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Abstract: Designing high-voltage underground transmission lines poses complex challenges in
heat management, trench optimization, and determining cable ampacity. This article introduces an
innovative proposal that focuses on adjusting the dimensions of the thermal backfill as a primary
strategy to enhance ampacity compared to the traditional approach of increasing the cross-sectional
area of the cable core. The methodology employs a particle swarm optimization (PSO) technique with
adaptive penalization, restart strategies, and parameter self-adaptation implemented in MATLAB.
The objective of this approach is to provide more efficient solutions than traditional MATLAB PSO,
demonstrating improved convergence and more accurate results with a success probability of 66.1%.
Although traditional PSO is 81% faster, the proposed PSO stands out for its precision. Additionally,
the incorporation of thermal backfill results in an 18.45% increase in cable ampacity. Variations in the
thermal resistivity of the soil, backfill, and ambient temperature are highlighted as sensitive factors
affecting ampacity and backfill dimensions. This method is presented as a crucial tool in the early
stages of the project and underground installation in operation with maximum ampacity, contributing
to the continuous improvement of energy efficiency.

Keywords: underground transmission lines; heat management; cable ampacity; thermal backfill;
PSO; adaptive penalization; energy efficiency.

1. Introduction

As the population density continues to rise, the demand for electrical power experiences
significant growth. In response to this challenge, electric companies are constantly seeking innovations
to enhance the ampacity of their transmission and distribution systems to meet the growing demand.
In densely populated environments, underground transmission lines emerge as the preferred option
due to their greater ease of installation compared to traditional overhead lines.

In these systems, the ampacity of power cables primarily depends on the cross-sectional area of
the conductor core. To ensure that the specified ampacity is achieved, designers must carefully assess
cable parameters, especially the appropriate cross-sectional area of the conductor core [1].

The ampacity of power cables has been extensively discussed in the literature and is governed
by various international standards [2]. Different analytical and numerical approaches are employed
to calculate cable ampacity, with analytical methods widely endorsed by prominent international
standardization associations such as IEEE and IEC [2—4]. Calculation procedures in both standards
exhibit similarities and are based on the model proposed by Neher and McGrath [6].

Over time, various specialized software tools have been developed to calculate ampacity in
different cable configurations, considering various soil layers and installation conditions, exemplified
by programs like CYMCAP [7,8] and ETAP [5]. The history of ampacity calculations is extensively
documented in the literature, addressing in detail various factors affecting cable ampacity [2,7].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Cable ampacity has been found to be closely related to installation conditions and material
properties [7,10,11]. In particular, the thermal resistivity of the soil is a critical factor in the thermal
analysis of cables [12]. Over 70% of the conductor temperature rise in buried cables is attributed to
external thermal resistance [2,12]. Heat dissipation from the conductor and other metallic sheaths is
essential through the cable insulation and the surrounding soil. Although some types of soil naturally
exhibit high thermal resistivity, the use of backfill materials has been shown to reduce this resistivity,
enhancing heat dissipation capacity [14].

The use of backfill materials with lower thermal resistivity than the surrounding soil is a
conventional practice to manage the thermal environment around cables and improve their ampacity
[2,13,15]. This effectiveness is especially pronounced in native soils with high thermal resistivity or in
dry soil and low-temperature conditions [2,7]. However, an increase in the volume of backfill material
can lead to higher installation costs, especially in urban areas with space limitations [16], and backfill
materials also entail significant manufacturing costs. Therefore, it is necessary to optimize various
parameters, such as the amount of backfill material and installation dimensions, to achieve optimal
cable ampacity at a reasonable cost.

Various mathematical models have been developed to optimize both cable ampacity and
installation dimensions. In [17], a model is presented that selects the optimal cross-sectional area of the
conductor and corrective backfill dimension. On the other hand, in [15], a methodology is proposed to
optimize the thermal performance of power cables based on configuration parameters. Additionally,
the impact of controlled backfill quantity on the thermal resistivity of native soil has been investigated
[12,18], as well as the ampacity of high-voltage cables in relation to cable spacing, burial depth, and
backfill size [19-21].

The optimization of parameters in underground cable transmission lines is a crucial topic in the
electrical industry. Despite the demonstrated effectiveness of Genetic Algorithms (GA) and Particle
Swarm Optimization (PSO) in numerous studies [23], none have addressed the optimization of cable
ampacity through the combination of PSO with implementation improvements, such as adaptive
penalty functions to manage constraints with fewer parameter adjustments, as well as advanced
adaptive restart strategies and parameter self-adaptation. Furthermore, these previous studies have
not considered crucial variables such as mutual heating between cables [22], sheath installation type,
and economic constraints on installation cost as a nonlinear function.

Therefore, this article proposes an innovative mathematical formulation that addresses these
deficiencies. The optimization of power cable ampacity is integrated using the PSO algorithm with
significant improvements in implementation. Subsequently, it is compared with the traditional PSO
algorithm in MATLAB, providing a meaningful comparative evaluation between both methods. The
central focus is on improving cable ampacity through adjustments in the dimensions of thermal backfill
rather than increasing the cross-sectional area of the cable core.

