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Abstract: Designing high-voltage underground transmission lines poses complex challenges in

heat management, trench optimization, and determining cable ampacity. This article introduces an

innovative proposal that focuses on adjusting the dimensions of the thermal backfill as a primary

strategy to enhance ampacity compared to the traditional approach of increasing the cross-sectional

area of the cable core. The methodology employs a particle swarm optimization (PSO) technique with

adaptive penalization, restart strategies, and parameter self-adaptation implemented in MATLAB.

The objective of this approach is to provide more efficient solutions than traditional MATLAB PSO,

demonstrating improved convergence and more accurate results with a success probability of 66.1%.

Although traditional PSO is 81% faster, the proposed PSO stands out for its precision. Additionally,

the incorporation of thermal backfill results in an 18.45% increase in cable ampacity. Variations in the

thermal resistivity of the soil, backfill, and ambient temperature are highlighted as sensitive factors

affecting ampacity and backfill dimensions. This method is presented as a crucial tool in the early

stages of the project and underground installation in operation with maximum ampacity, contributing

to the continuous improvement of energy efficiency.

Keywords: underground transmission lines; heat management; cable ampacity; thermal backfill;

PSO; adaptive penalization; energy efficiency.

1. Introduction

As the population density continues to rise, the demand for electrical power experiences

significant growth. In response to this challenge, electric companies are constantly seeking innovations

to enhance the ampacity of their transmission and distribution systems to meet the growing demand.

In densely populated environments, underground transmission lines emerge as the preferred option

due to their greater ease of installation compared to traditional overhead lines.

In these systems, the ampacity of power cables primarily depends on the cross-sectional area of

the conductor core. To ensure that the specified ampacity is achieved, designers must carefully assess

cable parameters, especially the appropriate cross-sectional area of the conductor core [1].

The ampacity of power cables has been extensively discussed in the literature and is governed

by various international standards [2]. Different analytical and numerical approaches are employed

to calculate cable ampacity, with analytical methods widely endorsed by prominent international

standardization associations such as IEEE and IEC [2–4]. Calculation procedures in both standards

exhibit similarities and are based on the model proposed by Neher and McGrath [6].

Over time, various specialized software tools have been developed to calculate ampacity in

different cable configurations, considering various soil layers and installation conditions, exemplified

by programs like CYMCAP [7,8] and ETAP [5]. The history of ampacity calculations is extensively

documented in the literature, addressing in detail various factors affecting cable ampacity [2,7].
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Cable ampacity has been found to be closely related to installation conditions and material

properties [7,10,11]. In particular, the thermal resistivity of the soil is a critical factor in the thermal

analysis of cables [12]. Over 70% of the conductor temperature rise in buried cables is attributed to

external thermal resistance [2,12]. Heat dissipation from the conductor and other metallic sheaths is

essential through the cable insulation and the surrounding soil. Although some types of soil naturally

exhibit high thermal resistivity, the use of backfill materials has been shown to reduce this resistivity,

enhancing heat dissipation capacity [14].

The use of backfill materials with lower thermal resistivity than the surrounding soil is a

conventional practice to manage the thermal environment around cables and improve their ampacity

[2,13,15]. This effectiveness is especially pronounced in native soils with high thermal resistivity or in

dry soil and low-temperature conditions [2,7]. However, an increase in the volume of backfill material

can lead to higher installation costs, especially in urban areas with space limitations [16], and backfill

materials also entail significant manufacturing costs. Therefore, it is necessary to optimize various

parameters, such as the amount of backfill material and installation dimensions, to achieve optimal

cable ampacity at a reasonable cost.

Various mathematical models have been developed to optimize both cable ampacity and

installation dimensions. In [17], a model is presented that selects the optimal cross-sectional area of the

conductor and corrective backfill dimension. On the other hand, in [15], a methodology is proposed to

optimize the thermal performance of power cables based on configuration parameters. Additionally,

the impact of controlled backfill quantity on the thermal resistivity of native soil has been investigated

[12,18], as well as the ampacity of high-voltage cables in relation to cable spacing, burial depth, and

backfill size [19–21].

The optimization of parameters in underground cable transmission lines is a crucial topic in the

electrical industry. Despite the demonstrated effectiveness of Genetic Algorithms (GA) and Particle

Swarm Optimization (PSO) in numerous studies [23], none have addressed the optimization of cable

ampacity through the combination of PSO with implementation improvements, such as adaptive

penalty functions to manage constraints with fewer parameter adjustments, as well as advanced

adaptive restart strategies and parameter self-adaptation. Furthermore, these previous studies have

not considered crucial variables such as mutual heating between cables [22], sheath installation type,

and economic constraints on installation cost as a nonlinear function.

