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Abstract: In my paper, a divisibility rule named the Queen function is described, which has
been generalized for every integer and encompasses all previously established divisibility rules.
Subsequently, the paper discusses other areas where this function is instrumental. These include
simplifying ratios, generating prime numbers, and more. Towards the end of the paper, a set of
hypotheses is also presented. Among these, the most significant is the novel approach involving the
application of the Queen function for prime number generation.

Keywords: arithmetic functions; discrete mathematics; primes; number theory

MSC: 11A25; 11A05; 11A41; 11N05

Introduction

I would like to start our discussion with the question, what are integers or natural numbers?
Natural numbers have been a tool for measuring a reality humans have used for centuries. Integers,
on the other hand, are an abstraction that includes a bit more of the abstract aspect at a point where
they depart from reality. What are the characteristics of natural numbers then? Of course, one of
them is whether they are divisible by each other or not. Naturally, there are other features, but the
focus of this article is mostly on this aspect. When one natural number is divided by another natural
number resulting in another natural number, we call this divisibility, and by using this divisibility, we
generate some special numbers, such as prime numbers. I will touch on this topic shortly, but first, let’s
talk about the rules. What are the rules of divisibility, or in other words, the rules of being divisible?
Of course, the divisibility rules, just like natural numbers, have always been intriguing throughout
history. Imagine having such a power that directly gives you the divisibility of these natural numbers,
which you compulsively use throughout your life, it would be nice, of course. And for centuries, many
people have researched this and derived many divisibility rules. But there was a problem; none of
them were generalized. Until a recent article summarized this. Of course, similar rules are also written
in ancient texts, but the first known article written on this subject is "General Divisibility Criteria" by A.
A. Grinberg and S. Luryi. This article generally talks about the most basic general divisibility rule. In
my article, there is a group of formulas that includes all divisibility rules and also the function of these
formulas in finding prime numbers. In addition, some simplification methods related to the formulas
are also mentioned. These formulas are divided into two groups: "Bishop" and "Queen," and with the
help of both, all divisibility rules can be used, and prime numbers can be found. Additionally, a few
hypotheses provide important data.

1. Simple General Divisibility Algorithms

1.1. First General Divisibility Rule, Queen Function;
Definition 1.1. qn : Z — Z where Vx,y :€ Z, Vm :€ N:

qnm(x,y) = So(x,m)S1(y, m) — S1(x,m)So(y, m)

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Lemma 1.2.

§€ZZ> g1 (x,y) eZ

Proof. By the definition,
qrin (%, y) = So(x,m)S1(y, m) — S1(x,m)So(y, m)

g (x,y) = (x = 51(x,m)10™) Sy (y, m) — Sy(x,m)(y — S1(y, m)10™)
gnm(x,y) = S1(y, m)x — S1(x, m)S1(y, m)10™ + Sy (x, m)S1(y, m)10™ — Sy (x, m)y

qrm(x,y) = S1(y, m)x — S1(x,m)y

Dividing both sides by v,
gnn(xy) _ Si(y,m)x — Si(x,m)y
y y

qnm(x,y)

y

= Sl(y,m)g —S1(x,m)

then in this setup, there is only one none-integer part and it is % So: ﬁ €= qan(xy) eZ 0O

(ch4(y,51(y,m)) = 1>:> ((qnm(yx,y) € Z) = <; € Z))

Proof. From the first proof,

Lemma 1.3.

qnm(x,y)
y
If Ged(b, S1(y,m)) = 1, there will be 2 cases:

X
= 51(1/,171)9 = S1(x,m)

X ¢ Z Then Sy (y,m)% ¢ Z,s0 M2 ¢ 7
i € Z Then S1(y,m)y € Z, s0 'mew czZ

If we try to come from the right-hand side to the left, there will be 2 cases too:

W”WT(’W) ¢ Z Then only possibility is S1(y, m)% ¢ Z,so ; ¢7Z

1Y) ¢ 7. Then only possibility is 51 (y,m); € Z,so 3 € Zbecause Ged(y, S1(y, m)) = 1, in equation

S1(y,m) and y won’t be simplified.
So all the possibilities in the if and only if equation will be accurate. [

Example 1.4. Normally in number 21’s divisibility rule, we should look at if it’s divisible by 3 and
then 7. This is very complicated. But the reason is that its second digit has no same divisors except 1
with 21. It is very easy to use in the Queen algorithm. In Table 1 in the first column, some numbers are
used with 21’s algorithm. In other columns, there are results of the algorithm and in the first row there
are the number of reusing of the algorithm all of the example tables have the same system:

So : Z — Z where Sy(x,m) is x’s digits less than the m’th digit.

