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Abstract: In my paper, a divisibility rule named the Queen function is described, which has

been generalized for every integer and encompasses all previously established divisibility rules.

Subsequently, the paper discusses other areas where this function is instrumental. These include

simplifying ratios, generating prime numbers, and more. Towards the end of the paper, a set of

hypotheses is also presented. Among these, the most significant is the novel approach involving the

application of the Queen function for prime number generation.

Keywords: arithmetic functions; discrete mathematics; primes; number theory

MSC: 11A25; 11A05; 11A41; 11N05

Introduction

I would like to start our discussion with the question, what are integers or natural numbers?

Natural numbers have been a tool for measuring a reality humans have used for centuries. Integers,

on the other hand, are an abstraction that includes a bit more of the abstract aspect at a point where

they depart from reality. What are the characteristics of natural numbers then? Of course, one of

them is whether they are divisible by each other or not. Naturally, there are other features, but the

focus of this article is mostly on this aspect. When one natural number is divided by another natural

number resulting in another natural number, we call this divisibility, and by using this divisibility, we

generate some special numbers, such as prime numbers. I will touch on this topic shortly, but first, let’s

talk about the rules. What are the rules of divisibility, or in other words, the rules of being divisible?

Of course, the divisibility rules, just like natural numbers, have always been intriguing throughout

history. Imagine having such a power that directly gives you the divisibility of these natural numbers,

which you compulsively use throughout your life, it would be nice, of course. And for centuries, many

people have researched this and derived many divisibility rules. But there was a problem; none of

them were generalized. Until a recent article summarized this. Of course, similar rules are also written

in ancient texts, but the first known article written on this subject is "General Divisibility Criteria" by A.

A. Grinberg and S. Luryi. This article generally talks about the most basic general divisibility rule. In

my article, there is a group of formulas that includes all divisibility rules and also the function of these

formulas in finding prime numbers. In addition, some simplification methods related to the formulas

are also mentioned. These formulas are divided into two groups: "Bishop" and "Queen," and with the

help of both, all divisibility rules can be used, and prime numbers can be found. Additionally, a few

hypotheses provide important data.

1. Simple General Divisibility Algorithms

1.1. First General Divisibility Rule, Queen Function;

Definition 1.1. qn : Z → Z where ∀x, y :∈ Z, ∀m :∈ N:

qnm(x, y) = S0(x, m)S1(y, m)− S1(x, m)S0(y, m)
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1 2 3

Lemma 1.2.
x

y
∈ Z ⇒

qnm(x, y)

y
∈ Z

.

Proof. By the definition,

qnm(x, y) = S0(x, m)S1(y, m)− S1(x, m)S0(y, m)

qnm(x, y) = (x − S1(x, m)10m)S1(y, m)− S1(x, m)(y − S1(y, m)10m)

qnm(x, y) = S1(y, m)x − S1(x, m)S1(y, m)10m + S1(x, m)S1(y, m)10m − S1(x, m)y

qnm(x, y) = S1(y, m)x − S1(x, m)y

Dividing both sides by y,
qnm(x, y)

y
=

S1(y, m)x − S1(x, m)y

y

qnm(x, y)

y
= S1(y, m)

x

y
− S1(x, m)

then in this setup, there is only one none-integer part and it is x
y . So: x

y ∈ Z ⇒ qnm(x,y)
y ∈ Z.

Lemma 1.3.
(

Gcd4(y, S1(y, m)) = 1

)

⇒

((
qnm(x, y)

y
∈ Z

)

⇐⇒

(
x

y
∈ Z

))

Proof. From the first proof,
qnm(x, y)

y
= S1(y, m)

x

y
− S1(x, m)

If Gcd(b, S1(y, m)) = 1, there will be 2 cases:

x
y /∈ Z Then S1(y, m) x

y /∈ Z, so
qnm(x,y)

y /∈ Z

x
y ∈ Z Then S1(y, m) x

y ∈ Z, so
qnm(x,y)

y ∈ Z

If we try to come from the right-hand side to the left, there will be 2 cases too:

qnm(x,y)
y /∈ Z Then only possibility is S1(y, m) x

y /∈ Z, so x
y /∈ Z

qnm(x,y)
y ∈ Z Then only possibility is S1(y, m) x

y ∈ Z, so x
y ∈ Z because Gcd(y, S1(y, m)) = 1, in equation

S1(y, m) and y won’t be simplified.