Therefore, this article proposes an innovative mathematical formulation that addresses these

deficiencies. The optimization of power cable ampacity is integrated using the PSO algorithm with

significant improvements in implementation. Subsequently, it is compared with the traditional PSO

algorithm in MATLAB, providing a meaningful comparative evaluation between both methods. The

central focus is on improving cable ampacity through adjustments in the dimensions of thermal backfill

rather than increasing the cross-sectional area of the cable core.

2. Cable arrangement and model

There are different configurations in which underground electrical cables can be installed in

connection with a three-phase transmission line. Among the most common formations are trefoil

arrangement (Figure 1a) and flat arrangement (Figure 1b). Each cable formation has its own advantages

and disadvantages. According to a source [24], in the flat formation, both with and without thermal

backfill, the temperature rise is lower compared to the trefoil formation. This is because in the trefoil

arrangement, adjacent cables that touch each other raise the temperature of the sheath due to internal

conduction.
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Figure 1. Types of Underground Cable Installation in Three-Phase Transmission Lines.

The use of backfill has a significant effect in reducing temperature in the underground electrical

cable system. To achieve effective heat transfer from the cables, natural soil is generally replaced by a

thermal backfill with a relatively low thermal resistivity, less than 1.0 K·m/W [1,2].

In Figure 2, the installation method with regular transposition and arrangement of cables, along

with all relevant variables for the optimization problem, is shown. Additionally, a segmented conductor

cable model (see Figure 3) is used to minimize skin and proximity effects in conductors with large

cross-sections [25]. The thermal and electrical parameters of the cable are detailed in Table 1, based on

manufacturer specifications [26].

Table 1. Parameters and specifications of 220 kV XLPE cable [26].

Description Symbol and unit 220 kV cable

Conductor Milliken - 5 seg. Cu

conductor cross section S (mm2) 2000 RSM
conductor diameter dc(mm) 54.5
semiconductor screen thickness tcs(mm) 3.5
Insulation
insulation thickness ti(mm) 24.0
insulation outer diameter Di(mm) 107.1
Sheath
aluminum sheath thickness ts(mm) 2.8
sheath outer diameter Ds(mm) 137.4
Outer covering
outer covering thickness tce(mm) 5.0
cable outer diameter De(mm) 147.7
Physical parameters

maximum conductor temperature θmax (°C) 90
fundamental frequency f(Hz) 60
dielectric constant of the insulation ϵ 2.3
insulation loss factor tanδ 0.001
conductor resistance at 20 °C R20(Ω/km) 0.0090
proximity effect constant kp 0.37
constant skin effect ks 0.435
temperature coefficient of Cu α20 3.09x10−3

temperature coefficient of Al 4.03x10−3

nominal voltage - phase to phase U0(kV) 220
1 RMS: por sus siglas en ingles Round Multiwire Segmented conductor (Milliken construction).
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Figure 2. Underground XLPE single-core cables in a flat arrangement and buried in thermal backfill.

The cable depicted in is a segmented compacted copper conductor, with a screen made of extruded

semiconductor. The insulation of the cable is made of a high-quality dry-cured XLPE compound,

which is resistant to heat, moisture, and abrasion. The insulation is shielded by a semiconductor tape

that is firmly adhered to it. Additionally, the outer covering of the cable is composed of a thermoplastic

material (such as PVC, PE, or similar materials) that is continuously extruded over the metallic layer

or moisture barrier of the cable.

 

Conductor, Milliken (5 Segments), Plain Annealed 
Copper, (2000 mm2) 

Semi Conductive Tape 

Conductor Screen, Extruded Semi Conductive (2 mm) 

Insulation, Cross Linked Polyethylene – XLPE (24 mm) 

Insulation Screen, Extruded Semi Conductive (1.2 mm) 

Semi Conductive Water Blocking Tape (2 mm) 

Corrugated Aluminum Sheath (2.8 mm) 

Anti Corrosion Bituminized Tape 

Outer Sheath - Extruded Linear Low Density 
Polyethylene (5.0 mm) 

Conductive Layer - Graphite Coating 

Figure 3. Cross-sectional view of the 127 kV XLPE insulated cable [26].

