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Abstract: In recent years, researches on combining wavelet decomposition and convolutional neural 

network (CNN) together to classify hyperspectral images (HSI) have emerged, and some effective 

classification models have been proposed and achieved good classification results. However, there 

are two problems for most of the proposed models. One is the heavy training parameters and the 

other is that there is no distinction between the classification effectiveness of low frequency and 

high frequency features after wavelet decomposition. In this paper, a new light-weighted HSI 

classification model (LLFWCNN) is proposed, which performs multi-layer wavelet decomposition 

for HSI after dimensionality reduction, and only arranges the low frequency features in a specific 

stack mode, then classifies them through a well-designed convolutional neural network. Compared 

with other classification models, the number of parameters is only 2.5% of that of other models. And 

only the low frequency features after wavelet decomposition are used, while the high frequency 

features are abandoned. The results showed that compared with the state-of-the-art classification 

models, LLFWCNN could obtain the same or even better classification results with fewer network 

parameters, and proved that the low frequency features after wavelet decomposition provide 

LLFWCNN with more favorable information for HSI classification as well. 

Keywords: wavelet; wavelet decomposition; low frequency; light-weighted; hyperspectral; 

hyperspectral classification 

 

1. Introduction 

Hyperspectral image (HSI) classification is a common but very important task in hyperspectral 

image processing. It is widely used in vegetation cover monitoring, ground object classification, 

mineral exploration, military reconnaissance, atmospheric environment research, etc. [1–6]. 

Hyperspectral classification (HSIC) is to identify each pixel on the hyperspectrum as the correct 

category, and the spectral and spatial information of each pixel provides effective information for 

hyperspectral classification. For example, Hecker etc. used spectral angle for pixel matching to 

evaluate the effect of spectral information in HSIC [7]. Demir and Camps-Valls proposed 

classification model using the of hyperspectrum on statistics and kernel method [8,9]. while another 

main approach combined the spectral information and spatial information of hyperspectrum for 

research [10–14]. In recent years, Convolutional Neural networks (CNN) have made remarkable 

achievements in the field of image processing. Researchers have introduced convolutional neural 

networks into hyperspectral classification. Network models such as 1D-CNN [15,16], 2D-CNN [17–

20], 3D-CNN [21–23] and hybrid CNN [24–26] have been proposed successively, all of which have 

achieved good classification results. 

In recent years, many researchers have introduced wavelet decomposition into hyperspectral 

classification tasks and proposed many novel classification methods [27–30]. For example, in 3DGPC-
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HDM framework [28], a three-dimensional Gabor wavelet (Figure 1) was introduced to extract the 

joint spectral-spatial features of HSI, and a phase coding and Hamming-distance matching 

framework based on the three-dimensional Gabor wavelet was proposed. Cao etc. [30] proposed an 

enhanced 3DDWT (E-3DDWT, Figure 2) method which discarded partial of the sub cubes after 

wavelet decomposition to extract features and alleviate the noise simultaneously. SpectralNet [31] 

carried out four-layer wavelet decomposition of HSI blocks, extracted further features by CNN and 

then classified (Figure 3). It had achieved very good results on the three classical HSI datasets, 

however, the number of parameters in the model was relatively large, about 6-7M. 

 

Figure 1. Three-dimensional Gabor wavelet [28]. 

 

Figure 2. Lth level decomposition procedure of E-3DDWT [30]. 

 

Figure 3. Architecture of SpectralNet [31]. 

However, there are two problems for most of the above wavelet-based models. One is the 

heavy training parameters and the other is that there is no distinction between the classification 

effectiveness of low frequency and high frequency features after wavelet decomposition, both low 

and high frequency components are used in the classification model. 
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In this paper, a light-weighted low frequency wavelet-based convolutional neural network 

model LLFWCNN is proposed. There are two main contributions of this paper: 

1. The proposed LLFWCNN using a combination of wavelet decomposition, feature reshape and 

a well-designed CNN to obtains comparable or even better results and fewer parameters than 

other state-of-the-art models, especially in small samples. 

2. It proves that the influence of low frequency and high frequency after wavelet decomposition 

on HSIC is different. The low frequency features include much more advantageous information 

for HSIC than high frequency features. Low frequency component is enough. 

2. Proposed Model 

2.1. Overall Architecture 

The overall architecture of LLFWCNN is shown as Figure 4. 

 

Figure 4. The overall architecture of LLFWCNN. 

The LLFWCNN contains the following four stages: dimension reduction, wavelet 

decomposition, feature extraction and classification, the first three of which are described in detail 

below. 

2.2. Dimension Reduction and Wavelet Decomposition 

2.2.1. Dimension Reduction 

In order to effectively reduce the computational complexity of HSI data, we introduce Principal 

Component Analysis (PCA) method as preprocessing to lower the dimensionality of the original HSI. 

PCA is one of the most widely used data dimensionality reduction algorithms, which preserve the 

most important features of the original high dimensional data and map the high dimensional data to 

the low dimensional space. 

