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Article 

Towards an Info‐Geometric Theory of the Analysis of 
Non‐Time Dependent Queueing Systems 
Ismail A Mageed 

Fellow of the Royal Statistical Society: ismailabdelmageed@gmail.com 

Abstract: Information geometry (IG) seeks to characterize the structure of statistical geodesic models from a 
differential geometric point of view. By considering families of probability distributions as     manifolds with 
coordinate charts determined by the parameters of each individual model, the tools of differential geometry, 
such as divergences and metric tensors, provide effective means of studying their characteristics. The research 
undertaken in this paper presents a novel approach to the     modelling study of information geometrics of a 
queueing system.    In this context, the manifold of a stable M/G/1queue is characterised from the viewpoint of 
IG. The Fisher Information matrix (FIM)    as well as the inverse of (FIM), (IFIM) of stable M/G/1 queue manifold 
are devised. In addition to that, new results that uncovered the significant impact of stability of M/G/1 queue 
manifold on the existence of (IFIM) are obtained. The Kullback’s divergence (KD), and J‐divergence (JD).New 
result has been devised on the significant impact of both server utilization and squared coefficient of variation 
of the underlying M/G/1 queue manifold on both (KD) and (KD) are devised. Also, it is revealed that stable 
M/G/1 QM is      developable (i.e., has a zero Gaussian curvature) and has a non‐zero Ricci Curvature Tensor 
(RCT).   Novel stability dynamics of M/G/1 queue manifold is revealed by discovering the mutual dual impact 
between the behaviour of (RCT) and the stability and the  instability phases of the underlying M/G/1 queue 
manifold.  Furthermore,  a  new  discovery  that  presents  the  significant  impact  of  stability  of M/G/1  queue 
manifold and the continuity of the unique representation between M/G/1 queue manifold and Ricci Curvature 
Tensor (RCT).    The information matrix exponential (IME) is devised. It is also shown that the obtained (IME) 
is unstable. Also,  it  is  shown  that  stability of  the devised  (IME) enforces  the  instability of     M/G/1 queue 
manifold. Unifying IG with Queueing Theory enables the study of        dynamics of queueing      system from a 
novel Riemannian Geometric (RG) point of view, leading to the analysis of the stable M/G/1 queue, based on 
the  Theory  of  Relativity  (TR).Extending  the  study  over  two  new  additional  divergence  measures, 
namelyRényi′s   and  𝑠𝐴𝐵′𝑠   together with  a  complete  illustrative  numerical  results  for  all  these measures 
including  KD,  JD.  This  links  Queueing  theory,  IG  with  deep  machine  learning  and  metric  learning. 
Furthermore,  this  reveals  the  revolutionary  approach  of  queue  learning.  Full  analytic  study  of Gaussian 
curvatures subject to both Angular and Monge techniques together with the overall stability dynamics impact 
on these curvatures. Full analytic study of Einestein Tensor and Stress Energy Tensor together with the overall 
stability dynamics  impact on  these curvatures. The  inclusion of  the definitions of Gaussian and Ricci, Ricci 
scalar  curvatures  and  Einstein  Tensor  together  with  their  physical  interpretations;  The  proposed  novel 
approach  for  the pioneer visualization of queueing  systems via  computational  information geometry. The 
determination of new important links between classical queueing theory and other mathematical disciplines, 
such as IG, matrix theory Riemannian geometry and the THEORY OF RELATIVITY by providing for first time 
i) The full detailed derivations of the Gaussian curvature ii) The Ricci curvature tensor and iii) The full physical 
as well  as  the  geometric  interpretation  of  these  new  results. The  provision  of  a  novel  link  between Ricci 
Curvature  (RCT)  and  the  stability  analysis  of  the  stable M/G/1 QM.  The  full  investigation  of  the  newly 
introduced QT‐IG unifiers together with the  impact of stability/  instability of the underlying M/G/1 QM on 
them. The  full  investigation of  the newly  introduced  (QIGU) unifiers  together with  the  impact of stability/ 
instability of the underlying M/G/1 QM on them. 

Keywords: Maximum  entropy  (ME);  IG;  SM; QM; RCT; Einstein Tensor; Stress Energy Tensor; 
Riemannian  metric  (RM),probability  density  function  (PDF)  Fisher  Information  matrix  (FIM); 
Inverse  Fisher  Information  matrix  (IFIM);  threshold  theorem;  Kullback’s  divergence  (KD);  J‐
divergence (JD),Rényi Divergence(RD); sAB Divergence; QT‐IG unifiers; Queueing Theoretic Fisher 
Information Unifiers(QIGU); information matrix exponential (IME); Stability of a matrix 
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1. Introduction 

Information  geometry  (IG)  is  a  field  that  applies  techniques  from  differential  geometry  to 
statistics[1]. It aims to use geometric metrics to provide a new way to describe the probability density 
function,  serving  as  a  coordinate  system  in  statistical  manifolds(SMs).  A  manifold  [2]is  a 
mathematical concept that represents a space with certain properties. In this context, a manifold is a 
finite‐dimensional Cartesian  space, denoted  as  ℝ𝒏 , where  ℝ𝒏   refers  to  a  topological  space.  It  is 
important  to note  that although  figures can be visualized,  they are considered abstract geometric 
figures rather than concrete representations. 

In the given context, IG is highlighted as being significantly important[1,3,4]. Figure 1 illustrates 
how  parameter  inference,  represented  by  𝜃෠ .  Additionally,  previous  research  has  explored  the 
geometric structures of exponential distribution families.   

 

Figure 1. SM’s parametrization [3]. 

One mathematical method for solving systems of linear differential equations is the information 
matrix exponential (IME). It also has significant applications in the theory of Lie groups, which are 
mathematical  structures  that  have  important  implications  in  various  areas  of mathematics  and 
physics [5]. Interarrival time distribution (IG) of stable M/D/1 queues was studied by using features 
of queue length pathways, the article introduced a geometric structure to the set of M/D/1 queues, 
for a more detailed survey, consult [5] . This strategy connected information matrix theories with IG, 
opening  new  insights  into  queueing  theory.  According  to  [3,6],  Ricci  curvature  quantifies  the 
distinction between  the  standard Euclidean metric  (EM)  and  the Riemannian metric  (RM)  in  the 
setting of the article. In contrast, the difference in volume between a geodesic ball and a Euclidean 
ball with the same radius is measured by scalar curvature. Figure 2 depicts the knowledge facilitation 
of    comprehension of the geometric characteristics of spaces and how they deviate from Euclidean 
geometry (c.f., figure 2). 

 
Figure 2. curved surfaces’ geodesic representation [6]. 

 [7]  states  that  the  exponential of  the Fisher  Information Matrix  (FIM)  for  the  stable M/G/1 

queue, a mathematical model used in queueing theory, solves 𝑑𝑥/𝑑𝑡  ൌ  𝐴𝑥. Here, x represents 

a vector with n dimensions, and A is a nxn matrix. The second extended study by [7] builds 

upon their previous work [8] and introduces new contributions: 
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 Finding the underlying QM’s KD and JD measures 

 Proving that FIM of the underlying QM solves : 𝑑𝑥/𝑑𝑡  ൌ  𝐴𝑥. 
This current paper is an ultimate extension of both papers, with main deliverables : 

 Extending the study over two new additional divergence measures, namely Rényi′s  and  𝑠𝐴𝐵′𝑠 
together with a complete illustrative numerical result for all these measures including KD, JD. 

This links Queueing theory, IG with deep machine learning and metric learning. Furthermore, 

this reveals the revolutionary approach of queue learning.   

 iv) The solenoidability(incompressibility) of the underlying queueing system  is shown. This 

concept is analogous to the Divergence Theorem[9]. 

 Full  analytic  study of Gaussian  curvatures  subject  to both Angular  and Monge  techniques 

together with the overall stability dynamics impact on these curvatures.   

 The current paper provides a comprehensive analysis of the Einstein Tensor and Stress Energy 

Tensor, exploring their relationship with stability dynamics and curvatures. It also introduces 

the definitions and  interpretations of Gaussian and Ricci curvatures, as well as  the Einstein 

Tensor. 

 Extending the study to include two new divergence measures, Rényiʹs and 𝑠𝐴𝐵′𝑠, along with 

illustrative numerical  results  such as KD and  JD. This extension connects queueing  theory, 

information geometry, deep machine learning, and metric learning, revealing a novel approach 

called queue learning.   

 Additionally,  the paper  explores  the  impact of  stability dynamics on Gaussian  curvatures, 

provides a comprehensive analysis of Einsteinian and Stress Energy Tensors, and establishes a 

unified theorem of queueing‐theoretic    correlations with both special and general relativity.   

The road map of this study is: The core definitions for IG are contained in Section 2. In Section 
3, FIM and its inverse for the underlying QM are obtained. In Section 4, the α‐connection of a stable 
M/G/1 queue manifold is obtained. In Section 5, the KD and JD [7], Rényiʹs, and sAB divergences of 
a stable M/G/1 QM are computed. In Section 6, methodical arguments are developed demonstrating 
the developability and non‐zero RCT  for  the underlying queuing manifold system.  In addition, a 
comprehensive  examination  of  the  recently  announced  QT‐IG  unifiers  is  presented  in  Section 
6.Section  7  investigates  𝑒ிூெሺ𝑴/𝑮/𝟏ሻ and  how  the  underlying    QM’s    stability  impacts    FIM’s 
stability. 

In section 8, Ricci scalar,ℛ, curvature of space timeሺeinestein tensorሻ℘, stress energy tensor,𝛵, the 
corresponding threshold theorems for the underlying curvatures and the dual queueing impact on 
the existence of the inverse fisher information matrix(IFIM). Section 9 discusses Queueing theoretic 
impact on the continuity of new devised queueuing‐information geometric unifiers (QIGU). Section 
10 is entirely devoted to closing remarks combined with next phase of research. 
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2. Main Definitions 

2.1. Main Definition on IG 

Definition 2.1 Statistical Manifold (SM) [7] 

We denote a  statistical manifold,𝑀 ൌ ሼ𝑝ሺ𝑥,𝜃ሻ|𝜃ϵΘሽ   and  𝑝ሺ𝑥,𝜃ሻ     as  a  PDF.  Here,  𝜃 ൌሺ𝜃ଵ,𝜃ଶ, . . ,𝜃௡ሻϵΘ ⊂ ℝ୬. 
Definition 2.2 Potential Function [7] 

The potential functionΨሺ𝜃ሻ  denotes (െℒሺ𝑥;𝜃ሻ ൌ െ𝑙 𝑛൫𝑝ሺ𝑥;𝜃ሻ൯) with coordinates only.   

Definition 2.3 FIM, namely [𝒈𝒊𝒋] 
[𝑔௜௝](c.f., [7]) reads as    ൣ𝑔௜௝൧ ൌ ቂ பమபఏ೔ பఏೕ ൫Ψሺ𝜃ሻ൯ቃ , 𝑖, 𝑗 ൌ 1,2, . . ,𝑛    (2.1) 

Definition 2.4 IFIM, namely [𝑔௜௝ሿ  (c.f., [7]) 
[𝑔௜௝]= ሺሾ𝑔 ௜௝ሿሻ ሻିଵ ൌ  

௔ௗ௝ൣ௚೔ೕ൧∆ , ∆ൌ detൣ𝑔௜௝൧              ሺ2.2ሻ 
The arc length is defined to be:  ሺ𝑑𝑠ሻଶ ൌ  ∑ 𝑔௜௝௡௜,௝ୀଵ ሺ𝑑𝜃௜ሻሺ𝑑𝜃௝ሻ                              (2.3) 

Definition 2.5  𝜶‐Connection(c.f., [7]) 
The  𝛼‐connection reads as Γ௜௝,௞ሺఈሻ  = (ଵିఈଶ )(𝜕௜𝜕௝𝜕௞ሺΨሺ𝜃ሻሻ),  𝜕௜  =  డడఏ೔,    α is real                                                                            (2.4) 

Definition 2.6 Kullback’s Divergence (KD), 𝑲ሺ𝒑,𝒒ሻ 
KD, namely   𝐾ሺ𝑝, 𝑞ሻ[7]reads as   𝐾ሺ𝑝, 𝑞ሻ ൌ 𝐸ఏ೛ ൤𝑙 𝑛 ൬௣൫௫;ఏ೛൯௤൫௫;ఏ೜൯൰൨                                                                                (2.5) 

׬= 𝑝൫𝑥;𝜃௣൯𝑙 𝑛 ൬௣൫௫;ఏ೛൯௤൫௫;ఏ೜൯൰ 𝑑𝑥                                                          (2.6)     
J‐divergence reads as    𝐽ሺ𝑝, 𝑞ሻ ൌ  𝑙 𝑛 ൬௣൫௫;ఏ೛൯௤൫௫;ఏ೜൯൰ቀ௣൫௫;ఏ೛൯ି௤൫௫;ఏ೜൯ቁ 𝑑𝑥                   (2.7) ൌ 𝐾ሺ𝑝, 𝑞ሻ ൅ 𝐾ሺ𝑞,𝑝ሻ                                        ሺ2.8ሻ 
In this paper, however, we focus on the Rényi divergence [10,11],   𝐷ோఊሺ𝑝||𝑞ሻ ൌ  

ଵሺఊିଵሻ 𝑙𝑛 ቀ∑ ൫𝑝ሺ𝑛ሻ൯ఊஶ௡ୀ଴ ൫𝑞ሺ𝑛ሻ൯ଵିఊቁ                                                                                  (2.9) 
used in Rényi variational inference VI [12].   𝐷௦,஺஻ఊ,ఎ ሺ𝑝||𝑞ሻ  [13] reads as: 

𝐷௦,஺஻ఊ,ఎ ሺ𝑝||𝑞ሻ ൌ ଵఎሺఎାఊሻ 𝑙𝑛 ቀ∑ ൫𝑝ሺ𝑛ሻ൯ఊାఎஶ௡ୀ଴ ቁ+ ଵఊሺఎାఊሻ 𝑙𝑛 ቀ∑ ൫𝑞ሺ𝑛ሻ൯ఊାఎஶ௡ୀ଴ ቁ െ ଵఊఎ 𝑙𝑛൫∑ ൫𝑝ሺ𝑛ሻ൯ఊஶ௡ୀ଴ ൫𝑞ሺ𝑛ሻ൯ఎ൯      (2.10)

for  ሺ𝛾, 𝜂ሻϵℝଶ  such that  𝛾 ് 0, 𝜂 ് 0 𝑎𝑛𝑑  𝛾 ൅ 𝜂 ് 0. 
The  authors  [13]  have  presented  a  novel  (dis)similarity measure,  namely  𝑫𝒔,𝑨𝑩𝜸,𝜼 ሺ𝒑||𝒒ሻ   (c.f., 

(2.10)). Moreover, it    has been illustrated [13] that 𝐷௦,஺஻ఊ,ఎ ሺ𝑝||𝑞ሻ  is potentially robust. 
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Figure 3. (c.f., [14]). 

Definition 2.8 

1. The  𝛼 െ curvature RiemannianTensors,   𝑅௜௝௞௟ሺఈሻ
[7] reads   

 𝑅௜௝௞௟ሺఈሻ ൌ ൣ൫𝜕௝𝛤௜௞௦ሺఈሻ െ 𝜕௜𝛤௝௞௦ሺఈሻ൯𝑔௦௟ ൅ ൫𝛤௝௧,௟ሺఈሻ𝛤௜௞௧ሺఈሻ െ 𝛤௜௧,௟ሺఈሻ𝛤௝௞௧ሺఈሻ൯൧, 𝑖, 𝑗, 𝑘, 𝑙, 𝑠, 𝑡 ൌ 1,2,3, … . ,𝑛                    (2.11)                                   

where  𝛤௜௝௞ሺఈሻ ൌ  𝛤௜௝,௦ሺఈሻ𝑔௦௞, i,j,k,s = 1,2,...,n       
2. The 𝛼 െ Ricci   curvatures (Ricci Tensors)   𝑅௜௞ሺఈሻ    reads [7] 

 𝑅௜௞ሺఈሻ ൌ  𝑅௜௝௞௟ሺఈሻ 𝑔௝௟ , 𝑖, 𝑗, 𝑘, 𝑙 ൌ 1,2,3, … . ,𝑛                      (2.12)                                   
3.The  𝛼 െ sectional curvatures𝐾௜௝௜௝ሺఈሻ  reads    [7]  𝐾௜௝௜௝ሺఈሻ ൌ  

ோ೔ೕ೔ೕሺഀሻሺ௚೔೔ሻ൫௚ೕೕ൯ିሺ௚೔ೕሻమ , 𝑖, 𝑗 ൌ 1,2, … ,𝑛                      (2.13)                                   
Potentially,   𝐾ሺఈሻ ൌ  

ோభమభమሺഀሻௗ௘௧൫௚೔ೕ൯                                                                                                                                                    (2.14)                                   
4. One mathematical object that can be obtained by contacting the Riemannian Tensor  is the Ricci 
Tensor  [15].  It measures  the  curvature  of  space  and  is  employed  in  the  study  of  Riemannian 
manifolds. To obtain the Ricci Tensor, the contraction procedure entails summing a few components 
of the Riemannian Tensor [7]. 
5. An oriented Riemannian manifoldʹs Ricci curvature tensor (RCT) (c.f., [16]) quantifies the difference 
between a geodesic ballʹs volume on the manifold and its volume in Euclidean space. It gives details 
on  the manifoldʹs  curvature  and  how  it  differs  from  flat  space.  knowledge  the  geometry  and 
characteristics of curved spaces in connection to Euclidean geometry requires a knowledge of this 
topic. 
6.RCT (c.f., [17]) measures how volumes change over time along geodesic paths on a Riemannian 
manifold. When the Ricci curvature is positive, it indicates a smaller diameter. This relationship is 
supported by  the Bonnet‐Myers  theorem, which establishes a  connection between  the manifold’s 
positive Ricci curvature and the curvature properties. 
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Figure 4. RCT (c.f., [18]). 

Definition 2.9 

1. Considering the linear system of differential equations 

  ௗ௫ௗ௧ ൌ 𝐴𝑥                                (2.15) 

with x is an n‐dimensional vector and A is a nxn matrix. It can be shown that (Gunawardena, 2006) 
the matrix exponential: 

 𝑒஺  ൌ ∑ ஺೔௜!ஶ௜ୀ଴ ൌ  𝐼 ൅ 𝐴 ൅ ஺మଶ!
൅⋯൅ ஺ೖ௞!

+....            (2.16)                                   

is the solution of (2.15).   

2. If the characteristic polynomial of A is defined by   Φሺ𝛿ሻ ൌ detሺA െ δIሻ                                                                                    (2.17) 
The eigen values of A (c.f., [19]) solve: Φሺ𝛿ሻ ൌ ሺ𝛿ሻ ൌ 0                                                                                                (2.18) 

such that:  𝐴𝑥 ൌ  𝛿𝑥                        (2.19) 
  𝑒஺      reads as: 

  𝑒஺  ൌ 𝑇  𝑒஽  𝑇ିଵ                                        (2.20) 

where D is the diagonal matrix of eigen values of A, and T is matrix having of the corresponding 
eigen vectors of A as its columns (c.f., [19]). 