3. Method

3.1. Ampacity Calculation

To understand the ampacity of cables in underground systems, it is crucial to examine the heat

generation resulting from the current flow through the conductor. This thermal efficiency, along with

the temperature limits of the insulation, is directly related to the cable’s ampacity. In the context of

underground cables in homogeneous soils, heat transfer occurs primarily through conduction across

the cable components and the surrounding soil. When formulating the problem in two dimensions
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due to the significantly greater length than the cable diameter, heat conduction in the soil is described

by the differential equation [2]:

∂

∂x

(

1

ρ

∂θ

∂x

)

+
∂

∂y

(

1

ρ

∂θ

∂y

)

+ Wint = c
∂θ

∂t
(1)

where ρ is the thermal resistivity in K·m/W, Wint is the heat flux generated in J/s, and c is the

volumetric heat capacity.

When solving the heat transfer equation for underground cables, the temperature around the

cable is estimated—an essential aspect for evaluating compliance with insulation temperature limits

and, consequently, determining ampacity.

The solution to this equation allows estimating the cable temperature at any point around

it, a crucial factor in evaluating compliance with insulation temperature limits and, consequently,

determining cable ampacity. Two methods are employed to solve Eq. 1: the analytical method,

providing exact solutions in closed mathematical form, and the numerical method [8]. While the

analytical method, though precise, has limitations for complex and realistic problems, especially when

the geometry of the arrangement of underground cables is complicated. In contrast, the numerical

method, although requiring iterations for approximate solutions, offers flexibility to analyze complex

cable systems and apply more realistic boundary conditions. A practical solution to the heat dissipation

problem leverages the fundamental similarity between heat flow due to the temperature difference

between the conductor and its surroundings and the flow of electric current caused by a potential

difference [2]. Given the complexity of the ampacity problem, the solution proposed by Neher and

McGrath in 1957 remains foundational, forming the basis for IEEE and IEC standards [3].

The Figure 4 presents the thermo-electric equivalence network of the cable and its surroundings.

In this representation, the losses in the conductor, corrugated aluminum sheath, and dielectric are

denoted as Wc, Ws, and Wd (W/m), respectively. Additionally, the thermal resistances per unit length,

T1, T2, and T3 (K·m/W), are shown, corresponding to the thermal resistance of the insulation layer, the

thermal resistance of the cable’s outer sheath, and the thermal resistance between the cable surface

and the surrounding medium.

                                 

 Native soil 

Backfill 

Corrugated sheath 

Outer Sheath 

Insulation 

Conductor 

𝑊𝑐 𝑊𝑑2  
𝑊𝑑2  𝑊𝑠 

𝜃𝑐 
𝑇1 𝜃sup 𝑇2 𝑇𝑟 𝑇𝑠 

𝑇3 

𝜃𝑠 𝜃𝑎𝑚𝑏 

Figure 4. Thermo-electric equivalence network model for underground cable.
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In the specific case of a cable with corrugated aluminum sheath (with an armor loss factor λ2 = 0),

the losses can be expressed by the equation:

WT = Wc + Ws + Wd = Wc(1 + λ1 + Wd) (2)

where λ1, the sheath loss factor, is defined as the ratio of the total losses in the metallic sheath to the

total losses in the conductor.

In practice, non-conductive layers of the cable, such as insulation and the separating cover, impede

the heat flow from the cables. These layers generally have a cylindrical shape. If we consider a constant

thermal resistivity ρ and the inner and outer radii of a layer as r1 and r2 respectively, the thermal

resistance of a cylindrical layer per unit length can be calculated using the reference [6].

T =
ρ

2π
ln

r2

r1
(3)

The thermal resistance of the metallic parts of the cable, although not equal to zero, is often

negligible in ampacity calculations [9]. Ampacity is determined by considering the calculation of

temperature-dependent conductor loss Wc = I2R, and we obtain:

I =

√

∆θ − Wd [0.5T1 + n(T2 + T3)]

Rac[T1 + n(1 + λ1)(T2 + T3)]
(4)

where ∆θ is the allowed temperature rise of the cable conductor above the ambient temperature. n

denotes the number of conductors in the cable. The dielectric loss (Wd) and the alternating current

electrical resistance (Rac) of the metallic parts of the cable are calculated using the corresponding

equations:

Wd = 2π f CU2
0 tanδ Rac = Rdc

(

1 + ys + yp

)

