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Abstract: Information geometry (IG) seeks to characterize the structure of statistical geodesic models from a
differential geometric point of view. By considering families of probability distributions as  manifolds with
coordinate charts determined by the parameters of each individual model, the tools of differential geometry,
such as divergences and metric tensors, provide effective means of studying their characteristics. The research
undertaken in this paper presents a novel approach to the modelling study of information geometrics of a
queueing system. In this context, the manifold of a stable M/G/1queue is characterised from the viewpoint of
IG. The Fisher Information matrix (FIM) as well as the inverse of (FIM), (IFIM) of stable M/G/1 queue manifold
are devised. In addition to that, new results that uncovered the significant impact of stability of M/G/1 queue
manifold on the existence of (IFIM) are obtained. The Kullback’s divergence (KD), and J-divergence (JD).New
result has been devised on the significant impact of both server utilization and squared coefficient of variation
of the underlying M/G/1 queue manifold on both (KD) and (KD) are devised. Also, it is revealed that stable
M/G/1 QM is developable (i.e., has a zero Gaussian curvature) and has a non-zero Ricci Curvature Tensor
(RCT). Novel stability dynamics of M/G/1 queue manifold is revealed by discovering the mutual dual impact
between the behaviour of (RCT) and the stability and the instability phases of the underlying M/G/1 queue
manifold. Furthermore, a new discovery that presents the significant impact of stability of M/G/1 queue
manifold and the continuity of the unique representation between M/G/1 queue manifold and Ricci Curvature
Tensor (RCT). The information matrix exponential (IME) is devised. It is also shown that the obtained (IME)
is unstable. Also, it is shown that stability of the devised (IME) enforces the instability of M/G/1 queue
manifold. Unifying IG with Queueing Theory enables the study of =~ dynamics of queueing system from a
novel Riemannian Geometric (RG) point of view, leading to the analysis of the stable M/G/1 queue, based on
the Theory of Relativity (TR).Extending the study over two new additional divergence measures,
namelyRényi's and sAB's together with a complete illustrative numerical results for all these measures
including KD, JD. This links Queueing theory, IG with deep machine learning and metric learning.
Furthermore, this reveals the revolutionary approach of queue learning. Full analytic study of Gaussian
curvatures subject to both Angular and Monge techniques together with the overall stability dynamics impact
on these curvatures. Full analytic study of Einestein Tensor and Stress Energy Tensor together with the overall
stability dynamics impact on these curvatures. The inclusion of the definitions of Gaussian and Ricci, Ricci
scalar curvatures and Einstein Tensor together with their physical interpretations; The proposed novel
approach for the pioneer visualization of queueing systems via computational information geometry. The
determination of new important links between classical queueing theory and other mathematical disciplines,
such as IG, matrix theory Riemannian geometry and the THEORY OF RELATIVITY by providing for first time
i) The full detailed derivations of the Gaussian curvature ii) The Ricci curvature tensor and iii) The full physical
as well as the geometric interpretation of these new results. The provision of a novel link between Ricci
Curvature (RCT) and the stability analysis of the stable M/G/1 QM. The full investigation of the newly
introduced QT-IG unifiers together with the impact of stability/ instability of the underlying M/G/1 QM on
them. The full investigation of the newly introduced (QIGU) unifiers together with the impact of stability/
instability of the underlying M/G/1 QM on them.

Keywords: Maximum entropy (ME); IG; SM; QM; RCT; Einstein Tensor; Stress Energy Tensor;
Riemannian metric (RM),probability density function (PDF) Fisher Information matrix (FIM);
Inverse Fisher Information matrix (IFIM); threshold theorem; Kullback’s divergence (KD); J-
divergence (JD),Rényi Divergence(RD); sAB Divergence; QT-IG unifiers; Queueing Theoretic Fisher
Information Unifiers(QIGU); information matrix exponential (IME); Stability of a matrix
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1. Introduction

Information geometry (IG) is a field that applies techniques from differential geometry to
statistics[1]. It aims to use geometric metrics to provide a new way to describe the probability density
function, serving as a coordinate system in statistical manifolds(SMs). A manifold [2]is a
mathematical concept that represents a space with certain properties. In this context, a manifold is a
finite-dimensional Cartesian space, denoted as R", where R" refers to a topological space. It is
important to note that although figures can be visualized, they are considered abstract geometric
figures rather than concrete representations.

In the given context, IG is highlighted as being significantly important[1,3,4]. Figure 1 illustrates
how parameter inference, represented by §. Additionally, previous research has explored the
geometric structures of exponential distribution families.

Figure 1. SM’s parametrization [3].

One mathematical method for solving systems of linear differential equations is the information
matrix exponential (IME). It also has significant applications in the theory of Lie groups, which are
mathematical structures that have important implications in various areas of mathematics and
physics [5]. Interarrival time distribution (IG) of stable M/D/1 queues was studied by using features
of queue length pathways, the article introduced a geometric structure to the set of M/D/1 queues,
for a more detailed survey, consult [5] . This strategy connected information matrix theories with IG,
opening new insights into queueing theory. According to [3,6], Ricci curvature quantifies the
distinction between the standard Euclidean metric (EM) and the Riemannian metric (RM) in the
setting of the article. In contrast, the difference in volume between a geodesic ball and a Euclidean
ball with the same radius is measured by scalar curvature. Figure 2 depicts the knowledge facilitation
of comprehension of the geometric characteristics of spaces and how they deviate from Euclidean
geometry (c.f., figure 2).

parallel of
latitude great

circle

Figure 2. curved surfaces’ geodesic representation [6].

e [7] states that the exponential of the Fisher Information Matrix (FIM) for the stable M/G/1
queue, a mathematical model used in queueing theory, solves dx/dt = Ax. Here, x represents
a vector with n dimensions, and A is a nxn matrix. The second extended study by [7] builds

upon their previous work [8] and introduces new contributions:
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Finding the underlying QM’s KD and JD measures

e  Proving that FIM of the underlying QM solves : dx/dt = Ax.

This current paper is an ultimate extension of both papers, with main deliverables :

Extending the study over two new additional divergence measures, namely Rényi's and sAB's
together with a complete illustrative numerical result for all these measures including KD, JD.
This links Queueing theory, IG with deep machine learning and metric learning. Furthermore,

this reveals the revolutionary approach of queue learning.

e iv) The solenoidability(incompressibility) of the underlying queueing system is shown. This

concept is analogous to the Divergence Theorem[9].

e  Full analytic study of Gaussian curvatures subject to both Angular and Monge techniques
together with the overall stability dynamics impact on these curvatures.

e  The current paper provides a comprehensive analysis of the Einstein Tensor and Stress Energy
Tensor, exploring their relationship with stability dynamics and curvatures. It also introduces
the definitions and interpretations of Gaussian and Ricci curvatures, as well as the Einstein
Tensor.

e Extending the study to include two new divergence measures, Rényi's and sAB's, along with
illustrative numerical results such as KD and JD. This extension connects queueing theory,
information geometry, deep machine learning, and metric learning, revealing a novel approach
called queue learning.

e Additionally, the paper explores the impact of stability dynamics on Gaussian curvatures,
provides a comprehensive analysis of Einsteinian and Stress Energy Tensors, and establishes a

unified theorem of queueing-theoretic correlations with both special and general relativity.