So all the possibilities in the if and only if equation will be accurate.

Example 1.4. Normally in number 21’s divisibility rule, we should look at if it’s divisible by 3 and

then 7. This is very complicated. But the reason is that its second digit has no same divisors except 1

with 21. It is very easy to use in the Queen algorithm. In Table 1 in the first column, some numbers are

used with 21’s algorithm. In other columns, there are results of the algorithm and in the first row there

are the number of reusing of the algorithm all of the example tables have the same system:

1 S0 : Z → Z where S0(x, m) is x’s digits less than the m’th digit.
2 S1 : Z → Z where S1(x, m) is x’s digits greater than the m’th digit.
3 x = S0(x, m) + S1(x, m)10m

4 Gcd : Z → Z where Gcd(x, y) is the greatest common divisor of x and y.
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Table 1

Algorithm Reapply Count 7→ 1 2 3 4 5 6
126 0 0 0 0 0 0
11.214 1.113 105 0 0 0 0
93.450 9.345 9.24 84 0 0 0
398.034 39.795 3.969 378 21 0 0
194.481 19.446 1.932 189 0 0 0
693 63 0 0 0 0 0
2.310 231 21 0 0 0 0
21 0 0 0 0 0 0
441 42 0 0 0 0 0
9.261 924 84 0 0 0 0

Example 1.5. Normally 31 is a prime number so also it is so big that can’t have a rule. But in the Queen

algorithm it has a very easy rule that can make numbers smaller a lot.

Table 2

Algorithm Reapply Count 7→ 1 2 3 4 5 6
279 0 0 0 0 0 0
31.248 3.100 310 31 0 0 0
2.687.328 268.708 26.846 2666 248 0 0
340.101 34.007 3.379 310 31 0 0
62 0 0 0 0 0 0
651 62 0 0 0 0 0
31 0 0 0 0 0 0
961 93 0 0 0 0 0

Example 1.6. 101 is a very big number for getting some divisibility rule but also it has 3 digits that can

be a possibility for us in the Queen algorithm in lower variables. Our lower variable is 1 or 2. Both of

them are great but if we choose to get a small result, lower variable 2 is better.

Table 3

Algorithm Reapply Count 7→ 1 2 3 4 5
1.111 0 0 0 0 0
101 0 0 0 0 0
10.201 101 0 0 0 0
1.030.301 10.302 101 0 0 0
104.060.401 1.040.603 10.403 101 0 0
10.510.100.501 105.101.004 1.051.006 10.504 101 0

1.2. Queen Function For Smaller Numbers:

Lemma 1.7. In the Queen algorithm, we should get Gcd(y, S1(y, m)) = 1 for using it in any number. So if y

is smaller than 10 then it won’t be able to be Gcd(y, S1(y, m)) = 1. Then we should use its multiples. For any

natural number k, yk number also will be usable in Queen algorithm for y:

x

y
∈ Z ⇒

qnm(x, yk)

y
∈ Z

Proof. in Lemma 1.2 we saw that,

qnm(x, yk) = S1(yk, m)x − S1(x, m)yk
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qnm(x, yk)

y
= S1(yk, m)

x

y
− S1(x, m)

yk

y

qnm(x, yk)

y
= S1(yk, m)

x

y
− S1(x, m)k

Here we came back to our first proof. Also in here we should think like if x
y ∈ Z, then

qnm(x,yk)
y ∈ Z.

In this theorem, we also saw that the Queen function’s result gave us the same divisors of x

and y.