Rdc =
ρ20l

A
[1 + α20(θc − 20)] (5)

where:

yp =
x4

p

192 + 0.8x4
p

(

dc

s

)2






0.312

(

dc

s

)2

+
1.18

x4
p

192+0.8x4
p
+ 0.27







ys =
x4

s

192 + 0.8x4
s

, x2
p =

8ω f 10−7

Rdc
kp x2

s =
8ω f 10−7

Rdc
ks

The correction factors for the proximity effect (kp) and the skin effect (ks) vary depending on the

type of cable, as detailed in references [1,11]. Additionally, the parameter λ1, highlighted as one of

the most relevant and effective, is influenced by the backfill dimensions, the distance between cables

(s), and the cable model with corrugated sheath [23]. This loss factor (λ1) consists of losses due to

circulating currents (λ′
1) and Foucault currents (λ′′

1 ) [3,28]. For three single-core cables, as illustrated in

Figure 2, the loss factor due to Foucault currents is calculated as follows [2]:

λ′
1 = λ′

1 + λ′′
1 (6)

3.2. Thermal external resistance

When the burial depth of the cable (L) significantly exceeds its external diameter (De) in soil with

resistivity ρ, the thermal resistance of the surrounding medium can be calculated using Eq. 3, replacing
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r2 with 4L and r1 with De. To enhance heat dissipation in buried cables, it is common to replace part

of the native soil around the cables with a thermal backfill material [14]. This is because the external

thermal resistance contributes to over 70% of the temperature rise in the conductor of buried cables

[2,13]. In practice, high-voltage cables are often placed in backfill material to improve heat dissipation

and reduce thermal resistance. Figure 2 illustrates cables arranged on backfill, and the external thermal

resistance is described by the equation [2]:

T3 =
ρr

2π
ln
{(

u +
√

u2 − 1
)

.F
}

+
N

2π
(ρs − ρr)Gb (7)

where N is the number of cables in the backfill envelope, and LG represents the depth of the center of

the rectangular backfill measured from the ground surface. The geometric factor Gb encompasses all

design parameters through the values of LG and the equivalent radius rb. This concept was initially

introduced in [6] as an integral part of backfill analysis.

ub =
LG

rb
u =

2L

De
Gb = ln

(

ub +
√

u2
b − 1

)

≈ ln
2LG

rb

For a single-core cable buried under an isothermal plane, the factor F represents the mutual

heating effect of other cables in a system with equal load, and for cable p, it is expressed as:

F =
n

∏
i=1

(

d′pi

dpi

)

=

(

d′p1

dp1

)(

d′p2

dp2

)

...

(

d′pk

dpk

)

...

(

d′pq

dpq

)

(8)

dpi and d′pi cable distances and fictitious images shown in Figure 5.

 

Air 

Ground    

Image of Cable No. 2 

Cable No. 1  

Cable No. 2  

𝐿1 

𝐿1 

𝑝′ 
𝑘′ 

Image of Cable No. 1 𝑛′ 

𝐿2 

𝐿2 

𝐿𝑝 

𝐿𝑝 

  𝐿𝑘 

  𝐿𝑘 

 𝐿𝑛 

 𝐿𝑛 

𝑝 

𝑘 𝑛 

𝑑𝑝𝑘′  

𝑑𝑝𝑘 

Figure 5. Arrangement of cables and their images on an isothermal plane for the calculation of the

F-factor.

4. Development of the Proposed Approach

The innovation of this article lies in the presentation of an advanced algorithm designed

to optimize the ampacity of underground cables specifically allocated in the backfill. This

pioneering approach accurately addresses the challenges associated with determining the optimal

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 January 2024                   doi:10.20944/preprints202401.2141.v1

https://doi.org/10.20944/preprints202401.2141.v1


8 of 17

dimensions of the trench, thermal backfill, and cable ampacity, especially in unfavorable environments

for high-voltage transmission, considering comprehensively economic and physical installation

constraints.

4.1. Formulation of the Objective Function

Equations (4) and (7) are directly influenced by the characteristics of the backfill and the thermal

conductivity properties of the soil. Some parameters, such as the thermal resistivity of the soil and

ambient temperature, are inherently random, fluctuating along the cable route due to climatic and

seasonal variations. In this study, we will assume these parameters to be constants.