S1:Z — Z where S1(x,m) is x’s digits greater than the m’th digit.

x = So(x,m) + Sy (x,m)10™

Ged : Z — Z where Ged(x,y) is the greatest common divisor of x and .

S N I
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Table 1
Algorithm Reapply Count — 1 2 3 4 |56
126 0 0 0 0(0]0
11.214 1.113 | 105 0 0(0]0
93.450 9345 | 924 | 84 | 0 |00
398.034 39.795 | 3969 | 378 |21 |0 | O
194.481 19.446 | 1932 | 189 | 0 |0 |0
693 63 0 0 000
2.310 231 21 0 0(0]0
21 0 0 0 0100
441 42 0 0 0](0]0
9.261 924 84 0 0(0]0

Example 1.5. Normally 31 is a prime number so also it is so big that can’t have a rule. But in the Queen
algorithm it has a very easy rule that can make numbers smaller a lot.

Table 2
Algorithm Reapply Count — 1 2 3 4 |5]|6
279 0 0 0 0 |0]O0
31.248 3.100 310 31 0 |0]0
2.687.328 268.708 | 26.846 | 2666 | 248 | 0 | O
340.101 34.007 | 3379 | 310 | 31 |0 |0
62 0 0 0 0 |0]0
651 62 0 0 0 |0]0
31 0 0 0 0 |0]0
961 93 0 0 0 |0]0

Example 1.6. 101 is a very big number for getting some divisibility rule but also it has 3 digits that can
be a possibility for us in the Queen algorithm in lower variables. Our lower variable is 1 or 2. Both of
them are great but if we choose to get a small result, lower variable 2 is better.

Table 3
Algorithm Reapply Count — 1 2 3 4 |15
1.111 0 0 0 0|0
101 0 0 0 0|0
10.201 101 0 0 0 |0
1.030.301 10.302 101 0 0|0
104.060.401 1.040.603 10.403 101 0 |0
10.510.100.501 105.101.004 | 1.051.006 | 10.504 | 101 | O

1.2. Queen Function For Smaller Numbers:

Lemma 1.7. In the Queen algorithm, we should get Ged(y, S1(y, m)) = 1 for using it in any number. So if y
is smaller than 10 then it won't be able to be Ged(y, S1(y, m)) = 1. Then we should use its multiples. For any
natural number k, yk number also will be usable in Queen algorithm for y:

Proof. in Lemma 1.2 we saw that,

gnm(x, yk) = Sq(yk, m)x — Sq1(x, m)yk
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qnm(x, yk) X yk
—_— = S k, m)— — S X,
Y 1(y )y 1(x,m) Y

qnm(yx,yk) - Sl(yk,m)ﬁ — S1(x,m)k

Here we came back to our first proof. Also in here we should think like if ; € Z, then qnm(yw €eZ O

In this theorem, we also saw that the Queen function’s result gave us the same divisors of x
and y.

Lemma 1.8.