Lemma 1.8.
(

Gcd(y, S1(yk, m)) = 1

)

⇒

((
qnm(x, yk)

y
∈ Z

)

⇐⇒

(
x

y
∈ Z

))

Proof. Same as Lemma 1.3 proof we will see 2 possibilities for each side:

x
y /∈ Z Then S1(yk, m) x

y /∈ Z, so
qnm(x,yk)

y /∈ Z because Gcd(y, S1(y, m)) = 1, in equation, S1(y, m) and y

won’t be simplified.
x
y ∈ Z Then S1(yk, m) x

y ∈ Z, so
qnm(x,yk)

y ∈ Z

If we try to come from the right-hand side to the left, there will be 2 cases too:

qnm(x,yk)
y /∈ Z Then only possibility is S1(yk, m) x

y /∈ Z, so x
y /∈ Z

qnm(x,yk)
y ∈ Z Then only possibility is S1(yk, m) x

y ∈ Z, so x
y ∈ Z because Gcd(y, S1(yk, m)) = 1, in

equation, S1(yk, m) and y won’t be simplified.

So all the possibilities in the if and only if equation will be accurate.

1.3. Multiple Times Applied Queen Function:

Definition 1.9. For future usage, we will use a function called multiple Queen:

∀k :∈ Z+

qnm(x, y)(k) = qnm(. . . (qnm(x, y) . . . ), y)
︸ ︷︷ ︸

k pieces

qnm(x, y)(0) = x

1.4. Connection Between Queen Function and Greatest Common Divisor:

Lemma 1.10.

Gcd(qnm(x, y)) = Gcd(x, y)

Proof. We know that for some integer of x, applying it Queen with some integer y will give us a value

that multiple of common divisors x and y. By the proof in Lemma 1.7. This means Queen will give us

all the common divisors with some different multiple that is not a divisor for y. So this will prove our

claim.

1.5. More Generalized Version of Queen Algorithm:

Definition 1.11. Queen function already has 3 variables but it’s nothing compared to the most

generalized version of it. But first, we have the Bishop function. It has 5 variables and it can make

some newborn divisibility rules.

f l : Z → Z where ∀a, b, c, n :∈ Z, ∀m :∈ N

bsn
m(a, b, c) = S0(a, m)S1(bc, m)− S1(a, m)(S0(bc, m)− nb)
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Lemma 1.12.
a

b
∈ Z ⇒

bsn
m(a, b, c)

b
∈ Z

Proof.

bsn
m(a, b, c)

S0(a, m)S1(bc, m)− S1(a, m)(S0(bc, m)− nb)

S0(a, m)S1(bc, m)− S1(a, m)S0(bc, m) + S1(a, m)nb

qnm(a, bc) + S1(a, m)nb

If we try to divide by b:
qnm(a, bc)

b
+

S1(a, m)nb

b

qnm(a, bc)

b
+ S1(a, m)n

then all of the formulas turned into the same function with some additions as the Queen function. Our

claim will be proved as same as the Queen’s. If
qnm(a,bc)

b ∈ Z than bsn
m(a, b, c) ∈ Z. But we proved that

the only possibility that
qnm(a,bc)

b ∈ Z is a
b ∈ Z. This proves our claim.

Lemma 1.13.

(

Gcd(b, S1(b, m)) = 1

)

⇒

((
bsn

m(a, b, c)

b
∈ N

)

⇐⇒

(
a

b
∈ N

))

Proof. Same as other proof when it is an if and only if the situation, we will see 2 possibilities for

each 2 sides. But now we don’t need much work to prove it, just because it has a Queen function in it.

We are looking for only the non-integer part so we can delete the integer part in the function. When

deleting it we only got the
qnm(a,bc)

b part. But we proved it before. So our claim is proved.

Example 1.14. 98 is a very big and uncomfortable number to work with. This means it is very

hard for a divisibility rule. But if we use bs−1
2 (a, 98, 2) then it will be much easier,bs−1

2 (a, 98, 2) =

S0(a, 2) + 2S1(a, 2):

Table 4

Algorithm Reapply Count 7→ 1 2 3 4 5
588 98 98 98 98 98
602.112 12.054 294 98 98 98
98 98 98 98 98 98
9.604 196 98 98 98 98
941.192 18.914 392 98 98 98
92.236.816 1.844.752 36.946 784 98 98
9.039.207.968 180.784.226 3.615.710 72.324 1.470 98

Example 1.15. Normally 7 has a really simple divisibility rule. It rule can be found in Bishop as this

example. bs−1
1 (a, 7, 8) = 5S0(a, 1) + S1(a, 1):
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Table 5