2. Cable arrangement and model

There are different configurations in which underground electrical cables can be installed in
connection with a three-phase transmission line. Among the most common formations are trefoil
arrangement (Figure 1a) and flat arrangement (Figure 1b). Each cable formation has its own advantages
and disadvantages. According to a source [24], in the flat formation, both with and without thermal
backfill, the temperature rise is lower compared to the trefoil formation. This is because in the trefoil
arrangement, adjacent cables that touch each other raise the temperature of the sheath due to internal
conduction.
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Figure 1. Types of Underground Cable Installation in Three-Phase Transmission Lines.

The use of backfill has a significant effect in reducing temperature in the underground electrical
cable system. To achieve effective heat transfer from the cables, natural soil is generally replaced by a
thermal backfill with a relatively low thermal resistivity, less than 1.0 K-m/W [1,2].

In Figure 2, the installation method with regular transposition and arrangement of cables, along
with all relevant variables for the optimization problem, is shown. Additionally, a segmented conductor
cable model (see Figure 3) is used to minimize skin and proximity effects in conductors with large
cross-sections [25]. The thermal and electrical parameters of the cable are detailed in Table 1, based on
manufacturer specifications [26].

Table 1. Parameters and specifications of 220 kV XLPE cable [26].

Description Symbol and unit 220 kV cable
Conductor Milliken - 5 seg. Cu
conductor cross section S (mm?) 2000 RSM
conductor diameter dc(mm) 54.5
semiconductor screen thickness tes(mm) 3.5
Insulation

insulation thickness t;(mm) 24.0
insulation outer diameter D;(mm) 107.1
Sheath

aluminum sheath thickness ts(mm) 2.8
sheath outer diameter Ds(mm) 137.4
Outer covering

outer covering thickness tee(mm) 5.0
cable outer diameter D,(mm) 147.7
Physical parameters

maximum conductor temperature Omax (°C) 90
fundamental frequency f(Hz) 60
dielectric constant of the insulation € 2.3
insulation loss factor tand 0.001
conductor resistance at 20 °C Rop(Q2/km) 0.0090
proximity effect constant kp 0.37
constant skin effect ks 0.435
temperature coefficient of Cu w20 3.09x103
temperature coefficient of Al 4.03x1073
nominal voltage - phase to phase Up(kV) 220

1 RMS: por sus siglas en ingles Round Multiwire Segmented conductor (Milliken construction).
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Figure 2. Underground XLPE single-core cables in a flat arrangement and buried in thermal backfill.

The cable depicted in is a segmented compacted copper conductor, with a screen made of extruded
semiconductor. The insulation of the cable is made of a high-quality dry-cured XLPE compound,
which is resistant to heat, moisture, and abrasion. The insulation is shielded by a semiconductor tape
that is firmly adhered to it. Additionally, the outer covering of the cable is composed of a thermoplastic
material (such as PVC, PE, or similar materials) that is continuously extruded over the metallic layer
or moisture barrier of the cable.

Conductor, Milliken (5 Segments), Plain Annealed

Copper, (2000 mmz)
Semi Conductive Tape e
N Conductor Screen, Extruded Semi Conductive (2 mm) % 3 1)

Insulation, Cross Linked Polyethylene — XLPE (24 mm)

Insulation Screen, Extruded Semi Conductive (1.2 mm)

Semi Conductive Water Blocking Tape (2 mm)

—— Corrucated Aluminum Sheath (2.8 mm) =

“\_ Anti Corrosion Bituminized Tape S

N\ Outer Sheath - Extruded Linear Low Density . —
Polyethylene (5.0 mm) 22T

Conductive Layer - Graphite Coating =3

Figure 3. Cross-sectional view of the 127 kV XLPE insulated cable [26].

3. Method

3.1. Ampacity Calculation

To understand the ampacity of cables in underground systems, it is crucial to examine the heat
generation resulting from the current flow through the conductor. This thermal efficiency, along with
the temperature limits of the insulation, is directly related to the cable’s ampacity. In the context of
underground cables in homogeneous soils, heat transfer occurs primarily through conduction across
the cable components and the surrounding soil. When formulating the problem in two dimensions
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due to the significantly greater length than the cable diameter, heat conduction in the soil is described
by the differential equation [2]:

0 (106 d (196 a0
7 (55¢) oy (pay) + 1 =5 W

where p is the thermal resistivity in K-m/W, W,; is the heat flux generated in J/s, and c is the
volumetric heat capacity.

When solving the heat transfer equation for underground cables, the temperature around the
cable is estimated—an essential aspect for evaluating compliance with insulation temperature limits
and, consequently, determining ampacity.

The solution to this equation allows estimating the cable temperature at any point around
it, a crucial factor in evaluating compliance with insulation temperature limits and, consequently,
determining cable ampacity. Two methods are employed to solve Eq. 1: the analytical method,
providing exact solutions in closed mathematical form, and the numerical method [8]. While the
analytical method, though precise, has limitations for complex and realistic problems, especially when
the geometry of the arrangement of underground cables is complicated. In contrast, the numerical
method, although requiring iterations for approximate solutions, offers flexibility to analyze complex
cable systems and apply more realistic boundary conditions. A practical solution to the heat dissipation
problem leverages the fundamental similarity between heat flow due to the temperature difference
between the conductor and its surroundings and the flow of electric current caused by a potential
difference [2]. Given the complexity of the ampacity problem, the solution proposed by Neher and
McGrath in 1957 remains foundational, forming the basis for IEEE and IEC standards [3].