Definition 2.10 

Developable surfaces are a special kind of ruled surfaces, they have a Gaussian curvature equal 
to 0, and can be mapped onto the plane surface without distortion of curves: any curve from such a 
surface drawn onto the flat plane remains the same (c.f., [20]). 
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Figure 5. Three kinds of developable surfaces: Tangential on Figure. 5a (on the left), Conical on Fig. 
5b (on the centre) and Figure. 5c (on the right), Cylindrical. Note that curves in bold are directrix or 
base curves and straight lines in bold are directors or generating lines (curves) (c.f., [20]). 

2.2. Gaussian and Mean Curvatures, 𝑲𝑮 𝒂𝒏𝒅 𝑯 𝒓𝒆𝒔𝒑𝒆𝒄𝒕𝒊𝒗𝒆𝒍𝒚  (c.f., [21]) 
Definition 2.11(Mong Patch Technique) 
1.Let 𝐾ଵ    and  𝐾ଶ  be the principal curvatures of a surface patch  𝛿ሺ𝑢, 𝑣ሻ.   𝐾ீ(𝛿ሻ  is   𝐾ீ  =  𝐾ଵ𝐾ଶ                                                                                                                                            (2.21) 
and its Mean Curvature is: 𝐻  =  ଵଶ ሺ𝐾ଵ ൅ 𝐾ଶሻ                                                                                                                                    (2.22) 
2.For a Mong patch  𝑧 ൌ 𝑓ሺ𝑥,𝑦ሻ,𝐾ீand  𝐻  are given by   𝐾ீ  =  ௅ேିெమாீିிమ                                                                                                                                             (2.23) 
and its Mean Curvature is   𝐻  =  ଵଶ ሺ௅ீିଶெிାோாீିிమ ሻ                                                                                                                                (2.24) 
with 𝐸 ൌ  ቀడ௙డ௫ቁଶ ,𝐹 ൌ  

డ௙డ௫డ௬ ,𝐺 ൌ  ሺడ௙డ௬ሻଶ, 𝐿 ൌ డమ௙డ௫మ ,𝑀 ൌ  
డ௙డ௫௬ ,𝑁 ൌ  

డమ௙డ௬మ 
Classification of Surface Points 

 

Figure 6. The elliptic paraboloids  𝑧 ൌ  𝑥ଶ ൅ 2𝑦ଶሺ𝑡𝑜 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡ሻ 𝑎𝑛𝑑 𝑧 ൌ  𝑥ଶ െ 2𝑦ଶ  (to  the  right)    (c.f., 
[21]). 

 

Figure 7. Planar points with quite different shapes(c.f., [21]). 

A torus as shown in Figure 8 
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Figure 8. (c.f., [21]). 

 

Figure 9. Catenoid (c.f., [21]). 

2.3. Different Approach to Gaussian and Mean Curvatures (Angular Technique) (c.f., [22]) 

A new formulation (c.f.,    [22]) is introduced for Gaussian Curvature  𝐾ீand the Mean Curvature 
is  𝐻  are defined as   𝐾ீ  =  𝐾ଵ𝐾ଶ                                                                                                                                          (2.25) 
And 𝐻  =  ଵଶ ሺ𝐾ଵ ൅ 𝐾ଶሻ                                                                                                                                          (2.26) 
with 𝐾ଵ    and  𝐾ଶ  as the principal curvatures are determined by: 𝐾ଵ ൌ  

஻భభሺଵାሺ ങ೑ങೣభᇲ ሻమሻయమ  ,  𝐾ଶ ൌ  
஻మమሺଵାሺ ങ೑ങೣమᇲ ሻమሻయమ                                                                                              (2.27) 

where  𝑥ଷ ൌ 𝑓ሺ𝑥ଵ, 𝑥ଶሻ  defines the shape of the surface.  𝑥ଵᇱ   and  𝑥ଶᇱ   are parallel to the directions of the 
principal curvature, which are rotated through an angle Ꙍ  with respect to  𝑥ଵand𝑥ଶ, and డ௙డ௫భᇲ ൌ 𝑐𝑜𝑠Ꙍ డ௙డ௫భ െ 𝑠𝑖𝑛Ꙍ డ௙డ௫మ                                                                                                    (2.28) 

డ௙డ௫మᇲ ൌ 𝑠𝑖𝑛Ꙍ డ௙డ௫భ ൅ 𝑐𝑜𝑠Ꙍ డ௙డ௫మ                                                                                                  (2.29) 𝐵ଵଵ ൌ డమ௙డ௫భమ 𝑐𝑜𝑠ଶꙌെ 2
డమ௙డ௫భడ௫మ 𝑠𝑖𝑛Ꙍ𝑐𝑜𝑠Ꙍ൅ డమ௙డ௫మమ 𝑠𝑖𝑛ଶꙌൌ  

డమ௙డ௫భᇲమ                      (2.30) 𝐵ଶଶ ൌ డమ௙డ௫భమ 𝑠𝑖𝑛ଶꙌ൅ 2
డమ௙డ௫భడ௫మ 𝑠𝑖𝑛Ꙍ𝑐𝑜𝑠Ꙍ൅ డమ௙డ௫మమ 𝑐𝑜𝑠ଶꙌൌ  

డమ௙డ௫మᇲమ                      (2.31) 
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The angle Ꙍ through which the coordinate frame is rotated to align the axes with the directions 
of the principal curvature at each point on the surface is given by   

𝑡𝑎𝑛2Ꙍൌ  
ିଶሺ ങమ೑ങೣభങೣమሻሺങమ೑ങೣభమିങమ೑ങೣమమሻ                                                                                                                         (2.32) 

A  contour plot of Gaussian  curvature  indicates where  structures occur on a  surface.  If both 
principal curvatures are non‐ zero, the surface is said to have double curvature [22].   

 

Figure 10. (c.f., [22]). 𝐾ீ   are slab structures‐ related by the three regions (a), (b), and (c). 
2.4. Well Defined Functions and Bijective Functions 

Definition 2.12(c.f., [23]). 

1. A function is well‐defined if it gives the same result when the representation of the input is changed 

without changing the value of the input. 

Definition 2.13(c.f., [24]) 
1. function f is said to be one‐to‐one, or injective, if and only if  𝑓ሺ𝑥ሻ ൌ 𝑓ሺ𝑦ሻimplies  𝑥 ൌ 𝑦 for all x, y 
in the domain of 𝑓. A function is said to be an injection if it is one‐to‐one. Alternative: A function is 
one‐to‐one if and only if  𝑓ሺ𝑥ሻ ് 𝑓ሺ𝑦ሻ, whenever x  y. This is the contrapositive of the definition. 

2.A  function  f  from A  to B  is  called onto, or surjective,  if and only  if  for every  𝑏  𝐵  there  is an 
element  𝑎  𝐴  such that  𝑓ሺ𝑎ሻ  ൌ  𝑏. Alternative: all co‐domain elements are covered. 

3. A function f is called a bijection if it is both one‐to‐one (injection) and onto (surjection). 

Definition 2.14(c.f., [25]) 
The solution of the cubic equation   𝑎∗𝑤ଷ ൅ 𝑏∗𝑤ଶ ൅ 𝑐∗𝑤 ൅ 𝑑∗ ൌ 0                                                                                           (2.33) 

is characterized arbitrarily by 
                                                                                                                    𝑦 ൌ 𝑧 െ ఌయ௭                                 (2.34) 𝑤 ൌ 𝑦 െ ௕∗ଷ௔∗    (2.35) 𝑧 ൌ ටሺെ ఌభଶ ሻ േ √𝜀ଶయ

,                                                                      (2.36) 

𝜀ଵ ൌ  
ଶሺ௕∗ሻయଶ଻ ൅ ௗ∗௔∗ െ ௕∗௖∗ଷሺ௔∗ሻమ,                                                                                                                  (2.37) 

𝜀ଶ ൌ  
ሺ𝜀ଵሻଶ

4
൅ ሺ𝜀ଷሻଷ

27
,                                                                    ሺ2.38ሻ 

where  𝜀ଷ  is given by 
                                                                                                                             𝜀ଷ ൌ  െ ଶሺ௕∗ሻమଷሺ௔∗ሻమ ൅ ௖∗௔∗             (2.39) 𝜀ଶ  is called the discriminant of the cubic equation. 
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Preliminary Theorem(PT)    2.15 [26]. 
Let f be a function that is defined and differentiable on an open interval (c,d). 

(1) If  𝑓ᇱሺ𝑥ሻ ൐ 0  for all  𝑥 ∈ ሺ𝑐,𝑑ሻ  ,then f is increasing on  ሺ𝑐,𝑑ሻ.                                                          (2.40) 
If  𝑓ᇱሺ𝑥ሻ ൏ 0    for all  𝑥 ∈ ሺ𝑐,𝑑ሻ, then f is decreasing on  ሺ𝑐,𝑑ሻ.                                                              (2.41) 
2.5. Stability Analysis for Ordinary Differential Equations (ODEs) [27] 

Equilibria are not always stable. Since stable and unstable equilibria play quite different roles in 
the dynamics of a system, it is useful to be able to classify equilibrium points based on their stability. 
Suppose that we have a set of autonomous ordinary differential equations, written in vector form: ௗ௫ௗ௧ ൌ 𝑓ሺ𝑥ሻ                 (2.42) 

Suppose that  𝑥∗  is an equilibrium point. By definition,𝑓ሺ𝑥∗ሻ ൌ 0. 

Theorem  2.16  (c.f.,  [27])An  equilibrium point  𝑥∗   of  the differential  equation  1  is  stable  if  all  the 
eigenvalues of𝐽∗,  the  Jacobian evaluated at  𝑥∗  , have negative real parts. The equilibrium point  is 

unstable if at least one of the eigenvalues has a positive real part.   

s 

 

Figure 11. (c.f., [27]). 

2.6. Scalar Curvature(Ricci Scalar), 𝓡 and Einestein Tensor, ℘ 
The scalar curvature(Ricci Scalar), 𝓡(c.f., [15]) measures RCT’s contraction(c.f., (2.12))   𝓡 ൌ   𝑅௜௝ሺఈሻ𝑔௜௝ , 𝑖, 𝑗 ൌ 1,2,3, ….                                                                                                        (2.43) 
The two‐dimensional Ricci Scalar, 𝓡  [28]    is twice as the Gaussian Curvature 𝐾ீ  (c.f., (2.25)), 𝓡 ൌ   2𝐾ீ  ൌ 2 𝐾ଵ𝐾ଶ                                                                                                                                  (2.44) 

provided that   𝐾ଵand 𝐾ଶ  are determined by (2.27). 
The Ricci scalar 𝓡  [15] has a similar meaning to 𝐾ீ, ℛ ൌ  𝑙𝑖𝑚ఢ→଴ ଺௡ఢమ[1  െ ஺೎ೠೝೡ೐೏ሺఢሻ஺೑೗ೌ೟ሺఢሻ ]                                                                                            (2.45) 
Ricci scalar completely captures the curvature of the surface. 
The equations of motion of a classical theory like General Relativity can be derived directly from 

a  suitable  action  by  using  the  Euler‐Lagrange  equations,  leading  to  the  well‐known  Einstein 
equations [29] 𝐺௜௝ ൌ   𝑅௜௝ሺఈሻ‐ℛଶ 𝑔௜௝ ൌ ଼గℊధ೔ೕ௖ర                                                                                                                (2.46) 
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where 𝐺௜௝ is  the Curvature of Spacetime(Einstein  tensor), ℘,  R୧୨ሺ஑ሻ  defines spacetimeെ RCT, namely 𝑔௜௝, 𝓡 ൌ   𝑅௜௝ሺఈሻ𝑔௜௝ , 𝑖, 𝑗 ൌ 1,2,3, …,is the Ricci scalar or scalar curvature, ℊ is the universal gravitational 
constant,𝑐 is  the  speed  of  light,  and 𝜛௜௝   are  the  components  of  the  stress‐energy  tensor,𝜛 ,as  a 
descriptor of spacetime‐ matter‐energy distributions.   

2.7. Maxima and Minima of Functions of Two Variables [30] 

Suppose that  ሺ𝑎ଵ, 𝑏ଵሻ  is a critical point of  𝑓ሺ𝑥,𝑦ሻ  (i.e,  డ௙ሺ௔భ,௕భሻడ௫ ൌ  0 ൌ డ௙ሺ௔భ,௕భሻడ௬   ). Let’s denote: 

𝐷 ൌ 𝐷ሺ𝑎ଵ,𝑏ଵሻ ൌ  𝑓௫௫ሺ𝑎ଵ,𝑏ଵሻ𝑓௬௬ሺ𝑎ଵ,𝑏ଵሻ െ ሾ𝑓௫௬ሺ𝑎ଵ, 𝑏ଵሻሿଶ                                                                          (2.47) 
This provides the critical point categories: 

1. If  𝐷 ൐ 0 and𝑓௫௫ሺ𝑎ଵ,𝑏ଵሻ ൐ 0  then there is a relative minimum at  ሺ𝑎ଵ,𝑏ଵሻ. 
2. If  𝐷 ൐ 0 and𝑓௫௫ሺ𝑎ଵ,𝑏ଵሻ ൏ 0  then there is a relative maximum at  ሺ𝑎ଵ,𝑏ଵሻ. 
3. If  𝐷 ൏ 0 then the point  ሺ𝑎ଵ,𝑏ଵሻ is a saddle point. 

4. If  𝐷 ൌ 0  then the point  ሺ𝑎ଵ, 𝑏ଵሻ may be a relative minimum, relative maximum, or a 

saddle point. Other techniques would need to be used to classify the critical point. 

2.8. Continuous Functions (c.f., [31]) 

Theorem 2.16 
A  function  𝑓   is  continuous  at  𝑥଴   if  and  only  if    𝑓   is  defined  on  an  open  interval  ሺ𝑟, 𝑠ሻ 

containing  𝑥଴  and for each  𝜀 ൐ 0  there is a  𝛿 ൐ 0  such that: 
|𝑓ሺ𝑥ሻ െ 𝑓ሺ𝑥଴ሻ| ൏ 𝜀                                                                              (2.48) 

whenever  |𝑥 െ 𝑥଴| ൏ 𝛿. 
2.9. The Maclauren’s Series of  𝒍𝒏ሺ𝟏 െ 𝒙ሻ  for  𝒙 𝒂𝒓𝒐𝒖𝒏𝒅 𝒛𝒆𝒓𝒐(Shaw,2015) 

𝑙𝑛ሺ1 െ 𝑥ሻ ൌ  െ∑ ௫೙௡ஶ௡ୀଵ                                                                               (2.49) 

3. The Fim and Its Inverse for the Stable M/G/1 QM 

According to  [32], the maximum entropy  (ME) state probability of the generalized geometric 
solution of a stable M/G/1 queue  (c.f., Figure. 12),  subject  to normalisation, mean      queue  length 
(MQL), L and server utilisation,  𝜌(<1) is given by   

 
Figure 12. 

𝑝ሺ𝑛ሻ ൌ ൜1 െ 𝜌,                    𝑛 ൌ 0ሺ1 െ 𝜌ሻ𝑔𝑥௡  ,       𝑛 ൒ 1
                                                                                                                (3.1) 

where  𝑔 ൌ ఘమሺ௅ିఘሻሺଵିఘሻ , 𝑥 ൌ  
௅ିఘ௅   and  𝐿 ൌ ఘଶ ቀ1൅ ଵାఘ஼ೞమଵିఘ ቁ,  𝜌 = 1 –  𝑝ሺ0ሻ and 𝛽 ൌ   𝐶௦ଶ. 𝑝ሺ𝑛ሻof (3.1) reads as:   

𝑝ሺ𝑛ሻ ൌ  ൞1 െ 𝜌,                              𝑛 ൌ 0ଶఘቀభశഐഁభషഐ ିଵቁ೙షభሺቀభశഐഁభషഐ ାଵቁ೙ ,       𝑛 ൐  0 ,   with𝛽 ൌ  𝐶௦ଶ                                                         
  (3.2) 
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Theorem 3.1 The underlying QM satisfies: 

(i) FIM reads as   

ሾ𝑔௜௝ሿ  =   ቌ ଵሺଵିఘሻమ 0

0       
ିଵሺఉାଵሻమቍ                              (3.3) 

(ii)  ሺ𝑑𝑠ሻଶ=      ( ଵሺଵିఘሻమሻሺ𝑑𝜌ሻଶ  ‐  ଵሺఉାଵሻమ ሺ𝑑𝛽ሻଶ                                                                                                              (3.4) 
(iii) [𝑔௜௝] reads as 
[𝑔௜௝] =  ௔ௗ௝ൣ௚೔ೕ൧∆   =൬ሺ1 െ 𝜌ሻଶ 0

0       െሺ𝛽 ൅ 1ሻଶ൰                                                                                                                    (3.5) 

Proof 

(i)   

Case I:    𝑝ሺ0ሻ ൌ 1െ 𝜌. Thus, ℒሺ𝑥;𝜃ሻ ൌ 𝑙 𝑛൫𝑝ሺ𝑥;𝜃ሻ൯ ൌ  𝑙 𝑛ሺ1െ 𝜌ሻ,   
   𝜃 ൌ  𝜃ଵ ൌ  𝜌                                                            (3.6) Ψሺ𝜃ሻ ൌ െ𝑙 𝑛ሺ1 െ 𝜌ሻ                                                                                    (3.7) 

Therefore,   𝜕ଵ ൌ  
డஏడఘ ൌ  

ଵଵିఘ  (3.8).  𝜕ଵ𝜕ଵ ൌ  
డమஏడఘమ ൌ  

ଵሺଵିఘሻమ                                                                                                  (3.9) 
FIM is given by: 

  ሾ𝑔௜௝ሿ  =  ቂడమஏడఘమቃ=  ቂ ଵሺଵିఘሻమቃ            (3.10) ሾ𝑔௜௝ሿ reads as  ሾ𝑔௜௝ሿ ൌ ሾ𝑔௜௝ሿିଵ ൌ ሾሺ1െ 𝜌ሻଶሿ                                                          (3.11) 
Case  II: For  𝑛 ൐ 0, 𝑝ሺ𝑛ሻ ൌ  

ଶఘቀభశഐഁభషഐ ିଵቁ೙షభሺቀభశഐഁభషഐ ାଵቁ೙ . Therefore, the coordinate system  is  two‐dimensional 

satisfying: ℒሺ𝑥;𝜃ሻ ൌ 𝑙 𝑛൫𝑝ሺ𝑥;𝜃ሻ൯ ൌ  𝑙 𝑛ሺ1െ 𝜌ሻ ൅ 𝑙𝑛2െ 𝑙 𝑛ሺ𝛽 ൅ 1ሻ ൅ 𝑛 𝑙𝑛ሺ ఘሺଵାఉሻଶାఘሺఉିଵሻሻ                                            (3.12) 
where  

 𝜃 ൌ ሺ𝜃ଵ,𝜃ଶሻ ൌ ሺ 𝜌,𝛽ሻ,    𝑤𝑖𝑡ℎ  𝛽 ൌ  𝐶௦ଶ          (3.13) 

We have Ψሺ𝜃ሻ ൌ  𝑙 𝑛ሺ𝛽 ൅ 1ሻ െ 𝑙 𝑛ሺ1 െ 𝜌ሻ െ 𝑙𝑛2                                                                                                                  (3.14) 

Thus, we have 𝜕ଵ ൌ   
ଵଵିఘ 𝜕ଶ ൌ  

ଵఉାଵ  ,𝜕ଵଵ ൌ  
ଵሺଵିఘሻమ ,𝜕ଵ𝜕ଶ ൌ  𝜕ଶ𝜕ଵ ൌ  0,𝜕ଶଶ ൌ െ ଵሺఉାଵሻమ                                                           (3.15) 
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FIM is given by  ሾ𝑔௜௝ሿ  = ቌ ଵሺଵିఘሻమ 0

0       
ିଵሺఉାଵሻమቍ  (3.16). This completes the proof of (i) 

It could be verified that ሺ𝑑𝑠ሻଶ=      ( ଵሺଵିఘሻమሻሺ𝑑𝜌ሻଶ  ‐  ଵሺఉାଵሻమ ሺ𝑑𝛽ሻଶ    (c.f.,      (3.4))                                                                                                               
Finally, after some manipulation, it could be shown that: 

[𝑔௜௝] =  ௔ௗ௝ൣ௚೔ೕ൧∆   =൬ሺ1 െ 𝜌ሻଶ 0
0       െሺ𝛽 ൅ 1ሻଶ൰       (c.f., (3.5)) 

4. The 𝜶(. OR  𝛁ሺ𝛂ሻ)‐Connection of the M/G/1 QM 
(2.8) implies: 

  Γଵଵ,ଵሺఈሻ   = ( ଵିఈሺଵିఘሻయ),  Γଵଵ,ଵሺఈሻ
=
ሺଵିఈሻሺଵିఘሻయ                                                (4.1) 𝛤ଵଵଵሺఈሻ ൌ  

ଵିఈሺଵିఘሻ ,𝛤ଵଵଵሺ଴ሻ ൌ  
ଵሺଵିఘሻ                                                  (4.2) 𝛤ଶଶଶሺఈሻ ൌ  െ ଵିఈሺଵାఉሻ , 𝛤ଶଶଶሺ଴ሻ ൌ  െ ଵሺଵାఉሻ                                    (4.3) 

Engaging the same logic, RCT’s remaining components can be determined. 