Algorithm Reapply Count 7→ 1 2 3 4 5
21 7 35 28 42 14
2.310 231 28 42 14 21
45.360 4.536 483 63 21 7
7 35 28 42 14 21
49 49 49 49 49 49
343 49 49 49 49 49
2.401 245 49 49 49 49
16.807 1.715 196 49 49 49

Example 1.16. Normally 3 and 9 have very good design and simple divisibility rules and we will find

them in later the article but for now, there is a simple rule too. for 3, bs−1
1 (a, 3, 4) = S0(a, 1) + S1(a, 1)

same as 9, bs−1
1 (a, 9, 2) = S0(a, 1) + S1(a, 1). Here are some examples for 3:

Table 6

Algorithm Reapply Count 7→ 1 2 3 4 5 6 7 8
21 3 3 3 3 3 3 3 3
2.310 231 24 6 6 6 6 6 6
691.200 69.120 6.912 693 72 9 9 9 9
3 3 3 3 3 3 3 3 3
9 9 9 9 9 9 9 9 9
27 9 9 9 9 9 9 9 9
81 9 9 9 9 9 9 9 9
243 27 9 9 9 9 9 9 9
729 81 9 9 9 9 9 9 9
2.178 225 27 9 9 9 9 9 9
6.534 657 72 9 9 9 9 9 9
19.602 1.962 198 27 9 9 9 9 9
58.806 5.886 594 63 9 9 9 9 9

1.6. Multiple Times Applied Bishop Function:

Definition 1.17. For future usage, we will use a function called multiple Bishop:

∀k ∈ Z+

bsn
m(a, b, c)(k) = bsn

m(. . . (bsn
m(a, b, c) . . . ), b, c)

︸ ︷︷ ︸

k pieces

bsn
m(a, b, c)(0) = a

1.7. Connection Between Bishop Function and Greatest Common Divisor:

Definition 1.18. We know that the Bishop has a Queen inside, also in the part that has no Queen there

is a y factor so this equation will be accurate:

Gcd(bsn
m(a, b, c), b) = Gcd(a, b)
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2. Ratio Simplifying with General Divisibility Rules

2.1. Queen Simplifying Function:

Definition 2.1. Sqn : Z → Z where ∀a, b :∈ Z, ∀m :∈ N:

Sqnm(a, b) =
S1(a, m) + qnm(a,b)

b

S1(b, m)

Lemma 2.2.

Sqnm(a, b) =
a

b

Proof.

Sqnm(a, b)

S1(a, m) + qnm(a,b)
b

S1(b, m)

S1(a, m) + S1(b,m)a−S1(a,m)b
b

S1(b, m)

S1(a, m) + S1(b, m) a
b − S1(a, m)

S1(b, m)

S1(b, m) a
b

S1(b, m)

a

b

2.2. Infinite Series Version of Simplifying Function:

Lemma 2.3.

Sqnm(a, b) =
∞

∑
n=0

S1(qnm(a, b)(n), m)

S1(b, m)n+1

Proof. In this proof, we will open out simplifying function’s ratio part:

Sqnm(a, b)

S1(a, m) + qnm(a,b)
b

S1(b, m)

S1(a, m)

S1(b, m)
+

qnm(a,b)
b

S1(b, m)

S1(a, m)

S1(b, m)
+

S1(qnm(a,b),m)+
qnm(a,b)(2)

b
S1(b,m)

S1(b, m)

S1(a, m)

S1(b, m)
+

S1(qnm(a, b), m)

S1(b, m)2
+

qnm(a,b)(2)

b

S1(b, m)2

S1(a, m)

S1(b, m)
+

S1(qnm(a, b), m)

S1(b, m)2
+

S1(qnm(a,b)(2) ,m)+
qnm(a,b)(3)

b
S1(b,m)

S1(b, m)2
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S1(a, m)

S1(b, m)
+

S1(qnm(a, b), m)

S1(b, m)2
+

S1(qnm(a, b)(2), m)

S1(b, m)3
. . .