The Figure 4 presents the thermo-electric equivalence network of the cable and its surroundings.
In this representation, the losses in the conductor, corrugated aluminum sheath, and dielectric are
denoted as W, Ws, and W; (W/m), respectively. Additionally, the thermal resistances per unit length,
Ty, T, and T3 (K-m/W), are shown, corresponding to the thermal resistance of the insulation layer, the
thermal resistance of the cable’s outer sheath, and the thermal resistance between the cable surface
and the surrounding medium.

Native soil

O ® ®®

Figure 4. Thermo-electric equivalence network model for underground cable.
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In the specific case of a cable with corrugated aluminum sheath (with an armor loss factor A, = 0),
the losses can be expressed by the equation:

WT:Wc+Ws+Wd:WC(1+)\1+Wd) (2)

where A1, the sheath loss factor, is defined as the ratio of the total losses in the metallic sheath to the
total losses in the conductor.

In practice, non-conductive layers of the cable, such as insulation and the separating cover, impede
the heat flow from the cables. These layers generally have a cylindrical shape. If we consider a constant
thermal resistivity p and the inner and outer radii of a layer as r; and r; respectively, the thermal
resistance of a cylindrical layer per unit length can be calculated using the reference [6].

P, T2
T=-—In=
27T nr1 ®)

The thermal resistance of the metallic parts of the cable, although not equal to zero, is often
negligible in ampacity calculations [9]. Ampacity is determined by considering the calculation of
temperature-dependent conductor loss W, = I?R, and we obtain:

. \/A()—Wd 0.5T; + n(T> + T3)] @)

Ruc[Tl + Tl(l + Al)(TZ + T3)]

where Af is the allowed temperature rise of the cable conductor above the ambient temperature. n
denotes the number of conductors in the cable. The dielectric loss (W;) and the alternating current
electrical resistance (R,c) of the metallic parts of the cable are calculated using the corresponding
equations:

!
W, =27 fCUBtand  Rae = Rye (14 ys +yp) Ry = P% 1+ a29(6c — 20)] )

where:

x4 d 2 d 2 1.18
p c c .
- - . 12 — - a
yp 192+0.8x% (S ) 0.3 (S) X%

192+0.8x +0.27

4 -7 -7
B x; > 8wf10 ‘ 2 8wf10 ‘
Y= 192 1 0.8x% TR, P T TR

The correction factors for the proximity effect (k,) and the skin effect (ks) vary depending on the
type of cable, as detailed in references [1,11]. Additionally, the parameter A;, highlighted as one of
the most relevant and effective, is influenced by the backfill dimensions, the distance between cables
(s), and the cable model with corrugated sheath [23]. This loss factor (A1) consists of losses due to
circulating currents (A}) and Foucault currents (A}) [3,28]. For three single-core cables, as illustrated in
Figure 2, the loss factor due to Foucault currents is calculated as follows [2]:

M= 4] ®
3.2. Thermal external resistance

When the burial depth of the cable (L) significantly exceeds its external diameter (D,) in soil with
resistivity p, the thermal resistance of the surrounding medium can be calculated using Eq. 3, replacing

doi:10.20944/preprints202401.2141.v1
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rp with 4L and r; with D,. To enhance heat dissipation in buried cables, it is common to replace part
of the native soil around the cables with a thermal backfill material [14]. This is because the external
thermal resistance contributes to over 70% of the temperature rise in the conductor of buried cables
[2,13]. In practice, high-voltage cables are often placed in backfill material to improve heat dissipation
and reduce thermal resistance. Figure 2 illustrates cables arranged on backfill, and the external thermal
resistance is described by the equation [2]:

T; = zp—;ln{(bhl— \/uz—l) .F}+%(ps—p,)Gb (7)

where N is the number of cables in the backfill envelope, and L represents the depth of the center of
the rectangular backfill measured from the ground surface. The geometric factor G, encompasses all
design parameters through the values of L and the equivalent radius r;,. This concept was initially
introduced in [6] as an integral part of backfill analysis.

Lc 2L 2L
== u=—=— Gy=1I +y/u2—1) ~In=—=
Uy Tb u ) b n <Mb Mh ) "

For a single-core cable buried under an isothermal plane, the factor F represents the mutual
heating effect of other cables in a system with equal load, and for cable p, it is expressed as:

/ ! I !
PO () = () (G2 () (e -
i=1 dpi dpl dPZ dpk dpq

dp;i and d;i cable distances and fictitious images shown in Figure 5.

Image of Cable No. 1

7

p ,

. Image of Cable No. 2 . ‘

. s k’
L ®
L
LZ 4 Ln
Ly
Air
v \J v \d A\ 4
dpy, 1 ' Ground
Ly
L L, n

® - @y k O
LA pr
. Cable No. 2 ‘

P n

Cable No. 1
Figure 5. Arrangement of cables and their images on an isothermal plane for the calculation of the
F-factor.
4. Development of the Proposed Approach

The innovation of this article lies in the presentation of an advanced algorithm designed
to optimize the ampacity of underground cables specifically allocated in the backfill. This
pioneering approach accurately addresses the challenges associated with determining the optimal
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dimensions of the trench, thermal backfill, and cable ampacity, especially in unfavorable environments
for high-voltage transmission, considering comprehensively economic and physical installation
constraints.