5. Variational Inference, KD,JD,RÉ𝐍𝐘𝐈 𝐀𝐍𝐃 𝐬 𝐀𝐁  𝐃𝐈𝐕𝐄𝐑𝐆𝐄𝐍𝐂𝐄𝐒 OF STABLE M/G/1 QM 

5.1. KD and JD Divergences of Stable M/G/1 QM 

The following theorem characterizes both KD and JD of (2.5) and (2.6) respectively.   
Theorem 5.1 The underlying QM satisfies: ሺ𝑖ሻ  𝐾ሺ𝑝, 𝑞ሻ ൌ  𝐸ఏ೛ ൤𝑙 𝑛 ൬௣൫௫;ఏ೛൯௤൫௫;ఏ೜൯൰൨ ൌ 𝑙𝑛 ሺ൬ଵିఘ೛ଵିఘ೜൰ ൬ଵାఉ೜ଵାఉ೛൰ ሾ൬ఘ೜ሺଶାఘ೜ሺఉ೜ିଵሻఘ೛ሺଶାఘ೛ሺఉ೛ିଵሻ൰ ൬ଵାఉ೜ଵାఉ೛൰ሿ௅೛ሻ   (5.1) 𝐿௣  defines the Mean Queue Length at  𝑝. 

Also,   

(ii) JDሺ𝑝, 𝑞ሻ ൌ ൌ 𝑙𝑛ሾ൬ఘ೜ሺଶାఘ೜ሺఉ೜ିଵሻఘ೛ሺଶାఘ೛ሺఉ೛ିଵሻ൰ ൬ଵାఉ೜ଵାఉ೛൰ሿሺ௅೛ି௅೜ሻ    (5.2) 
where  𝐿௣,  𝐿௤  defines the Mean Queue Length at  𝑝 and 𝑞 respectively. 
Proof 

To show (i), the case for  𝑛 ൌ 0  is straightforward.    For    𝑛 ൐ 0,   It could be verified that, using 
(3.2), we have   

After some few mathematical steps, it could be seen that: 𝑙𝑛 ቀ௣ሺ௡ሻ௤ሺ௡ሻቁ ൌ 𝑙 𝑛 ൬ఘ೛ఘ೜൰ ൅  𝑙𝑛 ൬ଵିఘ೛ଵିఘ೜൰ ൅ ሺ𝑛 െ 1ሻ𝑙𝑛 ൬ఘ೛൫ଵାఉ೛൯ఘ೜൫ଵାఉ೜൯൰ ൅ 𝑛𝑙𝑛 ൬ሺଶାఘ೜ሺఉ೜ିଵሻሺଶାఘ೛ሺఉ೛ିଵሻ൰                                  (5.3) 
By (5.4), it follows that KD will be determined by 

Kሺp, qሻ ൌ 𝑙 𝑛 ൤൬ଵିఘ೛ଵିఘ೜൰ ൬ଵାఉ೜ଵାఉ೛൰൨ ൅  𝐿௣ሺ𝑙𝑛ሺ൬ఘ೜ሺଶାఘ೜ሺఉ೜ିଵሻఘ೛ሺଶାఘ೛ሺఉ೛ିଵሻ൰ ൬ଵାఉ೛ଵାఉ೜൰ሻሻ                                            (5.4) 
(𝑛 ൌ 0, 1,2, … ., 𝑎𝑛𝑑  𝐿௣ ൌ  ∑ 𝑛𝑝ሺ𝑛ሻஶ௡ୀ଴ ) 

         ൌ  𝑙𝑛 ൬ଵିఘ೛ଵିఘ೜൰ ൬ଵାఉ೜ଵାఉ೛൰ ሾ൬ఘ೜ሺଶାఘ೜ሺఉ೜ିଵሻఘ೛ሺଶାఘ೛ሺఉ೛ିଵሻ൰ ൬ଵାఉ೜ଵାఉ೛൰ሿ௅೛(c.f., (5.1)) 
This completes the proof of (i). 
To prove (ii), we have by (2.6) and (5.5 ሻ 
Following some mathematical steps, (5.2) could be easily verified. 
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Clearly it follows from (5.2),    that JD is also zero if and only if  𝑝 ൌ 𝑞.This present a novel result 
which declares the compressibility of the underlying QM if and only if it is stable or when    p and q 
are identical, (i.e.,  𝜌௣ ൌ  𝜌௤ ,𝛽௣ ൌ 𝛽௤ሻ   

It  is observed by  (5.1),  that  JD  is dependent on  𝜌௤ ,𝛽௤and  the   MQL of Pollaczeck‐Khinchin 
Formula of a stable M/G/1 QM at  𝑝, 𝐿௣(which is dependent on    𝜌௣and𝛽௣ሻ. To examine the impact of 𝐿௣  on JD, the following experiment is introduced. 

 
Figure 13.   

Figure 13 depicts that KD is a negative decreasing function in MQL at p,𝐿௣.    This justifies that 
the increase of  𝐿௣  will have a significant impact on the decrease of KD. In other words, the increase 
of MQL at p, would enforce the distance between p and q to increase in magnitude. 

Compressibility of M/G/1 QM could be identified visually by presenting the following numerical 
experiment: 
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Figure 14. 

The findings of figure 14, show that the increase of MQL at p impacts    the the stable M/G/1 QM’s 
solenoidability of. As it observed that M/G/1 QM is solenoidal at the steady state phase of the QM. 
By the increase of    𝐿௣ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝐿௣ ്  𝐿௤, the stable M/G/1 QM is no longer solenoidal. This shows 
the direct impact of queueing parameters on the visualization of the regions of solenoidability of the 
stable M/G/1 QM. 

Meanwhile, we have   

 

Figure 15.   

As observed by Figure 15, KD decreases and vanishes at    𝜌௣     = 0.5. by the increase of  𝜌௣   , KD 
decreases and tends to  െ∞  when the underlying M/G/1 QM approaches instability (𝜌௣   = 1). 
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Figure 16.   

As observed by Figure 16, for n =2, KD increases for permissible values of SU(p) and starts to 
decrease    at SU(p) = as we go along. Then, it decreases when SU(p)    = 0.4. Afterwards, KD decreases 
unsoundly  ,  speeding  rapidly  to  െ∞.  In  this physical  interpretation,  stability  has    a  significant 
impact on the behaviour of KD. In principle, it is uncovered that the stability of the M/G/1 QM has a 
significant impact on the performance of KD. 

5.2. Rényi Divergence of Stable M/G/1 QM 

Theorem 5.2    The underlying queueing system satisfies: 

  𝑅𝐷ሺ𝑝, 𝑞ሻ ൌ  𝐷ோఊሺ𝑝||𝑞ሻ 
ൌ  ൞ ଵሺఊିଵሻ ሺ𝛾 𝑙𝑛൫1െ 𝜌௣൯ ൅ ሺ1 െ 𝛾ሻ𝑙 𝑛൫1 െ 𝜌௤൯ሻ,                                                                            𝑛 ൌ 0𝑙𝑛 ൤൬ఘ೛൫ଵାఉ೜൯൫ଵିఘ೛൯൫ଵିఘ೜൯൫ଵାఉ೛൯ ൰൨ఘ೛ ൅ ଵሺఊିଵሻ 𝑙𝑛 ൤∑ 𝑝ሺ𝑛ሻ ൬ఘ೛൫ଵାఉ೛൯൫ଶାఘ೜ሺఉ೜ିଵ൯ሻఘ೜൫ଶାఘ೛ሺఉ೛ିଵሻ൯൫ଵାఉ೜൯൰ஶ௡ୀଵ ൨ ௡ሺఊିଵሻ

,𝑛 ൐ 0
            (5.5)   

 

Proof 𝑅𝐷ሺ𝑝, 𝑞ሻ ൌ  𝐷ோఊሺ𝑝||𝑞ሻ ൌ  
ଵሺఊିଵሻ 𝑙𝑛 ሺቀ൫𝑝ሺ0ሻ൯ఊሺ𝑞ሺ0ሻቁଵିఊሻ=  ଵሺఊିଵሻ 𝑙𝑛 ሺ൫൫1െ 𝜌௣൯ఊሺ1െ 𝜌௤൯ଵିఊሻ                (5.6) 

It could be easily checked that    𝐷ோఊሺ𝑝||𝑞ሻ  of (5.6) that:   𝐷ோఊሺ𝑝||𝑞ሻ ൌ  
ଵሺఊିଵሻ ሺ𝛾 𝑙𝑛൫1െ 𝜌௣൯ ൅ ሺ1െ 𝛾ሻ𝑙 𝑛൫1െ 𝜌௤൯ሻ    as required. 

It could be verified that for  𝑛 ൐ 0,  𝑅𝐷ሺ𝑝, 𝑞ሻ ൌ   𝑙𝑛 ൬൫ଵିఘ೛൯൫ଵାఉ೜൯൫ଵିఘ೜൯൫ଵାఉ೛൯൰ఘ೛    + ଵሺఊିଵሻ 𝑙𝑛 ቆ∑ ൬ఘ೛൫ଵାఉ೛൯൫ଶାఘ೜ሺఉ೜ିଵ൯ఘ೜൫ଶାఘ೛ሺఉ೛ିଵ൯൫ଵାఉ೜൯൰௡ሺఊିଵሻ 𝑝ሺ𝑛ஶ௡ୀଵ ሻቇ                (c.f., (5.5))   
We are done. 

As  𝛾 → 1, 

𝑙𝑖𝑚ఊ→ଵ𝐷ோఊሺ𝑝||𝑞ሻ ൌ 𝑙𝑖𝑚ఊ→ଵ 1ቀ∑ ൫𝑝ሺ𝑛ሻ൯ఊஶ௡ୀ଴ ൫𝑞ሺ𝑛ሻ൯ଵିఊቁ൭෍ሾ𝛾൫𝑝ሺ𝑛ሻ൯ఊିଵஶ
௡ୀ଴ ൫𝑞ሺ𝑛ሻ൯ଵିఊ ൅ ሺ1െ 𝛾ሻ൫𝑞ሺ𝑛ሻ൯ିఊ൫𝑝ሺ𝑛ሻ൯ఊ൱ 

ൌ 𝑙𝑖𝑚ఊ→ଵ ଵቀ∑ ൫௣ሺ௡ሻ൯ംಮ೙సబ ൫௤ሺ௡ሻ൯భషംቁ∑ ሺ1ሻஶ௡ୀ଴   = ∞ 
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Data RÉNYI DIVERGENCE,RD 

CASE ONE 

 
Figure 17. 

It is shown by Figure 17,RD    is drastically decreasing until SU(p) is greater than 1, RD becomes 
imaginary number, i.e., the instability of M/G/1 QM occurs , RD becomes imaginary!!! 

It is observed that for  𝑛 ൌ 0, 𝛾 → 1ሺ𝑠ℎ𝑎𝑛𝑛𝑜𝑛𝑖𝑎𝑛 𝑝ℎ𝑎𝑠𝑒ሻ,𝐷ோ,
ଵ ሺ𝑝||𝑞ሻ ൌ 𝑙𝑛 ሺଵିఘ೛ଵିఘ೜ሻ 

CASE TWO 

 
Figure 18. 

Following Figure 18, The decreasability of RD is clear because of the dual impact of Su(p) and 
ITP on RD. 
CASE TWO, RD,  𝑛 ൌ 2 
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Figure 19.   

As observed from figure 19, that RD increases rapidly by the increase of  𝜌௣. It is expected that 
RD approaches infinity as𝜌௣  approaches unity(i.e, M/G/1 QM is unstable at  𝑝ሻ. To show this, we can 
take the limit of (5.9) as  𝜌௣  approaches unity. This directly implies that: 𝐷ோ଴.ହ(p||𝜌௤ ൌ 0.5, 𝛽௤ ൌ 3ሻ →  𝑙𝑛 0൅ 3𝑙𝑛ሺ3ሻ െ 2𝑙𝑛 ሺ𝑝ሺ1ሻሺ1 െ 𝑝ሺ1ሻሻ, or 

The devised corresponding absolute limiting value of RD is 
|𝐷ோ଴.ହ(p||𝜌௤ ൌ 0.5, 𝛽௤ ൌ 3ሻ| → | 𝑙𝑛 0൅ 3𝑙𝑛ሺ3ሻ െ 2𝑙𝑛 ሺ𝑝ሺ1ሻሺ1െ 𝑝ሺ1ሻሻ|  = ∞ 
5.3. sAB divergence,  𝑫𝒔,𝑨𝑩𝜼,𝜸

(p||q) of    Stable M/G/1 QM 

Before going into details, we need to prove the following important lemma as it is needed in the 
proofs. 
Lemma 5.3    𝑝ሺ𝑛ሻ  of (3.2) rewrites to   

𝑝ሺ𝑛ሻ ൌ  ൝ 1െ 𝜌,                                     𝑛 ൌ 0ଶఘሺଵିఘሻሺଵାఉሻ ቀఘమሺଵାఉሻሺଵିఘሻ௅ ቁ௡ ,               𝑛 ൐  0 ,   with 𝛽 ൌ  𝐶௦ଶ(5.10) 
where  𝐿 ൌ ఘଶ ቀ1൅ ଵାఘ஼ೞమଵିఘ ቁ,  𝜌 = 1 –  𝑝ሺ0ሻ  and  𝛽 ൌ 𝐶௦ଶ  . 

Proof For  𝑛 ൌ 0, it is immediate by (3.2) 

As for𝑛 ൐  0By the MQL formula, we have  𝐿 ൌ ఘଶ ቀ1൅ ଵାఘఉଵିఘ ቁ. Hence,  ൫2൅ 𝜌ሺ𝛽 െ 1ሻ൯ ൌ  
ଶሺଵିఘሻ௅ఘ . 

This implies : ଶఘቀభశഐഁభషഐ ିଵቁ೙షభሺቀభశഐഁభషഐ ାଵቁ೙ ൌ  
ଶఘቀഐሺభశഁሻభషഐ ቁ೙షభሺ൬൫మశഐሺഁషభሻ൯భషഐ ൰೙  ൌ  

ଶఘቀഐሺభశഁሻభషഐ ቁ೙షభ
ሺቌమሺభషഐሻಽഐభషഐ ቍ೙ =  ଶఘሺଵିఘሻሺଵାఉሻ ቀఘమሺଵାఉሻሺଵିఘሻ௅ ቁ௡                                          (5.11) 

By (5.11) and (3.2), the proof follows. 
Theorem 5.4   𝑠𝐴𝐵௡ୀ଴    divergence vanishes, 𝐷௦,஺஻ఎ,ఊ   (p||q) = 0                                                                                                                                  (5.12) 

Proof For  𝑛 ൌ 0,𝑝ሺ𝑛ሻ ൌ  1െ 𝜌௣ , 𝑞ሺ𝑛ሻ ൌ  1െ 𝜌௤. hence, it follows by (2.10) that :   𝐷௦,஺஻ఊ,ఎ ሺ𝑝||𝑞ሻ  ൌ  0                            (c.f,(5.12)) 

Theorem 5.5 For  𝑛 ് 0, sAB    divergence is determined by   
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𝐷௦,஺஻ఎ,ఊ
(p||q)ൌ

 𝑙𝑛 ሾቆ∑ ൬ఘ೛మሺଵାఉ೛ሻ൫ଵିఘ೛൯௅೛൰௡ሺఊାఎሻஶ௡ୀଵ ቇ భആሺആశംሻ ቆ∑ ൬ఘ೜మሺଵାఉ೜ሻ൫ଵିఘ೜൯௅೜൰௡ሺఊାఎሻஶ௡ୀଵ ቇ భംሺആశംሻ ൬∑ ൬ఘ೛మሺଵାఉ೛ሻ൫ଵିఘ೛൯௅೛൰௡ఊஶ௡ୀଵ ൬ఘ೜మሺଵାఉ೜ሻ൫ଵିఘ೜൯௅೜൰௡ఎ൰ି భംആ
]   

(5.13

)

for  ሺ𝛾, 𝜂ሻϵℝଶ  such that  𝛾 ് 0, 𝜂 ് 0 𝑎𝑛𝑑  𝛾 ൅ 𝜂 ് 0 

Proof We have   

 𝑝ሺ𝑛ሻ ൌ  
ଶఘ೛ሺଵିఘ೛ሻሺଵାఉ೛ሻ ൬ఘ೛మሺଵାఉ೛ሻ൫ଵିఘ೛൯௅೛൰௡,  𝑞ሺ𝑛ሻ ൌ  

ଶఘ೜ሺଵିఘ೜ሻሺଵାఉ೜ሻ ൬ఘ೜మሺଵାఉ೜ሻ൫ଵିఘ೜൯௅೜൰௡      (c.f. (5.11) of Lemma 5.3) 

Following (2.10),   𝐷௦,஺஻ఊ,ఎ ሺ𝑝||𝑞ሻ ൌ ሾ ଵఎሺఎାఊሻ 𝑙𝑛 ቆ∑ ൬ଶఘ೛ሺଵିఘ೛ሻሺଵାఉ೛ሻ ൬ఘ೛మሺଵାఉ೛ሻ൫ଵିఘ೛൯௅೛൰௡൰ఊାఎஶ௡ୀଵ ቇ + ଵఊሺఎାఊሻ 𝑙𝑛 ቆ∑ ൬ଶఘ೜ሺଵିఘ೜ሻሺଵାఉ೜ሻ ൬ఘ೜మሺଵାఉ೜ሻ൫ଵିఘ೜൯௅೜൰௡൰ఊାఎஶ௡ୀଵ ቇ െ
ଵఊఎ 𝑙𝑛 ቆ∑ ൬ଶఘ೛൫ଵିఘ೛൯൫ଵାఉ೛൯ ൬ఘ೛మ൫ଵାఉ೛൯൫ଵିఘ೛൯௅೛൰௡൰ఊஶ௡ୀଵ ൬ଶఘ೜൫ଵିఘ೜൯൫ଵାఉ೜൯ ൬ఘ೜మ൫ଵାఉ೜൯൫ଵିఘ೜൯௅೜൰௡൰ఎቇሿ (5.14) 

It could be checked that RHS of (5.14) reduces after some lengthy computation to 𝐷௦,஺஻ఊ,ఎ ሺ𝑝||𝑞ሻ  = 𝑙𝑛 ሾቆ∑ ൬ఘ೛మሺଵାఉ೛ሻ൫ଵିఘ೛൯௅೛൰௡ሺఊାఎሻஶ௡ୀଵ ቇ భആሺആశംሻ ቆ∑ ൬ఘ೜మሺଵାఉ೜ሻ൫ଵିఘ೜൯௅೜൰௡ሺఊାఎሻஶ௡ୀଵ ቇ భംሺആశംሻ ൬∑ ൬ఘ೛మሺଵାఉ೛ሻ൫ଵିఘ೛൯௅೛൰௡ఊஶ௡ୀଵ ൬ఘ೜మሺଵାఉ೜ሻ൫ଵିఘ೜൯௅೜൰௡ఎ൰ି భംആ
]     

(c.f.,(5.13))

Numerical experiment for  𝑫𝒔,𝑨𝑩𝜸,𝜼 ሺ𝒑||𝒒ሻ 
Data one: 

Following (5.13), it can be verified after some manipulation, that for  𝜌௤ ൌ 0.5,𝛽௣ ൌ  𝛽௤ ൌ 2,𝑛 ൌ
2  DITP = (𝛾, 𝜂)=(1,1),   
𝐷௦,஺஻ଵ,ଵ ሺ𝑝||𝑞ሻ=    𝑙𝑛 ሾ √ሺሺ లഐ೛మశഐ೛ሻమశሺ లഐ೛మశഐ೛ሻరሺభమఱ ሻమశሺభమఱ ሻర ሻ

ሺ ళమഐ೛ఱሺమశഐ೛ሻሻାሺ ళమഐ೛ఱሺమశഐ೛ሻሻమ,   

 

Figure 20. 