(ch(y,Sl(yk,m)) = 1):> <(qn’”(yxyk) € Z) = (; € Z>>

Proof. Same as Lemma 1.3 proof we will see 2 possibilities for each side:

¢ Z Then Sq(yk, m)% ¢ Z,so q"'”(yﬂ ¢ Z because Ged(y, S1(y, m)) = 1, in equation, S1(y, m) and y
won't be simplified.
€ Z Then S (yk,m)3 € Z, s0 q""’(yﬂ €z

<=

x
Y
If we try to come from the right-hand side to the left, there will be 2 cases too:

(V%) & 7 Then only possibility is 51 (yk,m)y & Z,s0 3 ¢ Z

@ € Z Then only possibility is Sl(yk,m)§ € Z, 50 3, € Z because Ged(y, S1(yk,m)) = 1, in

equation, Sq(yk, m) and y won't be simplified.
So all the possibilities in the if and only if equation will be accurate. [

1.3. Multiple Times Applied Queen Function:

Definition 1.9. For future usage, we will use a function called multiple Queen:
Vk:€ZT
grn(x,y) Y = g (qrm(x,y) ... ), y)

k pieces

g (x,y)© = x
1.4. Connection Between Queen Function and Greatest Common Divisor:

Lemma 1.10.
Ged(gnm(x,y)) = Ged(x,y)

Proof. We know that for some integer of x, applying it Queen with some integer y will give us a value
that multiple of common divisors x and y. By the proof in Lemma 1.7. This means Queen will give us
all the common divisors with some different multiple that is not a divisor for y. So this will prove our
claim. [

1.5. More Generalized Version of Queen Algorithm:

Definition 1.11. Queen function already has 3 variables but it's nothing compared to the most
generalized version of it. But first, we have the Bishop function. It has 5 variables and it can make
some newborn divisibility rules.

fl:Z — Z whereVa,b,c,n:€ Z,Vm:€ N

bsh,(a,b,c) = So(a,m)Sq(be,m) — Sy(a,m)(So(bc, m) — nb)

doi:10.20944/preprints202402.0238.v1
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Lemma 1.12. ;
N bsi (a,b,c)

b b cZ

Proof.
bsy,(a,b,c)

So(a,m)Sy(bc, m) — Sq(a, m)(So(bc, m) — nb)
So(a,m)Sy(be, m) — Sy(a,m)So(bc, m) + Sy (a, m)nb
gnm(a,be) + Sy (a, m)nb

If we try to divide by b:
gnm(a,bec)  Si(a,m)nb
+

b b
gnm(a, be)

b
then all of the formulas turned into the same function with some additions as the Queen function. Our
claim will be proved as same as the Queen’s. If mf’bc) € Z than bs}},(a,b,c) € Z. But we proved that

the only possibility that Mb”’bc) € Zis § € Z. This proves our claim. [

<ch(b,51(b,m)) = 1): <(b5%(2bc> € N> = (Z € N>>

Proof. Same as other proof when it is an if and only if the situation, we will see 2 possibilities for
each 2 sides. But now we don’t need much work to prove it, just because it has a Queen function in it.
We are looking for only the non-integer part so we can delete the integer part in the function. When

deleting it we only got the q”’”(hfa’bc) part. But we proved it before. So our claim is proved. [

+ Sq1(a,m)n

Lemma 1.13.

Example 1.14. 98 is a very big and uncomfortable number to work with. This means it is very

hard for a divisibility rule. But if we use bs, '(a,98,2) then it will be much easier,bs, ' (a,98,2) =
S() (Ll, 2) + 251 (ﬂ, 2):

Table 4
Algorithm Reapply Count 1 2 3 4 5
588 98 98 98 98 |98
602.112 12.054 294 98 98 |98
98 98 98 98 98 |98
9.604 196 98 98 98 |98
941.192 18.914 392 98 98 |98
92.236.816 1.844.752 36.946 784 98 | 98
9.039.207.968 180.784.226 | 3.615.710 | 72.324 | 1.470 | 98

Example 1.15. Normally 7 has a really simple divisibility rule. It rule can be found in Bishop as this
example. bsl_l(a, 7,8) =580(a,1) + S1(a,1):
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Table 5
Algorithm Reapply Count — 1 2 3| 4 5
21 7 35 |28 |42 |14
2.310 231 | 28 |42 14|21
45.360 4536|483 |63 (21| 7
7 35 28 |42 14| 21
49 49 49 |49 |49 | 49
343 49 49 |49 |49 | 49
2.401 245 | 49 |49 |49 | 49
16.807 1.715 | 196 | 49 | 49 | 49