In the evolutionary metaheuristic algorithms community, various approaches have been proposed,

with the use of penalty functions being the most common. However, these functions have drawbacks,

such as the need to adjust multiple parameters, complicating the search for the optimal combination

[39,41]. Additionally, solution exploration can be slow, with no guarantee of reaching the optimal

solution. To overcome these limitations, modifications to algorithms have been made by introducing

the concept of parameter-free penalty functions [39,40,42]. These penalty strategies play a crucial

role in balancing the optimization of the objective function and compliance with constraints. In our

research, we specifically evaluate adaptive penalization, focusing on the penalty function given by:

F(x) = I(x) + λ
J

∑
j=1

gj(x) (9)

The introduction of the penalization parameter λ (a significantly large number) aims to ensure

that the violation of the constraint gi(x) is of a similar order of magnitude to the value of the objective

function I(x). In the case of equality constraints, it is commonly addressed by converting them into

approximations of inequality constraints, following the form g(i+k)(x) ≈ hk(x)− δ ≤ 0. This implies

an increase in the total number of inequality constraints to j = q + m, where q is the initial number of

inequality constraints, and m is the number of equality constraints. Therefore, the term q in equation

(9) is replaced by j to incorporate both inequality and equality constraints.

4.2. Formulation of Constraints

The design variables include the determination of various parameters, such as the depth of the

backfill center (LG), cable depth (L), spacing between cables (s), backfill width and thickness (w, h),

among others.

With the aim of achieving the optimal configuration and maximizing ampacity, the economic

constraint of backfill and installation cost is incorporated as a crucial factor in the optimization method.

Additionally, there are physical installation constraints that must be considered in the objective function

and are expressed through the following equation:

C = 30w · LG + 43.5(w · h −
3

4
πD2

e ) ≤ C1

s1 ≥ 0.3

0.6 ≤ h ≤ w

L ≥ 0.5

w ≥ 2s1 + 2s

h1 = LG −
h

2
≥ 0.2

1.3 ≤ h1 + h2 + h3 + De = LG +
h

2
≤ 3

(10)

where the cost function C is calculated using the cost parameter values listed in Table 2 and the

information presented in Figure 2. It is important to note that the total cost should not exceed the
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budget C1, and physical and design limits are imposed on variables, as illustrated in Figure 2 and

detailed in Table 3. The lower limit is determined by physical conditions, while the upper limit

is constrained by the cost of backfill material in the optimization process [2,31]. Additionally, the

ampacity constraint is simply expressed as: I ≥ ILoad.

Table 2. Cost parameters for the fill optimization [15,31,33].

Task Base cost Term cost

Excavation $ 16.5/m3 w.LG + w. h
2

Remove the earth $ 13.15/m3 w.LG + w. h
2

Backfill with thermal sand $ 28.5/m3 w.h − (3/4)πD2
e

Table 3. Limits of the design variables.

Variable Lower limit (m) Limite superior (m)

x1 = L 0.5 2
x2 = LG 0.6 4
x3 = w 1.2 4
x4 = h 0.6 3
x5 = s De ≈ 0.147 2
x6 = s1 0.3 2

4.3. Optimization Technique

Stochastic metaheuristic algorithms, such as Genetic Algorithm (GA) and Particle Swarm

Optimization (PSO) [36–38], have gained preference in real-world applications due to their

mathematical simplicity, ability to tackle large-scale problems [32], and their capability to achieve

globally optimal solutions in short times [35]. Although PSO is widely used and effective in various

problems, it stands out for its fast convergence, ease of implementation, and fewer parameters

compared to GA. Additionally, its balance between exploration and exploitation, effectiveness in

continuous and discrete problems, and the ability to handle multimodal search spaces make it

invaluable in various optimization applications.

The Particle Swarm Optimization (PSO) algorithm begins its execution by generating random

solutions called particles. The population is represented as X = [X1, X2, X3, ..., XN]T , where N indicates

the population size, and T denotes transposition. Each particle Xi(i = 1, 2, ..., N) represents an

individual in the population and is described as Xi(Xi1, Xi2, Xi3, ..., XiD), with D being the dimension

of the search space.

PSO relies on individual experience (Pbest), collective experience (Gbest), and the current

movement of particles to determine their next positions in the search space. Experiences are

incorporated through two acceleration factors (c1 and c2) and two random numbers generated in the

interval [0,1]. Simultaneously, the current movement is modulated by an inertia factor (w), whose

value varies between wmin and wmax. The initial velocity of the population is represented as V =

[V1, V2, V3, ..., VN]T . Therefore, the velocity of each particle Xi is calculated as Vi(Vi1, Vi2, Vi3, ..., ViD).