The original input HSI is 𝑋௜௠௔௚௘ ∈ 𝑅ு×ௐ×஻，where H, W and B represent the length, width and 

spectral dimension of HSI respectively. After PCA dimension reduction, the input Ximage is 

transformed to 𝑋௜௠௔௚௘ᇱ ∈ 𝑅ு×ௐ×௣ (p<<B). 
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2.2.2. Wavelet Decomposition 

Wavelet decomposition is carried out on the resized HSI. Wavelet decomposition is a classical 

method for signal processing and analysis. Figure 5 illustrates the process of how two-dimensional 

discrete wavelet decomposition works on images. 

 

Figure 5. Process of two-dimensional discrete wavelet decomposition. 

The image is decomposed into four sub-bands by two-dimensional wavelet decomposition, in 

which the LL sub-band is the low frequency component, and the HL, LH and HH sub-bands are the 

high frequency components in the horizontal, vertical and diagonal directions, respectively. The low 

frequency component with a low resolution is an approximation to the original image and describes 

the main part of the image. While the high frequency component embodies the details of the image. 

The procedure after dimension reduction is divided into three steps as follow: 

1) Firstly, extract the hyperspectral input cube 𝑋௖௨௕௘଴ ∈ 𝑅ௌ×ௌ×௣  pixel by pixel from the pre-

processed input HSI  𝑋௜௠௔௚௘ᇱ , where S represents the cube size.  

2) Secondly, a two-dimensional wavelet decomposition is performed on a single image 𝐼௠ ∈𝑅ௌ×ௌ×ଵ（m=1, 2, …, p）extracted from  𝑋௖௨௕௘଴  along the spectral dimension, forming the result denoted 

as 𝐼௠ᇱ  （m=1, 2, …, p）with the size 𝑆/2 × 𝑆/2 × 4.  p images from p bands lead to p features 𝐼௠ᇱ （
m=1, 2, …, p）. 

3) Thirdly, the p features 𝐼௠ᇱ  （m=1, 2, …, p）are stacked in the order of "low frequency + high 

frequency", and then obtain the wavelet decomposition result 𝑋௖௨௕௘ଵ ∈ 𝑅ௌ/ଶ×ௌ/ଶ×ସ௣ (Figure 6). The low 

frequency part of 𝑋௖௨௕௘ଵ  is denoted as 𝑋௟௢௪ଵ , and the high frequency part is denoted as 𝑋௛௜௚௛ଵ . 

4) The low frequency part 𝑋௟௢௪ଵ  is selected and decomposed until the Lth layer in the above way 

to get the result 𝑋௖௨௕௘௅ ∈ 𝑅ௌ/ଶಽ×ௌ/ଶಽ×ସ௣of the L-layer wavelet decomposition. The complete procedure 

is shown in Figure 7. 

 

Figure 6. Stack mode for the feature of the ith-layer wavelet decomposition. 
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Figure 7. Procedure of multilayer wavelet decomposition. 

2.2.3. Feature Reshape 

Feature reshape is a very important step in the LLFWCNN. Except the results obtained in the 

last wavelet decomposition layer, the results of each layer were reshaped to the size of the features 

of the last layer. 

The commonly used reshape mode for a single image is “reshape by row”. For example, if we 

want to reshape a 4×4×1 feature into size of 2×2×4, the reshape mode is shown in Figure 8(a). In this 

mode, each row vector of size 1×4×1 is rearranged to a vector of size 1×1×4 (left part of Figure 8(a)). 

And then the four new vectors were stacked in the order (right part of Figure 8(a)) to obtain the 

feature cube of size 2×2×4. 

However, this mode is not suitable when the feature is a result of wavelet decomposition. 

Because there is inner relationship among the pixels in a square area not in a row. Therefore, another 

reshape mode was used.  For the above example, pixels in a specific 2×2 square area are considered 

to be intrinsically related. Figure 8(b) shows how the reshaping is executed. 

After the features of multi-channels were reshaped, they were stacked in the way as in Figure 9. 

Hence, in this stage, each 𝑋௖௨௕௘௜ ∈ 𝑅ௌ/ଶ೔×ௌ/ଶ೔×ସ௣  (i ≠ L) was finally reshaped to 𝑋௖௨௕௘௜ᇱ ∈𝑅ௌ/ଶಽ×ௌ/ଶಽ×ସಽష೔×௣, that helps to reduce the parameters in the next CNN stage. 

 
(a) Common Reshape mode for a 4×4×1 feature into size of 2×2×4. 
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(b) Reshape mode used in LLFWCNN for a 4×4×1 feature into size of 2×2×4. 

Figure 8. Different Reshape mode. 

 

Figure 9. Stack mode for all 𝑋௖௨௕௘௜ ሺ𝑖 ് 𝐿ሻ. 

2.3. Convolutional Neural Network RM-CNN 

Following the wavelet decomposition, there is a specially designed convolutional neural 

network RM-CNN. The detailed structure is shown in Figure 10. 