∞

∑
n=0

S1(qnm(a, b)(n), m)

S1(b, m)n+1

2.3. Inverse Function of Queen Function:

Definition 2.4. qn(−1) : Z → Z where ∀a, b, n :∈ Z, ∀m :∈ N: qnm(a, b)
(−1)
n is the n’th value of inverse

function of Queen. This is because there is no one answer to the inverse function of Queen.

Lemma 2.5.

qnm(a, b)
(−1)
n =

nb + a

S1(b, m)

Proof. We will start by putting the value of qnm(a, b)
(−1)
n to simplifying function:

qnm(a, b)
(−1)
n

b
=

S1(qnm(a, b)
(−1)
n , m) + qnm(qnm(a,b)

(−1)
n ,b)

b

S1(b, m)

qnm(a, b)
(−1)
n

b
=

S1(qnm(a, b)
(−1)
n , m) + a

b

S1(b, m)

qnm(a, b)
(−1)
n =

S1(qnm(a, b)
(−1)
n , m)b + a

S1(b, m)

Here we can see the only unknown part on the left-hand side is S1(qnm(a, b)
(−1)
n , m). This is because

we can choose whatever we want so with a little bit change of variable. We can say that,

qnm(a, b)
(−1)
n =

nb + a

S1(b, m)

2.4. Multiple Times Applied Inverse Queen Function:

Definition 2.6. For future usage, we will use a function called multiple inverse Queen:

∀k :∈ Z+, ∀R ⊂ Z

qnm(x, y)
(−k)
R = qnm(. . . (qnm(x, y)

(−1)
R
⌊ k

2 ⌋
. . . )

(−1)
Rk−1

, y)
(−1)
Rk

︸ ︷︷ ︸

k pieces

Here we can also find the Bishop function version of all of them but they will be the same

proofs as these proofs so there is no need to prove non-necessary functions.

2.5. Infinite Repeated Inverse Function of Queen:

Lemma 2.7.

lim
h→∞

qnm(a, b)−h
R =

∞

∑
i=0

Rib

S1(b, m)i+1

Proof.

lim
h→∞

qnm(a, b)
(−h)
R
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lim
h→∞

bR1 +
bR2+

bR3+...

S1(b,m)

S1(b,m)

S1(b, m)

lim
h→∞

bR1

S1(b, m)
+

bR2

S1(b, m)2
+

bR3

S1(b, m)3
+ . . .

lim
h→∞

h

∑
i=0

bRi

S1(b, m)i+1

5
∞

∑
i=0

bRi

S1(b, m)i+1

Conjecture: The pattern of R set is the pattern of multiple times applied Queen function of

infinitely applied reverse Queen function.

3. Full Versions of General Divisibility Rules

3.1. Full Version of Queen Algorithm:

Definition 3.1. normally we use S() function in Queen algorithm. But we can also use the D() and

Decimal() functions. And the formula will be like this:∀a, b ∈ Z, ∀m ∈ N,

Mqnm(a, b) =
Decimal(a)−1

∑
i=0

(−1)i6 7Di(a, m)S1(b, m)Decimal(a)−iS0(b, m)i

Lemma 3.2.
a

b
∈ N ⇒

Mqnm(a, b)

b
∈ N

Proof.
Decimal(a)−1

∑
i=0

(−1)iDi(a, m)S1(b, m)Decimal(a)−iS0(b, m)i

Decimal(a)−1

∑
i=0

(−1)iDi(a, m)(b − 10mS1(b, m))iS1(b, m)Decimal(a)−i

8 9 10

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

( i

∑
j=0

(
i

j

)(

bi−j(−10mS1(b, m))j
)

S1(b, m)Decimal(a)−i

))
(3.1)

5 ∀x : |x| < 1|∑
∞
i=0 x−i = 1

1− 1
x

[4]

8 ∀x, y ∈ R, ∀n ∈ N+|(x + y)n = ∑
n
i=0 (

n
i )xiyn−i[5]

9 ∀x, y ∈ N|(x
y) =

x!
y!(x−y)!