The  increasability  of  the  GENERALIZED  ALPHA  BETA  DIVERGENCE(GABD)  as  SU(p) 
increases is obvious from    figure 20. 
DATA TWO 

After  some  lengthy  computation,  it  could be verified  that  for  the non‐extensive  information 
theoretic    dual, DITP=  ሺ𝛾, 𝜂ሻ ൌ ሺ0.5,0.5ሻ,𝑛 ൌ 2 
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ሺ𝐷௦,஺஻ሺ଴.ହ,଴.ହሻ൫𝑝ห|𝑞ሻ൯ሺఘ೜సబ.ఱ,ఉ೜సయ,ഁ೛సమሻ =    𝐥 𝐧⎝⎜
⎛ ଷቆ∑ ൬ లഐ೛మశഐ೛൰೙మ೙సభ ቇ
ଶఘ೛൫ଵିఘ೛൯ቌ∑ ൬ లഐ೛మశഐ೛൰೙మమ೙సభ ቍర⎠⎟

⎞
 

As  𝜌௣ → 1ሺ𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑡𝑦 𝑝ℎ𝑎𝑠𝑒   of M/G/1 QM ,    𝐷஺஻ሺ଴.ହ,଴.ହሻሺ𝑝||𝑞ఘ೜సబ.ఱ,ఉ೜సబ.ఱሻ → ∞ 

6. Investigations of the Developability of the Stable M/G/1 QM ,RICCI CURVATURE (RCT) 
tENSOR and QT‐IG Unifiers 

6.1. Investigation of Developability of M/G/1 QM and Finding Its Ricci Curvature Tensor (RCT) 

Theorem 6.1 The stable M/G/1 QM 

i) Has a zero 0‐Gaussian curvature, for which the stable M/G/1 QM would be developable. 

ii) Has a non‐zero Ricci Tensor 

iii) Is non‐developable minimal surface under Monge Technique, with a zero Mean Curvature   

iv) Is developable under Angular Technique if and only if M/G/1 QM unstable 

v) If the underlying QM is unstable, then the Mean Curvature is negative under Angular Technique. 

The converse statement is not always true. 

vi) The first principal curvature, 𝐾ଵ  under the Angular Technique satisfies the inequality 𝐾ଵ ൏ 1                                                                                                                                                            (6.1) 

vii)  The  second  principal  curvature,  𝐾ଶ 𝑖𝑠 𝛽 െ dependent and  is negative under  the  Angular 

Technique. 

viiii) Under the Angular Technique, the second principal curvature, 𝐾ଶ tends to zero as  𝛽 → ∞. 

Proof   

For i), we must prove : 

𝐾ሺఈሻ ൌ  
ோభమభమሺഀሻௗ௘௧൫௚೔ೕ൯    = 0                              (6.2) 

It could be verified that, 𝑅ଵଶଵଶሺఈሻ ൌ 0(6.3)   𝑑𝑒𝑡൫𝑔௜௝൯ ൌ  െ ଵሺఉାଵሻమሺଵିఘሻమ ് 0  .      Hence,                                             

𝐾ሺఈሻ ൌ  
ோభమభమሺഀሻௗ௘௧൫௚೔ೕ൯ ൌ 0 ,  which  proves  that  the  underlying  QM  is  developable  subject  to  𝛼 െ

Gaussian  𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒. 
ii) We must prove that: 

 𝑅௜௞ሺఈሻ ൌ  𝑅௜௝௞௟ሺఈሻ 𝑔௝௟  is non‐zero. 
We have 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2024                   doi:10.20944/preprints202401.2124.v1

https://doi.org/10.20944/preprints202401.2124.v1


  21 

 

𝑅ଵଶଵଶሺఈሻ 𝑔ଵଵ ൅  𝑅ଵଵଵଶሺఈሻ 𝑔ଵଶ ൅  𝑅ଵଶଵଵሺఈሻ 𝑔ଶଵ ൅  𝑅ଵଶଵଶሺఈሻ 𝑔ଶଶ 
Engaging the same procedure as in (6.2), we have 𝑅ଵଵሺఈሻ ൌ 𝑅ଵଶሺఈሻ ൌ 𝑅ଶଶሺఈሻ ൌ 0ሺ6.3ሻ.  𝑅ଶଵሺఈሻ ൌ െ ଵିఈሺଵିఘሻమ,   𝑅ଶଵሺ଴ሻ ൌ െ ଵሺଵିఘሻమ(6.5) 
Hence,  𝑅ଶଵሺఈሻ ് 0  (6.6). The corresponding Ricci Curvature Tensor is given by 

ሺRCTሻ ൌ  ൭0       െ 1ሺ1 െ 𝜌ሻଶ
0       0

൱ 
As  𝜌 → 1,  𝑅ଶଵሺ଴ሻ → െ∞.    The highlights the significant influence of instability in a specific type 

of the underlying QM, by providing supporting evidence on how RCT is significantly impacted by 
the stability analysis of the system. The also shows that  𝜌, represented by   𝑅ଶଵሺ଴ሻ  ,affects the behavior 
of RCT, and Figure 21 demonstrates that the stability phase of the M/G/1 QM causes RCT to decrease 
as 𝜌 increases. 

 

Figure 21.   

whereas in Figure 22, RCT increasability in  𝜌    is caused by the underlying QM’s instability. 

 

Figure 22. 

iii) Following (3.14) and (3.15), it is clear that 

Thus, we have𝜕ଵ ൌ   
ଵଵିఘ 𝜕ଶ ൌ  

ଵఉାଵ  ,𝜕ଵଵ ൌ  
ଵሺଵିఘሻమ ,𝜕ଵ𝜕ଶ ൌ  𝜕ଶ𝜕ଵ ൌ  0,𝜕ଶଶ ൌ െ ଵሺఉାଵሻమ                          (3.15) 
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The Gaussian Curvature  𝐾ீ  =  ௅ேିெమாீିிమ                  (c.f.,(2.23)) 

𝐸 ൌ  ሺ𝜕ଵሻଶ ൌ ൬ 1

1െ 𝜌൰ଶ  ,𝐹 ൌ  𝜕ଵ𝜕ଶ ൌ 0,𝐺 ൌ  ሺ𝜕ଶሻଶ ൌ  
1ሺ𝛽 ൅ 1ሻଶ , 

 𝐿 ൌ 𝜕ଵଵ ൌ  
1ሺ1െ 𝜌ሻଶ ,𝑀 ൌ  𝜕ଵଶ ൌ 0,𝑁 ൌ  𝜕ଶଶ ൌ െ 1ሺ𝛽 ൅ 1ሻଶ 

And the Mean Curvature is    𝐻  =  ଵଶ ቀ௅ீିଶெிାோாீିிమ ቁ                                                              (c.f., (2.24))       
Therefore, it is obtained that   𝐾ீ=௅ேିெమாீିிమ ൌ െ  

భሺభషഐሻమ భሺഁశభሻమభሺభషഐሻమ భሺഁశభሻమ ൌ െ1,𝜌 ് 1ሺ𝑡ℎ𝑒 𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝑄𝑀 𝑖𝑠 𝑠𝑡𝑎𝑏𝑙𝑒ሻ,𝛽 ് െ1                     (6.7) ሺ𝛽 ൌ     𝐶௦ଶ 𝑖𝑠 𝑛𝑒𝑣𝑒𝑟 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑏𝑦 𝑑𝑒𝑓𝑎𝑢𝑙𝑡ሻ 
Since  𝐾ீ= െ1,  it follows by the non‐ developability of the underlying QM      and its minimal 

surface under Monge Technique. 
The Mean Curvature is 𝐻  =  ଵଶ ቀ௅ீିଶெிାோாீିிమ ቁ  ൌ  

భమሺ భሺభషഐሻమ భሺഁశభሻమି భሺభషഐሻమ భሺഁశభሻమሻభሺభషഐሻమ భሺഁశభሻమ   = 0                                                                                  (6.8) 

Hence, iii) is done. 
iv)  Following  the Angular  Technique,  it  can  be  verified  that  the    calculations  of  the  principal 
curvatures  𝐾ଵ and𝐾ଶ  are determined by   𝐾ଵ ൌ  

ሺଵିఘሻሺଵାሺሺଵିఘሻሻమሻయమ,  𝐾ଶ ൌ  
ିሺଵାఉሻሺଵାሺሺଵାఉሻమሻయమ                                                                                                            (6.9) 𝐾ீ  =  𝐾ଵ𝐾ଶ  = ିሺଵିఘሻሺଵାሺሺଵିఘሻሻమሻయమ ሺଵାఉሻሺଵାሺሺଵାఉሻమሻయమ                                                                                                          (6.10) 

and 𝐻  =  ଵଶ ሺ𝐾ଵ ൅ 𝐾ଶሻ  =  ଵଶ ሺ ሺଵିఘሻቀଵା൫ሺଵିఘሻ൯మቁయమ െ ሺଵାఉሻሺଵାሺሺଵାఉሻమሻయమሻ                                                                                    (6.11)   
The axial rotator angle Ꙍ   reads as  𝑡𝑎𝑛2Ꙍൌ  

ିଶሺడభడమሻሺడభభି డమమሻ ൌ 0                      (6.12) 

This implies, Ꙍ ൌ 0, 2𝜋, 4𝜋, …. 
It  appears  from  (6.10),  that    𝐾ீ ൌ 0 ሺ𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦, 𝑡ℎ𝑒 𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝑄𝑀 𝑖𝑠 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑎𝑏𝑙𝑒ሻ  if  and 

only if    ሺଵିఘሻሺଵାሺሺଵିఘሻሻమሻయమ ሺଵାఉሻሺଵାሺሺଵାఉሻమሻయమ ൌ 0                                                                       (6.13) 

This implies that:   
either  ሺ1െ 𝜌ሻ ൌ 0 (equivalently,  𝜌 ൌ 1ሻ  or  ሺ1 ൅ 𝛽ሻ ൌ 0                                                                    (6.14) 
The second possibility (ሺ1 ൅ 𝛽ሻ ൌ 0ሻ  generates a contradiction as   𝛽  is never negative. 
Moreover, 𝑙𝑖𝑚ఉ→ஶ𝐾ீ  =‐  ሺଵିఘሻሺଵାሺሺଵିఘሻሻమሻయమ 𝑙𝑖𝑚ఉ→ஶ ሺଵାఉሻሺଵାሺሺଵାఉሻమሻయమ  = 0                                                                                    (6.15) 

Linking the findings of (6.13) and (6.15) completes the proof of iv). 
As for v), it has been obtained that 
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𝐻  =  ଵଶ ሺ𝐾ଵ ൅ 𝐾ଶሻ  =  ଵଶ ሺ ሺଵିఘሻቀଵା൫ሺଵିఘሻ൯మቁయమ െ ሺଵାఉሻሺଵାሺሺଵାఉሻమሻయమሻ                                                                                    (6.11)   
This directly implies   𝐻 ൏ ଵଶ ሺଵିఘሻቀଵା൫ሺଵିఘሻ൯మቁయమ                                                                                                                            (6.16) 
It  is  clear  that  1൅ ൫ሺ1െ 𝜌ሻ൯ଶ ൐ 0   holds  for  all  the  possible  values  of  𝜌.   Consequently,  if ሺ1െ 𝜌ሻ ൌ 0   or  𝜌 ൌ 1  (equivalently, the underlying QM is unstable), it follows that  𝐻 ൏ 0 
To prove the necessity condition, assume that  𝐻 ൏ 0. This generates two possibilities: 
The first possibility,    ଵଶ ሺଵିఘሻቀଵା൫ሺଵିఘሻ൯మቁయమ ൏ 0. This implies  𝜌 ൐ 1. Hence, M/G/1 QM is unstable. 

The second possibility,    ଵଶ ሺଵିఘሻቀଵା൫ሺଵିఘሻ൯మቁయమ ൐ 0. This implies  𝜌 ൏ 1. Hence, M/G/1 QM is stable. 

This justifies that the converse statement is not always true. The proof of v) is complete. 
To show vi), we have  𝐾ଵ ൌ  

ሺଵିఘሻሺଵାሺሺଵିఘሻሻమሻయమ  (c.f., (6.9)) 
Since the underlying M/G/1 QM is assumed to be stable. Hence,  𝜌 ∈ ሺ0,1ሻ.  Thus, we have 

1 ൐ ሺ1െ 𝜌ሻଶ ൐ 0 or 2 ൐ ሺ1െ 𝜌ሻଶ ൅ 1 ൐ 1.   Therefore,  2
యమ ൐ ሺ1 ൅ ሺሺ1െ 𝜌ሻሻଶሻయమ ൐ 1. Consequently,   

ଵଶయమ ൏ ଵሺଵାሺሺଵିఘሻሻమሻయమ ൏ 1. This implies    ሺଵିఘሻଶయమ ൏ ሺଵିఘሻሺଵାሺሺଵିఘሻሻమሻయమ ൏ ሺ1 െ 𝜌ሻ ൏ 1                                              (6.17) 

By (6.17), it holds that  𝐾ଵ ൏ 1. 
vii) we  have  by  (6.9),  𝐾ଶ ൌ  

ିሺଵାఉሻሺଵାሺሺଵାఉሻమሻయమ  , which is of course a 𝛽 െ dependent functionThe  stability  of 

M/G/1 QMenforces the condition  𝛽 ൐ 1to hold. The negativity of  𝐾ଶis clear.   
viii) Immediate from (6.15). 

6.2. Revealing Novel QT‐IG Unifiers and Discovering Their Algebraic Structures 

Throughout this section, the following novel unifiers between both queueueing theoretic and 
information  geometric  structures  of  the  stable M/G/  1 QM  are  established  by  the  following  two 
unifiers, 𝜑ଵሺ𝜌ሻ ൌ  𝐾ଵ ൌ  

ሺଵିఘሻሺଵାሺሺଵିఘሻሻమሻయమ                                                                                                                (6.18) 𝜑ଶሺ𝛽ሻ ൌ  𝐾ଶ ൌ  
ିሺଵାఉሻሺଵାሺሺଵାఉሻሻమሻయమ                                                                                                              (6.19) 

Theorem 6.2.For the above devised unifiers (c.f., (6.18) and (6.19)), it holds that 

i) 𝜑ଵ  is a well‐defined function 

ii)𝜑ଵ ൌ      ൝𝑙𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  ሺ0,1ሻ,             𝜌 ∈ ሺ0,1ሻ
0,                                                               𝜌 ൌ 1൏ 0,                                                            𝜌 ൐ 1

(6.20) 

iiiሻ𝜑ଵ  is one‐to –one. 
iv)𝜑ଵ  is onto 
v)𝜑ଵis    bijection, with animaginary inverse  𝜑ଵି ଵdetermined by 𝜑ଵି ଵሺ𝜌ሻ ൌ 1∓ ሺሺ𝑧 െ 1ሻ ൅ ሺଷା భഐమሻ௭ ሻభమ                                                                                                              (6.21) 
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where𝑧 ൌ ඨെ ଵଶఘమ േ 𝑖ට ଵଵଶఘర ൅ 1൅ ଵଶఘమ ൅ ଵଶ଻ఘలయ
, 𝑖 ൌ √െ1 

vi) 𝜑ଶ  is a well‐defined function 

vii)𝜑ଶ ൌ      ⎩⎪⎨
⎪⎧൏ െ ଶହయమ ,                                                  𝛽 ∈ ሺ0,1ሻെ ଶହయమ ,                                                         𝛽 ൌ 1൐ െ ଶହయమ ,                                                   𝛽 ൐ 1

                (6.22) 

viiiሻ𝜑ଶ  isone‐to –one 
x)𝜑ଶ  is onto 
xi)𝜑ଶis    bijection, with an imaginary inverse  𝜑ଶି ଵ(i.e., a complex number)determined by 𝜑ଶି ଵሺ𝛽ሻ ൌ െ1∓ ሺሺ𝑧 െ 1ሻ ൅ ሺଷା భഁమሻ௭ ሻభమ                                                                                                            (6.23) 
where    𝑧 ൌ ඨെ ଵଶఉమ േ 𝑖ට ଵଵଶఉర ൅ 1 ൅ ଵଶఉమ ൅ ଵଶ଻ఉలయ

, 𝑖 ൌ √െ1 

xii) The underlying QM has inverse of    𝜌 unifier, namely,𝜑ଵି ଵ  satisfies 
|1െ 𝜑ଵି ଵሺ𝜌ሻ| ൏ 5൅  

ሺଵାሺభబభఱర ሻభలఘమ                                                                                                                 (6.24) 

xiii) The underlying of inverse of    𝛽 unifier, namely,𝜑ଶି ଵ  satisfies 
|1െ 𝜑ଶି ଵሺ𝛽ሻ| ൏ ሺ1൅ ቀଵ଴ଵହସ ቁభల ൅ ଵቀభబభఱర ቁభల ൅ ଷఉమቀభబభఱర ቁభల)                                                                                            (6.25) 
xiv)The increasabilty and decreasability of 𝜑ଵ  in  𝜌are undecidable. 
xv)𝜑ଶis forever increasing in𝛽and is never decreasing in  𝛽 

To prove  i),  it  is  enough  to  show  that  for  all  𝜌ଵ,𝜌ଶ ∈ ሺ0,1ሻ  such  that  𝜑ଵሺ𝜌ଵሻ ൌ  𝜑ଵሺ𝜌ଶሻ,  then 𝜌ଵand𝜌ଶ  should never be distinct. 
Let  𝜑ଵሺ𝜌ଵሻ ൌ  𝜑ଵሺ𝜌ଶሻ. After some lengthy mathematical steps, (6.26) reduces to   ሺ𝜌ଵ െ 𝜌ଶሻሺ𝜌ଵ ൅ 𝜌ଶ െ 2ሻሾሺሺ1െ 𝜌ଵሻଶሺ1െ 𝜌ଶሻଶሺሺ1െ 𝜌ଵሻଶ ൅  ሺ1 െ 𝜌ଶሻଶ െ 2ሻሻሿ ൌ  0                          (6.28) 

Equation (6.28) generates three possible cases: 

Case 1:𝜌ଵ െ 𝜌ଶ ൌ 0. Hence𝜌ଵ ൌ 𝜌ଶ  (contradiction to  𝜌ଵ ്  𝜌ଶ)                                                            (6.29) 
Case 2:𝜌ଵ ൅ 𝜌ଶ െ 2 ൌ 0. Hence𝜌ଵ ൅ 𝜌ଶ ൌ 2    (contradiction, since M/G/1 is a stable QM,𝜌ଵ,𝜌ଶ ∈ ሺ0,1ሻ)   
(6.30) 

Case 3:ሾሺሺ1 െ 𝜌ଵሻଶሺ1െ 𝜌ଶሻଶሺሺ1െ 𝜌ଵሻଶ ൅  ሺ1െ 𝜌ଶሻଶ െ 2ሻሻሿ ൌ  0                                                      (6.31)           

By𝜌ଵ,𝜌ଶ ∈ ሺ0,1ሻ,  following mathematical analysis it holds that   

Therefore,    ൣ൫ሺ1 െ 𝜌ଵሻଶሺ1െ 𝜌ଶሻଶሺሺ1െ 𝜌ଵሻଶ ൅  ሺ1െ 𝜌ଶሻଶ െ 2ሻ൯൧ ൏ 0 ,  which contradicts (6.29). 