 

Figure 10. Structure of the RM-CNN. 
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the front and end of the network each. It mainly realizes feature extraction and pooling. The spatial 

size of the output feature is reduced to half of the original input feature when passing through Rblock. 

Compared with Rblock, Mblock does not have a pooling layer, but adopts skip connection. It brings 

two benefits, one of which is to maintain the spatial size of the output feature and the other is to keep 

the original input feature information from being lost by adding input information. K is a hyper-

parameter denoting the number of Mblock. The inner structures of Rblock and Mblock are shown in 

Figure 11(a) and (b). 
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(a) Rblock (b) Mblock 

Figure 11. Structure design of the two kinds of blocks. 

In Figure 11(a), n is the number of convolutional kernels in convolutional layer. It can be the 

same or not the same as b in Rblock, while in Mblock it must be the same as b. 

Through the combined use of Reshape and RM-CNN, we achieved the goal of reducing the 

number of parameters. Because the spatial size of the last features after wavelet decomposition is 

relatively small, and was designed to be 4×4 or 6×6. After spatial dimension reduction twice by 

RMCNN, the output size could be restricted to 1×1 or 2×2, so that the number of parameters in the 

fully connected layer would be effectively reduced. For example, there is a feature cube of size 

16×16×12. The number of convolutional kernels in Rblock and Mblock are 32, and kernel size is 3×3. 

The parameter differences between reshaping and non-reshaping are listed in Table 1, and the 

parts with the same parameters are omitted. 

Table 1. Parameter settings of LLFWCNN for different datasets. 

Input Reshape Output 
Para in 

Rblock1 
Output2 FC Para in FC Total 

16×16×12 
Yes 4×4×48 13824 1×1×32 1024 32768 46592 

No 16×16×12 864 4×4×32 1024 524288 525152 

It is clear that the number of parameters after reshaping is only one-tenth of that without 

reshaping. 

3. Experiment 

3.1. Datasets 

We did experiments on three classical experimental datasets: Indian Pines, Pavia University and 

Salinas. Indian Pines and Salinas were acquired by the Airborne Visible Infrared Imaging 

Spectrometer (AVIRIS) sensor over the Indian Pines test site in North-western Indiana and Salinas 

Valley. And Pavia University was captured by the Reflective Optics System Imaging Spectrometer 

(ROSIS-03). AVIRIS provides 224 contiguous spectral bands, covering wavelengths from 0.4 to 2.5μm 

and with a spatial resolution of 20m/pixel, while ROSIS-03 delivers 115 bands with a spectral 

coverage ranging from 0.43 to 0.86μm and with a spatial resolution of 1.3m/pixel. And we used a 

corrected version of them by removing some water absorption bands and a blank strip. Indian Pines 

consists 145×145 pixels, Salinas consists 512×217 pixels and Paiva University consists of 610×340 

pixels. Both Indian Pines and Salinas consist of 16 ground-truth classes while Pavia University 

contains 9 different classes. 

3.2. Settings 

3.2.1. Hyper-parameter Settings 

There are six hyper-parameters of LLFWCNN, which are input spatial size, PCA value, depth 

of wavelet decomposition, number of Rblock and Mblock and nodes in fully connected layer. 

Different configurations for different datasets are listed in Table 2. 

M
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Table 2. Hyper-parameter settings of LLFWCNN for different datasets. 

Datasets Spatial Size PCA L* Rblock Mblock FC 

Indian Pines 64×64 3 4 2 2 1024 

Pavia University 32×32 3 3 2 2 1024 

Salinas 48×48 3 3 2 2 1024 

*L is the depth of wavelet decomposition. 

3.2.2. Training parameter Settings 

Parameters related to training are shown in Table 3. The stochastic gradient descent (SGD) 

method was chosen for optimization. Batch size and learning rate were the same for all datasets that 

were 8 and 0.02, but the epoch was different. Training proportion was set to 10% and 30% to illustrate 

performance of all the six compared models. Tables 4–6 give the detailed split of training and testing 

on the three datasets. 

The running environment is: CPU i7-10700, GPU Nvidia GeForce RTX 2070, 8G video memory. 

Table 3. Training parameter settings of LLFWCNN for different datasets. 

Datasets Batch size 
Learning 

rate 
Drop Epoch 

Optimization 

Method 

Training Proportion

1 2 

Indian Pines 16 0.002 0.4 150 SGD 10% 30% 

Pavia University 16 0.002 0.4 50 SGD 10% 30% 

Salinas 16 0.002 0.4 50 SGD 10% 30% 

Table 4. Training set split on Indian Pines. 