10 ∀x ∈ N|x! = x(x − 1)(x − 2) · · · 3 · 2 · 1
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Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

( i

∑
j=0

(
i

j

)(

bi−j(−10mS1(b, m))j

S1(b, m)Decimal(a)−i
))
) (3.2)

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)(

bi−j(−10mS1(b, m))j

S1(b, m)Decimal(a)−i
)

+S1(b, m)Decimal(a)−i(−10mS1(b, m))i

))

(3.3)

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)(

bi−j(−10mS1(b, m))j

S1(b, m)Decimal(a)−i
)

+S1(b, m)Decimal(a)(−10m)i

))

(3.4)

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)(

bi−j(−10mS1(b, m))j

S1(b, m)Decimal(a)−i
))
)

+
Decimal(a)−1

∑
i=0

(−1)iDi(a, m)S1(b, m)Decimal(a)(−10m)i

(3.5)

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)(

bi−j(−10mS1(b, m))j

S1(b, m)Decimal(a)−i
))
)

+
Decimal(a)−1

∑
i=0

Di(a, m)S1(b, m)Decimal(a)10mi

(3.6)

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)(

bi−j(−10mS1(b, m))j

S1(b, m)Decimal(a)−i
))
)

+S1(b, m)Decimal(a)
Decimal(a)−1

∑
i=0

Di(a, m)10mi

(3.7)

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)(

bi−j(−10mS1(b, m))j

S1(b, m)Decimal(a)−i
))
)

+S1(b, m)Decimal(a)a

(3.8)
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b
Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)(

bi−j−1(−10mS1(b, m))j

S1(b, m)Decimal(a)−i
))
)

+aS1(b, m)Decimal(a)

(3.9)

Here we have two sides of the equation one of them is the right side of the plus sign which has a factor

called a and other is the left side of the plus sign which has a factor called y. Also, other factors is

integers. So if we try to divide it by y:

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)(

bi−j−1(−10mS1(b, m))j

S1(b, m)Decimal(a)−i
))
)

+
aS1(b, m)Decimal(a)

b

(3.10)

In here if a
b ∈ Z then the whole equation will be an integer. This proves our claim.

Lemma 3.3.
(

Gcd(b, S1(b, m)) = 1

)

⇒

((
Mqnm(a, b)

b
∈ N

)

⇐⇒

(
a

b
∈ N

))

Proof. Same as all of the if and only if proofs we see a Gcd(b, S1(b, m)) = 1 situation. In here only thing

we should think is that if Gcd(b, S1(b, m)) = 1 then for every natural number x, Gcd(b, S1(b, m)x) = 1.

So all the proof is coming from Lemma 1.3.

Example 3.4. In 101 we see the same result as the normal 101 divisibility rule:

Table 7

Algorithm Reapply Count 7→ 1 2 3 4 5 6 7 8
101 0 0 0 0 0 0 0 0
10.201 0 0 0 0 0 0 0 0
1.030.301 11 0 0 0 0 0 0 0
104.060.401 0 0 0 0 0 0 0 0

Example 3.5. In 11 we found the same result as the normal 11 divisibility rule:

Table 8

Algorithm Reapply Count 7→ 1 2 3 4 5 6 7 8
564.537.600 0 0 0 0 0 0 0 0
209 11 0 0 0 0 0 0 0
1.331 0 0 0 0 0 0 0 0
14.641 0 0 0 0 0 0 0 0
161.051 0 0 0 0 0 0 0 0
1.771.561 0 0 0 0 0 0 0 0
19.487.171 0 0 0 0 0 0 0 0
40909 22 0 0 0 0 0 0 0
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3.2. Full Version of Bishop Algorithm:

Definition 3.6. normally we use S() function in Bishop algorithm. But we can also use the D() and

Decimal functions. And the formula will be like this:∀a, b, c, n ∈ Z, ∀m ∈ N,

Mbsn
m(a, b, c)

=
Decimal(a)−1

∑
i=0

(−1)iDi(a, m)S1(bc, m)Decimal(a)−i(S0(bc, m)− bn)i

Lemma 3.7.
a

b
∈ N ⇒

Mbsn
m(a, b, c)

b
∈ N

Proof.
Decimal(a)−1

∑
i=0

(−1)iDi(a, m)S1(bc, m)Decimal(a)−i(S0(bc, m)− bn)i

Decimal(a)−1

∑
i=0

(−1)iDi(a, m)(bc − bn − 10mS1(bc, m))iS1(bc, m)Decimal(a)−i

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

( i

∑
j=0

(
i

j

)(

(bc − bn)i−j(−10mS1(bc, m))j
)

