) For datasets itself with large sample such as Pavia University and Salinas, the smaller the
proportion of training samples, the better the effect of using low frequency component X}, for
classification. While for dataset with a small sample e.g. Indian Pines, the advantage of using low
frequency component X, for classification is more obvious;

3) For the different components from the same layer after wavelet decomposition, the
classification effect of the mixed features of low frequency and high frequency is between that of the
low frequency and high frequency;

4) In most cases, the higher the decomposition level, the better the classification results of the
corresponding low frequency or high frequency features, especially when the sample size is small
(such as 1%). The best classification results of the three datasets are obtained by the low frequency
component at the highest wavelet decomposition level.

3.3.4. Parameters of different frequency

At the same time, a comparison of the number of parameters used in the classification for low
frequency and high frequency of different layers is shown in Figure 12(a)-(c).
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Figure 12. Parameters used in the classification for low frequency and high frequency of different
layers.

Two conclusions can be drawn from Figure 12:

1) When using the features of different layers to classify, the number of parameters producing
in the model is different. The deeper the layer number, the smaller the number of parameters;

2) When low frequency component and high frequency component participate in classification,
the number of parameters producing in the model is also different, which is smaller for low frequency
than that of high frequency.

3.3.5. Influence of other hyper-parameters

In paragraph 3.2, we listed the settings for most of the hyper-parameters. In fact, during the
experiments, the best value of the hyper-parameters was not easy to determine. Most of the time, we
took all aspects of the factors in consideration, and finally determined a most appropriate value.

For example, considering the requirement of wavelet decomposition, the input spatial size was
first set to 16, 32, 64 which were multiples of 2. And then some available values were also tried, e.g.
24, 48. At the same time, the bigger the input size, the bigger the depth of the wavelet decomposition.
Otherwise, the input for RMCNN would be bigger and produce more parameters.

Take Indian Pines for example. The low frequency features after the last wavelet decomposition
were feed to the model and training ratio was 1%. Figure 13 is a comprehensive illustration for all the
influential factors to be taken into account of.

Comprehensive Indicators Training time
—.—O0A
Trian Time(s) Parameters
600 12
500
0.812 0.9
400 0.741 AR A 0.732 0.794
0.674__——7" 3505
300 0.6
200
0.3
100
0 0.0

16¥16(L=2) 32*32(L=2) 64*64(L=2) 32*32(L=3) 64*64(L=3) 64*64(L=4)

Spatial Size

Figure 13. The different influence of input spatial size.

At the same level (L=2) of wavelet decomposition, the overall accuracy raised when it turned
from 16 to 64. And the number of parameters and training time increased as well. The increase of OA
was relatively small, but the increase of parameter number and training time were very large. A
similar situation occurred when it came to a high level (L=3). Because of the small size of Indian Pines
itself, the larger input such as 128x128 was not used.

We could see that the three optimal OA results were the results of the same input 64x64 when L
was 2, 3, 4 respectively. When the number of parameters, the training time and the training ratio were
all taken into account, setting the depth of wavelet decomposition be 4 was better.

For Pavia University and Salinas, the same experiments were carried out, and the final hyper-
parameters were set as shown in Table 2.
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4. Conclusion

In this paper, a LLFWCNN network model is proposed to classify HSI after two-dimensional
wavelet decomposition. The following conclusions can be drawn from results of the experiments:

1. LLFWCNN uses fewer parameters to obtain a comparable classification effect compared with
other excellent models, especially in the case of small samples.

2. Results of the experiment show that spatial information from the low frequency and high
frequency after wavelet decomposition have different effects on HSIC. Spatial information of the low
frequency contains more favorable information for classification, which is relatively more useful.

3. The classification results of the LLFWCNN model prove that the low frequency features after
wavelet decomposition already have enough effective information. It can be considered to discard
the high frequency components after wavelet decomposition or to employ different processing
methods to improve the efficiency of the use of high frequency components in terms of the different
effects of the low frequency and high frequency components on HSIC.

The conclusions above provide effective experimental support for the follow up study on how
to make full use of wavelet decomposition in HSIC in the case of small samples.
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