Based on the above analysis and by (6.29), i) follows. 
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ii) we have by (6.18),    𝜑ଵሺ𝜌ሻ ൌ  𝐾ଵ ൌ  
ሺଵିఘሻሺଵାሺሺଵିఘሻሻమሻయమ .  Since  𝜌 ∈ ሺ0,1ሻ, it could be verified that   

 2 ൐ 1 ൅ ሺሺ1െ 𝜌ሻሻଶ ൐ 0 .  Hence,  ଵሺଵାሺሺଵିఘሻሻమሻయమ  ∈ ሺ0,
ଵଶ ሻ .  Therefore,  0 ൏ 𝜑ଵሺ𝜌ሻ ൌ ሺଵିఘሻሺଵାሺሺଵିఘሻሻమሻయమ ൏ ଵଶ ൏

1      ሺ6.33) 
The case  𝜑ଵሺ1ሻ  ൌ 0  is clear. Also,    for  𝜌 ൐ 1, it is  immediate that  𝜑ଵሺ𝜌ሻ ൏ 0. This completes 

the proof of ii). 
iii) It suffices to show that for all  𝜌ଵ,𝜌ଶ ∈ ሺ0,1ሻ  such that  𝜑ଵሺ𝜌ଵሻ ൌ  𝜑ଵሺ𝜌ଶሻ, then  𝜌ଵ ൌ   𝜌ଶ  holds. The 
proof is clearly immediate from (6.29). 

iv) From the definition,  𝜑ଵሺ𝜌ሻ ൌ  
ሺଵିఘሻሺଵାሺሺଵିఘሻሻమሻయమ. Every  ሺଵିఘሻሺଵାሺሺଵିఘሻሻమሻయమ  is characterized by  𝜌.   This clearly 

proves the surjectivity of  𝜑ଵ.  Hence, iv) follows. 
v) Clearly,  𝜑ଵ  is a bijection. To calculate  the  inverse of  𝜑ଵ, namely𝜑ଵି ଵ. Define  𝜑ଵሺ𝜌ሻ ൌ  𝑦. Hence, ሺଵାሺሺଵିఘሻሻమሻయ௬మ ൌ   ሺ1െ 𝜌ሻଶ. Let    𝑤 ൌ ሺ1െ 𝜌ሻଶ. Then, we have the cubic equation: 

𝑤ଷ ൅ 3𝑤ଶ ൅ ቀ3െ ଵ௬మቁ𝑤 ൅ 1 ൌ 0                                                      (6.34) 

Following the method for solving cubic equations (c.f., definition 2.14), we have 𝑎∗ ൌ 1, 𝑏∗ ൌ 3, 𝑐∗ ൌ  ቀ3െ ଵ௬మቁ ,𝑑∗ ൌ 1                                                                                           (6.35) 

The solution of (6.34) is characterized arbitrarily by 𝑤 ൌ 𝑟 െ 1                                                                                     (6.36) 
  𝛾 ൌ 𝑧 െ ఌయ௭   ,                                                                                                                                              (6.37) 𝑧 ൌ ටሺെ ఌభଶ ሻ േ √𝜀ଶయ

,                                                                      (6.38) 

𝜀ଵ ൌ  
ଵ௬మ,                                                        (6.39) 

The discriminant of the cubic equation 

 𝜀ଶ ൌ  
1

4𝑦ଶ ൅ ሺ𝜀ଷሻଷ27
,                                                                                                                                                        ሺ6.40ሻ 𝜀ଷ  is given by 𝜀ଷ ൌ  െ3െ ଵ௬మ(6.41) 

After some lengthy calculations, it can be verified that   𝜌 ൌ 1 ∓ ሺሺ𝑧 െ 1ሻ ൅ ሺଷା భ೤మሻ௭ ሻభమ  =  𝜑ଵି ଵሺ𝑦ሻ                                                      (6.42) 
where                                                                                      𝑧 ൌ ඨെ ଵଶ௬మ േ 𝑖ට ଵଵଶ௬ర ൅ 1൅ ଵଶ௬మ ൅ ଵଶ଻௬లయ

, 𝑖 ൌ
√െ1 

By (6.20), we have   

1∓ ሺሺ𝑧 െ 1ሻ ൅ ሺଷା భഐమሻ௭ ሻభమ  =  𝜑ଵି ଵሺ𝜌ሻ                                                      (6.43) 
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where                                                                                    𝑧 ൌ ඨെ ଵଶఘమ േ 𝑖ට ଵଵଶఘర ൅ 1൅ ଵଶఘమ ൅ ଵଶ଻ఘలయ
, 𝑖 ൌ √െ1 

This completes the proof. 
To prove vi), it is enough to show that for all  𝛽ଵ,𝛽ଶ ∈ ሺ1,∞ሻ  such that  𝜑ଶሺ𝛽ଵሻ ൌ  𝜑ଶሺ𝛽ଶሻ, then 𝛽ଵand𝛽ଶ  should never be distinct. 

Let  𝜑ଶሺ𝛽ଵሻ ൌ  𝜑ଶሺ𝛽ଶሻ .  Then    ሺଵାఉభሻሺଵାሺሺଵାఉభሻሻమሻయమ ൌ  
ሺଵାఉమሻሺଵାሺሺଵାఉమሻሻమሻయమ ,  such  that  𝛽ଵ,𝛽ଶ ∈ ሺ1,∞ሻ,𝛽ଵ ്  𝛽ଶ.   This 

implies 

Hence,   ሺ𝛽ଶ െ 𝛽ଵሻሺ𝛽ଵ൅𝛽ଶ ൅ 2ሻሾሺ1൅ 𝛽ଵሻଶሺ1൅ 𝛽ଶሻଶሺሺ1൅ 𝛽ଵሻଶ ൅  ሺ1 ൅ 𝛽ଶሻଶ ൅ 2ሻሻሿ ൌ 0                    (6.46) 

Equation (6.46) generates three possible cases: 

Case  1:  𝛽ଶ െ 𝛽ଵ ൌ 0. Hence𝜌ଵ ൌ 𝜌ଶ   (contradiction  to  𝛽ଵ ്  𝛽ଶ )                               

(6.47) 

Case 2:  𝛽ଵ൅𝛽ଶ ൅ 2 ൌ 0. Hence𝛽ଵ൅𝛽ଶ ൌ െ2    (contradiction, since M/G/1 is a stable QM,𝛽ଵ,𝛽ଶ ∈ ሺ1,∞ሻ)   
(6.48) 

Case  3:  ሾሺ1൅ 𝛽ଵሻଶሺ1൅ 𝛽ଶሻଶሺሺ1൅ 𝛽ଵሻଶ ൅  ሺ1൅ 𝛽ଶሻଶ ൅ 2ሻሻሿ ൌ
0                                                                          (6.49)             

By𝛽ଵ,𝛽ଶ ∈ ሺ1,∞ሻ,  following mathematical analysis,   ሾሺ1 ൅ 𝛽ଵሻଶሺ1൅ 𝛽ଶሻଶሺሺ1൅ 𝛽ଵሻଶ ൅  ሺ1൅ 𝛽ଶሻଶ ൅ 2ሻሻሿ ൐ 96 ,   which directly implies by (6.47)   

0 ൐ 96 ሺ𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛ሻ                                                                       (6.51) 
Based on the above analysis, vi) follows. 
vii)  It  suffices  to  show  that  for  all  𝛽ଵ,𝛽ଶ ∈ ሺ1,∞ሻ  such  that  𝜑ଶሺ𝛽ଵሻ ൌ  𝜑ଶሺ𝛽ଶሻ,  then  𝛽ଵ ൌ   𝛽ଶ 

holds. The proof is clearly immediate from (6.47). 
viii) Since M/G/1 QM is stable, the condition  𝛽 ൐ 1  and a similar proof to that in ii), viii) follows. 
The proof of x) is analogous to iii). 

xi) We have    𝜑ଵି ଵሺ𝜌ሻ ൌ 1∓ ቌሺ𝑧 െ 1ሻ ൅ ൬ଷା భഐమ൰௭ ቍభమ
, for  𝜌 ∈ ሺ0,1ሻ, (c.f., (6.21)). 

Hence, 

|1െ 𝜑ଵି ଵሺ𝜌ሻ|ଶ ൌ อሺ𝑧 െ 1ሻ ൅ ൬ଷା భഐమ൰௭ อ ൑ |𝑧|൅ 1൅ ൬ଷା భഐమ൰
|௭|

                    (6.52) 

By (6.43),   

𝑧 ൌ ඩെ 1

2𝜌ଶ േ 𝑖ඨ 1

12𝜌ସ ൅ 1൅ 1

2𝜌ଶ ൅ 1

27𝜌଺య
 

This implies   

|𝑧|଺ ൌ ቀ ଵସఘర ൅ ଵଵଶఘర ൅ 1൅ ଵଶఘమ ൅ ଵଶ଻ఘలቁ ൏ ቀ ଵସఘల ൅ ଵଵଶఘల ൅ ଵఘల ൅ ଵଶఘల ൅ ଵଶ଻ఘలቁ ൌ ଵ଴ଵହସఘల , 𝑜𝑟 |𝑧| ൏ ሺభబభఱర ሻభలఘ ൏ ሺభబభఱర ሻభలఘమ   (6.53) 

Moreover, by the above step, it is clear that   
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|𝑧|଺ ൌ ቀ ଵସఘర ൅ ଵଵଶఘర ൅ 1൅ ଵଶఘమ ൅ ଵଶ଻ఘలቁ ൐ 1 ,𝑤ℎ𝑖𝑐ℎ 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 |𝑧| ൐ 1ሺ𝑒𝑞𝑢𝑖𝑣𝑎𝑒𝑛𝑡𝑙𝑦,
ଵ

|௭|
൏ 1ሻ     (6.54) 

 
Thus, it is obtained that   

|1െ 𝜑ଵି ଵሺ𝜌ሻ|ଶ ൏ ሺ101
54 ሻଵ଺𝜌ଶ ൅ 2൅ ൬3൅ 1𝜌ଶ൰ ൌ 5 ൅  

ሺ1൅ ሺ101
54 ሻଵ଺𝜌ଶ  

This completes the proof. 
xii) The stability of the underlying QM implies  𝛽 ൐ 1.  We have 𝜑ଶି ଵሺ𝛽ሻ ൌ െ1∓ ሺሺ𝑧 െ 1ሻ ൅ ሺଷା భഁమሻ௭ ሻభమ  (c.f., (6.23))                                                                                                                               

Hence, 

|1൅ 𝜑ଶି ଵሺ𝛽ሻ|ଶ ൌ ቤሺ𝑧 െ 1ሻ ൅ ሺଷା భഁమሻ௭ ቤ ൑ |𝑧|൅ 1൅ ൬ଷା భഁమ൰
|௭|

    (6.55) 

Hence,  𝑧 ൌ ඨെ ଵଶఉమ േ 𝑖ට ଵଵଶఉర ൅ 1൅ ଵଶఉమ ൅ ଵଶ଻ఉలయ
, 𝑖 ൌ √െ1   (c.f.,  (6.23)).  So,  |𝑧| ൏ ሺଵ଴ଵହସ ሻభల       (6.56). 

Also, it can be verified that  ଵ
|௭|
൏ ఉమሺభబభఱర ሻభల  (6.57). Consequently, xiii) will follows. 

xiv) we have  డఝభడఘ =  ሺଶሺଵିఘሻమିଵሻሺଵାሺଵିఘሻమሻఱమ. Hence,  డఝభడఘ ൐ 0ሺ൏ 0ሻ  if and only if  ሺ1െ 𝜌ሻଶ ൐ ଵଶ ሺ൏ ଵଶሻ. By (PT) 2.15,  𝜑ଵ 
is increasing(decreasing) in  𝜌  if and only if  ሺ1 െ 𝜌ሻଶ ൐ ଵଶ ሺ൏ ଵଶሻ. According to stability of M/G/1 QM, 𝜌 ∈ ሺ0,1ሻ. Hence, it follows that  ሺ1 െ 𝜌ሻଶ ∈ ሺ0,1ሻ.Consequently, xiv) follows: 𝜑ଶሺ𝛽ሻ ൌ  𝐾ଶ ൌ  

ିሺଵାఉሻሺଵାሺଵାఉሻమሻయమ                                        (6.19) 
xv) We have  డఝమడఉ   =  ଶሺଵାఉሻమିଵሺଵାሺଵାఉሻమሻఱమ. Hence,  డఝమడఉ ൐ 0ሺ൏ 0ሻ  if and only  if  ሺ1൅ 𝛽ሻଶ ൐ ଵଶ ሺ൏ ଵଶሻ. By (PT) 2.15, 
𝜑ଶ  is increasing(decreasing) in  𝜌  if and only if  ሺ1൅ 𝛽ሻଶ ൐ ଵଶ ሺ൏ ଵଶሻ. According to stability of M/G/1 

QM,  𝛽 ∈ ሺ1,∞ሻ. Consequently, xv) follows. 

7. 𝒆𝑭𝑰𝑴ሺ𝑴/𝑮/𝟏ሻ &. Impact of Stability of M/G/1 QM on the Stability of Fim 
7.1. Exponential Matrix of FIM 

Theorem 7.1  𝑒ிூெሺ𝑴/𝑮/𝟏ሻ    solves      ௗ௫ ௗ௧   = Ax. 
Proof                 

It is shown that  ൣ𝑔௜௝൧ of Theorem ሺ3.1ሻ  is: 
ൣ𝑔௜௝൧=  ቌ ଵሺଵିఘሻమ 0

0       
ିଵሺఉାଵሻమቍ                                            ሺ7.1ሻ 

We write 

 ሾ𝑔௜௝ሿ  =    ቀ 𝑎 0
0  𝑏ቁ ,𝑎 ൌ ቀ ଵሺଵିఘሻమቁ , 𝑏 ൌ  

ିଵሺఉାଵሻమ(7.2)   
Thus, 
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Φሺ𝛿ሻ ൌ det ቀ𝑎 െ 𝛿 0
0  𝑏 െ 𝛿ቁ ൌ 0  .   

Therefore, 𝛿ଶ െ ሺ𝑎 ൅ 𝑏ሻ𝛿 ൅ 𝑎𝑏 =0, so    𝛿ଵ,ଶ ൌ 𝑎, 𝑏.   
Hence, 

    𝐷  =  ൬𝛿ଵ   0
0     𝛿ଶ൰                          (7.3)   

For  𝛿ଵ,ଶ ൌ 𝑎, 𝑏   
Hence, T =𝑇ିଵ  =  ቀ1 0

0 1
ቁ                                                                            ሺ7.4ሻ 

Thus,  𝑒ிூெሺ𝑴/𝑮/𝟏ሻ  reads as: 𝑒ிூெሺ𝑴/𝑮/𝟏ሻ  =   𝑇𝑒஽𝑇ିଵ ൌ  ቀ𝑒௔ 0
0  𝑒௕ቁ                                                                            (7.5)                               

This proves that IME of the underlying QM solves: 

     
 ௗ௫ௗ௧ 

 = Ax                                                                                                                                      (7.6) 

7.2. Impact of Stability of 𝑴/𝑮/𝟏 QM on the stability of FIM 
Theorem 7.2 The stability of FIM of the underlying QM    holds ⟺  the underlying QM is unstable. 

Proof Following theorem 2.16, it suffices to show that: 

FIM’s eigen values of FIM of the underlying QM are negative real numbers ⟺  the instability of the 

underlying QM is satisfied. 

It holds by (7.4) of theorem 7.1    that the eigen values of FIM are  𝛿ଵ,ଶ ൌ 𝑎, 𝑏,  ,𝑎 ൌ ቀ ଵሺଵିఘሻమቁ ,𝑏 ൌ
 

ିଵሺఉାଵሻమ .       clearly,  𝑏 ൌ  
ିଵሺఉାଵሻమ ൏ 0.  Therefore, the proof would be immediate if we proved that     𝑎 ൌ ቀ ଵሺଵିఘሻమቁ ൏ 0 ⟺ the instability of the underlying QM is satisfied             (7.6) 

We  first  prove  the  necessity  condition,  𝑎 ൌ ቀ ଵሺଵିఘሻమቁ ൏ 0 ⟹ M/G/1 QM  is  unstable. Assume   

that  FIM  is  stable  ,  then  𝑎 ൌ ቀ ଵሺଵିఘሻమቁ ൏ 0   follws.  This  implies  ଵሺଵିఘሻ ൌ 𝑖𝑚, 𝑖 ൌ  ඥሺെ
1ሻ,𝑚 is any real number. Hence,  ሺ1െ 𝜌ሻ ൌ  െ𝑖𝑚 . Consequently,  𝜌 ൌ 1 ൅ 𝑖𝑚, |𝜌| ൌ  √1൅𝑚ଶ ൐ 1.  In 
other words, M/G/1 QM is unstable. 