Example 1.16. Normally 3 and 9 have very good design and simple divisibility rules and we will find
them in later the article but for now, there is a simple rule too. for 3, bs;’ 1 (a,3,4) = So(a,1) + S1(a,1)
same as 9, bsl_1 (a,9,2) = Sp(a,1) + S1(a,1). Here are some examples for 3:

Table 6
Algorithm Reapply Count — 1 2 3 |141(5|6|7]8
21 3 3 3 13(3[3|3]|3
2.310 231 24 6 | 6 |6]6|6]|6
691.200 69.120 | 6.912 | 693 | 72 19|99 |9
3 3 3 3 13(3[3|3]|3
9 9 9 9 1919]/9]9]9
27 9 9 9 1919]9]9]9
81 9 9 9 191919]9]9
243 27 9 9 1919]19]9]9
729 81 9 9 1919]9]|9]9
2.178 225 27 9 1919]19]9]9
6.534 657 72 9 1919]9]9]|9
19.602 1962 | 198 | 27 | 9 {9]9|9|9
58.806 5886 | 594 | 63 | 9 |9|9|9|9

1.6. Multiple Times Applied Bishop Function:

Definition 1.17. For future usage, we will use a function called multiple Bishop:

VkeZt

bs" (a,b,¢)%) = bs" (... (bs" (a,b,c)...),b,c)

k pieces

bs (a,b,c)) = qa

1.7. Connection Between Bishop Function and Greatest Common Divisor:

Definition 1.18. We know that the Bishop has a Queen inside, also in the part that has no Queen there
is a y factor so this equation will be accurate:

Ged(bsy,(a,b,¢),b) = Ged(a, b)
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2. Ratio Simplifying with General Divisibility Rules

2.1. Queen Simplifying Function:
Definition 2.1. Sqn : Z — Z where Va,b :€ Z,Vm :€ N:

S0, m) + Dzfed)

Sqnm(a,b) = 5106, m)

Lemma 2.2. 4
Sqnp(a,b) = 5

Proof.
Sqnm(a,b)

S1(a,m) + —q”'",ﬁ“'”
S1(b, m)

Sl (a, m) + 51 (b,m)a;Sl (a,m)b

S1(b, m)
Si(a,m) + Sy (b,m)§ — Sy(a, m)
Sl(b, m)

S] (b, m)%
51 (b, m)
a

b

O

2.2. Infinite Series Version of Simplifying Function:

Lemma 2.3.
=, S (gr(a, b)), m)

Sgny,(a,b) =
q m( ) 7;) Sl(b,m)n+1

Proof. In this proof, we will open out simplifying function’s ratio part:
Sqnm(a,b)

Si(a,m) + 7{”””5”’}’)

S1(b,m)
S(a,m) | 2ol
Si(b,m) ' S1(b,m)
Sl(qnm(a,b),mHM
S1(a,m) N 2 das
S1(b,m) 5106, m)
m(a,b ()
Si(a,m) n S1(qnm(a, b), m) %
S1(bm) S1(b,m)? S1(b, m)?
S1(q1m(a,p)® m 4 Qm (@ b)3)
S1(a,m) n S1(qnm(a,b), m) . O
S1(b, m) S1(b,m)? o
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Si(a,m)  Si(qnm(a,b),m)  Si(qnm(a,b)?,m)
SGm T SsGmE T SGmE

§ S1(@n(a,0),m)
= 51 (b, m)n-i—l

O
2.3. Inverse Function of Queen Function:

Definition 2.4. qn(—l) :Z — Z whereVa,b,n:€ Z,Vm :€ N: qnm(a,b),(fl) is the n’th value of inverse
function of Queen. This is because there is no one answer to the inverse function of Queen.