The following pseudocode presents an adapted version of the PSO algorithm for the optimization

of underground cables. Two key elements are highlighted: dynamic parameter adaptation and adaptive

restart. The fundamental steps of the included PSO are:

1. Set the parameters wmin, wmax, c1, and c2 for PSO.
2. Initialize the population of particles with positions X and velocities V.
3. Set the iteration k = 1.
4. Calculate the fitness of particles Fk

i = f (Xk
i ) for all i and find the index of the best particle b.

5. Set Pbestk
i = Xk

i for all i, and Gbestk = Xk
b.

6. Dynamically adapt the inertia parameter w = wmax −
k·(wmax−wmin)

MaxIter
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7. Update the velocity and position of particles:

Vk+1
i,j = wVk

i,j + c1 · rand() · (Pbestk
i,j − Xk

i,j) + c2 · rand() · (Gbestk
j − Xk

i,j); ∀i and ∀j.

Xk+1
i,j = Xk

i,j + Vk+1
i,j ; ∀i and ∀j.

8. Evaluate fitness Fk+1
i = f (Xk+1

i ) for all i and find the index of the best particle b1.
9. Update the population’s Pbest:

If Fk+1
i < Fk

i , then Pbestk+1
i = Xk+1

i , otherwise Pbestk+1
i = Pbestk

i
10. Update the population’s Gbest:

If Fk+1
b1 < Fk

b , then Gbestk+1 = Xk+1
b1 , and set b = b1, otherwise Gbestk+1 = Gbestk

11. Apply adaptive restart when fitness decreases.
12. If k < MaxIter, then k = k + 1 and go back to step 6, otherwise go to step 12.
13. Print the optimal solution as Gbestk.

A flowchart (see Figure 6) has been designed to facilitate the understanding of the optimization

process adopted in this work. The flowchart illustrates the sequence of steps in the proposed algorithm,

starting with the generation of an initial random set of individuals represented by particles. The

optimization procedure is based on an iterative algorithm that uses the simulation model and previous

results to generate a set of values that maximize the cable ampacity while ensuring they remain within

physical limits and the available budget.
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Figure 6. Flowchart of the proposed algorithms.
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5. Simulation results

The proposed method was evaluated on the cable system shown in Figure 2, based on the cable

construction illustrated in Figure 3. Design variables were constrained within a specific range detailed

in Table 3. An upper limit of ?$300 was set for the installation cost (C1). Constant parameters, such as

the thermal resistivity of native soil under normal conditions (ρs = 2.5 K·m/W), thermal resistivity of

the backfill (ρr = 0.5 K·m/W), and ambient temperature (θamb = 25°C), were obtained from [31].

The optimization problem is formulated as an objective function with self-adaptive penalization,

presented in Eq. 9, where gj(x) is defined according to Eq. 10 and takes the form gj(x) ≤ 0.

This problem was addressed using the proposed PSO and the traditional PSO from MATLAB, the

latter widely used in scientific research. All tests were conducted on MATLAB R2016a, running on an

Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz, 2.21 GHz, with 12.00 GB of RAM. The implementation

includes an enhanced algorithm with dynamic adaptation and adaptive restart.

The parameters of the PSO algorithm were carefully selected: a population of 100, inertial weight

(w) ranging from 1 to 0.1, and modified acceleration coefficients (c1 and c2) from 2 to 1. An adaptive

restart strategy with a 2% probability at each iteration was implemented to encourage exploration.

These specific values were chosen to enhance the convergence and effectiveness of the PSO algorithm

in optimizing ampacity.

Three independent runs of the proposed PSO algorithm and the traditional PSO were conducted,

as depicted in Figure 7. From the 100 iterations onward, both algorithms exhibit notable stability over

time, where solutions do not show significant improvements. This indicates that both algorithms

converge towards an optimal solution more quickly in fewer iterations. Furthermore, in the figures,

a slight variability in convergence is observed for the proposed algorithm, and higher variability is

noted for the traditional PSO, attributable to its stochastic nature.
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Figure 7. Characteristic convergence of PSO for ampacity maximization.

The enhanced implementation of the proposed algorithm, featuring dynamic adaptation and

adaptive restart, contributes to stability and coherence by reducing fluctuations and enhancing

convergence. Adaptive restart, strategically restarting particles, generates consistent and reliable

results across various executions. Without these improvements, results tend to be more unstable. The

effectiveness of dynamic adaptation and restart depends on the problem, making multiple runs and

statistical analyses crucial for robust performance evaluation.