To prove sufficiency,  let M/G/1 QM be unstable. Then,  𝜌 ൐ 1. This directly  implies  , |𝜌| ൐ 1. This 

rewrite  𝜌     to  be  of  the  form  𝜌 ൌ   1൅ 𝑖𝑚,𝑚 is any real number. Clearly,  this  implies  ,  ሺ1 െ 𝜌ሻ ൌ
 െ𝑖𝑚, or  ଵሺଵିఘሻ ൌ 𝑖𝑚. Thus, it holds that    𝑎 ൌ ቀ ଵሺଵିఘሻమቁ ൌ  െ ଵ௠మ ൏ 0, which proves that FIM is stable.   

7.3. Revealing Queue‐Fisher Information Matrix Unifiers, (QFIMU) 

Throughout this section, we introduce QFIMU, to be devised by the function: 

𝜂ሺ𝜌,𝛽ሻ    =ൣ𝑔௜௝൧ ቀ ఘିఉቁ=  ቌ ଵሺଵିఘሻమ 0

0       
ିଵሺఉାଵሻమቍቀ ఘିఉቁ ൌ  ൭ ഐሺభషഐሻమషഁሺഁశభሻమ൱         (7.7) 

where  𝜌 = 1 –  𝑝ሺ0ሻand  𝛽 ൌ 𝐶௦ଶ. 
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Theorem 7.3 The function𝜂  (c.f., (7.7))    satisfies the following: 

iሻ𝜂  is ell defined. 
ii) 𝜂  is One‐to‐One. 
iii) 𝜂  is surjective. 
iv)𝜂  has a unique inverse,  𝜂ିଵ    determined which is characterized by   

ቚ𝜂ିଵሺ𝜌ሻ െ ቀ1൅ ଵଶఘቁቚଶ ൏ ଶఘమ                                                                                                                          (7.8) 
and   

ቚ𝜂ିଵሺ𝛽ሻ ൅ ቀ1൅ ଵଶఉቁቚଶ ൏ 2                                                                                                                              (7.9) 

Proof   

To prove i), it suffices to show that for all  ሺ𝜌ଵ,𝛽ଵሻ, ሺ𝜌ଶ,𝛽ଶሻ  such that  𝜌ଵ ് 𝜌ଶ  and  𝛽ଵ ് 𝛽ଶ  and   𝜂ሺ𝜌ଵ,𝛽ଵሻ  ൌ  𝜂ሺ𝜌ଶ,𝛽ଶሻ        (7.10) 
By (7.10), we have    ఘభሺଵିఘభሻమ ൌ ఘమሺଵିఘమሻమ(7.11) 

and   

ఉభሺଵାఉభሻమ ൌ  
ఉమሺଵାఉమሻమ(7.12) 

By (7.11), one gets:  ሺ𝜌ଵ െ 𝜌ଶሻሺ1൅ 𝜌ଵ𝜌ଶሻ ൌ 0                                                                     (7.13) 

(7.13) implies either  𝜌ଵ ൌ  𝜌ଶ  or  𝜌ଶ ൌ  
ିଵఘభ  (contradiction, since for example if  𝜌ଵ ൌ 2 implies that𝜌ଶ ൌ

 െ0.5 ∉ ሺ0,1ሻ, i. e. , enforcing instability of the underlyin stableM/G/1 QM). Therefore, the  𝜌  branch of 
the QIFMU is well‐defined. 

Following (7.12),  we have    ሺ𝛽ଵ െ 𝛽ଶሻሺ1െ 𝛽ଵ𝛽ଶሻ ൌ 0                                                                     (7.14) 

(7.14) implies either  𝛽ଵ ൌ 𝛽ଶ  or  𝛽ଶ ൌ  
ଵఉభ  (contradiction, since for example if  𝛽ଵ ൌ 2 implies that𝛽ଶ ൌ

 0.5 ∉ ሺ1,∞ሻ, i. e. , enforcing instability of the underlyin stableM/G/1 QM). Therefore,  the  𝛽  branch of 
the QIFMU is well‐defined. This completes the proof of i). 

As for ii), it suffices to show that all  ሺ𝜌ଵ,𝛽ଵሻ, ሺ𝜌ଶ,𝛽ଶሻ  such that: 𝜂ሺ𝜌ଵ,𝛽ଵሻ  ൌ  𝜂ሺ𝜌ଶ,𝛽ଶሻimpliesሺ𝜌ଵ,𝛽ଵሻ  ൌ  ሺ𝜌ଶ,𝛽ଶሻ(7.15) 
Clearly, by (7.13) and (7.14), (7.15) is satisfied. Hence, ii) follows. 
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Clearly,  by  (7.7),  both  of
ఘሺଵିఘሻమ   and  ିఉሺఉାଵሻమ   are  uniquely  characterized  by  𝜌 𝑎𝑛𝑑 𝛽   respectively. 

Thus, iii) holds. 

iv) To compute  𝜂ିଵ, assume that thee exists  𝑥 ,𝑦   such that 

𝜂ሺ𝜌,𝛽ሻ    =ቌ ଵሺଵିఘሻమ 0

0       
ିଵሺఉାଵሻమቍቀ ఘିఉቁ ൌ  ൭ ഐሺభషഐሻమషഁሺഁశభሻమ൱ ൌ  ቀ௫௬ቁ                 (7.16) 

Therefore,    ఘሺଵିఘሻమ ൌ 𝑥                                                                                     (7.17) 

And    ିఉሺఉାଵሻమ ൌ 𝑦                                                                                  (7.18)   

Following (7.15), one gets  𝜌 ൌ  
ሺଶାభೣ ሻേభೣ√ሺଵାସ௫మሻଶ                   (7.19) 

Using (7.16) and following a similar argument as in (7.17), we have    𝛽 ൌ  
ିሺଶାభ೤ ሻേభ೤√ሺଵାସ௬మሻଶ (7.20) 

Based  on  (7.19)  and  (7.20),  it  is  determined    for  both  𝜌     and  branches  of 𝜂ିଵ   would 
respectively satisfy that 

|𝜂ିଵሺ𝜌ሻ െ ሺ1൅ ଵଶఘ ሻ |ଶ ൌ  
ሺଵାସఘమሻସఘమ ൌ 1൅ ଵସఘమ ൏ ଵఘమ ൅ ଵఘమ    =  ଶఘమ  (since  𝜌 ∈  (0,1))                                      (c.f., 

(7.8) 

Following similar argument, it could be shown that 

|𝜂ିଵሺ𝛽ሻ ൅ ሺ1 ൅ ଵଶఉ ሻ |ଶ ൌ  
ሺଵାସఉమሻସఉమ ൌ 1൅ ଵସఉమ ൏ 1 ൅ 1    =2    (since  𝛽 ∈  (1,∞))                                      (c.f., 

(7.9) 

This completes the proof of our theorem. 

8. RICCI SCALAR, 𝓡,𝐂𝐔𝐑𝐕𝐀𝐓𝐔𝐑𝐄 𝐎𝐅 𝐒𝐏𝐀𝐂𝐄 𝐓𝐈𝐌𝐄ሺ𝐄𝐈𝐍𝐄𝐒𝐓𝐄𝐈𝐍 𝐓𝐄𝐍𝐒𝐎𝐑ሻ℘, 𝐒𝐓𝐑𝐄𝐒𝐒 𝐄𝐍𝐄𝐑𝐆𝐘 𝐓𝐄𝐍𝐒𝐎𝐑,𝛀, THE 
CORRESPONDING THRESHOLD THEOREMS FOR THE UNDERLYING CURVATURES 
AND THE DUAL QUEUEING IMPACT ON THE EXISTENCE OF THE INVERSE FISHER 
INFORMATION MATRIX (IFIM)   

Theorem 8.1    The underlying QM satisfies: 

i)The Ricci scalar subject to Angular Technique,  ℛ஺் is determined by ℛ஺் ൌ  
ଶሺఘିଵሻሺଵାఉሻሺଵାሺଵିఘሻమሻయమሺଵାሺଵାఉሻమሻయమ                                                                                                                  (8.1) 

where  𝜌 = 1 –  𝑝ሺ0ሻand  𝐶௦ଶ define server utilization and Squared coefficient of variations respectively. 

ii)  ℛ஺் → 0  if and only if  𝜌 ൌ 1   
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iii)  ℛ஺் → 0  if and only if  𝛽 → ∞ 

for all  𝜌 ് 1ሺequivalently, whether the undelying QM is either stable or unstableሻ 
iv) M/G/1 QM is unstable ⟺ 

There exists a small  enough positive number  ϵ, with ϵ → 0 such that𝐴௖௨௥௩௘ௗሺ𝜖ሻ,𝐴௙௟௔௧ሺ𝜖ሻ (c.f.,  (2.45)) 

must satisfy:   𝐴௖௨௥௩௘ௗሺ𝜖ሻ ≳ 𝐴௙௟௔௧ሺ𝜖ሻ                                                                                                                                (8.2)         
v)The Spacetime curvature(Einestein Tensor) subject to Angular Technique,    ℘஺்    is determined by 

℘஺் ൌ  ൬𝐺ଵଵ 𝐺ଵଶ𝐺ଶଵ 𝐺ଶଶ൰(8.3) 
where the components  𝐺ଵଵ,𝐺ଵଶ,𝐺ଶଵ 𝑎nd𝐺ଶଶ  are determined by 𝐺ଵଵ ൌ  

ሺଵାఉሻሺଵିఘሻሺଵାሺଵିఘሻమሻయమሺଵାሺଵାఉሻమሻయమ           (8.4) 

𝐺ଵଶ ൌ  0                                                                                                                                                                                (8.5) 𝐺ଶଵ ൌ ሺఈିଵሻሺଵିఘሻమ                               
(8.6) 

where      𝛼  is the curvature parameter (c.f., definition (2.8)) 𝐺ଶଶ ൌ  
ሺఘିଵሻሺଵାఉሻሺଵାሺଵିఘሻమሻయమሺଵାሺଵାఉሻమሻయమ                                                         (8.7) 

vi)The stress‐energy tensor ϖ is devised by   

Ω ൌ  ቀ𝜛ଵଵ 𝜛ଵଶ𝜛ଶଵ 𝜛ଶଶቁ                                                                                   (8.8) 

where the components  𝜛ଵଵ,𝜛ଵଶ,𝜛ଶଵ 𝑎nd𝜛ଶଶ  are determined by 

𝜛ଵଵ ൌ  
௖రீభభ଼గℊ (8.9)  𝜛ଵଶ ൌ

 0                                                                                                                                                                                (8.10) 

𝜛ଶଵ ൌ  
௖రீమభ଼గℊ                                                         (8.11) 𝜛ଶଶ ൌ  

௖రீమమ଼గℊ                                                                     (8.12) 

where ℊ is the universal gravitational constant,  𝑐 is the speed of light 
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vii)ℛ஺் ൌ
 ൝ increasing in 𝜌,          𝜌 ൌ 1 ൅ ௠√ଶ ሺ𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝ℎ𝑎𝑠𝑒ሻ

increasing in 𝜌,               𝜌 ൌ 1 െ ௠√ଶ ሺ𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝ℎ𝑎𝑠𝑒ሻ                                                                      (8.13) 
provided that 𝑚 ൐ 1 

viii)ℛ஺் ൌ
 ൝ decreasing in 𝜌,             𝜌 ൌ 1൅ ௠√ଶ ሺ𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝ℎ𝑎𝑠𝑒ሻ

decreasing in 𝜌,                        𝜌 ൌ 1െ ௠√ଶ ሺ𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝ℎ𝑎𝑠𝑒ሻ                                                       (8.14) 
provided that  1 ൐ 𝑚 ൐ 0 

x)ℛ஺் ൌ
 ൜decreasing in 𝛽,                                                the underlying QM is stable

increasing in 𝛽,                                         the underlying QM is unstable
                                        (8.15) 

xi)𝐺ଵଵ ൌ
  ൜increasing in 𝜌,      the underlying QM is stable or unstable, ρ ് 1

deccreasing in 𝛽,                                  the underlying QM is stable 
                                              (8.16) 

xii)𝐺ଶଵ is forever decreasing in  𝛼  (curvature parameter) whether M/G/1 QM is stable or unstable. If 𝜌 ൌ 1, the decreasability of  𝐺ଶଵ   in  𝛼 is undecidable. 

xiii)𝐺ଶଵ is forever increasing(decreasing) in  𝜌    if   M/G/1 QM is stable,  𝛼 ൏ 1ሺ𝛼 ൐ 1ሻ. 
xv)𝐺ଶଵ is forever decreasing in  𝜌    if the either one of the following branches hold: 

൜ ρ ∈ ሺ0,1ሻ,                          the underlying QM is stable, 𝛼 ൐ 1ρ ൐ 1,                               the underlying QM is unstable, 𝛼 ൏ 1
(8.17) 

xvi)  𝐺ଶଶ is forever increasing in  𝜌. 
xvii)  𝐺ଶଶ is forever increasing(decreasing) in  𝛽   if and only if  𝜌 ൏  1(ρ ൐ 1).    If   𝜌 ൌ 1, the decision   

is undecidable. 

Proof 

i)Immediate by (6.9) and (2.44). 

ii)By i),    ℛ஺் ൌ  
ଶሺఘିଵሻሺଵାఉሻሺଵାሺଵିఘሻమሻయమሺଵାሺଵାఉሻమሻయమ. Hence,  ℛ஺் → 0  if and only if  ሺ𝜌 െ 1ሻሺ1൅ 𝛽ሻ → 0. Since,  𝛽 ൐ 

1, the required result follows. 

iii)Since  M/G/1  is  a  stable  QM,    ρ ∈ ሺ0,1ሻ   holds.  This  implies  for  all  𝜌 ് 1 

(equivalently, whether the undelying QM is either stable or unstableሻ 
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ℛ஺் → 0  if and only  if    ଶሺఘିଵሻሺଵାሺଵିఘሻమሻయమ 𝑙𝑖𝑚ఉ→ஶ ሺଵାఉሻሺଵାሺଵାఉሻమሻయమ ൌ 0.    By  ሺ1൅ ሺ1൅ 𝛽ሻଶሻయమ ൐ ሺ1൅ 𝛽ሻ,  the proof 
follows. 

iv)M/G/1 QM is unstable if and only if  𝜌 ൒ 1  , or equivalently  ℛ஺் ൒ 0. This holds if and only if   ℛ஺் ൌ  𝑙𝑖𝑚ఢ→଴ ଺௡ఢమ[1  െ ஺೎ೠೝೡ೐೏ሺఢሻ஺೑೗ೌ೟ሺఢሻ ]൒ 0                                            (c.f.(2.45)) 

This is equivalent to [1  െ ஺೎ೠೝೡ೐೏ሺఢሻ஺೑೗ೌ೟ሺఢሻ ]≳ 0. This completes the proof. 

By (2.46),  𝐺௜௝ ൌ   𝑅௜௝ሺఈሻ‐ℛಲ೅ ଶ 𝑔௜௝ ൌ ଼గℊధ೔ೕ௖ర , 𝑖, 𝑗 ൌ 1,2.  Hence, it follows that 𝐺ଵଵ ൌ   𝑅ଵଵሺఈሻ‐ℛಲ೅ ଶ 𝑔ଵଵ ൌ ଼గℊధభభ௖ర               (8.18) 

𝐺ଵଶ ൌ   𝑅ଵଶሺఈሻ‐ℛಲ೅ ଶ 𝑔ଵଶ ൌ ଼గℊధభమ௖ర             (8.19) 

𝐺ଶଵ ൌ   𝑅ଶଵሺఈሻ‐ℛಲ೅ ଶ 𝑔ଵଵ ൌ ଼గℊధమభ௖ర             (8.20) 

𝐺ଶଶ ൌ   𝑅ଶଶሺఈሻ‐ℛಲ೅ ଶ 𝑔ଶଶ ൌ ଼గℊధమమ௖ర                  (8.21) 

Using (3.3) of Theorem 3.1, (6.50 of theorem (6.1) , (8.1) together   with (8.18), (8.19), (8.20) and 
(8.21), the proof of v)    and vi) will follow.   

vii)It could be verified that: 

డℛಲ೅ డఘ ൌ  
ଶሺଵିଶሺଵିఘሻమሻሺଵାఉሻሺଵାሺଵିఘሻమሻఱమሺଵାሺଵାఉሻమሻయమ                                                                                    (8.22) 

Therefore,  డℛಲ೅ డఘ ൏ 0ሺ൐ 0ሻ  if and only if  ሺ1െ 2ሺ1െ 𝜌ሻଶሻ ൏ 0ሺ൐ 0ሻ(8.23) 
if  ሺ1 െ 2ሺ1െ 𝜌ሻଶሻ ൐ 0   is  satisfied  ⟺  ∃ 𝑚 ∈ ሺ1,∞ሻ   satisfying  ሺ1െ 𝜌ሻଶ ൌ  

௠మଶ , which  1െ 𝜌 ൌ േ ௠√ଶ 
or  𝜌 ൌ 1 ∓ ௠√ଶ. Following the preliminary theorem (PT) 2.15, this implies  ℛ஺்     is increasing in  𝜌  if 
and only  if    𝜌 ൌ 1∓ ௠√ଶ. For or  𝜌 ൌ 1 ൅ ௠√ଶ,  this  enforces or  𝜌 ൐ 1, which violates  the underlying 

QM’s stability, or  𝜌 ൌ 1െ ௠√ଶ, this enforces  𝜌 ൏ 1, which guarantees the stability of M/G/1 QM. 

On the other hand, if  ሺ1 െ 2ሺ1 െ 𝜌ሻଶሻ ൏ 0, it holds by (PT) 2.15, that  ℛ஺்     is decreasing in  𝜌  if and 
only  ifthere exists  𝑚 ∈ ሺ0,1ሻ  satisfying  ሺ1 െ 𝜌ሻଶ ൌ  

௠మଶ , which  1 െ 𝜌 ൌ േ ௠√ଶ. For or  𝜌 ൌ 1൅ ௠√ଶ,  this 
enforces or  𝜌 ൐ 1, which  indicates  the underlying QM’s  instability. Moreover, or  𝜌 ൌ 1 െ ௠√ଶ,  this 
enforces  𝜌 ൐ 1 െ ଵ√ଶ, which violates the stability of M/G/1 QM. 

Following the above analytic results, vii) and viii) are immediate. 

x)It could be shown that 

డℛಲ೅ డఉ ൌ  
ଶሺଶሺଵାఉሻమିଵሻሺଵିఘሻሺଵାሺଵିఘሻమሻయమሺଵାሺଵାఉሻమሻఱమ                                                                                    (8.24) 
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Undertaking similar mathematical mechanism as in vii) and viii), the proof follows. 

xi) After some mathematical manipulation, we have 

డீభభ డఘ ൌ  
ሺଶሺଵିఘሻమାଵሻሺଵିఘሻሺଵାఉሻሺଵିఘሻమሺଵାሺଵିఘሻమሻఱమሺଵାሺଵାఉሻమሻయమ                                                                                    (8.25) 

(8.25) provides an evidence that  డீభభ డఘ ൐ 0  for all  ρ ് 1. Applying (PT) 2.15, shows that  𝐺ଵଵ is forever 

increasing  in  𝜌 .  This  is  applicable  for  stable  and  unstable  M/G/1  QM,  with  ρ ് 1 (since  ρ ൌ
1, violates  the  continuity  requirement  of  డீభభ డఘ ሻ.   Furthermore,  it  could  be  proved  that  𝐺ଵଵ is 

increasing in  ρ  when the underlying QM is in the stability phase. 