Lemma 2.5.
nb+a

(-1 _
ghm(a,b)y = 5105, m)

Proof. We will start by putting the value of gn,,(a, b),([” to simplifying function:

_ (-1)
qnm(a,b)gfl) B Sl(qnm(a,b),(l 1),m) + —qnm(qnm(g'b)” b)

b Sl(b, m)

(@, b)Y Si(gnm(a, b)Y, m) +
b - Sl(b, m)

(-1)
(-1) _ Si(qnm(a,b)y ', m)b+a
(@, D) = S1(b,m)

Here we can see the only unknown part on the left-hand side is Sq (g1 (a, b),(fl), m). This is because
we can choose whatever we want so with a little bit change of variable. We can say that,

(-1) _ nb+a
qnm(u, b)n - Sl(b, Tf’l)

O

2.4. Multiple Times Applied Inverse Queen Function:

Definition 2.6. For future usage, we will use a function called multiple inverse Queen:
Vk:€ Zt,YRC Z

) DD e

—k _
g () = qnm<...<qnm<x,y>%L Lk Wk,

NI

k pieces

Here we can also find the Bishop function version of all of them but they will be the same
proofs as these proofs so there is no need to prove non-necessary functions.

2.5. Infinite Repeated Inverse Function of Queen:

Lemma 2.7.

ad R;b
li b)) = —
fim g D" = 1 5,y

Proof.
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bR3+
b 2+S (Sb,m)
_ DRi+ 5
lim
h—c0 Sl(b, T}’l)

lim bRy bR, n bRj
h—o0 Sl(b m) Sl(b, m)2 51 (b, m)3

+...

h

bR;
li 2 T
oo = S1(b,m)it1

MS

bmz—H

O

Conjecture: The pattern of R set is the pattern of multiple times applied Queen function of
infinitely applied reverse Queen function.

3. Full Versions of General Divisibility Rules

3.1. Full Version of Queen Algorithm:

Definition 3.1. normally we use S() function in Queen algorithm. But we can also use the D() and
Decimal () functions. And the formula will be like this:Va,b € Z,Vm € N,

Decimal(a)—1

qum(a,b) = Z (_1)1'6 7Di(a,m)51<b,m)Decimal(a)fiS()(b,m)i
i=0
Lemma 3.2. y b
@ N = Ml b) g
b b
Proof.
Decimal(a)—1 ‘ ‘ ‘ |
Z (_1)1Di(u,m)sl(b,m)Deczmal(u)ﬂSO(b,m),
i=0
Decimal(a)—1 ' ‘ ‘ |
Y. (-1)'Dj(a,m)(b— 10", (b, m))i Sy (b, m)Pecimal(a)=i
i=0
8910

= (3.1)
S (b, m)Decimul(a)—i) )

5 Vx: x| <1|X2gx~ i,1 1[4]

i Vx,y €R,¥n e N¥|(x + )t = T (Dxiyril5]
9 Vx,yEN\() W

10 VxEN\x'*x(x 1)(x—2)---3-2-1

doi:10.20944/preprints202402.0238.v1


https://doi.org/10.20944/preprints202402.0238.v1

Preprints.org (Wwww.preprints.org) | NOT PEER-REVIEWED | Posted: 5 February 2024
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Dmmffa)l(_l)’(Di(a,m) <li1 <]> (b7 (=1071(0,m)

S ( Dectmal l)

—|—S1(b m)Deczmal( a)—i ( 1()”’51 b, m >

i=0 j=0

S, (b, m)Decimal(a)—i)

+51(b,m)DECim”l(”)(_lom)i>)
Decjmil:(a)il(—l)i (Di(a,m) <fo <;> <bi7j(_10msl(b’m))j

i=0 1=0
S, (b m)Decimul(a)*i> > >
Decimal (a)—1

+ Z (71)1'Di(a,m)sl(b’m)Decimul(u)(710m)i
i=0

DECimaZl(a)_l(—l)i (Di(ﬂ,m) (121 (;) (biij(—lomsl(bfm))j

i=0 j=0
S, (b m)Decimal(a)*i> ) >
Decimal(a)—1

+ Y. Dj(a,m)S(b, m)Pecmal @07
i=0

Decimal(a)—1

Y (1 (Di<a,m> (T (1) (=107 0my

i=0 j=0
S1(b, m)DECimal(u)_i> ) )