The road map of this study is: The core definitions for IG are contained in Section 2. In Section
3, FIM and its inverse for the underlying QM are obtained. In Section 4, the a-connection of a stable
M/G/1 queue manifold is obtained. In Section 5, the KD and JD [7], Rényi's, and sAB divergences of
a stable M/G/1 QM are computed. In Section 6, methodical arguments are developed demonstrating
the developability and non-zero RCT for the underlying queuing manifold system. In addition, a
comprehensive examination of the recently announced QT-IG unifiers is presented in Section
6.Section 7 investigates ef™M™M/6/D) and how the underlying QM’s stability impacts FIM's
stability.

In section 8, Ricci scalar,R, curvature of space time(einestein tensor)g, stress energy tensor, T, the
corresponding threshold theorems for the underlying curvatures and the dual queueing impact on
the existence of the inverse fisher information matrix(IFIM). Section 9 discusses Queueing theoretic
impact on the continuity of new devised queueuing-information geometric unifiers (QIGU). Section
10 is entirely devoted to closing remarks combined with next phase of research.
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2. Main Definitions
2.1. Main Definition on IG

Definition 2.1 Statistical Manifold (SM) [7]

We denote a statistical manifold, M = {p(x,0)|0e®} and p(x,6) as a PDF. Here, 6=
(04,6,,..,6,)e®@ c R".

Definition 2.2 Potential Function [7]
The potential function¥(6) denotes (—L(x;8) = —I n(p(x; 9))) with coordinates only.
Definition 2.3 FIM, namely [g;;]

[9ij1(c.f., [7]) reads as
(9] = [5p055; (®(O))] . = 1.2,..,n 1)
Definition 2.4 IFIM, namely [g"] (c.f., [7])

_ adl[gu]

[9"1=([gyD) 7" = , A= det|gy] (22)
The arc length is defined to be:
(ds)? = X}j=19: (d6")(d6) (2.3)
Definition 2.5 a-Connection(c.f., [7])
The a-connection reads as
I = (59(0:0;06(¥(0))), 9; = 53, «isreal (2.4)
Definition 2.6 Kullback’s Divergence (KD), K(p, q)
KD, namely K(p, q)[7]reads as
_ P(xigp)
K, q) = Eq, [l n (q(ngq))] (2.5)
_ . p(’“ep)
=[ p(x;6,)ln <q(x;0q)) dx (2.6)

J-divergence reads as

Io.q) = In (Zgizz;)(P(x;ep)—q(x;aq)) dx 27)
=K@ q) +K(@p) (2.8)

In this paper, however, we focus on the Rényi divergence [10,11],
DY(lla) = o tn (Ze(pm)” (am)™) 2.9)

used in Rényi variational inference VI [12].

D;/Zl]B (pllg) [13] reads as:

in (Zio(pm) " p——n

DI (pllg) = y(+y)

o Y+ 1 o Y n
T (Zro(a@) )—;ln(ZFo(p(n)) (@a@)")  (210)
for (y,n)eR? suchthat y #0,n #0and y +n # 0.
The authors [13] have presented a novel (dis)similarity measure, namely DY"B(pllq) (c.f.,
(2.10)). Moreover, it has been illustrated [13] that D;’_ T=(]1q) is potentially robust.

doi:10.20944/preprints202401.2124.v1
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Figure 3. (c.f., [14]).
Definition 2.8
1. The a — curvature RiemannianTensors, Ri(fk)l[7] reads
RS =017 = 0:l3 ) g + (LT = LPLE ) ij ks, t = 1,2,3,...,m 2.11)
where Fk(“) = FLE‘? sk ijks=12,..n
2. The @ — Ricci curvatures (Ricci Tensors) RL(,': ) reads [7]
@ _ p@ ji:ip g
R;, Rl gLk 1=123,...,n (2.12)
3.The a — sectional curvaturesKi(j'f]). reads [7]
@ _ Ry
K. ——i,j=12,.., 2.1
i = (g eg)-tap?’ " " @13
Potentially,
r@®
K(a) Ri212 .14
det(gj) (2.14)

4. One mathematical object that can be obtained by contacting the Riemannian Tensor is the Ricci
Tensor [15]. It measures the curvature of space and is employed in the study of Riemannian
manifolds. To obtain the Ricci Tensor, the contraction procedure entails summing a few components
of the Riemannian Tensor [7].

5. An oriented Riemannian manifold's Ricci curvature tensor (RCT) (c.f., [16]) quantifies the difference
between a geodesic ball's volume on the manifold and its volume in Euclidean space. It gives details
on the manifold's curvature and how it differs from flat space. knowledge the geometry and
characteristics of curved spaces in connection to Euclidean geometry requires a knowledge of this
topic.

6.RCT (c.f., [17]) measures how volumes change over time along geodesic paths on a Riemannian
manifold. When the Ricci curvature is positive, it indicates a smaller diameter. This relationship is
supported by the Bonnet-Myers theorem, which establishes a connection between the manifold’s

positive Ricci curvature and the curvature properties.
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6
Figure 4. RCT (c.f., [18]).
Definition 2.9
1. Considering the linear system of differential equations
d
d—’t‘ = Ax (2.15)

with x is an n-dimensional vector and A is a nxn matrix. It can be shown that (Gunawardena, 2006)
the matrix exponential:

i 2 k
e = TR = I HA+ T+t (216)
is the solution of (2.15).

2. If the characteristic polynomial of A is defined by

®(5) = det(A — 8I) (2.17)
The eigen values of A (c.f., [19]) solve:
O(5) =) =0 (2.18)
such that:
Ax = 6x (2.19)
e reads as:
ed =T eP T (2.20)

where D is the diagonal matrix of eigen values of A, and T is matrix having of the corresponding
eigen vectors of A as its columns (c.f., [19]).

Definition 2.10

Developable surfaces are a special kind of ruled surfaces, they have a Gaussian curvature equal
to 0, and can be mapped onto the plane surface without distortion of curves: any curve from such a
surface drawn onto the flat plane remains the same (c.f., [20]).

doi:10.20944/preprints202401.2124.v1
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Figure 5. Three kinds of developable surfaces: Tangential on Figure. 5a (on the left), Conical on Fig.
5b (on the centre) and Figure. 5¢ (on the right), Cylindrical. Note that curves in bold are directrix or
base curves and straight lines in bold are directors or generating lines (curves) (c.f., [20]).

2.2. Gaussian and Mean Curvatures, Ks and H respectively (c.f., [21])

Definition 2.11(Mong Patch Technique)
1.Let K; and K, be the principal curvatures of a surface patch §(u,v). K;(6) is

K¢ = KiK;, (2.21)
and its Mean Curvature is:
H = (K +Ky) (2.22)

2.For aMong patch z = f(x,y),Kcand H are given by

LN—-M?