(a)  training proportion=10%  (b) training proportion=30% 

Classes Train Test 

Alfalfa 5 41 

Corn-notill 143 1285 

Corn-mintill 83 747 

Corn 24 213 

Grass-pasture 48 435 

Grass-trees 73 657 

Grass-pasture-mowed 3 25 

Hay-windrowed 48 430 

Oats 2 18 

Soybean-notill 97 875 

Soybean-mintill 245 2210 

Soybean-clean 59 534 

Wheat 20 185 

Woods 126 1139 

Buildings-Grass-Trees-Drives 39 347 

Ston-Steel-Towers 9 84 

Total 1024 9225 

Classes Train Test 

Alfalfa 14 32 

Corn-notill 428 1000 

Corn-mintill 249 581 

Corn 71 166 

Grass-pasture 145 338 

Grass-trees 219 511 

Grass-pasture-mowed 8 20 
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Hay-windrowed 143 335 

Oats 6 14 

Soybean-notill 292 680 

Soybean-mintill 736 1719 

Soybean-clean 178 415 

Wheat 62 143 

Woods 379 886 

Buildings-Grass-Trees-Drives 116 270 

Ston-Steel-Towers 28 65 

Total 3074 7175 

Table 5. Training set split on Pavia University. 

(a)  training proportion=10%      (b) training proportion=10% 

Classes Train Test 

Asphalt 663 5968 

Meadows 1865 16784 

Gravel 210 1889 

Trees 306 2758 

Painted metal sheets 134 1211 

Bare-Soil 503 4526 

Bitumen 133 1197 

Self-Blocking Bricks 368 3314 

Shadows 95 852 

Total 4277 38499 

Classes Train Test 

Asphalt 1989 4642 

Meadows 5594 13055 

Gravel 630 1469 

Trees 919 2145 

Painted metal sheets 403 942 

Bare-Soil 1509 3520 

Bitumen 399 931 

Self-Blocking Bricks 1105 2577 

Shadows 284 663 

Total 12832 29944 

Table 6. Training set split on Salinas. 

(a)  training proportion=10%    (b) training proportion=10% 

Classes Train Test 

Brocoli_green_weeds_1 201 1808 

Brocoli_green_weeds_2 372 3354 

Fallow 197 1779 

Fallow_rough_plow 139 1255 

Fallow_smooth 268 2410 

Stubble 396 3563 

Celery 358 3221 

Grapes_untrained 1127 10144 

Soil_vinyard_develop 620 5583 

Corn_senesced_green_weeds 328 2950 

Lettuce_romaine_4wk 107 961 
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Lettuce_romaine_5wk 193 1734 

Lettuce_romaine_6wk 91 825 

Lettuce_romaine_7wk 107 963 

Vinyard_untrained 727 6541 

Vinyard_vertical_trellis 181 1626 

Total 5412 48717 

lasses Train Test 

Brocoli_green_weeds_1 603 1406 

Brocoli_green_weeds_2 1118 2608 

Fallow 593 1383 

Fallow_rough_plow 418 976 

Fallow_smooth 803 1875 

Stubble 1188 2771 

Celery 1074 2505 

Grapes_untrained 3381 7890 

Soil_vinyard_develop 1861 4342 

Corn_senesced_green_weeds 983 2295 

Lettuce_romaine_4wk 320 748 

Lettuce_romaine_5wk 578 1349 

Lettuce_romaine_6wk 275 641 

Lettuce_romaine_7wk 321 749 

Vinyard_untrained 2180 5088 

Vinyard_vertical_trellis 542 1265 

Total 16238 37891 

3.3. Results and Analysis of the Experiment 

Experiments on each dataset were carried out 5 to 10 times to ensure the accuracy and reliability. 

Three commonly used measurement indicators: Overall Accuracy (OA), Average Accuracy (AA) and 

Kappa Coefficient (Kappa) were adopted. And their corresponding data listed in all the following 

tables are multiplied by 100. 

3.3.1. Comparisons of classification results 

We compared the classification results of LLFWCNN and SpectralNet [31], 2D CNN [32], 3D 

CNN [32], M3D CNN [33], FuSENET [34]. 

Tables 7 and 8 list the results under proportion 1 and 2. Optimal results are shown in bold, and 

sub-optimal results are shown in italics. 

Table 7. Results under proportion 1. 

Datasets Indicators 2DCNN* 3DCNN* M3DCNN* FuSENet* SpectralNet* LLFWCNN 

Indian 

Pines 

OA 80.27±1.2  82.62±0.1  81.39±2.6  97.11±0.2  98.76±0.2 98.59±0.2 

AA 68.32±4.1 76.51±0.1 75.22±0.7 97.32±0.2 98.59±0.1 97.82±0.6 

Kappa 78.26±2.1 79.25±0.3 81.20±2.0 97.25±0.2 98.61±0.1 98.39±0.2 

Pavia 

University 

OA 96.63±0.2  96.34±0.2  95.95±0.6  97.65±0.3  99.71±0.1 99.50±0.1 

AA 94.84±1.4 97.03±0.6 97.52±1.0 97.68±0.4 99.62±0.1 98.85±0.2 

Kappa 95.53±0.2 94.90±1.2 93.40±0.4 97.69±0.3 99.43±0.2 99.34±0.1 

Salinas 

OA 96.34±0.3  85.00±0.1  94.20±0.8  99.23±0.1  99.96±0.2 99.97±0.0 

AA 94.36±0.5 89.63±0.2 96.66±0.5 99.16±0.1 99.96±0.1 99.97±0.0 

Kappa 95.93±0.9 83.20±0.7 93.61±0.3 99.97±0.2 99.97±0.2 99.97±0.0 

*Classification results of the models with * are based on the data provided in [31]. 
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Table 8. Results under proportion 2. 