4.1. Formulation of the Objective Function

Equations (4) and (7) are directly influenced by the characteristics of the backfill and the thermal
conductivity properties of the soil. Some parameters, such as the thermal resistivity of the soil and
ambient temperature, are inherently random, fluctuating along the cable route due to climatic and
seasonal variations. In this study, we will assume these parameters to be constants.

In the evolutionary metaheuristic algorithms community, various approaches have been proposed,
with the use of penalty functions being the most common. However, these functions have drawbacks,
such as the need to adjust multiple parameters, complicating the search for the optimal combination
[39,41]. Additionally, solution exploration can be slow, with no guarantee of reaching the optimal
solution. To overcome these limitations, modifications to algorithms have been made by introducing
the concept of parameter-free penalty functions [39,40,42]. These penalty strategies play a crucial
role in balancing the optimization of the objective function and compliance with constraints. In our
research, we specifically evaluate adaptive penalization, focusing on the penalty function given by:

I
F(x) = 1(x) + A ) 8;(x) ©)
j=1

The introduction of the penalization parameter A (a significantly large number) aims to ensure
that the violation of the constraint g;(x) is of a similar order of magnitude to the value of the objective
function I(x). In the case of equality constraints, it is commonly addressed by converting them into
approximations of inequality constraints, following the form g(;,y)(x) ~ I (x) — 6 < 0. This implies
an increase in the total number of inequality constraints to j = g + m, where q is the initial number of
inequality constraints, and m is the number of equality constraints. Therefore, the term g in equation

(9) is replaced by j to incorporate both inequality and equality constraints.

4.2. Formulation of Constraints

The design variables include the determination of various parameters, such as the depth of the
backfill center (L), cable depth (L), spacing between cables (s), backfill width and thickness (w, h),
among others.

With the aim of achieving the optimal configuration and maximizing ampacity, the economic
constraint of backfill and installation cost is incorporated as a crucial factor in the optimization method.
Additionally, there are physical installation constraints that must be considered in the objective function
and are expressed through the following equation:

C=30w-Lg +43.5(w-h— ZnD?) <G

51 >0.3
06<h<w

L>05 (10)
w > 251+ 2s

h
= - — > .
mo=Lg—5 =02
1-3Sh1+h2+h3+De:LG+§S3

where the cost function C is calculated using the cost parameter values listed in Table 2 and the
information presented in Figure 2. It is important to note that the total cost should not exceed the
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budget C;, and physical and design limits are imposed on variables, as illustrated in Figure 2 and
detailed in Table 3. The lower limit is determined by physical conditions, while the upper limit
is constrained by the cost of backfill material in the optimization process [2,31]. Additionally, the
ampacity constraint is simply expressed as: I > I yaq-

Table 2. Cost parameters for the fill optimization [15,31,33].

Task Base cost Term cost
Excavation $16.5/m3 w.le 4wk
Remove the earth $13.15/m3 w.Lg + wé
Backfill with thermal sand ~ $ 28.5/m3 w.h — (3/4)tD?

Table 3. Limits of the design variables.

Variable Lower limit (m) Limite superior (m)

xy =L 0.5 2
xp = Lg 0.6 4
X3 =w 1.2 4
xg=h 0.6 3
X5 =5 D, ~ 0.147 2
X6 = S1 0.3 2

4.3. Optimization Technique

Stochastic metaheuristic algorithms, such as Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) [36-38], have gained preference in real-world applications due to their
mathematical simplicity, ability to tackle large-scale problems [32], and their capability to achieve
globally optimal solutions in short times [35]. Although PSO is widely used and effective in various
problems, it stands out for its fast convergence, ease of implementation, and fewer parameters
compared to GA. Additionally, its balance between exploration and exploitation, effectiveness in
continuous and discrete problems, and the ability to handle multimodal search spaces make it
invaluable in various optimization applications.

The Particle Swarm Optimization (PSO) algorithm begins its execution by generating random
solutions called particles. The population is represented as X = [X1,X2,X3, ..., XN] T where N indicates
the population size, and T denotes transposition. Each particle Xi(i = 1,2,...,, N) represents an
individual in the population and is described as Xi(Xj1, Xip, Xj3, ..., Xip), with D being the dimension
of the search space.

PSO relies on individual experience (Pbest), collective experience (Gbest), and the current
movement of particles to determine their next positions in the search space. Experiences are
incorporated through two acceleration factors (c; and ¢;) and two random numbers generated in the
interval [0,1]. Simultaneously, the current movement is modulated by an inertia factor (w), whose
value varies between wp;n, and wmax. The initial velocity of the population is represented as V =
[V1,V2,V3,.., VN]T. Therefore, the velocity of each particle Xi is calculated as Vi(V;, Vip, Vi3, ..., Vip).