K; = o (2.23)
and its Mean Curvature is

_ 1 ,LG-2MF+NE
H=3CH= ) (2.24)

; _ (N p_ o _ (N2 9% g Of N 9%
with £ = () == L=t m= L N=

Classification of Surface Points

Figure 6. The elliptic paraboloids z = x2 + 2y?(to the left) and z = x* — 2y? (to the right) (c.f,
[21]).

Figure 7. Planar points with quite different shapes(c.f., [21]).

A torus as shown in Figure 8
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Figure 8. (c.f., [21]).

Figure 9. Catenoid (c.f., [21]).

2.3. Different Approach to Gaussian and Mean Curvatures (Angular Technique) (c.f., [22])

A new formulation (c.f., [22]) is introduced for Gaussian Curvature Kgand the Mean Curvature
is H are defined as

K; = K1K; (2.25)
And
H = (K +Ky) (2.26)
with K; and K, as the principal curvatures are determined by:
K= —2L _ g =22 2.27)

a3 2 O 23
ooz arlnoe

where x3 = f(x1,x;) defines the shape of the surface. x; and x; are parallel to the directions of the
principal curvature, which are rotated through an angle CO with respect to x;andx,, and

af _ of . af
P cosC) o sinC) F (2.28)
af . of af
P sinCo F + cosCO Fr (2.29)
B,y = 2L 05200 — 2=2L sinCdcosCd + LL sin2cn = 2L (2.30)
117 a2 9x10x, ax3 axy? :
By, = LLsin?0d + 222 sinCcosd + 2L cos2c) = L1 2.31)
22 7 px2 9x10x7 ax3 ax}? :
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The angle CO through which the coordinate frame is rotated to align the axes with the directions
of the principal curvature at each point on the surface is given by

92f

~2Gx9x7)
tan2CO = Tlazfz (232)

1-b

ax% 6x%

A contour plot of Gaussian curvature indicates where structures occur on a surface. If both
principal curvatures are non- zero, the surface is said to have double curvature [22].

o]

K>0 K=0 o K<0

(a) (c)

Figure 10. (c.f,, [22]). K; are slab structures- related by the three regions (a), (b), and (c).

2.4. Well Defined Functions and Bijective Functions

Definition 2.12(c.f., [23]).

1. A function is well-defined if it gives the same result when the representation of the input is changed
without changing the value of the input.

Definition 2.13(c.f., [24])

1. function f is said to be one-to-one, or injective, if and only if f(x) = f(y)implies x = y for all x, y
in the domain of f. A function is said to be an injection if it is one-to-one. Alternative: A function is

one-to-one if and only if f(x) # f(y), whenever x #y. This is the contrapositive of the definition.

2.A function f from A to B is called onto, or surjective, if and only if for every b € B there is an
element a € A such that f(a) = b. Alternative: all co-domain elements are covered.

3. A function f is called a bijection if it is both one-to-one (injection) and onto (surjection).
Definition 2.14(c.f., [25])

The solution of the cubic equation
aw? +b'w2+c'w+d =0 (2.33)
is characterized arbitrarily by

y=z-= (2.34)
W=y = (2.35)
z= 3/(— SERCS (2.36)
_ 20" ar b
8% T TT T 3@ (2.37)
_ (e)? (&)°
&=t (2.38)
where &; is given by .
_ 20
&= "Sareta (2.39)

g, is called the discriminant of the cubic equation.
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Preliminary Theorem(PT) 2.15 [26].

Let fbe a function that is defined and differentiable on an open interval (c,d).
(I)If f'(x) >0 forall x € (c,d) ,then fis increasing on (c, d). (2.40)
If f'(x) <0 forall x € (c,d), then fis decreasing on (c, d). (2.41)

2.5. Stability Analysis for Ordinary Differential Equations (ODEs) [27]

Equilibria are not always stable. Since stable and unstable equilibria play quite different roles in
the dynamics of a system, it is useful to be able to classify equilibrium points based on their stability.
Suppose that we have a set of autonomous ordinary differential equations, written in vector form:

dx

== f) (2.42)

at
Suppose that x* is an equilibrium point. By definition,f(x*) = 0.

Theorem 2.16 (c.f., [27])An equilibrium point x* of the differential equation 1 is stable if all the
eigenvalues of/*, the Jacobian evaluated at x* , have negative real parts. The equilibrium point is
unstable if at least one of the eigenvalues has a positive real part.

S

Eigenvalues Fixed point

complex with positive real parts | unstable focus

complex with negative real parts | stable focus

real and positive unstable node
real and negative stable node
one positive and one negative saddle point

Figure 11. (c.f.,, [27]).

2.6. Scalar Curvature(Ricci Scalar), R and Einestein Tensor,

The scalar curvature(Ricci Scalar), R(c.f., [15]) measures RCT’s contraction(c.f., (2.12))

R= R{PgY,ij=123,.. (2.43)
The two-dimensional Ricci Scalar, R [28] is twice as the Gaussian Curvature K; (c.f., (2.25)),

provided that K;and K, are determined by (2.27).
The Ricci scalar R [15] has a similar meaning to Kj,

. 6n A (e)
R = limg_o—[1 —=rwed—2 2.45
lmE 0 62[ Aflat(e) ] ( )

Ricci scalar completely captures the curvature of the surface.

The equations of motion of a classical theory like General Relativity can be derived directly from
a suitable action by using the Euler-Lagrange equations, leading to the well-known Einstein
equations [29]

G

8ngw,;;

_ p@R
= Rj59=—"7" (2.46)

doi:10.20944/preprints202401.2124.v1
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where G;jis the Curvature of Spacetime(Einstein tensor), , Rf]a ) defines spacetime — RCT, namely
gij, R = Ri(;.x) gY,i,j = 1,2,3, ...is the Ricci scalar or scalar curvature, ¢ is the universal gravitational
constant, ¢ is the speed of light, and @;; are the components of the stress-energy tensor,@,as a
descriptor of spacetime- matter-energy distributions.

2.7. Maxima and Minima of Functions of Two Variables [30]

9f(ay,b1) _ 0= df(a1,b1)

Suppose that (ay, b;) is a critical point of f(x,y) (ie, o %

). Let’s denote:

D =D(ay,by) = fux(as, b1)fyy(ar, br) = [fuy(ar, b)]? (2.47)
This provides the critical point categories:

1. If D > 0andf,(a;,b;) > 0 then there is a relative minimum at (a,, b).

2. If D > 0andf,(a,,b;) <0 then there is a relative maximum at (a,, b).

3. If D < 0then the point (a,,b;) is a saddle point.

4. If D =0 then the point (a;,b;) may be a relative minimum, relative maximum, or a

saddle point. Other techniques would need to be used to classify the critical point.

2.8. Continuous Functions (c.f., [31])

Theorem 2.16

A function f is continuous at x, if and only if f is defined on an open interval (r,s)
containing x, and for each € > 0 thereisa § > 0 such that:

lf () = f(xo)l < & (2.48)

whenever |x — x,| < 6.