To assess performance, each algorithm was executed 1000 times. The optimal results, recorded for

cable ampacity in each run, are visually presented in Figure 8 and Figure 9. Additionally, algorithm

performances are detailed in Table 4, providing crucial information such as the best ampacity value,

average, standard deviation, among other relevant aspects.
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Table 4. Performance Results of Algorithms in 500 Runs.

Performance Metrics Proposed PSO Traditional PSO

Best solution 1156.9150 1156.9107
Peor solución 1149.5165 1145.0845
Range of variation 7.3985 11.8263
Mean value 1155.9221 1155.4815
Standard deviation 1.3071 1.7837
Success Probability 66.10% 56.40%
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Figure 8. a) Dispersion and b) Histogram of Optimal Ampacity with Proposed PSO.
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Figure 9. a) Dispersion and b) Histogram of Optimal Ampacity with Traditional PSO.

When comparing results between the proposed PSO algorithm and the traditional PSO, notable

differences in terms of accuracy, performance, and consistency are highlighted. The histogram analysis

in Figure 8b) and Figure 9b reveals that the maximum value is most frequently recorded in the range

of 1156 to 1157 A. The success probability for this interval is 66.1% in the proposed PSO and 56.4% in

the traditional PSO, respectively. Although traditional PSO is 81% faster, the proposed PSO stands out

for its accuracy. Despite being slower, its precise approach makes it ideal when accuracy is crucial.

Additionally, its simplicity and clarity facilitate understanding and adjustment, being accessible with

fewer parameters than the traditional approach. The introduction of restart probabilities and dynamic

adaptation enhances the exploration of the search space, achieving more efficient convergences. This

code is a valuable tool for intuitively and effectively addressing optimization problems.
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Based on these comparisons and analyses, the proposed algorithm is selected as the most suitable,

effective, and reliable for conducting comparisons in cable ampacity optimization with and without

backfill. The notable results are presented in Table 5.

Table 5. Optimization result.

Backfill dimensions Parameters and cost
Variable (m) Values Variable Values
L 0.500 Total cost ($) 300
LG 0.872 Backfill cost ($) 94.7
w 3.562 Ampacity BackFill (A) 1156.915
h 1.344 Ampacity Without backfill (A) 969.9
s 1.481 Wd (W/m) 3*3.546
λ1 2.667 WI (W/m) 3*17.67

Initially, the cable ampacity without considering backfill is 980.883 A. This would imply the need

to use a conductor with a larger cross-sectional area to support a load current of 1000 A. However, by

applying ampacity optimization considering the backfill configuration, the cable ampacity increases

to 1156.9 A, making it suitable for a load current of 1000 A. Therefore, the percentage increase in the

ampacity of the cable installed with backfill compared to the cable without backfill is approximately

18.45%. This highlights the benefits of backfill in cable ampacity optimization.

It is essential to note that increasing the backfill volume does not guarantee an unlimited increase

in ampacity. The proximity effect influences the spacing between cables (s), and with a constant backfill

width (w), current losses decrease due to better dissipation and reduced electrical resistance provided by the

backfill. The optimum value of s that maximizes ampacity is reached when both effects balance each other.

Figure 10 indicates that ampacity is maximum at s=2.3 m, albeit at a high cost. Below this value,

it decreases due to the proximity effect, while above it decreases due to increased thermal resistivity.

The increase in backfill volume directly affects the total installation cost, influencing ampacity up to a

balance point, beyond which it decreases (Figure 11).
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Figure 10. Effect of cable separation on cable ampacity.
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Figure 11. Ampacity and total cost as a function of backfill volume.

Our proposal suggests delaying or avoiding investments in larger-section cables for underground

lines, focusing on the use of backfill materials to achieve optimal ampacity at a more favorable cost.

Additionally, in places where cables are already overloaded, the addition of backfill could be considered

instead of installing larger-section cables.

It is essential to consider that the cable ampacity is directly affected by climatic and geographical

variations. By adjusting the thermal resistivity of the backfill material (ρr) to 0.6 K·m/W, an ampacity

of 1135 A is obtained, and by modifying the value of ρs to 2.6 K·m/W, the resulting ampacity is 1131

A; at an ambient temperature of 27°C, the ampacity is reduced to 1129 A. These factors significantly

impact both the cable ampacity and the dimensions of the backfill material, requiring analysis through

a probabilistic approach.