The following pseudocode presents an adapted version of the PSO algorithm for the optimization
of underground cables. Two key elements are highlighted: dynamic parameter adaptation and adaptive
restart. The fundamental steps of the included PSO are:

Set the parameters Wmin, Wmax, €1, and ¢ for PSO.

Initialize the population of particles with positions X and velocities V.

Set the iteration k = 1.

Calculate the fitness of particles Ff = f (X¥) for all i and find the index of the best particle b.
Set Pbestt = Xk for all i, and Gbest" = Xp-

Dynamically adapt the inertia parameter w = wWmax — k- (@max — Wimin)

MaxlIter

o Gk W=
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7. Update the velocity and position of particles:
Vi],‘]*l = wVZk] +¢q -rand() - (Pbestf/j - Xi-‘,]-) + ¢y -rand() - (Gbest}‘ - Xi-‘,j),' Viand Vj.
X = X5+ V5 viand V.

8. Evaluate fitness Fl-kJrl =f (X;‘H) for all 7 and find the index of the best particle b1.

9. Update the population’s Pbest:
If I—“i’“rl < Fl-k, then Pbesti-chl = Xf*l, otherwise Pbesti-<+1 = Pbesté‘

10. Update the population’s Gbest:

If Flflﬂ < Fk, then Gbest"™! = Xkt! and set b = b1, otherwise Gbest'*! = Gbest"

b1
11. Apply adaptive restart when fitness decreases.

12. If k < Maxlter, then k = k + 1 and go back to step 6, otherwise go to step 12.
13. Print the optimal solution as Gbest".

A flowchart (see Figure 6) has been designed to facilitate the understanding of the optimization
process adopted in this work. The flowchart illustrates the sequence of steps in the proposed algorithm,
starting with the generation of an initial random set of individuals represented by particles. The
optimization procedure is based on an iterative algorithm that uses the simulation model and previous
results to generate a set of values that maximize the cable ampacity while ensuring they remain within
physical limits and the available budget.

,_’I Get input Parameters |‘—‘

Cost parameters Physical dimension
for backfill constraints
Determine a new set
of values for decision
variables

v
Stochastic optimization

A 4

Generate sample Optimized the
AP values of random |[--eeeeeeeeeees » best allocation [ >
variables variables of cable by P50

All constraints
satisfied?

Is the objective
better than
previous ones?

Record the
best solutions

M b . Stop and
.ax num er or time prompt to
simulation reached? continue
. . . v .
Optimum dimensions q Optimum cost
of backfill Output data of backfilling

v

| Optimum ampacity |

Figure 6. Flowchart of the proposed algorithms.
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5. Simulation results

The proposed method was evaluated on the cable system shown in Figure 2, based on the cable
construction illustrated in Figure 3. Design variables were constrained within a specific range detailed
in Table 3. An upper limit of ?$300 was set for the installation cost (C;). Constant parameters, such as
the thermal resistivity of native soil under normal conditions (ps = 2.5 K-m/W), thermal resistivity of
the backfill (o, = 0.5 K-m/W), and ambient temperature (6,,,, = 25°C), were obtained from [31].

The optimization problem is formulated as an objective function with self-adaptive penalization,
presented in Eq. 9, where g;(x) is defined according to Eq. 10 and takes the form g;(x) < 0.

This problem was addressed using the proposed PSO and the traditional PSO from MATLAB, the
latter widely used in scientific research. All tests were conducted on MATLAB R2016a, running on an
Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz, 2.21 GHz, with 12.00 GB of RAM. The implementation
includes an enhanced algorithm with dynamic adaptation and adaptive restart.

The parameters of the PSO algorithm were carefully selected: a population of 100, inertial weight
(w) ranging from 1 to 0.1, and modified acceleration coefficients (c; and ¢;) from 2 to 1. An adaptive
restart strategy with a 2% probability at each iteration was implemented to encourage exploration.
These specific values were chosen to enhance the convergence and effectiveness of the PSO algorithm
in optimizing ampacity.

Three independent runs of the proposed PSO algorithm and the traditional PSO were conducted,
as depicted in Figure 7. From the 100 iterations onward, both algorithms exhibit notable stability over
time, where solutions do not show significant improvements. This indicates that both algorithms
converge towards an optimal solution more quickly in fewer iterations. Furthermore, in the figures,
a slight variability in convergence is observed for the proposed algorithm, and higher variability is
noted for the traditional PSO, attributable to its stochastic nature.
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Figure 7. Characteristic convergence of PSO for ampacity maximization.

The enhanced implementation of the proposed algorithm, featuring dynamic adaptation and
adaptive restart, contributes to stability and coherence by reducing fluctuations and enhancing
convergence. Adaptive restart, strategically restarting particles, generates consistent and reliable
results across various executions. Without these improvements, results tend to be more unstable. The
effectiveness of dynamic adaptation and restart depends on the problem, making multiple runs and
statistical analyses crucial for robust performance evaluation.

To assess performance, each algorithm was executed 1000 times. The optimal results, recorded for
cable ampacity in each run, are visually presented in Figure 8 and Figure 9. Additionally, algorithm
performances are detailed in Table 4, providing crucial information such as the best ampacity value,
average, standard deviation, among other relevant aspects.
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Table 4. Performance Results of Algorithms in 500 Runs.