2.9. The Maclauren’s Series of In(1 — x) for x around zero(Shaw,2015)

n(1-x) = -32,= (249)

3. The Fim and Its Inverse for the Stable M/G/1 QM

According to [32], the maximum entropy (ME) state probability of the generalized geometric
solution of a stable M/G/1 queue (c.f., Figure. 12), subject to normalisation, mean queue length
(MQL), L and server utilisation, p(<1) is given by

e
Figure 12.
1—0p, n=20
P ={ " nat (3.1)
2 L— 1+pCZ
where g =(L—p§ﬂ’ x = Tp and L=§(1+ pr ), p=1-p(0)andp = C2.

p(n)of (3.1) reads as:

1—-p, n=20
14p8 \*71
= 2p\7, 1 .
P ) s, witg = 2
( +1
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Theorem 3.1 The underlying QM satisfies:
(i) FIM reads as
1
0
—pn)2
l9:] = (5 S (3.3)
(B+1)?
o 2_ 2 2
(i) (d5)=  (Z)(dp)? - s (dB) (34)
(iii) [g¥] reads as
go- telod _(O=pF 0 ) .
Proof
@)
CaseIl: p(0) =1—p. Thus,
L(x;0) = ln(p(x; 9)) = In(1-p),
6=6,=p (3.6)
Y(O) =—-In(1-p) (3.7)
Therefore,
v 9%y 1
61 = a = ; (3 8) 6161 W = (1—p)2 (39)
FIM is given by:
%y
9] = 528 [l @10
[g¥] reads as
[97] = [g5]7" = [(1 = p)?] (3.11)
) (1+PB_ )n—l
Case II: For n > 0, p(n) = W. Therefore, the coordinate system is two-dimensional
(F25+1
satisfying:
L(x;0) = In(p(x;0)) = In(1—p) + 2 —In(B+1) +n ln(zf(l(;ﬁ)l)) (3.12)
where
0= (6,0, = (p,p), with f=C2 (313
We have
Y@)=In(B+1)—In(1—p)—In2 (3.14)

Thus, we have

= —0,= — = 10,0, = 0,0, = 0,0,, = —

%2 = = G (3-19)

(B+1)?
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1

FIM is given by [g;;] = (1-p)* (3.16). This completes the proof of (i)

-t
(B+1)?

It could be verified that

(ds)*= (== dp)* -

dp)? (cf, (3.4)

(1- P)Z (,3+1)2

Finally, after some manipulation, it could be shown that:

ad}[g,]] ((1 - p)z 0

971~ 0 —(B+1)*2

) (£, (3.5))

4. The a(. OR V®)-Connection of the M/G/1 QM

(2.8) implies:
0 =G T (4.1)
=0 = o (42)
9= - I = - (43)

Engaging the same logic, RCT’s remaining components can be determined.
5. Variational Inference, KD,JD,RENYI AND s AB DIVERGENCES OF STABLE M/G/1 QM

5.1. KD and JD Divergences of Stable M/G/1 QM

The following theorem characterizes both KD and JD of (2.5) and (2.6) respectively.
Theorem 5.1 The underlying QM satisfies:

D K@) = Es, [l n(p(xep))] In ((1—pp) (1+ﬁq) [(Pq(z"'Pq(ﬁq_l)) (i:ll;:))]Lp) (.1)

a(x:6q) 1-pq/ \1+Pp pp(2+pp(Bp—1)
L, defines the Mean Queue Length at p.
Also,
.. —_ pq(2+pq(ﬁq—1)) (1+,Bq) (Lp-Lg)
(i) ID(p,q) = = tnf(2520 B0 ) (220 52)

where L,, L, defines the Mean Queue Length at p and g respectively.
Proof

To show (i), the case for n = 0 is straightforward. For n >0, Itcould be verified that, using
(3.2), we have
After some few mathematical steps, it could be seen that:

p() P 1opp _ M) <W)
ln( ( )) In ( q) + In (1_pq) +(n—1Din (pq(1+Bq) + nin oy oD (5.3)
By (5.4), it follows that KD will be determined by
_ 1-pp 1+ﬁq>] (Pq(2+Pq(ﬁq 1)) <1+ﬁp)
K(p‘ q) in [(1 Pq) (1+ﬁp + L ( ( pp(2+pp(Bp—1)) \1+B4 )) (54)

n=0,12,..., and L, = ¥ onp(n))
- (i) ) () (s

1-pgq 1+Pp Pp(2+pp(Bp-1) 1+Pp

This completes the proof of (i).
To prove (ii), we have by (2.6) and (5.5)
Following some mathematical steps, (5.2) could be easily verified.

doi:10.20944/preprints202401.2124.v1
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Clearly it follows from (5.2), thatJD is also zero if and only if p = q.This present a novel result
which declares the compressibility of the underlying QM if and only if it is stable or when p and g
are identical, (i.e., p, = pg, By = Bq)

It is observed by (5.1), that JD is dependent on pg, f;and the MQL of Pollaczeck-Khinchin
Formula of a stable M/G/1 QM at p, L,(which is dependent on p,andf,). To examine the impact of
L, on]D, the following experiment is introduced.

IMPACT OF MQLDp ON (-KD), Suln) = 0.9, SGU(n) =2

40

0.58CVig) =2

(-KD} Suig)

1 E 3 4 56 7 8 910111213 141516 17 18 19 20 21
MQLp

Figure 13.

Figure 13 depicts that KD is a negative decreasing function in MQL at p,L,. This justifies that
the increase of L,, will have a significant impact on the decrease of KD. In other words, the increase
of MQL at p, would enforce the distance between p and g to increase in magnitude.

Compressibility of M/G/1 QM could be identified visually by presenting the following numerical
experiment:
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IMPACT OF MOQLp ON (-JD), Suln) = 0.9, SGVIn) = 2,M0Lu =129

70

1.25

601

201

2 MQLg

401

301

201

101

(-JD) Su(q) =0.5,SCV(q)

0
1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21

MQLp

Figure 14.

The findings of figure 14, show that the increase of MQL atf p impacts the the stable M/G/1 QM’s
solenoidability of. As it observed that M/G/1 QM is solenoidal at the steady state phase of the QM.
By the increase of L, suchthat L, # Lg, the stable M/G/1 QM is no longer solenoidal. This shows
the direct impact of queueing parameters on the visualization of the regions of solenoidability of the
stable M/G/1 QM.

Meanwhile, we have

SRy ws KD. SULg)Yy = .59, SCVW{q)r = 2 = SCVW{pX. mn = o

-
- 0_zszs 0eS0e W 0. G n.s5 [ 0.7 0.Sz n.31

=0

4+ —o.=171as191

2 2 =), 0

4+ —1.9171a3191

4 —s.0171as191

2 0.5, S

4 —s.1171a3191

4, i

4 -s.z171as191

4+ —s.z171a3191

4+ —F-4171a3191

iTools -SubhashBose _comsSrapher
Figure 15.

As observed by Figure 15, KD decreases and vanishes at p, =0.5. by the increase of p, , KD
decreases and tends to —oo when the underlying M/G/1 QM approaches instability (p, =1).
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SUpR) ws JD. SU{g) = 0.5, SCVWi{p) = 2, SCV¥{q) = 3. n =2

=2

-5 044 0T OSTE

g, W =30

4+ 1-s944070sTS

0.5, SV

4+ 1-ss440T0ETS

+ 1-17dd0T0ETS

1, )

4 0.39E44 0T OSTE

4 0.TFS44 0T OSTE

0.13 0,25 0.37F

iTools . SubhashBose ccomASSrapher
Figure 16.