S1(bc, m)Decimal(a)−i

))
(3.11)

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

( i

∑
j=0

(
i

j

)(

(bc − bn)i−j(−10mS1(bc, m))j

S1(bc, m)Decimal(a)−i
))
) (3.12)

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)(

(bc − bn)i−j(−10mS1(bc, m))j

S1(bc, m)Decimal(a)−i
)

+S1(bc, m)Decimal(a)−i(−10mS1(bc, m))i

))

(3.13)

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)(

(bc − bn)i−j(−10mS1(bc, m))j

S1(bc, m)Decimal(a)−i
)

+S1(bc, m)Decimal(a)(−10m)i

))

(3.14)
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Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)(

(bc − bn)i−j(−10mS1(bc, m))j

S1(bc, m)Decimal(a)−i
))
)

+
Decimal(a)−1

∑
i=0

(−1)iDi(a, m)S1(bc, m)Decimal(a)(−10m)i

(3.15)

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)(

(bc − bn)i−j(−10mS1(bc, m))j

S1(bc, m)Decimal(a)−i
))
)

+
Decimal(a)−1

∑
i=0

Di(a, m)S1(bc, m)Decimal(a)10mi

(3.16)

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)(

(bc − bn)i−j(−10mS1(bc, m))j

S1(bc, m)Decimal(a)−i
))
)

+S1(bc, m)Decimal(a)
Decimal(a)−1

∑
i=0

Di(a, m)10mi

(3.17)

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)(

(bc − bn)i−j(−10mS1(b, m))j

S1(bc, m)Decimal(a)−i
))
)

+S1(bc, m)Decimal(a)a

(3.18)

(bc − bn)
Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)

(

(bc − bn)i−j−1(−10mS1(bc, m))j

S1(bc, m)Decimal(a)−i
))
)

+aS1(bc, m)Decimal(a)

(3.19)

Here we have two sides of the equation one of them is the right side of the plus sign which has a factor

called a and the other is the left side of the plus sign which has a factor called b. Also, other factors is

integers. So if we try to divide it by b:

(bc − bn)

b

Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)

(

(bc − bn)i−j−1(−10mS1(bc, m))jS1(bc, m)Decimal(a)−i
))
)

+
aS1(bc, m)Decimal(a)

b

(3.20)
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(c − n)
Decimal(a)−1

∑
i=0

(−1)i

(

Di(a, m)

(i−1

∑
j=0

(
i

j

)

(

(bc − bn)i−j−1(−10mS1(b, m))jS1(bc, m)Decimal(a)−i
))
)

+
aS1(bc, m)Decimal(a)

b

(3.21)

In here if a
b ∈ Z then the whole equation will be an integer. This proves our claim.

Lemma 3.8.

(

Gcd(b, S1(bc, m)) = 1

)

⇒

((
Mbsn

m(a, b, c)

b
∈ N

)

⇐⇒

(
a

b
∈ N

))

Proof. Same as all of the if and only if proofs we see a Gcd(b, S1(bc, m)) = 1 situation. In

here only thing we should think is that if Gcd(b, S1(b, m)) = 1 then for every natural number x,

Gcd(b, S1(bc, m)x) = 1. So all the proof is coming from Lemma 1.3.

Example 3.9. In 3 and 9 we get the same result as the normal divisibility rule. In 3:

Table 9

Algorithm Reapply Count 7→ 1 2 3 4 5 6 7 8
9 9 9 9 9 9 9 9 9
42 6 6 6 6 6 6 6 6
84.240 18 9 9 9 9 9 9 9
81 9 9 9 9 9 9 9 9
729 18 9 9 9 9 9 9 9
6.561 18 9 9 9 9 9 9 9
59.049 18 9 9 9 9 9 9 9
531.441 18 9 9 9 9 9 9 9
4.782.969 45 9 9 9 9 9 9 9
43.046.721 27 9 9 9 9 9 9 9
39.999.999 57 12 3 3 3 3 3 3

4. Finding Prime Numbers With General Divisibility Rules

4.1. Main Theorems for Proofs:

Lemma 4.1. ∀x, n :∈ N if for ∀m ∈ Z+ that m≤n, 11Gcd(x, Pm) = 1 and x < P2
n+1, then a is a prime

number.