Performance Metrics Proposed PSO Traditional PSO
Best solution 1156.9150 1156.9107
Peor solucién 1149.5165 1145.0845
Range of variation 7.3985 11.8263
Mean value 1155.9221 1155.4815
Standard deviation 1.3071 1.7837
Success Probability 66.10% 56.40%
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Figure 9. a) Dispersion and b) Histogram of Optimal Ampacity with Traditional PSO.

When comparing results between the proposed PSO algorithm and the traditional PSO, notable
differences in terms of accuracy, performance, and consistency are highlighted. The histogram analysis
in Figure 8b) and Figure 9b reveals that the maximum value is most frequently recorded in the range
of 1156 to 1157 A. The success probability for this interval is 66.1% in the proposed PSO and 56.4% in
the traditional PSO, respectively. Although traditional PSO is 81% faster, the proposed PSO stands out
for its accuracy. Despite being slower, its precise approach makes it ideal when accuracy is crucial.
Additionally, its simplicity and clarity facilitate understanding and adjustment, being accessible with
fewer parameters than the traditional approach. The introduction of restart probabilities and dynamic
adaptation enhances the exploration of the search space, achieving more efficient convergences. This
code is a valuable tool for intuitively and effectively addressing optimization problems.
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Based on these comparisons and analyses, the proposed algorithm is selected as the most suitable,
effective, and reliable for conducting comparisons in cable ampacity optimization with and without
backfill. The notable results are presented in Table 5.

Table 5. Optimization result.

Backfill dimensions Parameters and cost

Variable (m) Values | Variable Values
L 0.500 | Total cost ($) 300

Lg 0.872 | Backfill cost ($) 94.7

w 3.562 | Ampacity BackFill (A) 1156.915
h 1.344 | Ampacity Without backfill (A) | 969.9

s 1481 | W; (W/m) 3*3.546
M 2,667 | W; (W/m) 3%17.67

Initially, the cable ampacity without considering backfill is 980.883 A. This would imply the need
to use a conductor with a larger cross-sectional area to support a load current of 1000 A. However, by
applying ampacity optimization considering the backfill configuration, the cable ampacity increases
to 1156.9 A, making it suitable for a load current of 1000 A. Therefore, the percentage increase in the
ampacity of the cable installed with backfill compared to the cable without backfill is approximately
18.45%. This highlights the benefits of backfill in cable ampacity optimization.

It is essential to note that increasing the backfill volume does not guarantee an unlimited increase
in ampacity. The proximity effect influences the spacing between cables (s), and with a constant backfill
width (w), current losses decrease due to better dissipation and reduced electrical resistance provided by the
backfill. The optimum value of s that maximizes ampacity is reached when both effects balance each other.

Figure 10 indicates that ampacity is maximum at s=2.3 m, albeit at a high cost. Below this value,
it decreases due to the proximity effect, while above it decreases due to increased thermal resistivity.
The increase in backfill volume directly affects the total installation cost, influencing ampacity up to a
balance point, beyond which it decreases (Figure 11).
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Figure 10. Effect of cable separation on cable ampacity.
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Figure 11. Ampacity and total cost as a function of backfill volume.

Our proposal suggests delaying or avoiding investments in larger-section cables for underground
lines, focusing on the use of backfill materials to achieve optimal ampacity at a more favorable cost.
Additionally, in places where cables are already overloaded, the addition of backfill could be considered
instead of installing larger-section cables.

It is essential to consider that the cable ampacity is directly affected by climatic and geographical
variations. By adjusting the thermal resistivity of the backfill material (o;) to 0.6 K-m /W, an ampacity
of 1135 A is obtained, and by modifying the value of ps to 2.6 K-m/W, the resulting ampacity is 1131
A; at an ambient temperature of 27°C, the ampacity is reduced to 1129 A. These factors significantly
impact both the cable ampacity and the dimensions of the backfill material, requiring analysis through
a probabilistic approach.

The choice to implement a customized version of the PSO algorithm instead of the standard
MATLAB implementation is based on adapting the algorithm to specific requirements and achieving
greater flexibility and performance, allowing more precise control in a particular context.

6. Conclusions

This study focuses on optimizing the ampacity in a 220 kV underground electrical cable system
with XLPE insulation installed in thermal backfill. The PSO algorithms with adaptive penalty functions,
dynamic adaptation, and adaptive restart were successfully implemented. The results indicate that
the proposed approach efficiently achieves the optimal value of ampacity and design variables,
demonstrating superior performance compared to traditional PSO, which exhibits greater variability
in results.

The proposed method demonstrates more accurate and consistent results, with a success
probability of 66.1% in finding the optimal ampacity value, compared to the 56.4% of the traditional
approach. Furthermore, the traditional algorithm’s performance is 81% faster in terms of execution
time than the proposed algorithm. An optimal ampacity of 1156.9 A was achieved for the cable with
thermal backfill, with specific dimensions and a cost of $94.7/m.

doi:10.20944/preprints202401.2141.v1
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The use of thermal backfill increased the cable’s ampacity by approximately 18.45% compared to
the cable without thermal backfill. This proposal is applicable in both the design of new underground
cable systems and the improvement of existing systems. Investing in thermal backfill may offer a more
cost-effective alternative than investing in cables with a larger cross-sectional area. Moreover, this
methodology is a valuable tool for engineers and professionals involved in the design and improvement
of underground electrical systems, enhancing performance and reducing installation costs.