Datasets Indicators 2DCNN* 3DCNN* M3DCNN* FuSENet* SpectralNet LLFWCNN 

Indian 

Pines 

OA 88.90±1.3  90.23±0.2  95.67±0.1  99.01±0.2  99.81±0.1 99.70±0.1 

AA 87.01±1.6 89.87±0.1 94.60±0.6 98.64±0.1 99.40±0.5 99.51±0.3 

Kappa 85.70±1.0 89.70±0.3 94.70±0.3 98.60±0.1 99.79±0.1 99.66±0.1 

Pavia 

University 

OA 96.50±0.4  97.90±0.3  97.60±0.2  99.42±0.2  99.94±0.1 99.88±0.0 

AA 96.00±0.1 97.30±0.1 98.00±0.1 99.33±0.2 99.97±0.0 99.78±0.0 

Kappa 96.55±0.3 97.22±0.1 96.50±0.6 99.21±0.3 99.92±0.1 99.85±0.0 

Salinas 

OA 96.75±0.6  95.54±0.5  94.99±0.3  99.68±0.2  99.991±0.0 99.995±0.0 

AA 98.57±0.2 97.09±0.6 96.28±0.2 99.69±0.1 99.992±0.0 99.990±0.0 

Kappa 96.71±0.7 94.81±0.3 95.40±0.1 99.74±0.1 99.990±0.0 99.994±0.0 

*Classification results of the models with * are based on the data provided in [31]. 

From the data of Tables 2 and 3 we found that both LLFWCNN and SpectralNet can perform 

well, outperforming other models. Then, we further reduced the proportion of training samples to 

5% and 1% to evaluate the classification effects of the two models under even smaller samples. The 

results are given in Table 9. 

Table 9. Classification results of LLFWCNN and SpectralNet under proportion 5% and 1%. 

Datasets Indicators 
5% 1% 

SpectralNet LLFWCNN SpectralNet LLFWCNN 

Indian Pines 

OA 94.38±0.9 95.75±0.4 62.56±2.3 79.38±1.1 

AA 91.08±1.3 91.56±0.9 48.17±2.2 63.52±1.2 

Kappa 93.59±1.0 95.15±0.4 57.55±2.6 76.46±1.3 

Pavia 

University 

OA 98.57±0.3 98.66±0.1 79.62±0.9 93.37±0.1 

AA 97.34±0.5 97.28±0.4 67.73±1.5 87.24±0.2 

Kappa 98.11±0.4 98.16±0.3 72.21±1.3 91.15±0.1 

Salinas 

OA 98.73±1.0 99.89±0.1 82.45±2.1 98.91±0.3 

AA 99.38±0.4 99.88±0.1 85.35±1.1 98.62±0.2 

Kappa 98.59±1.2 99.88±0.1 80.43±2.3 98.79±0.4 

3.3.2. Comparison of the parameters 

We compared the number of parameters of LLFWCNN with that of SpectralNet. And the results 

are shown in Table 10. 

Table 10. Parameters of LLFWCNN and SpectralNet. 

Datasets LLFWCNN SpectralNet Ratio 

Indian Pines 181264≈0.173M 7591504≈7.240M 1:42 

Pavia University 168905≈0.161M 6797897≈6.483M 1:40 

Salinas 176080≈0.168M 6805072≈6.490M 1:39 

Based on the data in Tables 7–10, it can be seen that with only about 1/40 of the parameters of 

SpectralNet, LLFWCNN obtains the same classification results as SpectralNet, and even better 

classification results under small sample (training sample proportion 5%, 1%). 

3.3.3. Ablation experiment 

Ablation experiments were done to evaluate the performance of the low frequency component 

and high frequency component. In the next tables, 𝑋௟௢௪௜  represented using only low frequency, 𝑋௛௜௚௛௜  

represented using only high frequency and 𝑋௟௢௪௜ + 𝑋௛௜௚௛௜  represented using both. The training sample 

proportions were set to 10%, 5%, and 1% for all the three datasets. The classification indicators of the 
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three datasets were shown in Tables 11–19. And Figure 11(a)-(i) show the variation of the overall 

accuracy at the ratio of 10%, 5% and 1%, respectively. 

Table 11. Classification results of different frequency for Indian Pines (training sample 

proportion=10%). 