Moreover,  డீభభ డఉ ൌ  
ሺଵିଶሺଵାఉሻమሻሺଵିఘሻሺଵାఉሻሺଵିఘሻሺଵାሺଵିఘሻమሻయమሺଵାሺଵାఉሻమሻఱమ                                                      (8.26) 

Clearly  from  (8.26)  and  (PT)  2.16,  ,  it  follows  that  𝐺ଵଵ is  never  increasing  in  𝛽 (since  ρ ൌ
1, violates the continuity requirement of  డீభభ డఉ ሻ. Let us assume that   𝐺ଵଵ is never increasing in  𝛽. This 
implies:  ሺ1െ 2ሺ1൅ 𝛽ሻଶሻ ൐ 0                                                                                                              (8.27) 

This  is  equivalent  toሺ1 ൅ 𝛽ሻଶሻ ൏ ଵଶ   (contradiction,  since  stability  of M/G/1 QM  enforces  the 
requirements  𝜌 ∈ (0,1)  and  𝛽 ∈  (1,∞)). This  suggests  that  the  only  left possibility  is  that   𝐺ଵଵ is 
forever    increasing in  𝛽, or equivalently by (PT) 2.15, toሺ1൅ 𝛽ሻଶሻ ൐ ଵଶ, a satisfied condition by stable 
M/G/1 QM. 

xii)  డீమభ డఈ ൌ ିଵሺଵିఘሻమ   ,  implies  by  (PF)  2.15  that   𝐺ଶଵ is forever decreasing in 𝛼 whether M/G/1 QM  is 

stable  or  unstable.  If  𝜌 ൌ 1 ,  the  decreasability  of    𝐺ଶଵ   in  𝛼   is  undecidable,  since  this means   

డீమభ డఈ → ∞. 

Furthermore,  డீమభ డఘ ൌ ଶሺଵିఈሻሺଵିఘሻయ. Consequently,  డீమభ డఘ ൐  0 if and only if M/G/1 QM is stable,  𝛼 ൏ 1, , డீమభ డఘ ൏   0  if  and  only  if M/G/1 QM  is  stable,  𝛼 ൐ 1 .  By  (PT)  2.15,  it  follows  that  𝐺ଶଵ is  forever 

increasing(decreasing) in  𝜌    if   M/G/1 QM is stable,  𝛼 ൏ 1ሺ𝛼 ൐ 1ሻ. This proves xiii). 
Engaging the same technique proves xv). 
We have  డீమమ డఘ ൌ  

ሺସሺଵିఘሻమାଵሻሺଵାఉሻሺଵାሺଵିఘሻమሻఱమሺଵାሺଵାఉሻమሻయమ          and    డீమమ డఉ ൌ  
ሺଷሺଵାఉሻమାଵሻሺଵିఘሻሺଵାఉሻమሺଵାሺଵିఘሻమሻఱమሺଵାሺଵାఉሻమሻయమ                               

(8.28) 

Engaging our  technique,  the  reader  can  easily verify  that both xvi) and xvii) will hold. The 
completes the proof of our theorem. 

Theorem 8.2 The underlying QM satisfies:   

i)Ricci scalar subject to Monge Technique,  ℛெ் is determined by ℛெ் ൌ  െ2                                                                      (8.29) 
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ii) There exists a small  enough positive number  ϵ, with ϵ → 0 such that𝐴௖௨௥௩௘ௗሺ𝜖ሻ,𝐴௙௟௔௧ሺ𝜖ሻ (c.f.,  (2.45)) 
must satisfy   𝐴௖௨௥௩௘ௗሺ𝜖ሻ → ሺ𝐴௙௟௔௧ሺ𝜖ሻሻ                                                                                                                              (8.30) 
iii)The Spacetime curvature(Einstein Tensor) subject to Angular Technique,    ℘஺்    is determined by: 

℘ெ் ൌ  ൬𝐺ଵଵ 𝐺ଵଶ𝐺ଶଵ 𝐺ଶଶ൰(8.31) 
where the components  𝐺ଵଵ,𝐺ଵଶ,𝐺ଶଵ 𝑎nd𝐺ଶଶ  are determined by  𝐺ଵଵ ൌ  

ሺଵିఈሻሺଵିఘሻమ ൌ 𝐺ଶଵ(8.32) 
where      𝛼  is the curvature parameter (c.f., definition (2.8)) 𝐺ଵଶ ൌ
0                                                                                                                                                                                 (8.33)𝐺ଶଶ ൌ െ  

ଵሺଵାఉሻమ        (8.34) 

iv) The stress‐energy tensor ϖ is devised by   

𝜛ெ் ൌ  ቀ𝜛ଵଵ 𝜛ଵଶ𝜛ଶଵ 𝜛ଶଶቁ            (8.35) 

where the components  𝜛ଵଵ,𝜛ଵଶ,𝜛ଶଵ 𝑎nd𝜛ଶଶ  are determined by 

𝜛ଵଵ ൌ  
௖రீభభ଼గℊ (8.36) 𝜛ଵଶ ൌ

 0                                                                                                                                                                                 (8.37) 

𝜛ଶଵ ൌ  
௖రீమభ଼గℊ                       (8.38) 𝜛ଶଶ ൌ  

௖రீమమ଼గℊ             (8.39) 

where ℊ is the universal gravitational constant,  𝑐 is the speed of    light 

v)  𝐺ଵଵ ൌ 𝐺ଶଵ ൌ   ൜ increasing in 𝜌,              the underlying QM is stable or unstable
deccreasing in 𝛽,                                    the underlying QM is stable

       (8.40) 

vi)  𝐺ଵଵ is forever decreasing in  𝛼  (curvature parameter) whether M/G/1 QM is stable or unstable. If 𝜌 ൌ 1, the decreasability of    𝐺ଶଵ   in  𝛼  is undecidable. 
vii)𝐺ଵଵ is forever increasing(decreasing) in  𝜌    if   M/G/1 QM is stable,  𝛼 ൏ 1ሺ𝛼 ൐ 1ሻ. 
viii)𝐺ଵଵ is forever decreasing in  𝜌    if the either one of the following branches hold: 

൜ ρ ∈ ሺ0,1ሻ,                          the underlying QM is stable, 𝛼 ൐ 1ρ ൐ 1,                                 the underlying QM is unstable , 𝛼 ൏ 1
   (8.41) 
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x)  𝐺ଶଶ is forever increasing in  𝛽. 
xi)  𝐺ଶଶ is  forever  increasing(decreasing)  in  𝛽   if and only  if  𝜌 ൏  1(ρ ൐ 1).    If   𝜌 ൌ 1,  the decision   

is undecidable. 

Proof 

i)By (6.7), we have  𝐾ீ,ெ்= െ1.  Following (2.44), we have  ℛெ் ൌ2𝐾ீ,ெ் ൌ  െ2(c.f., (8.29)). 

ii)Since  ℛெ் ൌ െ2. Hence,      ℛெ் ൌ  𝑙𝑖𝑚ఢ→଴ ଺௡ఢమ[1  െ ஺೎ೠೝೡ೐೏ሺఢሻ஺೑೗ೌ೟ሺఢሻ ]ൌ െ2                                            (c.f.(2.45)) 

This is equivalent to [1  െ ஺೎ೠೝೡ೐೏ሺఢሻ஺೑೗ೌ೟ሺఢሻ ]≳ െ2. This completes the proof. 

By (2.46),  𝐺௜௝ ൌ   𝑅௜௝ሺఈሻ‐ℛಾ೅ ଶ 𝑔௜௝ ൌ ଼గℊధ೔ೕ௖ర , 𝑖, 𝑗 ൌ 1,2.  Hence, it follows that: 

𝐺ଵଵ ൌ   𝑅ଵଵሺఈሻ‐ℛಾ೅ ଶ 𝑔ଵଵ ൌ ଼గℊధభభ௖ర           (8.42) 

𝐺ଵଶ ൌ   𝑅ଵଶሺఈሻ‐ℛಾ೅ ଶ 𝑔ଵଶ ൌ ଼గℊధభమ௖ర           (8.43) 

𝐺ଶଵ ൌ   𝑅ଶଵሺఈሻ‐ℛಾ೅ ଶ 𝑔ଵଵ ൌ ଼గℊధమభ௖ర       (8.44) 

𝐺ଶଶ ൌ   𝑅ଶଶሺఈሻ‐ℛಾ೅ ଶ 𝑔ଶଶ ൌ ଼గℊధమమ௖ర         (8.45) 

Using (3.3) of Theorem 3.1, (6.50 of theorem (6.1) , (8.29) together   with (8.42), (8.43), (8.44) and 
(8.45), the proof of iii)    and iv) will follow.   

The  remaining proofs of v), vi), vii), viiii), x) and xi) are omitted since  they are provable by 
following the same analytic mechanism undertaken in (8.13)‐(8.17).   

Theorem 8.3 The underlying QM satisfies: 

iሻℛ஺் has a relative minimum at (1 ∓ ଵ√ଶ ,െ1േ ଵ√ଶ) 
ii) Both maxima and minima for all the components of the Spacetime curvature(Einestein Tensor) 

subject to Angular Technique,    ℘஺்    is undecidable. 
Proof 

i)We  have  డℛಲ೅ డఘ ൌ  
ଶሺଵିଶሺଵିఘሻమሻሺଵାఉሻሺଵାሺଵିఘሻమሻఱమሺଵାሺଵାఉሻమሻయమ ,  డℛಲ೅ డఉ ൌ  

ଶሺଶሺଵାఉሻమିଵሻሺଵିఘሻሺଵାሺଵିఘሻమሻయమሺଵାሺଵାఉሻమሻఱమ     (c.f.,  (8.22)  and  (8.24)) 

respectively. Hence,  డℛಲ೅ డఘ ൌ  0
డℛಲ೅ డఉ .   The  critical  points  are  ሺ𝜌௖௥௜௧௜௖௔௟ ,𝛽௖௥௜௧௜௖௔௟ሻ ൌ ሺ1 ∓ ଵ√ଶ ,െ1േ ଵ√ଶሻ . 

Moreover, we have 

 

డమℛಲ೅ డఘమ ൌ  
଺ሺଷିଶሺଵିఘሻమሻሺଵାఉሻሺଵାሺଵିఘሻమሻళమሺଵାሺଵାఉሻమሻయమ,  డమℛಲ೅ డఉమ ൌ  

ଶሺଵିଵସሺଵାఉሻమሻሺఘିଵሻሺଵାሺଵିఘሻమሻయమሺଵାሺଵାఉሻమሻళమ,  డమℛಲ೅ డఘఉ ൌ  
ଶሺଵିଶሺଵିఘሻమሻሺଵିଶሺଵାఉሻమሻሺଵାሺଵିఘሻమሻఱమሺଵାሺଵାఉሻమሻఱమ         (8.46) 
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Hence, by (2.47) 𝐷 ൬1െ 1√2
,െ1൅ 1√2

൰ 
ൌ  

డమℛಲ೅ డఘమ ሺ1െ ଵ√ଶ ,െ1൅ ଵ√ଶሻ డమℛಲ೅ డఉమ ሺ1 െ ଵ√ଶ ,െ1൅ ଵ√ଶሻ െ ሾడమℛಲ೅ డఘఉ ሺ1െ ଵ√ଶ ,െ1൅ ଵ√ଶሻሿଶ =
ሺଷଶሻయሺ଼ଵሻమ ൐

0                       (8.47) 

Since  డమℛಲ೅ డఉమ ቀ1െ ଵ√ଶ ,െ1൅ ଵ√ଶቁ ൌ െ  
ଵ଴ଶସ଼଻ ൏ 0,  it holds  that  ቀ1െ ଵ√ଶ ,െ1൅ ଵ√ଶቁis a  relative minima 

for  ℛ஺் .  similarly,  ቀ1൅ ଵ√ଶ ,െ1െ ଵ√ଶቁis a relative minima for  ℛ஺் . 

ii) As  for  𝐺ଵଵ , we  have  డீభభ డఘ ൌ  
ሺଶሺଵିఘሻమାଵሻሺଵିఘሻሺଵାఉሻሺଵିఘሻమሺଵାሺଵିఘሻమሻఱమሺଵାሺଵାఉሻమሻయమ   ,డீభభ డఉ     =  ሺଵିଶሺଵାఉሻమሻሺଵିఘሻሺଵାఉሻሺଵିఘሻሺଵାሺଵିఘሻమሻయమሺଵାሺଵାఉሻమሻఱమ     (c.f., 

(8.25) and                                                            (8.26)).   

Hence,  the  critical  point  are  ሺ𝜌௖௥௜௧௜௖௔௟ ,𝛽௖௥௜௧௜௖௔௟ሻ ൌ ቀ1െ ଵ√ଶ , 0ቁ , ሺ1൅ ଵ√ଶ ,െ2ሻ .  Clearly,  𝛽௖௥௜௧௜௖௔௟ ൌ
0,െ2  are never permissible since, M/G/1 is stable. Thus, no conclusion    can be drawn for  𝐺ଵଵ. 

Engaging the same procedure, it could be verified that both maxima and minima for all the remaining 

components    of the Spacetime curvature(Einstein Tensor) subject to Angular Technique,    ℘஺்    is 
undecidable. 

Theorem 8.4 The underlying QM satisfies: 

iሻBoth maxima and minima 𝑜𝑓 ℛ஺் is undecidable. 

ii) Both maxima and minima  for all  the components of  the Spacetime  curvature(Einstein Tensor) 

subject to Monge Technique,    ℘ெ்    is undecidable. 
Proof 

i)ℛெ் ൌ  െ2  ሺc. f.,  (8.29).Hence,
డℛಲ೅ డఘ ൌ  0 ൌ డℛಲ೅ డఉ   for all  𝜌,𝛽. It can be shown that  𝐷 of (2.47) is 

zero. Hence i) follows. 

ii)The proof is immediate for  𝐺ଵଶ, since it is zero(c.f.(8.33)). By (8.32),  𝐺ଵଵ ൌ  
ሺଵିఈሻሺଵିఘሻమ ൌ 𝐺ଶଵ. We have 

డீభభ డఘ ൌ  
ଶሺଵିఈሻሺଵିఘሻయ   , డீభభ డఈ     =  ିଵሺଵିఘሻమ (=0  if  and  only  if  𝜌 → ∞ሻ .  Hence,  both  maxima  and  minima  is 

undecidable  for  𝐺ଵଵ,𝐺ଶଵ .Finally,  𝐺ଶଶ ൌ െ  
ଵሺଵାఉሻమ (c.f.,  (8.34)).  డீమమ డఉ ൌ ଶሺଵାఉሻయ .  Therefore,  డீమమ డఉ ൌ 0   if 

and only if  𝛽 → ∞. Consequently, it is not possible to decide maxima and minima for  𝐺ଶଶ  . 
The  following  theorem  captures  the  impact  of  stability(instability)  of  M/G/1  QM  on  the 

increasability  (decreasability)  of  the  only  non‐zero  component  of  Ricci  Curvature  Tensor(RCT), 𝑅ଶଵሺ଴ሻ൫c. f. , ሺ6.5ሻ൯. 

Theorem 8.5 The underlying QM satisfies: 

iሻ𝑅ଶଵሺ଴ሻis forever increasing in  𝜌 ⟺ the underlying QM is    unstable. 

iiሻ𝑅ଶଵሺ଴ሻ  forever decreases in  𝜌  if and only if M/G/1 QM is stable. 
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Proof   

i)Necessity: 

Assume  that M/G/1 QM  is  unstable,  then  𝜌 ൐ 1.  We  have  డడఘ ሺ𝑅ଶଵሺ଴ሻሻ ൌ െ ଶሺଵିఘሻయ ሺ8.48ሻ .  By  𝜌 ൐ 1 , 

డడఘ ሺ𝑅ଶଵሺ଴ሻሻ ൐ 0,   which directly implies by (PT) 2.15 that  𝑅ଶଵሺ଴ሻis forever increasing in  𝜌. 
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Sufficiency: 

Let  𝑅ଶଵሺ଴ሻ   be  forever  increasing  in  𝜌,  then  by  (PT)  2.15,  డడఘ ሺ𝑅ଶଵሺ଴ሻሻ ൌ െ ଶሺଵିఘሻయ ൐ 0. This  implies ሺ𝜌 െ 1ሻଷ ൐ 0. Hence,  𝜌 ൐ 1.  This proves i). 
Engaging the same procedure, ii) follows. 
The following theorem captures the dual impact between (IG) and Queueing Theory. This dual 

impact is influencing the existence of FIM (c.f.,(3.3)) upon the behaviour of  ∆ ሾ௚೔ೕሿ. 
Theorem 8.6 The underlying QM satisfies: 

1ሻ∆ ሾ௚೔ೕሿis forever increasing(decreasing) in  𝜌 ⟺ the underlying QM is(stable) unstable. 

2ሻ∆ ሾ୥౟ౠሿis forever increasing(decreasing) in  β ⟺ the underlying QM is(unstable) stable. 

3)The  inflection point of  ∆ ሾ௚೔ೕሿ with  respect  to  𝛽  is at  𝜌 ൌ 1, where  ∆ ሾ௚೔ೕሿ  changes  its behaviour 
around this threshold  𝜌 ൌ 1. 

Proof   

1)We have [𝑔௜௝] =  ௔ௗ௝ൣ௚೔ೕ൧∆   =൬ሺ1 െ 𝜌ሻଶ 0
0       െሺ𝛽 ൅ 1ሻଶ൰(c.f., (3.5) of Theorem 3.1) . Therefore,   ∆ ሾ௚೔ೕሿ ൌ  െሺ𝛽 ൅ 1ሻଶሺ1െ 𝜌ሻଶ                                                          (8.49) 

By (8.49),  ∆ ሾ௚೔ೕሿ ൌ 0 if and only if  𝜌 ൌ 0  or  𝛽 ൌ െ1ሺthis is never permissibleሻ. 
డ∆

 ሾ೒೔ೕሿడఘ ൌ 2ሺ1െ 𝜌ሻሺ𝛽 ൅ 1ሻଶ                               
(8.50) 

Clearly from (8.50), it follows that:   

డ∆
 ሾ೒೔ೕሿడఘ ൐ 0ሺ൏ 0ሻ𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓ሺ𝜌 ൏ 1ሻሺ𝜌 ൐ 1ሻ(8.51) 

By (PT) 2.15, the proof of 1) follows. 

2) We have 

డ∆
 ሾ೒೔ೕሿడఉ ൌ െ2ሺ1 െ 𝜌ሻଶሺ𝛽 ൅ 1ሻ                                                                                                                      (8.52) 

డ∆
 ሾ೒೔ೕሿడఉ ൐ 0ሺ൏ 0ሻ𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ሺ𝜌 ൐ 1ሻሺ𝜌 ൏ 1ሻ                                                      (8.53) 

By (PT) 2.15, the proof of 2) follows. 