As observed by Figure 16, for n =2, KD increases for permissible values of SU(p) and starts to
decrease at SU(p)=as we go along. Then, it decreases when SU(p) =0.4. Afterwards, KD decreases
unsoundly , speeding rapidly to —oo. In this physical interpretation, stability has a significant
impact on the behaviour of KD. In principle, it is uncovered that the stability of the M/G/1 QM has a
significant impact on the performance of KD.

5.2. Rényi Divergence of Stable M/G/1 QM

Theorem 5.2 The underlying queueing system satisfies:

RD(p Q) = Dr(»lle)
yIn(1—-py) + @A —=NIn(1-p,)), n=20

(Y 1)

B pp(1+B4)(1-pp) pp(1+Bp)(2+pq(Bq—1)) n(y-1) (5.5)
| (P )] i [T )<pq(z+p,,<ﬁ,,_1))(1+,;q))] ;>0

Proof

RD(p,q) = D) (pllg) = (y oin (((p(O)) (q(O)) )= (y ~in ((1- pp)y(l—pq)l_y) 56)

It could be easily checked that D} (p|lq) of (5.6) that:

DX (pllg) =

e 1) (rin(1- pp) +1-pin(1- pq)) as required.

It could be verified that for n > 0,
_ p _\ -1
RDG,q) = in (UG 1 (Zn AR p(n)> (i, (55))

(1=pq)(1+8p) Pq(2+pp(Bp=1)(1+Aq)

We are done.

As y -1,

1

LimD} (pllq) = =
Y*l( o(pm) (a(m)"™"

(Z[V(p(n)) @)+ @ -nam) 7 (pm) >

1
= lim -
=1 (Z26(pm)! (am) ")

Yn=o(1) = o0

doi:10.20944/preprints202401.2124.v1
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Data RENYI DIVERGENCE,RD
CASE ONE

DUAL IMPACT OF ITP AND SUCR> OM (—RD> ITP= SU(g»=0.5.n= ©

-
- 2.535S 076D

0

0.5,h

—+ S-43SSOTFEAED

ig)=

L
T
~l

- FASSOTEDED

(-R0), ITP

+ £ .2ZASSOTEAED

+ s-19ss0Feac2

-+ 4. 03SSOTFEAED

-+ 2.335SO0FEAED

-+ 1.S95SO0FEAER

.

iTool s ..SubhashBose comAgrapher

Figure 17.

It is shown by Figure 17,RD  is drastically decreasing until SU(p) is greater than 1, RD becomes
imaginary number, i.e., the instability of M/G/1 QM occurs , RD becomes imaginary!!!
It is observed that for n = 0,y — 1(shannonian phase), D} (p|lq) = In (%)
~Pa
CASE TWO

DUAL IMPACT OF ITFP AMD SU{(p» ONM RD-ITP=1.SU{q)=0.9.-n = ©

- D.ZSZS 0BT [0 0t

4 —0.S171393191

=4
Lk

R

4+ -1.917193191

4 —S.017133191

LCSHANONNTAND 3Gy

I

T

|
+

-117183191

RO, ITP

4 -5.217193191

4+ —e.317193191

4 —F 417133191

iTool=s . .SubhashBose (comsSrapher
Figure 18.

Following Figure 18, The decreasability of RD is clear because of the dual impact of Su(p) and
ITP on RD.

CASETWO,RD, n =2
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SULp) ws RD.ITP = SU{qgq) = 0.5, .5CVW{q) = 3.SCV¥i{p) = 2.n =2
F

o

n

=

P S-E-E TR T-T

n

=

=} s.9559es16e

2]

=

n

= 1 S.695906 166

=

=

facy

2]

i s 4ssessiss

=

n

=

- + 5-1759cE 166

n

=

=

= - 4915985168

&=

WITFLT I T I TS i I TES TS0 WIEL v
+ + + ! g
SUCRD
iTools=s ..SubhashBose .comAgrapher

Figure 19.

As observed from figure 19, that RD increases rapidly by the increase of p,. It is expected that
RD approaches infinity asp,, approaches unity(i.e, M/G/1 QM is unstable at p). To show this, we can
take the limit of (5.9) as p, approaches unity. This directly implies that:
DR3(pllpgy =05, By =3) = In0+3in(3) — 2In (p(1)(1 — p(1)), or

The devised corresponding absolute limiting value of RD is
IDR3(pl1pg = 0.5, By =3)| = | In0+ 3In(3) — 2In (p(1)(1 —p(1))| = o

5.3. sAB divergence, D;’_}’B(pl lg) of Stable M/G/1 QM

Before going into details, we need to prove the following important lemma as it is needed in the
proofs.

Lemma 5.3 p(n) of (3.2) rewrites to

1—p, n=20
p(M) = J2p(1-p) (P2A+A\" o 2(5.10)
) (—(1_p)L) , n> 0, withf = C¢
1+pCZ
where L =§(1 +:_Lp) p=1-p(0) and = C? .

Proof For n = 0, it is immediate by (3.2)
1+ppB 2(1-p)L
As forn > 0By the MQL formula, we have L = g(l + :_—’;). Hence, (2+p(B—-1)) = %.

This implies :
n-1 n-1 n-1
(1) (B () apa-p) (p2(1+ﬁ))” 5.11)
(2284)" ((—(2+p(l?—1))-)n 2=\ (1+p) \ (1-p)L '
= 1-p (—%

By (5.11) and (3.2), the proof follows.
Theorem 5.4 sAB,_, divergence vanishes,
D!y (pl1g)=0 (5.12)
Proof For n = 0,p(n) = 1-p,,q(n) = 1— p,. hence, it follows by (2.10) that :

D3 (@lla) = 0 (c£,(5.12))

Theorem 5.5 For n # 0,sAB divergence is determined by
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DMY.(pllq)=
( ) ) s,AB(p ( q) ) ) . (5‘13
o p;z,(l+ﬁp))n Y+1m) \n(n+y) w (pé(HBq))n v+ V(7I+Y)( - (p,z,(1+ﬁp))ny (pé(HBq))m])_ﬁ )
In [(Zn=1 ((1-pp)Lp Zn=1 (1-pq)Lq Zn=1 (1=pp)ip)  \(1-pg)Lq ]
for (y,n)eR? suchthat y #0,n #0and y+n %0
Proof We have
— 2pp(1-pp) (P%}(l"‘ﬁp))n - 2pq(1-pq) (Ptzq(l"'ﬁq))n
p(n) a+Bp) \(1-pp)Lp/ ’ q(n) B \(1-pg)Lq (c.f. (5.11) of Lemma 5.3)
Following (2.10),
y+7 2 n\Y+n
V2] _ 1 o [2Pp(1=pp) (p5(1+ﬁp))n) 1 0 (ZPq(l—pq) (pq(1+ﬁq)) ) .
Ds,AB(qu) [17(77+y) In (En:l( a+8p) \(1-pp)Lp +y(n+y) n { Zn= 1+Bg) \(1-pq)iq
L[ (220G=r0) (p%(1+ﬁp))”>y (wq(l—pq) (pé(uﬁq))")"
vt (Zn=1( (1) \C-pp)lp () \G-poia) ) IO
It could be checked that RHS of (5.14) reduces after some lengthy computation to
D;TZ’B(PHQ) =
(c.f.(5.13))