Proof. In this proof, we should know that if the natural number x has no other same divisors other

than 1 with all the equal or smaller primes than Pn. Then this means the minimum prime divisor

that can be in x’s divisors is the first prime that is bigger than Pn. And it is Pn+1. But the minimum

integer that is a multiple of Pn+1 and not a prime and usable in this situation is P2
n+1. Then this means

if x < P2
n+1, x must be a prime.

Lemma 4.2. ∀x, n ∈ N if 12Gcd(x, Pn#) = 1 and x < P2
n+1, then x is a prime number.

11 P : set of elements that has no other same divisors that are smaller than it other than 1.
12 P# : N → N where Pn# multiple of all the primes that equal or smaller than Pn
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Proof. If a Gcd(x, Pn#) = 1 then x has no other same divisors than 1 with all the equal or smaller

primes than Pn. From the Lemma 4.1, also if x < P2
n+1, x must be a prime.

4.2. Finding Prime Numbers With Queen Function:

Lemma 4.3. Queen is a divisibility rule for every number. Also, it is a Gcd() simpler. With these truths, we

can use to find prime numbers like this by using Lemma 4.2:

∀a, n ∈ N, ∀m ∈ N that Gcd(Pn#, S1(Pn#, m)) = 1. If Gcd(a, Pn#) = 1, |qnm(a, Pn#)|13
< P2

n+1 then,

|qnm(a, Pn#)| ∈ P

Proof. We know that Gcd(a, Pn#) = Gcd(qnm(a, Pn#)) from Lemma 4.1. And also using the knowledge

of Lemma 4.2 we can say that If Gcd(a, Pn#) = 1, |qnm(a, Pn#)| < P2
n+1 then, |qnm(a, Pn#)| ∈ P. So

proof finishes by itself.

Example 4.4. We can use the Pn# type of numbers. For example 2310:

Table 10

Algorithm Reapply Count 7→ |qn2(a, 2310)| ↓
703 1
101 13
401 17
503 19
1 23
403 29
1307 31
601 37
1103 41
701 47
2011 53
103 59
1007 61
1409 67
907 71
2213 79
1711 83
2113 89
...

...

Example 4.5. We can use not only the Pn# type of numbers. Also, we can use their multiples. For

example 120:

13 || : R → R where |x| is the positive version of x.
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Table 11

Algorithm Reapply Count 7→ |qn2(a, 120)| ↓
101 19
103 17
107 13
113 7
127 7
131 11
137 17
133 13
139 19
143 23
149 29
151 31
157 37
161 41
163 43
167 47

4.3. Finding Prime Numbers With Bishop Function:

Lemma 4.6. Queen is a divisibility rule for every number. Also, it is a Gcd() simpler. With these truths, we

can use to find prime numbers like this by using Lemma 4.2:

∀a, c, n, k ∈ N, ∀m ∈ N that Gcd(Pn#, S1(Pn#, m)) = 1. If Gcd(a, Pn#) = 1, |bsn
m(a, Pn#, c)| < P2

n+1 then,

|bsn
m(a, Pn#, c)| ∈ P

Proof. We know that Gcd(a, Pn#) = Gcd(bsn
m(a, Pn#, c)) from Lemma 4.1. And also using the

knowledge of Lemma 4.2 we can say that If Gcd(a, Pn#) = 1, |bsn
m(a, Pn#, c)| < P2

n+1 then,

|bsn
m(a, Pn#, c)| ∈ P. So proof finishes by itself.

4.4. Checkmate Theorem:

Lemma 4.7.

bs1
m(a, b, 1)− qnm(a, b) = S1(a, m)b

Proof.

bs1
m(a, b, 1)− qnm(a, b)

qnm(a, b) + S1(a, m)b − qnm(a, b)

S1(a, m)b
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