3)It is straightforward to see that 

డమሺ∆
 ሾ೒೔ೕሿሺఘ,ఉሻሻడఉమ ൌ  െ2ሺ1െ 𝜌ሻଶ(8.54) 

డమሺ∆
 ሾ೒೔ೕሿሺఘ,ఉሻሻడఉమ     if and only if  𝜌 ൌ 1, which implies by 1) and 2) that the proof of 3) follows. 

DATA  ∆ ሾ௚೔ೕሿ:∆ ሾ௚೔ೕሿ 𝑓𝑜𝑟 𝛽 ൌ 2,𝜌 ∈ ሺ0,1ሻ 
CASE ONE:   
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Figure 23. 

As observed in Figure 23, det(IFIM) is increasing in server utilization if and only if M/G/1 QM is 
stable. Also, this proves how the stability of the underlying QM impacts the existence of    ሾ𝑔௜௝ሿ. 
CASE TWO:    ∆ ሾ௚೔ೕሿ𝑓𝑜𝑟 𝛽 ൌ 2,𝜌 ∈ ሾ1,∞ሻ  

 

Figure 24. 

As observed in Figure 24, instability of M/G/1 QM is unstable ⟺    ∆    decreases in  𝜌. 
CASE THREE:    ∆ ሾ௚೔ೕሿ  behaviour for β in stabilitly phase 𝑜𝑓 M/G/1 QM,𝜌 ൌ 0.5 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2024                   doi:10.20944/preprints202401.2124.v1

https://doi.org/10.20944/preprints202401.2124.v1


  41 

 

 

Figure 25. 

As seen above in Figure 25, det(IFIM) is forever decreasing in SCV if and only if M/G/1 QM is 
stable. 
CASE FOUR:  ∆ ሾ௚೔ೕሿ  𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 𝑓𝑜𝑟 𝛽 𝑖𝑛 𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑙𝑦 𝑝ℎ𝑎𝑠𝑒 𝑜𝑓 MG1 QM,𝜌 ൌ 2 

 

Figure 26. 

As observed  in Figure 26, within  the  instability phase of M/G/1 QM,  𝛽 ∈ ሺ0,1ሻ, det(IFIM)  is 
decreasing in  𝛽. 
CASE FIVE: 
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Figure 27.   

Figure 27 justifies that the threshold of stability of M/G/1 QM,  𝜌 ൌ 1  , would be the inflection 
point of det(IFIM) as well as being the decision parameter which controls the existence of inverse of 
(IFIM). 

Define (QIGUs) by the triad functions, namely  ℎଵ୕ ୍ୋ୙,ℎଶ୕ ୍ୋ୙,ℎଷ୕ ୍ୋ୙  , with   

ℎଵ୕ ୍ୋ୙,ℎଶ୕ ୍ୋ୙: M/G/1 QM → ሾ𝑔௜௝ሿ, where  ሾ𝑔௜௝ሿ  =   ቌ ଵሺଵିఘሻమ 0

0       
ିଵሺఉାଵሻమቍ(c.f.,(3.3) of Theorem 3.1) 

ℎଵ୕ ୍ୋ୙ሺ𝜌ሻ=  𝑔ଵଵ ൌ ଵሺଵି஡ሻమ , ρ ∈ ሺ0,1ሻ                                                                                                            (8.55) 
ℎଶ୕ ୍ୋ୙ሺ𝛽ሻ   =  െ𝑔ଶଶ ൌ ଵሺଵାஒሻమ ,𝛽 ∈
ሺ1,∞ሻ                                                                                                                  (8.56) 

ℎଷ୕ ୍ୋ୙ሺ𝜌,𝛽ሻ=൜Ψ௡ୀ଴ሺ𝜌,𝛽ሻ ൌ െ𝑙 𝑛ሺ1 െ 𝜌ሻ ,                                  𝑛 ൌ 0Ψ௡வ଴ሺ𝜌,𝛽ሻ  ൌ 𝑙 𝑛ሺ𝛽 ൅ 1ሻ െ 𝑙 𝑛ሺ1 െ 𝜌ሻ െ 𝑙𝑛2,𝑛 ൐ 0
      (8.57) 

provided that  Ψ௡ୀ଴ሺ𝜌,𝛽ሻ ,Ψ௡வ଴ሺ𝜌,𝛽ሻare determined by (3.7),(3.14) of Theorem 3.1 respectively. 

9. Queueing Theoretic Impact on the Continuity of New Devised Queueuing‐Information 
Geometric Unifiers (QIGU) 

Theorem 9.1For the stable M/G/1 QM 

1)ℎଵ୕ ୍ୋ୙  is continuous, for  ρ ∈ ሺ0,1ሻ 
2ሻℎଵ୕ ୍ୋ୙  is well‐defined. 

3)ℎଵ୕ ୍ୋ୙  is one‐to‐one. 
4)ℎଵ୕ ୍ୋ୙  is onto. 
5) The inverse function of  ℎଵ୕ ୍ୋ୙    is characterized by,  ሺℎଵ୕ ୍ୋ୙ሻିଵሺ𝜌ሻ=  1 െ ଵ√ఘ , ρ ∈ ሺ0,1ሻ 
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6)ℎଶ୕ ୍ୋ୙  is continuous, for  β ∈ ሺ1,∞ሻ 
7ሻℎଶ୕ ୍ୋ୙  is well‐defined. 

8)ℎଶ୕ ୍ୋ୙  is one‐to‐one. 
9)ℎଶ୕ ୍ୋ୙  is onto. 
10) The inverse function of  ℎଶ୕ ୍ୋ୙    is characterized by,  ሺℎଶ୕ ୍ୋ୙ሻିଵሺ𝛽ሻ= െ1൅ ଵඥఉ ,β ∈ ሺ1,∞ሻ. 
11)Ψ௡ୀ଴ሺ𝜌,𝛽ሻ  is well defined. 

12)Ψ௡ୀ଴ሺ𝜌,𝛽ሻis continuous if and only if M/G/1 QM is stable. 

13)Ψ௡ୀ଴ሺ𝜌,𝛽ሻ  is discontinuous     ⟺  the instability of the underlying QM is satisfied. 

14)Ψ௡ୀ଴ሺ𝜌,𝛽ሻ  is one‐to‐one. 
15)Ψ௡ୀ଴ሺ𝜌,𝛽ሻis onto. 
16) The inverse function of Ψ௡ୀ଴ሺ𝜌,𝛽ሻ    is characterized by,  ሺΨ௡ୀ଴ሺ𝜌,𝛽ሻሻିଵሺ𝜌ሻ  =  1 െ 𝑒ିఘ, ρ ∈ ሺ0,1ሻ. 
17)Ψ௡வ଴ሺ𝜌,𝛽ሻ  characterizes a family of non‐well defined  ሺ𝜌,𝛽ሻ dependent functions   

18)Ψ௡வ଴ሺ𝜌,𝛽ሻ  is continuous      if and only if M/G/1 QM is stable. 

19)Ψ௡வ଴ሺ𝜌,𝛽ሻ  is discontinuous     ⟺  the instability of the underlying QM is satisfied. 

Proof 

1)Let  𝜌ଵ,𝜌ଶ ∈ ሺ0,1ሻsuch that there is a    𝛿 ൐ 0  satisfying 

|𝜌ଵ െ  𝜌ଶ| ൏ 𝛿                                                                                                                                                (9.1) 
|ℎଵ୕ ୍ୋ୙ሺ𝜌ଵሻ െ  ℎଵ୕ ୍ୋ୙ሺ𝜌ଶሻ|  =|

ଵሺଵି஡భሻమ െ  
ଵሺଵିఘమሻమ |  =  ቚሺఘభି ఘమሻሺఘభା ఘమିଶሻሺଵି஡భሻమሺଵିఘమሻమ ቚ ൏ ఋ|ሺఘభା ఘమିଶሻ|ሺଵି஡భሻమሺଵିఘమሻమ ൌ 𝜀                      (9.2) 

Clearly by (2.48), the proof 1) follows. 
It  is also clear  that  if either  𝜌ଵ ൌ 1 or𝜌ଶ ൌ 1. Then,  the  the underlying QM  is unstable, which 

implies by (9.2), that  𝜀 → ∞. This implies that  ℎଵ୕ ୍ୋ୙is discontinuous    at  𝜌 ൌ 1. 

2)  Let  𝜌ଵ,𝜌ଶ ∈ ሺ0,1ሻ,𝜌ଵ ്  𝜌ଶ . Assume  that  ℎଵ୕ ୍ୋ୙ሺ𝜌ଵሻ ൌ  ℎଵ୕ ୍ୋ୙ሺ𝜌ଶሻ. Hence,  ଵሺଵି஡భሻమ ൌ  
ଵሺଵିఘమሻమ   , 

equivalently,    ሺ1െ ρଵሻଶ ൌ  ሺ1െ 𝜌ଶሻଶ. This means,  𝜌ଵ ൌ  𝜌ଶ 𝑜r𝜌ଵ ൅  𝜌ଶ ൌ 2. We    have to reject  ,  𝜌ଵ ൌ
 𝜌ଶ. Also,  𝜌ଵ ൅  𝜌ଶ ൌ 2is impossible since  𝜌ଵ,𝜌ଶ ∈ ሺ0,1ሻ,Clearly, a    contradiction follows. Therefore, 

2) holds. 

3)ℎଵ୕ ୍ୋ୙ሺ𝜌ଵሻ ൌ  ℎଵ୕ ୍ୋ୙ሺ𝜌ଶሻ, then following the same proof as in 2) implies that  𝜌ଵ ൌ  𝜌ଶ. This proves 3). 
4)  Obviously,  every  ρ ∈ ሺ0,1ሻ   uniquely  characterizes    ଵሺଵି஡ሻమ such  that  ℎଵ୕ ୍ୋ୙ሺ𝜌ሻ =  𝑔ଵଵ ൌ

ଵሺଵି஡ሻమ. Hence,  ℎଵ୕ ୍ୋ୙  is onto. 
5) Assume  ℎଵ୕ ୍ୋ୙ሺ𝜌ሻ ൌ y. Hence,     
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  ሺℎଵ୕ ୍ୋ୙ሻିଵሺ𝜌ሻ=  1 െ ଵඥఘ , ρ ∈ ሺ0,1ሻ                              (9.3) 
which proves 5). 

6)Let  𝛽ଵ,𝛽ଶ ∈ ሺ1,∞ሻsuch that there is a    𝛿 ൐ 0  satisfying 

|𝛽ଵ െ  𝛽ଶ| ൏ 𝛿                                                                                                                                                (9.4) 
|ℎଶ୕ ୍ୋ୙ሺ𝛽ଵሻ െ  ℎଶ୕ ୍ୋ୙ሺ𝛽ଶሻ|  =  |

ଵሺଵାఉభሻమ െ  
ଵሺଵାఉమሻమ |  =  ቚሺఉభି ఉమሻሺఉభା ఉమିଶሻሺଵାఉభሻమሺଵାఉమሻమ ቚ ൏ ఋଵ଺ |ሺ𝛽ଵ ൅  𝛽ଶ െ 2ሻ| ൌ 𝜀      (9.5) 

Clearly by (2.48), the proof 6) follows. 

7) Let  𝛽ଵ,𝛽ଶ ∈ ሺ1,∞ሻ,𝛽ଵ ്  𝛽ଶ.    Assume  that    ℎଶ୕ ୍ୋ୙ሺ𝛽ଵሻ ൌ  ℎଶ୕ ୍ୋ୙ሺ𝛽ଶሻ.   Hence,    ଵሺଵାఉభሻమ ൌ  
ଵሺଵାሺఉమሻమ   , 

equivalently,    ሺ1൅ 𝛽ଵሻଶ ൌ  ሺ1 ൅ 𝛽ଶሻଶ .  This means,  𝛽ଵ ൌ  𝛽ଶ 𝑜r 𝛽ଵ ൅ 𝛽ଶ ൌ െ2.     We    must  reject  , 𝛽ଵ ൌ  𝛽ଶ .  Also,     𝛽ଵ ൅ 𝛽ଶ ൌ െ2     is  impossible  since  𝛽ଵ,𝛽ଶ ∈ ሺ1,∞ሻ,,     Clearly,  a    contradiction 
follows. Therefore, 7) holds. 

It is also clear that even if the underlying QM is unstable(or equivalently,  β ∈ ሺ0,1ሿwhich implies 
by (9.5), that  𝜀 ↛ ∞ሻ.   This implies that    ℎଶ୕ ୍ୋ୙    is everywhere continuous. 

Engaging the same procedure as in    3) and 4), the proofs of    8) and 9) are easily verified respectively. 

10)Assume  ℎଶ୕ ୍ୋ୙ሺ𝛽ሻ ൌ ଵሺଵାஒሻమ ൌ w, β ∈ ሺ1,∞ሻ.   These leaves one choice,   

β ൌ  െ1൅ ଵ√௪                                                                                                                                            (9.6) 
This shows that ,  ሺℎଶ୕ ୍ୋ୙ሻିଵሺ𝛽ሻ=  1െ ଵ√ఉ ,β ∈ ሺ1,∞ሻwhich proves 10).   

11)Let  𝜌ଵ,𝜌ଶ ∈ ሺ0,1ሻ,𝜌ଵ ്  𝜌ଶ .     Assume  that    Ψ௡ୀ଴ሺ𝜌ଵሻ ൌ  Ψ௡ୀ଴ሺ𝜌ଶሻ.     Hence,    െ𝑙𝑛ሺ1 െ ρଵሻ ൌ
 െ𝑙𝑛ሺ1െ ρଶሻ  ,  equivalently,    ሺ1െ ρଵሻ ൌ  ሺ1െ 𝜌ଶሻ. This means,  𝜌ଵ ൌ  𝜌ଶ . Clearly,  a    contradiction 

follows. Therefore, 12) holds. 

12) Necessity: Assume that M/G/1 QM is stable, then  𝜌ଵ,𝜌ଶ ∈ ሺ0,1ሻ 
Suppose that there is a    𝛿 ൐ 0  satisfying:   
|𝜌ଵ െ  𝜌ଶ| ൏ 𝛿                                                                                                                                        (9.7) 
|Ψ௡ୀ଴ሺ𝜌ଵሻ െ  Ψ௡ୀ଴ሺ𝜌ଶሻ|  =  |𝑙𝑛ሺ1െ 𝜌ଵሻ െ 𝑙𝑛ሺ1െ 𝜌ଶሻ|                                                                        (9.8) 
It is well known that Maclauren’s    series of  𝑙𝑛 ሺ1െ 𝜌ሻ, for  𝜌 ∈ ሺ0,1ሻ  is determined by   𝑙 𝑛ሺ1 െ 𝜌ሻ ൌ  െ∑ ఘ೙௡  ሺc. f. , ሺ2.49ሻሻ                                                                         ஶ௡ୀଵ (9.10) 

Thus, it follows that   

|𝑙𝑛ሺ1െ 𝜌ଵሻ െ 𝑙𝑛ሺ1 െ 𝜌ଶሻ|  ൏ 𝛿 ∑ ሺ𝜌ଵ௡ିଵ ൅ 𝜌ଵ௡ିଶ ൅⋯൅ 1ሻ ൌ    
ఋሺଵିఘభሻ ൌ 𝜀                          ஶ௡ୀଵ (9.12) 

This proves continuity. 

Sufficiency:   

By  (9.12),  there  exists    ఋభሺଵିఘభሻ ൌ 𝜀ଵ ൐ 0 ,  ఋమሺଵିఘమሻ ൌ 𝜀ଶ ൐ 0 ,  with  𝛿 ൌ 𝑚𝑖𝑛ሺ𝛿ଵ, 𝛿ଶሻ ൐ 0 ,  𝜀 ൌ
min ሺ𝜀ଵ, 𝜀ଶሻ  satisfying,  (9.7)  and  (9.12). Consequently,    𝜌ଵ,𝜌ଶ ∈ ሺ0,1ሻ, which directly  implies    the 
underlying QM’s stability. 
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13) Following (9.12), discontinuity of Ψ௡ୀ଴  occurs if and if  𝜌ଵ ൒ 1  to enforce  𝜀  to be infinite of any 
negative real number. Therefore, 13) holds. 

The validity of both 14) and 15) can easily be verified. 
Assume  Ψ௡ୀ଴ሺ𝜌ሻ ൌ െ𝑙𝑛 ሺ1െ 𝜌ሻ ൌ m, ρ ∈ ሺ0,1ሻ. Thus, it holds that  1െ 𝜌 ൌ  𝑒ି௠  . Consequently, ρ ൌ  1െ 𝑒ି௠. This shows that ,  ሺΨ௡ୀ଴ሻିଵሺ𝜌ሻ=  1െ 𝑒ିఘ, ρ ∈ ሺ0,1ሻ, which proves 16).   

17)    Let  𝜌ଵ,𝜌ଶ ∈ ሺ0,1ሻ, ሺ𝛽ଵ,𝛽ଶሻ ∈ ሺ1,∞ሻsuch that 𝜌ଵ ്  𝜌ଶ,𝛽ଵ ്  𝛽ଶ     Assume  that    Ψ௡வ଴ሺ𝜌ଵ,𝛽ଵሻ ൌ
 Ψ௡வ଴ሺ𝜌ଶ,𝛽ଶሻ.   Hence, 

    ሺఉభାଵሻሺଵିఘభሻ ൌ  
ሺఉమାଵሻሺଵିఘమሻ. This means,   

ሺ𝛽ଵ െ 𝛽ଶሻ ൅ ሺ𝜌ଵ െ 𝜌ଶሻ ൌ ሺ𝛽ଶ𝜌ଵ െ 𝛽ଵ𝜌ଶሻ                  (9.13) 
By (9.13), 17) holds. 
It  is  obvious  that  Ψ௡வ଴     is  continuous  for  all 𝛽 ∈ ሺ1,∞ሻ,𝜌 ∈ ሺ0,1ሻ. This proves  the necessity 

requirement. As for the sufficiency requirement, let  Ψ௡வ଴ሺ𝜌,𝛽ሻ be continuous. This directly implies 
that  𝑙 𝑛ሺ1െ 𝜌ሻ  attains non‐  infinite  real values. Consequently,    1െ 𝜌 ൐ 0. Hence,  the underlying 
M/G/1 QM is stable. This proves 18). 

To prove 19), it is clear that  Ψ௡வ଴ሺ𝜌,𝛽ሻ  is discontinuous if and only if both  𝑙 𝑛ሺ𝛽 ൅ 1ሻ and 𝑙𝑛ሺ1െ𝜌ሻ  is discontinuous. This is equivalent to  𝛽 ൐  െ1,𝜌 ൒ 1. Equivalently, M/G/1 QM is unstable.   

10. Closing Remarks with Next Phase Research 

This paper discusses  the  application  of  information  geometric  concepts  in queueing  theory, 
specifically  focusing  on  the  specified  QM.  It  introduces  the  Fisher  information  metric,  the  𝛼‐
connection, and analyses the geometric properties of the queue manifold, such as Gaussian and Ricci 
curvatures. The paper also highlights the potential for further research in IG unification with existent 
knowledge of scientific fields. 
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