(1-pp)Lp (1-pq)Lq (1-pp)Lp (1-pq)Lq

_t _t 1
o P2(1+ﬁ ) n(y+mn) nm+y) o P2(1+ﬁ ) n(y+mn) y(n+y) o p2(1+ﬁl ) ny P2(1+,3 ) nn _ﬁ
ln[(z( 2) S, (HC2) (S (2L82Y (1)) )

Numerical experiment for D} (p||q)

Data one:
Following (5.13), it can be verified after some manipulation, that for p, = 0.5,8, = f, = 2,n =
2 DITP = (y,m=(1,1),

6Pp 2, OPp 4
(2+Pp) +(m)

12, 124
1,1 _ (F)+(5)
Ds,AB(pHQ)_ ln[ 72pp ( 72pp )2/
5(2+pp) 5(2+pp)
SULR) ws GABD. . SULq»—0.5,. SCW{p)=SCW{ald==2, DITPFP —=¢C1.13.n =2

n:zi

J =-a=cocazse

+ 7-ozcosazse

4 7-zecocazse

+ e-sososazse

+ e-z4cocazse

GRBD, SUGg) = 0.5, 5CWCo=SCV=2,0TR = (L,1),

J =s-c=cocazse

J =-1zc0cazse

n.ss 0. o.es o.F 0.Fs o.s 0.=s w.@ a.as

iTools . SubhashBose . com sSrapher

Figure 20.

The increasability of the GENERALIZED ALPHA BETA DIVERGENCE(GABD) as SU(p)
increases is obvious from figure 20.

DATA TWO

After some lengthy computation, it could be verified that for the non-extensive information
theoretic dual, DITP= (y,n) = (0.5,0.5),n =2
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3(2%:1(;?1))1[)

n 4
zppu_pp)(za:l(;ﬂ;p)f)
As p, — 1(instabilty phase of M/G/1QM, ngs'o's) PNpgeos Bgmss) = ©

In

05" (@llo),,

q=0.58q=3,8p=2)

6. Investigations of the Developability of the Stable M/G/1 QM ,RICCI CURVATURE (RCT)
tENSOR and QT-IG Unifiers

6.1. Investigation of Developability of M/G/1 QM and Finding Its Ricci Curvature Tensor (RCT)

Theorem 6.1 The stable M/G/1 QM

i) Has a zero 0-Gaussian curvature, for which the stable M/G/1 QM would be developable.

ii) Has a non-zero Ricci Tensor

iii) Is non-developable minimal surface under Monge Technique, with a zero Mean Curvature

iv) Is developable under Angular Technique if and only if M/G/1 QM unstable

v) If the underlying QM is unstable, then the Mean Curvature is negative under Angular Technique.
The converse statement is not always true.

vi) The first principal curvature, K; under the Angular Technique satisfies the inequality

K, <1 6.1)
vii) The second principal curvature, K,isf — dependentand is negative under the Angular
Technique.

viiii) Under the Angular Technique, the second principal curvature, K, tends to zero as f — oo.
Proof

For i), we must prove :

(a)
(@ — _Riziz _
K@ = 2ot 0 (6.2)

It could be verified that, Rg)lz = 0(6.3)

1
det(gij) = T BrD2ap) #0 . Hence,

(@)
K@ = %= 0, which proves that the underlying QM is developable subject to a —
ij

Gaussian curvature.
ii) We must prove that:

@ _ p@
Rik = R

img’t is non-zero.

We have
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R0 + R0 + R, 9% + RS ,9%

Engaging the same procedure as in (6.2), we have

@ _ pl@ _ p@ _ @_ __1za  pO) _ __1
R =Ry =R} =0(63). R,y = — o Ra = — 565

Hence, Ré‘;) # 0 (6.6). The corresponding Ricci Curvature Tensor is given by

1
(RCT) = (0 (- P)2>
0 0

As p -1, Rg? — —oo, The highlights the significant influence of instability in a specific type
of the underlying QM, by providing supporting evidence on how RCT is significantly impacted by
the stability analysis of the system. The also shows that p, represented by Rgg) ,affects the behavior
of RCT, and Figure 21 demonstrates that the stability phase of the M/G/1 QM causes RCT to decrease
as p increases.

THE IMPaCT OF SThRBEILITY OF MAGA1 C0M> O RCT

EXPIRICET CLRVATLRE TENSIOR), RCT

S10400000 0150

<4 o.oFsooonoooissa

<4 o.oszooonoooizse

4 o.oezco00a00lEsa

1.3214 02754214 02FEA .52 14 02 TS . G214 02FEE. T2 14 02 FEE 14 027SA . A2 14 0TSSR, 0214 02 FES - 1214 02 FES

EXP¢SERVER UTILIZATIONY
iTools . .SubhashBose . comsSapher

Figure 21.

whereas in Figure 22, RCT increasability in p is caused by the underlying QM'’s instability.

THE IMFPFACT OF STRBILITY OF MAGA10GM> OM RCT

[y
4

L
T
|
-
%]
+

RICCT CURVATLRE TENSOR, RCT
Lol
.

1.75 = z=.z=% z=.= =.7% = 1) .5 .75 N

L
SERWER UTILIZATIORN
iTools -SubhashBose comsSrapher

Figure 22.

iii) Following (3.14) and (3.15), it is clear that

1 1 1

1
Thus, we haVeal = EOZ = m 011 = m, 6162 = 0261 = 0, 622 = _W (315)
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The Gaussian Curvature
_ LN-M
K; r— (c.f.,(2.23))
E= (a)Z—( ! )2 F=0,0,=06= (3,) = —
AN A N (S
L=0d{ = ! M=0,=0N=0,,= !
11_(1_p)21 - 12 — Y - 22 — (ﬁ+1)2
And the Mean Curvature is
1 (LG-2MF+NE
Therefore, it is obtained that
1 1
A ZIZ__A;: = — QopPC0® _ g ;5 % 1(the underlying QM is stable), B # —1 (6.7)

a=-p)2(B+1)?
(B = CZisnever negative by default)
Since Kz=—1, it follows by the non- developability of the underlying QM  and its minimal
surface under Monge Technique.
The Mean Curvature is

l( 1 1 1 1 )

1 (LG-2MF+NE —p)2 2 —0)2 2

H = _( ! ) _ 2.(a-p (B+11) (11 P2EVE (6.8)
2 EG-F

(1-p)2(p+1)2
Hence, iii) is done.
iv) Following the Angular Technique, it can be verified that the calculations of the principal

curvatures K; andK, are determined by

1- -+

K= —0D) g, o O 69)

(1+((1-p))?)2 A+((1+B)?)2

—(1- 1+
K = KK, =——2 G (6.10)
(1+((1-p))H)2 A1+((1+B)?)2

and

1 1 (1-p) (1+8)
H =10k +K) = X - ) 6.11)