Layer 
𝑿𝒍𝒐𝒘𝒊  𝑿𝒉𝒊𝒈𝒉𝒊  𝑿𝒍𝒐𝒘𝒊 + 𝑿𝒉𝒊𝒈𝒉𝒊  

OA AA Kappa OA AA Kappa OA AA Kappa 

1 98.35±0.2 97.74±0.8 98.12±0.2 93.22±0.6 88.25±2.3 92.27±0.6 98.27±0.2 97.12±0.9 98.03±0.3 

2 98.36±0.2 97.78±0.6 98.13±0.3 94.29±0.3 89.89±2.2 93.48±0.3 98.29±0.2 97.48±0.8 98.05±0.3 

3 98.59±0.2 97.82±0.6 98.39±0.2 94.96±0.9 91.05±2.2 94.25±1.1 98.20±0.2 96.53±0.9 97.93±0.2 

4 98.43±0.1 97.56±0.4 98.21±0.1 95.22±0.5 90.35±0.7 94.55±0.5 97.49±1.1 93.85±1.2 96.91±1.0 

All* OA：98.01±0.2 AA：96.73±0.9 Kappa：97.88±0.2 

*All indicates that all the four results (𝑋௖௨௕௘௜ , i=12,3,4) of wavelet decomposition (including low frequency and 

high frequency) are taken as inputs. 

Table 12. Classification results of different frequency for Indian Pines (training sample 

proportion=5%). 

Layer 
𝑿𝒍𝒐𝒘𝒊  𝑿𝒉𝒊𝒈𝒉𝒊  𝑿𝒍𝒐𝒘𝒊 + 𝑿𝒉𝒊𝒈𝒉𝒊  

OA AA Kappa OA AA Kappa OA AA Kappa 

1 92.92±0.6 84.24±0.7 91.92±0.7 75.58±0.6 58.20±1.4 71.94±0.8 93.54±0.4 84.67±2.0 92.61±0.5 

2 94.61±0.4 88.85±1.0 93.84±0.4 77.02±0.9 62.25±0.9 73.66±1.0 93.32±0.3 83.34±1.7 92.38±0.3 

3 95.75±0.4 91.56±0.9 95.15±0.4 84.27±0.8 69.70±2.5 81.98±0.9 93.70±0.4 84.43±2.1 92.81±0.5 

4 95.63±0.2 92.64±1.0 95.01±0.3 87.45±0.2 76.77±1.1 85.58±0.3 94.31±0.4 86.49±3.1 93.50±0.5 

All OA：94.19±0.2 AA：85.53±1.2 Kappa：93.37±0.2 

Table 13. Classification results of different frequency for Indian Pines (training sample 

proportion=1%). 

Layer 
𝑿𝒍𝒐𝒘𝒊  𝑿𝒉𝒊𝒈𝒉𝒊  𝑿𝒍𝒐𝒘𝒊 + 𝑿𝒉𝒊𝒈𝒉𝒊  

OA AA Kappa OA AA Kappa OA AA Kappa 

1 66.99±1.7 49.41±1.2 62.09±1.9 42.70±2.3 25.53±1.5 32.64±3.1 68.86±0.9 49.16±0.7 64.20±1.1 

2 70.87±1.7 53.83±1.4 66.65±2.0 42.29±1.4 27.38±1.8 32.97±1.8 68.80±1.6 49.58±1.6 64.16±1.9 

3 76.07±1.3 59.63±1.8 72.65±1.5 52.46±1.3 36.30±1.0 44.79±1.4 71.18±1.8 52.63±3.0 66.77±2.1 

4 79.38±1.1 63.52±1.2 76.46±1.3 61.70±1.7 43.65±1.6 55.78±2.0 73.19±0.9 53.89±0.8 69.26±1.0 

All OA：69.04±1.0 AA：50.51±1.1 Kappa：64.39±1.1 

Table 14. Classification results of different frequency for Pavia University (training sample 

proportion=10%). 

Layer 
𝑿𝒍𝒐𝒘𝒊  𝑿𝒉𝒊𝒈𝒉𝒊  𝑿𝒍𝒐𝒘𝒊 + 𝑿𝒉𝒊𝒈𝒉𝒊  

OA AA Kappa OA AA Kappa OA AA Kappa 

1 99.29±0.1 98.37±0.2 99.06±0.1 94.25±0.4 90.16±2.0 92.38±0.5 99.39±0.1 98.81±0.2 99.19±0.2 

2 99.41±0.1 98.59±0.3 99.22±0.1 95.95±0.3 93.59±2.6 94.63±0.4 99.21±0.2 98.47±0.1 98.96±0.3 

3 99.38±0.1 98.42±0.2 99.18±0.1 94.97±0.6 90.23±0.6 93.24±0.8 99.24±0.1 98.29±0.2 99.00±0.1 

All* OA：99.50±0.1 AA：98.85±0.2 Kappa：99.34±0.1 

*All indicates that all the three results (𝑋௖௨௕௘௜ , i=12,3) of wavelet decomposition (including low frequency and 

high frequency) are taken as inputs. 
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Table 15. Classification results of different frequency for Pavia University (training sample 

proportion=5%). 