‘ Decimal(a)—1 .
+Sl(b/ m)Deamal(a) Z Dl(a,m>10ml

i=0
Decm:i::a)l(_l)i (Di(a,m) <;§ <;> (bi*j(—mmsl(brm))j

S, (b m)Decimal(u)*i> > >

45 (b, m)Decimal(u)u

Decjmf:(a)l(—l)i (Di(a,m) <Zl: (;) (bi*f(—lomsl(brm))j

Decimﬂzl(“)_l(_l)i (Di(ﬂ,m) <121 (;) (bi‘f(—lo’”sl(b,m))j

doi:10.20944/preprints202402.0238.v1
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(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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—_

C) (bz’fffl(_lo’”sl(b/m))j

Sl(b,m)Decimal(u)i)>> (3.9)

+aS; (b, m)Decimul(a)

Decimal (a)—1 ) i—
by (-1 (Dxa,m)(

i=0 j=0

Here we have two sides of the equation one of them is the right side of the plus sign which has a factor
called a and other is the left side of the plus sign which has a factor called y. Also, other factors is
integers. So if we try to divide it by y:

Decimuzl(ﬂ)—l(_l)i (Di(ﬂ/m) (121 <l> (bi’jfl(—lOmsl(bzm))j

i=0 j=o \J
Sq (b m)Decimul(u)—i))) (3.10)

aSy (b, m) Decimal(a)

+ b

In here if § € Z then the whole equation will be an integer. This proves our claim. [J

(ch(b,sl(b,m)) - 1);» ((Mq’“’z(“b) e N) = (Z e N))

Proof. Same as all of the if and only if proofs we see a Ged(b, S1(b, m)) = 1 situation. In here only thing
we should think is that if Ged(b, S1(b, m)) = 1 then for every natural number x, Ged(b, S1(b,m)*) = 1.
So all the proof is coming from Lemma 1.3. O

Lemma 3.3.

Example 3.4. In 101 we see the same result as the normal 101 divisibility rule:

Table 7
Algorithm Reapply Count— | 1 |23 (4 [5|6|7 |8
101 0/0(0(0[0]0]0]|O
10.201 0/0(0(0[|0]0]0O]O
1.030.301 11/0[0[{0|0]|0|0]|0
104.060.401 0/0(0(0[0]0]0]|O

Example 3.5. In 11 we found the same result as the normal 11 divisibility rule:

Table 8
Algorithm Reapply Count— | 1 |23 (45|67 |8
564.537.600 0/0(0(0[0]0]0]|O
209 11(0(0(0]0]|0]|0]|O0
1.331 0/0(0(0[0]0]0]|O
14.641 0/0(0(0[0]|0]0O]O
161.051 0/0(0(0[0]0]0]O
1.771.561 0/0(0(0[|0]0O]0O]O
19.487.171 0/0(0(0[0]0]0]|O
40909 22|0({0|0]|0]|0]|0]0

doi:10.20944/preprints202402.0238.v1
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3.2. Full Version of Bishop Algorithm:

Definition 3.6. normally we use S() function in Bishop algorithm. But we can also use the D() and
Decimal functions. And the formula will be like this:Va,b,c,n € Z,Vm € N,

Mbs;;, (a,b,c)

Decimal(a)—1 ) ) ) )
= ) (=1)'Di(a, m) Sy (be, m)Pecmal @ =1 (5, (be, m) — bn)!
i=0

Lemma 3.7.

n
N Mbs! (a,b,c)

b b eN

Proof.
Decimal(a)—1

Y. (~1)'Dj(a,m)S(bc, m)Pecimal @ =i (S (be, m) — bn)!
i=0
Decimal(a)—1 ] ] ) ]
Y (=1)'Dj(a,m)(bc — bn — 10"y (be, m))'S; (be, m)Pecimal(@)=i