2

3
(1+(a-p)?)?  AFA+F)2

The axial rotator angle CO reads as

— —2(0102) _
tan2CO = G o) 0 (6.12)

This implies, CO = 0, 2, 4, ....
It appears from (6.10), that K; = 0 (equivalently, the underlying QM is developable) if and

only if
(1_P) 5 (1+B) 5 — 0 (613)
A+((1-p)?)Z A+((1+B)?)2
This implies that:
either (1 —p) = 0 (equivalently, p=1) or (1+£)=0 (6.14)
The second possibility ((1 + ) = 0) generates a contradiction as f is never negative.
Moreover,
limp_ooKs = —C2 limg_,, — B (6.15)

1+((1-p)*)2 (1+((1+B)2)%
Linking the findings of (6.13) and (6.15) completes the proof of iv).
As for v), it has been obtained that
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H = %(Kl +K,) = %( a-p) 5 - a+p) 5) (6.11)
(1+(a-p)?)F  AHAR?
This directly implies
H<l__0-p (6.16)

2 N

(1+(a-p)%)

It is clear that 1+ ((1— p))2 > 0 holds for all the possible values of p. Consequently, if
(1-p)=0 or p=1 (equivalently, the underlying QM is unstable), it follows that H < 0
To prove the necessity condition, assume that H < 0. This generates two possibilities:

1-p) 3 <0. This implies p > 1. Hence, M/G/1 QM is unstable.
(1+(a-p)*)?
(1-p)

The first possibility,

The second possibility, 3 > 0. This implies p < 1. Hence, M/G/1 QM is stable.

(1+(a-p)*)?
This justifies that the converse statement is not always true. The proof of v) is complete.
To show vi), we have
K = —E2 (£, (6.9)
1+(1-p)*)2
Since the underlying M/G/1 QM is assumed to be stable. Hence, p € (0,1). Thus, we have

3 3
1>1—-p)*>00r2>(1—-p)2+1>1. Therefore, 22> (1+ ((1 - p))?)z > 1. Consequently,

A <— 1 <1 Thisimplies &2 <P _<c1-p <1 (6.17)
22 A+(-p)D)? 22 (+-p)D?
By (6.17), it holds that K; < 1.
~(+B)

vii) we have by (6.9), K, = 3 ,which is of course a f — dependent functionThe stability of

1+((1+p)H2
M/G/1 QMenforces the condition f > 1to hold. The negativity of K,is clear.

viii) Immediate from (6.15).

6.2. Revealing Novel QT-IG Unifiers and Discovering Their Algebraic Structures

Throughout this section, the following novel unifiers between both queueueing theoretic and
information geometric structures of the stable M/G/ 1 QM are established by the following two

unifiers,
1_
0:1(p) = Ky = —2 (6.18)
(1+((1-p))?)2
0(B) = K, = — P (6.19)
A+((1+B))?)2

Theorem 6.2.For the above devised unifiers (c.f., (6.18) and (6.19)), it holds that

i) ¢, is a well-defined function

lies in the interval (0,1), p €(0,1)
i), = 0, p =1 (6.20)
<0, p>1

iii)¢p; is one-to —one.
iv)g, is onto
V)@4is bijection, with animaginary inverse ¢;'determined by

(3+L) 1
Y (6.21)

z

pr' (P =1F(z-D+
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3 1 L1 1 1.
wherez = \]—mil\]ﬁ+ 1+m+ﬁ,l =+-1
vi) @, is a well-defined function
52
2
vil)p, = 3 B =1 (6.22)
2
> -5, p>1
52
viii)¢g, isone-to —one
X)¢@, is onto
xi)@,is Dbijection, with an imaginary inverse ¢3(i.e., a complex number)determined by
1 _ (3+ﬁ) 1
oz (B =-1F+(z-D+——) (6.23)
3 1 ! 1 1.
where z = \]—$il\/@+ 1 +ﬁ+T36’l =+v-1
xii) The underlying QM has inverse of p unifier, namely, ¢;* satisfies
(a+(%6
11—’ <5+ —3+= (6.24)
xiii) The underlying of inverse of f unifier, namely, ¢;* satisfies
1
= 2
1-p7' B < @+ (5) +—=+-25) (6:25)

(=) )
xiv)The increasabilty and decreasability of ¢; in pare undecidable.
XV)@,is forever increasing infand is never decreasing in f§
To prove i), it is enough to show that for all p,,p, € (0,1) such that ¢;(p;) = ¢1(p,), then

piandp, should never be distinct.
Let ¢1(p1) = ¢1(p,). After some lengthy mathematical steps, (6.26) reduces to

(p1 = p2)(p1 + p2 = D[((A = p)?(A = p)* (1= p)? + (1 —p2)? = 2))] = 0 (6.28)
Equation (6.28) generates three possible cases:

Case 1:p; — p, = 0.Hencep, = p, (contradiction to p; # p,) (6.29)
Case 2:p, + p, — 2 = 0.Hencep, + p, =2 (contradiction, since M/G/1 is a stable QM,p4, p, € (0,1))
(6.30)

Case 3:[((1 — p)?(1 — p)* (1 = p)? + (1 —p2)? = 2))] = 0 (6.31)
Byp1, p; € (0,1), following mathematical analysis it holds that

Therefore, [((1—p1)2(1—p2)2((1 —p1)?+ (1 —py)? —2))] <0, which contradicts (6.29).

Based on the above analysis and by (6.29), i) follows.
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https://doi.org/10.20944/preprints202401.2124.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2024

(1-p)
1+((1-p))?)2

ii) we have by (6.18), ¢@,(p) = K; =

2>1+((1-p))*>0. Hence, s € (0,%) . Therefore, 0 < @,(p) =

1+((1-p))?)2
1 (6.33)

The case ¢,(1) =0 is clear. Also,
the proof of ii).

(1-p)
A+((1-p)?)2

doi:10.20944/preprints202401.2124.v1
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5. Since p € (0,1), it could be verified that

1
s<-<

N

for p > 1,it is immediate that ¢;(p) < 0. This completes

iii) It suffices to show that for all p,, p, € (0,1) suchthat ¢,(p,) = ¢,(p,), then p; = p, holds. The

proof is clearly immediate from (6.29).

— 870 Every

(1+(@-pn?2

(1-p)
1+((1-p))?)2

iv) From the definition, ¢,(p) =

proves the surjectivity of ¢;. Hence, iv) follows.

5 is characterized by p. This clearly

v) Clearly, ¢, is a bijection. To calculate the inverse of ¢,,namelyp;*. Define ¢,(p) = y. Hence,

a+(-p)?3 _
2

" (1—-p)2. Let w=(1-p)% Then, we have the cubic equation:

W3+3W2+(3—3%)w+1=0 (6.34)
Following the method for solving cubic equations (c.f., definition 2.14), we have
a'=1,b"=3,c" = (3—yi2),d*=1 (6.35)
The solution of (6.34) is characterized arbitrarily by
w=r—-1 (6.36)
€3
y=z-—, (6.37)
7= 3/(—82—1)i\/£_, (6.38)
_ 1
&= 5 (6.39)
The discriminant of the cubic equation
1 (&5)° (6.40)
25 2T 7 '
g5 is givenby g5 = —3 — yiz(6.41)
After some lengthy calculations, it can be verified that
_ (3+52),1
p=1F(z-D+—)2 = 7' (V) (6.42)
_ 3 1 1 1 1 _
where Z_\/_ﬁil\/1zy4+1+ﬁ+ﬁ' =
V-1
By (6.20), we have
- G+ 1
1F(E-D+—)2 =91 (6.43)

z
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3 1 .
where Z_\]_ﬁi J124+1+—+27 s i=v-1

This completes the proof.
To prove vi), it is enough to show that for all 4,8, € (1,) such that ¢,(8;) = ¢,(B,), then
Biandf, should never be distinct.