Layer 
𝑿𝒍𝒐𝒘𝒊  𝑿𝒉𝒊𝒈𝒉𝒊  𝑿𝒍𝒐𝒘𝒊 + 𝑿𝒉𝒊𝒈𝒉𝒊  

OA AA Kappa OA AA Kappa OA AA Kappa 

1 98.15±0.2 96.49±0.4 97.56±0.3 89.98±1.3 81.33±1.0 86.70±1.8 98.42±0.1 97.10±0.2 97.91±0.2 

2 98.56±0.1 97.10±0.2 98.09±0.1 92.43±0.5 85.91±1.3 89.97±0.7 98.45±0.2 96.89±0.4 97.94±0.3 

3 98.74±0.1 97.43±0.2 98.33±0.1 91.12±0.8 85.69±0.7 88.21±1.0 98.65±0.1 97.48±0.7 98.21±0.1 

All OA：98.69±0.1 AA：97.38±0.2 Kappa：98.26±0.2 

Table 16. Classification results of different frequency for Pavia University (training sample 

proportion=1%). 

Layer 
𝑿𝒍𝒐𝒘𝒊  𝑿𝒉𝒊𝒈𝒉𝒊  𝑿𝒍𝒐𝒘𝒊 + 𝑿𝒉𝒊𝒈𝒉𝒊  

OA AA Kappa OA AA Kappa OA AA Kappa 

1 90.47±0.3 82.36±0.6 87.23±0.4 73.07±1.1 51.86±1.2 63.43±1.9 90.10±0.5 80.60±0.8 86.73±0.6 

2 92.32±0.9 84.75±1.0 89.73±1.1 76.86±1.6 61.28±1.4 68.65±2.5 91.73±0.8 83.32±1.5 88.94±1.1 

3 93.37±0.1 87.24±0.2 91.15±0.1 77.53±0.4 64.03±0.6 69.89±0.6 92.05±0.6 84.89±0.6 89.37±0.8 

All OA：91.40±0.4 AA：82.81±0.7 Kappa：88.51±0.6 

Table 17. Classification results of different frequency for Salinas (training sample proportion=10%). 

Layer 
𝑿𝒍𝒐𝒘𝒊  𝑿𝒉𝒊𝒈𝒉𝒊  𝑿𝒍𝒐𝒘𝒊 + 𝑿𝒉𝒊𝒈𝒉𝒊  

OA AA Kappa OA AA Kappa OA AA Kappa 

1 99.97±0.0 99.97±0.0 99.97±0.0 99.33±0.2 99.57±0.1 99.25±0.3 99.77±0.4 99.79±0.4 99.74±0.5 

2 99.97±0.0 99.97±0.0 99.97±0.0 99.61±0.1 99.74±0.1 99.56±0.1 99.97±0.0 99.97±0.0 99.97±0.0 

3 99.97±0.0 99.96±0.0 99.96±0.0 99.65±0.1 99.72±0.1 99.61±0.1 99.98±0.0 99.97±0.0 99.97±0.0 

All OA：99.97±0.0 AA：99.97±0.0 Kappa：99.97±0.0 

Table 18. Classification results of different frequency for Salinas (training sample proportion=5%). 

Layer 
𝑿𝒍𝒐𝒘𝒊  𝑿𝒉𝒊𝒈𝒉𝒊  𝑿𝒍𝒐𝒘𝒊 + 𝑿𝒉𝒊𝒈𝒉𝒊  

OA AA Kappa OA AA Kappa OA AA Kappa 

1 99.65±0.1 99.79±0.0 99.61±0.1 97.87±0.5 98.55±0.6 97.62±0.5 99.70±0.3 99.81±0.1 99.67±0.3 

2 99.88±0.0 99.89±0.0 99.87±0.0 98.16±0.4 98.94±0.2 97.95±0.4 99.73±0.3 99.82±0.1 99.70±0.3 

3 99.89±0.1 99.88±0.1 99.88±0.1 98.47±0.4 99.03±0.3 98.29±0.5 99.87±0.0 99.88±0.0 99.86±0.0 

All OA：99.84±0.0 AA：99.86±0.1 Kappa：99.82±0.1 

Table 19. Classification results of different frequency for Salinas (training sample proportion=1%). 