The choice to implement a customized version of the PSO algorithm instead of the standard

MATLAB implementation is based on adapting the algorithm to specific requirements and achieving

greater flexibility and performance, allowing more precise control in a particular context.

6. Conclusions

This study focuses on optimizing the ampacity in a 220 kV underground electrical cable system

with XLPE insulation installed in thermal backfill. The PSO algorithms with adaptive penalty functions,

dynamic adaptation, and adaptive restart were successfully implemented. The results indicate that

the proposed approach efficiently achieves the optimal value of ampacity and design variables,

demonstrating superior performance compared to traditional PSO, which exhibits greater variability

in results.

The proposed method demonstrates more accurate and consistent results, with a success

probability of 66.1% in finding the optimal ampacity value, compared to the 56.4% of the traditional

approach. Furthermore, the traditional algorithm’s performance is 81% faster in terms of execution

time than the proposed algorithm. An optimal ampacity of 1156.9 A was achieved for the cable with

thermal backfill, with specific dimensions and a cost of $94.7/m.
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The use of thermal backfill increased the cable’s ampacity by approximately 18.45% compared to

the cable without thermal backfill. This proposal is applicable in both the design of new underground

cable systems and the improvement of existing systems. Investing in thermal backfill may offer a more

cost-effective alternative than investing in cables with a larger cross-sectional area. Moreover, this

methodology is a valuable tool for engineers and professionals involved in the design and improvement

of underground electrical systems, enhancing performance and reducing installation costs.

As future work, simultaneous optimization of cable cost and ampacity will be evaluated

using a probabilistic approach. This will provide a more detailed and comprehensive insight for

decision-making in the design and maintenance of underground cabling systems, further enhancing

the proposal and contributing to advancements in electrical system optimization.
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21. Ocłoń, P.; Cisek, P.; Taler, D.; Pilarczyk, M.; Szwarc, T. Optimizing of the underground power cable bedding

using momentum-type particle swarm optimization method. Energy 2015, 92, 230–239.

22. Bravo-Rodríguez, J.C.; del-Pino-López, J.C.; Cruz-Romero, P. A survey on optimization techniques applied

to magnetic field mitigation in power systems. Energies 2019, 12(7), 1332.

23. del-Pino-López, J.C.; Cruz-Romero, P.; Serrano-Iribarnegaray, L.; Martínez-Román, J. Magnetic field shielding

optimization in underground power cable duct banks. Electric Power Systems Research 2014, 114, 21–27.

24. Quan, L.; Fu, C.; Si, W.; Yang, J.; Wang, Q. Numerical study of heat transfer in underground power cable

system. Energy Procedia 2019, 158, 5317–5322.

25. da Silva, F.F.; Bak, C.L. Electromagnetic transients in power cables. Springer 2013.

26. 127/220kv copper conductor xlpe insulated corrugated aluminum sheath pvc sheath power cable. Retrieved

from https://jsdfcable.en.made-in-china.com/http://en.gznanyangcable.com/http://gzny13922732011.

voip366.com/, 2018. Accessed on April 15, 2023.

27. Brito, A.I.; Machado, V.M.; Almeida, M.E.; das Neves, M. Skin and proximity effects in the series-impedance

of three-phase underground cables. Electric Power Systems Research 2016, 130, 132–138.

28. Tong, Q.; Qi, J.; Wang, Y.; Liang, L.; Meng, X.; Zhang, Q. Power cable ampacity and influential factors

analysis under operation. Journal of Information Processing Systems 2018, 14(5), 1136–1149.

29. El-Kady, M.A.; Horrocks, D.J. Extended values for geometric factor of external thermal resistance of cables in

duct banks. IEEE transactions on power apparatus and systems 1985, 8, 1958–1962.

30. Ramirez, L.; Anders, G.J. Cables in Backfills and Duct Banks–Neher/McGrath Revisited. IEEE Transactions

on Power Delivery 2020, 36(4), 1974–1981.

31. Shabani, H.; Vahidi, B. A probabilistic approach for optimal power cable ampacity computation by

considering uncertainty of parameters and economic constraints. International Journal of Electrical Power &

Energy Systems 2019, 106, 432–443.

32. Panda, Dr. Comparing Different Characteristics of Deterministic and Stochastic Optimization Methods. May

12, 2020. Retrieved from https://learnwithpanda.com/2020/05/12/. Accessed on December 15, 2022.
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