As future work, simultaneous optimization of cable cost and ampacity will be evaluated
using a probabilistic approach. This will provide a more detailed and comprehensive insight for
decision-making in the design and maintenance of underground cabling systems, further enhancing
the proposal and contributing to advancements in electrical system optimization.

Author Contributions: Conceptualization, B.A. and M.T.; methodology, B.A.; software, B.A.; validation,
B.A.; formal analysis, B.A.; investigation, B.A. and M.T.; resources, B.A.; original draft preparation, B.A;
writing—review and editing, B.A., M.T. ,D.T, D.M., E.U,; visualization, M.T. and C.R.; supervision, B.A.; All
authors have read and agreed to the published version of the manuscript.

Funding: This research received support from both the Universidad Nacional de Ingenieria and the Consejo
Nacional de Ciencia, Tecnologia e Innovacién Tecnolégica (CONCYTEC).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Czapp, S.; Ratkowski, F. Optimization of thermal backfill configurations for desired high-voltage power
cables ampacity. Energies 2021, 14, 1452.

2. Anders, G.J. Rating of electric power cables in unfavorable thermal environment; Wiley: Hoboken, NJ, USA,
2005.

3. International Electrotechnical Commission. IEC 60287-1-1: Electric cables—calculation of the current
rating—part 1-1: Current rating equations (100% load factor) and calculation of losses—general; Tech. Rep.;
International Electrotechnical Commission: Geneva, Switzerland, 2006.

4.  International Electrotechnical Commission. IEC 60287-2-1, Electric cables — Calculation of the current rating,
Part 2-1: Thermal resistance — Calculation of thermal resistance; 2006.

5. ETAP - Cable Thermal Software. Available online: https://etap.com/es/product/cable-thermal-software
(Accessed: December 2022).

6.  Neher, J.H.; McGrath, M.H. The calculation or the temperature rise and load capability of cable systems.
RATIO 1994, 50(2), 5.

7. De Le6n, FE. Major factors affecting cable ampacity. In 2006 IEEE Power Engineering Society General Meeting;
IEEE, 2006; pp. 6-pp.

8.  De Leon, F. Calculation of underground cable ampacity. In Wire and cable handbook; The Electricity Forum,
2005.

9.  Anders, G.J. Rating of electric power cables: ampacity computations for transmission, distribution, and
industrial applications; IEEE: Piscataway, NJ, USA, 1997.

10. Al-Saud, M.S; El-Kady, M.A; Findlay, R.D. A new approach to underground cable performance assessment.
Electric Power Systems Research 2008, 78(5), 907-918.

11. Benato, R.; Colla, L,; Sessa, S.D.; Marelli, M. Review of high current rating insulated cable solutions. Electric
Power Systems Research 2016, 133, 36—41.

12.  Williams, J.A.; Parmar, D.; Conroy, M.W. Controlled backfill optimization to achieve high ampacities on
transmission cables. IEEE transactions on power delivery 1994, 9(1), 544-552.

13. De Le6n, E; Anders, G.J. Effects of backfilling on cable ampacity analyzed with the finite element method.
IEEE Transactions on Power Delivery 2008, 23(2), 537-543.

14. Saleeby, K.E.; Black, W.Z.; Hartley, J.G. Effective thermal resistivity for power cables buried in thermal
backfill. IEEE Transactions on Power Apparatus and Systems 1979, (6), 2201-2214.

15. El-Kady, M.A. Optimization of power cable and thermal backfill configurations. IEEE Transactions on Power
Apparatus and Systems 1982, (12), 4681-4688.


https://etap.com/es/product/cable-thermal-software
https://doi.org/10.20944/preprints202401.2141.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2141.v1

16 of 17

16. Klimenta, D.O.; Perovic, B.D.; Jevtic, M.D.; Radosavljevic, ].N.; Arsic, N.B. Thermal FEM-based procedure
for design of energy-efficient underground cable lines. 2014, (10), 162-188.

17.  Cichy, A.; Sakowicz, B.; Kaminski, M. Economic optimization of an underground power cable installation.
IEEE Transactions on Power Delivery 2017, 33(3), 1124-1133.

18.  Zarchi, D.A.; Vahidi, B.; Haji, M.M. Optimal configuration of underground cables to maximise total ampacity
considering current harmonics. IET Generation, Transmission & Distribution 2014, 8(6), 1090-1097.

19. Nahman, J.; Tanaskovic, M. Calculation of the loading capacity of high voltage cables laid in close proximity
to heat pipelines using iterative finite-element method. International Journal of Electrical Power & Energy
Systems 2018, 103, 310-316.

20. Al-Saud, M.S. PSO of power cable performance in complex surroundings. IET Generation, Transmission &
Distribution 2018, 12(10), 2452-2461.

21.  Oclon, P; Cisek, P; Taler, D.; Pilarczyk, M.; Szwarc, T. Optimizing of the underground power cable bedding
using momentum-type particle swarm optimization method. Energy 2015, 92, 230-239.