Layer 
𝑿𝒍𝒐𝒘𝒊  𝑿𝒉𝒊𝒈𝒉𝒊  𝑿𝒍𝒐𝒘𝒊 + 𝑿𝒉𝒊𝒈𝒉𝒊  

OA AA Kappa OA AA Kappa OA AA Kappa 

1 97.59±0.3 98.09±0.2 97.31±0.3 83.28±1.0 83.94±1.0 81.28±1.2 97.33±0.5 97.96±0.4 97.03±0.6 

2 98.16±0.4 98.32±0.3 97.95±0.5 88.19±0.8 89.93±1.1 86.79±0.9 98.48±0.3 98.40±0.2 98.30±0.3 

3 98.91±0.3 98.62±0.2 98.79±0.4 91.00±0.5 92.45±0.5 89.96±0.6 98.60±0.3 98.43±0.2 98.44±0.4 

All OA：97.67±0.5 AA：98.14±0.5 Kappa：97.41±0.6 
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(a) Indian Pines:ratio=10% (b) Indian Pines:ratio=5% (c) Indian Pines:ratio=1% 

   

(d) Pavia University:ratio=10% (e) Pavia University:ratio=5% (f) Pavia University:ratio=1% 

   

(g) Salinas:ratio=10% (h) Salinas:ratio=5% (i) Salinas:ratio=1% 

Figure 11. Variation of the Overall Accuracy on the three datasets. 

As can be seen from the experiment results in Tables 11–19 and Figure 11, the effects of low 

frequency and high frequency components after wavelet decomposition on HSIC are indeed 

significantly different. 

1) The classification result of low frequency features is better or much better than that of high 

frequency features; 

2) For datasets itself with large sample such as Pavia University and Salinas, the smaller the 

proportion of training samples, the better the effect of using low frequency component 𝑋௟௢௪௜  for 

classification. While for dataset with a small sample e.g. Indian Pines, the advantage of using low 

frequency component 𝑋௟௢௪௜  for classification is more obvious;  

3) For the different components from the same layer after wavelet decomposition, the 

classification effect of the mixed features of low frequency and high frequency is between that of the 

low frequency and high frequency;  

4) In most cases, the higher the decomposition level, the better the classification results of the 

corresponding low frequency or high frequency features, especially when the sample size is small 

(such as 1%). The best classification results of the three datasets are obtained by the low frequency 

component at the highest wavelet decomposition level. 

3.3.4. Parameters of different frequency 

At the same time, a comparison of the number of parameters used in the classification for low 

frequency and high frequency of different layers is shown in Figure 12(a)-(c). 
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Figure 12. Parameters used in the classification for low frequency and high frequency of different 

layers. 

Two conclusions can be drawn from Figure 12: 

1) When using the features of different layers to classify, the number of parameters producing 

in the model is different. The deeper the layer number, the smaller the number of parameters; 

2) When low frequency component and high frequency component participate in classification, 

the number of parameters producing in the model is also different, which is smaller for low frequency 

than that of high frequency. 

3.3.5. Influence of other hyper-parameters 

In paragraph 3.2, we listed the settings for most of the hyper-parameters. In fact, during the 

experiments, the best value of the hyper-parameters was not easy to determine. Most of the time, we 

took all aspects of the factors in consideration, and finally determined a most appropriate value. 

For example, considering the requirement of wavelet decomposition, the input spatial size was 

first set to 16, 32, 64 which were multiples of 2. And then some available values were also tried, e.g. 

24, 48. At the same time, the bigger the input size, the bigger the depth of the wavelet decomposition. 

Otherwise, the input for RMCNN would be bigger and produce more parameters. 

Take Indian Pines for example. The low frequency features after the last wavelet decomposition 

were feed to the model and training ratio was 1%. Figure 13 is a comprehensive illustration for all the 

influential factors to be taken into account of. 

 

Figure 13. The different influence of input spatial size. 

At the same level (L=2) of wavelet decomposition, the overall accuracy raised when it turned 

from 16 to 64. And the number of parameters and training time increased as well. The increase of OA 

was relatively small, but the increase of parameter number and training time were very large. A 

similar situation occurred when it came to a high level (L=3). Because of the small size of Indian Pines 

itself, the larger input such as 128×128 was not used. 

We could see that the three optimal OA results were the results of the same input 64×64 when L 

was 2, 3, 4 respectively. When the number of parameters, the training time and the training ratio were 

all taken into account, setting the depth of wavelet decomposition be 4 was better.   

For Pavia University and Salinas, the same experiments were carried out, and the final hyper-

parameters were set as shown in Table 2. 
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4. Conclusion 

In this paper, a LLFWCNN network model is proposed to classify HSI after two-dimensional 

wavelet decomposition. The following conclusions can be drawn from results of the experiments: 

1. LLFWCNN uses fewer parameters to obtain a comparable classification effect compared with 

other excellent models, especially in the case of small samples. 

2. Results of the experiment show that spatial information from the low frequency and high 

frequency after wavelet decomposition have different effects on HSIC. Spatial information of the low 

frequency contains more favorable information for classification, which is relatively more useful. 

3. The classification results of the LLFWCNN model prove that the low frequency features after 

wavelet decomposition already have enough effective information. It can be considered to discard 

the high frequency components after wavelet decomposition or to employ different processing 

methods to improve the efficiency of the use of high frequency components in terms of the different 

effects of the low frequency and high frequency components on HSIC. 

The conclusions above provide effective experimental support for the follow up study on how 

to make full use of wavelet decomposition in HSIC in the case of small samples. 
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