i=0
Decimal (a)—1 ] i/ . .
Yy (=) (Di(a,m) (Z (;) ((be — br)~I (~10"5 (be, m))))
= )= (3.11)
Sl(bC, m)Decimal(u)—i))
Decimal (a)—1 ) i/ . .
Yy (=) <D,-(a,m) (Z <]) ((be = br)=I (=10"5, (b, m))
=0 )= (3.12)
Sl(bC, m)Decimul(a)—i)))
Decimal(a)—1 ) i=1 /; o
Y., (1) <Di(a,m) (Z <]) ((bc — bn)"I(—=10"S1 (bc, m)
i=0 =0
Sq (bc,m Deczmul (a)— z) (3.13)
+81 (be, m)Pecimal@)=i(_10ms, (be, m) >
Decimal(a)—1 ) i-1 7 . .
Y, (-1 <Di(u,m) (2 <]) ((bc —bn)"(=10"S1 (bc, m))!
i=0 j=0
S1 (bc,m)Decimal(a)fi) (3.14)

+51(bc, m)Decimul(u) (10m)i>>
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Decimal (a)—1 ) i-1 7 . .
Y. (- <Di(a,m) (Z <]) ((bc — bn)' I (=108 (be, m))!
i=0 j=0
sl(bc,m)Decimul(a)i)>> (3.15)
Decimal(a)—1 ) ) ]
+ Z (*1)1Di(ll,m)51(bC,m)Deamal(a)(*lom)l
i=0
Decimal(a)—1 ) i1 /s L .
Yy (-1 <Di(a,m)(z <]) ((be — b7 (=105, (b, m))
i=0 i=0
Sl(bc’m)Decimal(a)—i)>> (3.16)
Decimal (a)—1 ) )
+ Z Di(a, m)sl (bC, m)Deczmal(u)lomz
i=0
Decimal (a)—1 ) i1 /s . .
Y, (1) <D,-(a,m) (Z (]) ((bc —bn)"71(—10"8S(bc, m))!
i=0 j=0
Sl(bclm)Decimal(a)i)>> (3.17)
) Decimal (a)—1 )
+81(be, m)Pecimal(@) 3" Dy (g, my10™
i=0
Decimal (a)—1 ) i-1 /5 o .
Y (-1 <Di(a,m)(z (;) ((be — b7 (=105, (b, m))
i=0 =0
Sq (be m)Decimal(a)i))) (3.18)
+5; (bc, m)Decimal(a)a
Decimal(a)—1 ] i-1 /;
(be—bn) ). (-1) (Di(a,m) <Z ()
i=0
_ i—j—1 m ]
((bc bn) (—10"51(be, m)) (3.19)

Sl(bc m)Dectmul )

+a$; (bc m)Deczmal (a)

Here we have two sides of the equation one of them is the right side of the plus sign which has a factor
called a and the other is the left side of the plus sign which has a factor called b. Also, other factors is
integers. So if we try to divide it by b:

i=0 j=0 \J
((bc — bn)" 71 (=10"S; (be, m) )/ Sy (be, m)Decimal(a>—i) )) (3.20)
N aSq (bC, m)Decimal(u)

b
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Decimal (a)—1 ) i-1 /;
(c—n) ), (-1) (Di(a,m)<z ()
i=0 j=o \J
((bc _ bn)i*j*l (—10™S4 (b, m))jsl (be, m)Decimal(u)fi) ) ) (3.21)
aSq (bc,m)Decimul(a)
b

In here if § € Z then the whole equation will be an integer. This proves our claim. [

Lemma 3.8.

<ch(b,sl(bc,m)) = 1>:> <<W € N> = (Z € N))

Proof. Same as all of the if and only if proofs we see a Ged(b,S1(bc,m)) = 1 situation. In
here only thing we should think is that if Ged(b, S1(b,m)) = 1 then for every natural number x,
Ged(b, S1(bc, m)*) = 1. So all the proof is coming from Lemma 1.3. [J

Example 3.9. In 3 and 9 we get the same result as the normal divisibility rule. In 3:

Table 9
Algorithm Reapply Count— | 1 | 2 |3 (4 |5|6|7 |8
9 91919191919(9]9
42 6 |6 |6|6/6[6|6]|6
84.240 1819 19/19/19/9|19(9
81 91919191919 (19]|9
729 1819 19/19/19/9|9(9
6.561 1819 1919(9(9|9]9
59.049 1819 (9/19/19/9|9(9
531.441 1819 1919(9(9|9]9
4.782.969 4519 19(19(9]9]9]9
43.046.721 2719 191919(9]9|9
39.999.999 571123333 |3|3

4. Finding Prime Numbers With General Divisibility Rules

4.1. Main Theorems for Proofs:

Lemma 4.1. Vx,n :€ N if for Vm € Z" that m<n, 1 Gcd(x, Pyy) = 1 and x < P2 ,, then a is a prime

number.