22. Bravo-Rodriguez, J.C.; del-Pino-Lépez, ].C.; Cruz-Romero, P. A survey on optimization techniques applied
to magnetic field mitigation in power systems. Energies 2019, 12(7), 1332.

23. del-Pino-Lépez, J.C.; Cruz-Romero, P.; Serrano-Iribarnegaray, L.; Martinez-Roman, J. Magnetic field shielding
optimization in underground power cable duct banks. Electric Power Systems Research 2014, 114, 21-27.

24. Quan, L; Fu, C; Si, W,; Yang, J.; Wang, Q. Numerical study of heat transfer in underground power cable
system. Energy Procedia 2019, 158, 5317-5322.

25. daSilva, EE; Bak, C.L. Electromagnetic transients in power cables. Springer 2013.

26. 127/220kv copper conductor xlpe insulated corrugated aluminum sheath pvc sheath power cable. Retrieved
from https:/ /jsdfcable.en.made-in-china.com /http:/ /en.gznanyangcable.com/http:/ /gzny13922732011.
voip366.com/, 2018. Accessed on April 15, 2023.

27. Brito, A.L,; Machado, V.M.; Almeida, M.E.; das Neves, M. Skin and proximity effects in the series-impedance
of three-phase underground cables. Electric Power Systems Research 2016, 130, 132-138.

28. Tong, Q.; Qi, J; Wang, Y.; Liang, L.; Meng, X.; Zhang, Q. Power cable ampacity and influential factors
analysis under operation. Journal of Information Processing Systems 2018, 14(5), 1136-1149.

29. El-Kady, M.A.; Horrocks, D.J. Extended values for geometric factor of external thermal resistance of cables in
duct banks. IEEE transactions on power apparatus and systems 1985, 8, 1958-1962.

30. Ramirez, L.; Anders, G.]. Cables in Backfills and Duct Banks—Neher/McGrath Revisited. IEEE Transactions
on Power Delivery 2020, 36(4), 1974-1981.

31. Shabani, H.; Vahidi, B. A probabilistic approach for optimal power cable ampacity computation by
considering uncertainty of parameters and economic constraints. International Journal of Electrical Power &
Energy Systems 2019, 106, 432—443.

32. Panda, Dr. Comparing Different Characteristics of Deterministic and Stochastic Optimization Methods. May
12, 2020. Retrieved from https:/ /learnwithpanda.com/2020/05/12/. Accessed on December 15, 2022.

33. Perovi¢, B.D.; Tasi¢, D.S.; Klimenta, D.O.; Radosavljevi¢, ].N.; Jevti¢, M.].; Milovanovié, M.J. Optimising
the thermal environment and the ampacity of underground power cables using the gravitational search
algorithm. IET Generation, Transmission & Distribution 2018, 12(2), 423-430.

34. Liberti, L.; Kucherenko, S. Comparison of deterministic and stochastic approaches to global optimization.
International Transactions in Operational Research 2005, 12(3), 263-285.

35. Dao, S.D.; Abhary, K.; Marian, R. An improved structure of genetic algorithms for global optimisation.
Progress in Artificial Intelligence 2016, 5(3), 155-163.

36. Alam, M.N,; Das, B.; Pant, V. A comparative study of metaheuristic optimization approaches for directional
overcurrent relays coordination. Electric Power Systems Research 2015, 128, 39-52.

37. Bemani, A.; Xiong, Q.; Baghban, A.; Habibzadeh, S.; Mohammadi, A.H.; Doranehgard, M.H. Modeling
of cetane number of biodiesel from fatty acid methyl ester (FAME) information using GA-, PSO-, and
HGAPSO-LSSVM models. Renewable Energy 2020, 150, 924-934.

38. Garg, H. A hybrid PSO-GA algorithm for constrained optimization problems. Applied Mathematics and
Computation 2016, 274, 292-305.

39. Tessema, B.; Yen, G.G. A self adaptive penalty function based algorithm for constrained optimization. In
2006 IEEE international conference on evolutionary computation; IEEE: 2006; pp. 246-253.


https://jsdfcable.en.made-in-china.com/http://en.gznanyangcable.com/ http://gzny13922732011.voip366.com/
https://jsdfcable.en.made-in-china.com/http://en.gznanyangcable.com/ http://gzny13922732011.voip366.com/
https://learnwithpanda.com/2020/05/12/
https://doi.org/10.20944/preprints202401.2141.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 January 2024 doi:10.20944/preprints202401.2141.v1

17 of 17

40. Deb, K. An efficient constraint handling method for genetic algorithms. Computer methods in applied mechanics
and engineering 2000, 186(2-4), 311-338.

41. Garg, H. A hybrid GSA-GA algorithm for constrained optimization problems. Information Sciences 2019, 478,
499-523.

42. Barbosa, H.J.C.; Lemonge, A.C.C. An adaptive penalty scheme in genetic algorithms for constrained
optimization problems. In Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation;
2002; pp. 287-294.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202401.2141.v1

	Introduction
	Cable arrangement and model
	Method
	Ampacity Calculation
	Thermal external resistance

	Development of the Proposed Approach
	Formulation of the Objective Function
	Formulation of Constraints
	Optimization Technique

	Simulation results
	Conclusions
	References