1

Proof. In this proof, we should know that if the natural number x has no other same divisors other
than 1 with all the equal or smaller primes than P,. Then this means the minimum prime divisor
that can be in x’s divisors is the first prime that is bigger than P,. And it is P, ;1. But the minimum
integer that is a multiple of P, ;1 and not a prime and usable in this situation is P?_ ;. Then this means

n+1
ifx < PgH, x must be a prime. [

Lemma 4.2. Vx,n € N if >Ged(x, P#) = 1 and x < P2_,, then x is a prime number.

+1

11 p: set of elements that has no other same divisors that are smaller than it other than 1.

12 p#: N — N where P,# multiple of all the primes that equal or smaller than P,
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Proof. If a Ged(x, Py#) = 1 then x has no other same divisors than 1 with all the equal or smaller

primes than P,,. From the Lemma 4.1, also if x < Pg 1, X must be a prime. O

4.2. Finding Prime Numbers With Queen Function:

Lemma 4.3. Queen is a divisibility rule for every number. Also, it is a Ged() simpler. With these truths, we
can use to find prime numbers like this by using Lemma 4.2:
Va,n € N,Vm € N that Ged(Py#, S1(Pu#,m)) = 1. If Ged(a, Po#) = 1, |qnu(a, Pu#)['3< P2, then,

\gnm(a, Pu#)| € P

Proof. We know that Ged(a, P,#) = Ged(qny,(a, Pa#)) from Lemma 4.1. And also using the knowledge
of Lemma 4.2 we can say that If Ged(a, P,#) = 1, |qnp(a, Pu#)| < P,%H then, |gn,(a, P.#)| € P. So
proof finishes by itself. [

Example 4.4. We can use the P,# type of numbers. For example 2310:

Table 10
Algorithm Reapply Count — | |qna(a,2310)| |
703 1
101 13
401 17
503 19
1 23
403 29
1307 31
601 37
1103 41
701 47
2011 53
103 59
1007 61
1409 67
907 71
2213 79
1711 83
2113 89

Example 4.5. We can use not only the P,# type of numbers. Also, we can use their multiples. For
example 120:

13 || : R — R where x| is the positive version of x.
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Table 11
Algorithm Reapply Count — | |qna(a,120)| |
101 19
103 17
107 13
113 7
127 7
131 11
137 17
133 13
139 19
143 23
149 29
151 31
157 37
161 41
163 43
167 47

4.3. Finding Prime Numbers With Bishop Function:

Lemma 4.6. Queen is a divisibility rule for every number. Also, it is a Ged() simpler. With these truths, we
can use to find prime numbers like this by using Lemma 4.2:
Va,c,n,k € N,VYm € N that Ged(Pu#, S1(Pu#t, m)) = 1. If Ged(a, Po#) =1, |bs!, (a, Po#, )| < Pr%+1 then,

|bsp,(a, Py#,c)| € P

Proof. We know that Ged(a, P,#) = Ged(bs)),(a, Po#,c)) from Lemma 4.1. And also using the
knowledge of Lemma 4.2 we can say that If Ged(a,P,#) = 1,|bs!,(a, Pu#t,c)| < P2 41 then,
|bstt, (a, Py#,c)| € P. So proof finishes by itself. [

4.4. Checkmate Theorem:

Lemma 4.7.
bsk,(a,b,1) — qny(a,b) = Sy(a, m)b
Proof.
bsk (a,b,1) — gny(a,b)
ghm(a,b) + Sy(a,m)b — qny(a,b)
S1(a,m)b
O
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