Let ¢,(B;) = ¢,(B,). Then i, 3= i) 3, such that B,8, € (1,0),B; # B,. This
A+(@+B)H2  A+((1+B2)%)2
implies
Hence,
(B2 = B (Br+B2 + 2)[(1 + B)* (1 + B)* (1 + B1)* + (1+B2)* +2))] = 0 (6.46)
Equation (6.46) generates three possible cases:
Case 1: B, — B = 0.Hencep; = p, (contradiction to B # B )
(6.47)

Case 2: B,+f, + 2 = 0.Hencef;+B, = —2 (contradiction, since M/G/1 is a stable QM,;, 8, € (1, ))
(6.48)

Case 3: [+ B2+ B)*((L+ )+ (1+B)* +2)] =
0 (6.49)

BypBi, B, € (1, ), following mathematical analysis,

[(1+B)*(A+B)*((L+ B2+ (1 + B2)?+2))] > 96, which directly implies by (6.47)

0 > 96 (contradiction) (6.51)

Based on the above analysis, vi) follows.

vii) It suffices to show that for all 8,8, € (1,0) such that ¢,(B8;) = ¢,(B,), then B; = f,
holds. The proof is clearly immediate from (6.47).
viii) Since M/G/1 QM is stable, the condition § > 1 and a similar proof to that in ii), viii) follows.

The proof of x) is analogous to iii).

1

xi) Wehave ¢7i'(p)=1F|(=z-1)+ @sz) ,for p € (0,1), (c.f,, (6.21)).

Hence,
(s iz) (3+2)
- @I =|E-D+—F <zl +1+ I‘I’ (6.52)
By (6.43),
I FPRL I
2= T gpr T [12p0 2p2 " 2705
This implies
6 _ 1 1 1 1 1 1\ _ 101 (%)g (101 3

|z| (—+ +1+ +ﬁ)<(m+ﬁ+ﬁ+$+ﬁ)—?ﬁ,orlzl< p (6.53)

Moreover, by the above step, it is clear that
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6 — (L, 1 BT i i impli i 1
|z]° = (4p4 + 2 +1+ 27 + 27p6) > 1,which directly implies |z| > 1(equivaently, o <1) (6.54)
Thus, it is obtained that

1011 =

101
1 2 < 54 1 (1+(
1=t @)P < Tt 24 (34 ) =5+ — A

pz
This completes the proof.
xii) The stability of the underlying QM implies f > 1. We have

071 (B) = —1F (2= 1) + BN (cf, (6.29))

Hence,

11+ @z (B)° = |(z - 1)+(+ )<|z|+1+( ’f_> (6.55)

101

Hence, z=3\/—$ii\/ L1+ —4—,i=+v=1 (cf, (6.23)). So, |z|<(—)e (6.56).

i =
1284 282 ' 2786’

Also, it can be verified that Iil £ 1 (6.57). Consequently, xiii) will follows.

=)

54

. g1 (2(1-p)*-1) a<P1 2 1

xiv) we have 5 . 3 . Hence, > 0(< 0) ifand onlyif (1—p)* >= (< ) By (PT) 2.15, ¢4
(+(1-p)2)2

is increasing(decreasing) in p if and only if (1 —p)? > %(< %). According to stability of M/G/1 QM,

p € (0,1). Hence, it follows that (1 — p)? € (0,1).Consequently, xiv) follows:

—(1
02(B) = Ky = — B (6.19)
1+(1+B)3?)2

2 - 2401 Hence, 22> 0(< 0) if and only if (1+4)? >3(<2). By (PT) 215,

1+1+p)»)2

xv) We have

¢, is increasing(decreasing) in p if and only if (1+ B)? > %(< %). According to stability of M/G/1
QM, f € (1, ). Consequently, xv) follows.

7. eFIMM/G/1) & Tmpact of Stability of M/G/1 QM on the Stability of Fim

7.1. Exponential Matrix of FIM

FIM(M/G/1)

Theorem 7.1 e solves % = Ax.

Proof

It is shown that [gij] of Theorem (3.1) is:

1

—— 0
(1-p)?
[9:i]= 0 ? -1 (7.1)
(B+1)2

We write

l9:] = ((? 2)"1:((1—1;))2)'1’ (311)2‘72)

Thus,
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a—=§6 0\ _
0 b— 5) =0
Therefore,

62— (a+b)s+ab=0,s0 6, =a,b.

®(8) = det (

Hence,

oot 8 o

For 61,2 = a,b
-1 _(1 0
Hence, T=T"" = (0 1) (7.4)

Thus, eF™MM/G/1) reads as:

FIM(M/G/1) _ popp-1_ (€% 0
e TePT (0 eb) (7.5)

This proves that IME of the underlying QM solves:

d
—=Ax (7.6)

7.2. Impact of Stability of M/G/1 QM on the stability of FIM

Theorem 7.2 The stability of FIM of the underlying QM holds < the underlying QM is unstable.
Proof Following theorem 2.16, it suffices to show that:

FIM'’s eigen values of FIM of the underlying QM are negative real numbers < the instability of the

underlying QM is satisfied.

It holds by (7.4) of theorem 7.1 that the eigen values of FIM are §,, = a,b, ,a = ( (1_1p)2) ,b =

(31_1)2' clearly, b = (ﬁ:r—lnz < 0. Therefore, the proof would be immediate if we proved that

a= ((1_1p)2) < 0 & the instability of the underlying QM is satisfied (7.6)

1
(1-p)?
) <0 follws. This implies ﬁ =im,i = \/E—

We first prove the necessity condition, a = ( ) <0 = M/G/1 QM is unstable. Assume

that FIM is stable , then a= ((1_1p)2

1), m is any real number. Hence, (1 —p) = —im. Consequently, p =1+ im,|p|= v1+m2>1. In
other words, M/G/1 QM is unstable.

To prove sufficiency, let M/G/1 QM be unstable. Then, p > 1. This directly implies , |p| > 1. This

rewrite p to be of the form p = 1+ im,misany real number. Clearly, this implies , (1 —p) =

—im, or L —im Thus, it holds that a = (

- iz < 0, which proves that FIM is stable.
1-p) m

1 —
(1—p)2) B
7.3. Revealing Queue-Fisher Information Matrix Unifiers, (QFIMU)

Throughout this section, we introduce QFIMU, to be devised by the function:

1

0 p
108 Aol (%) (7 1)) - (—u:;;z) -
0 (B+1)? (B+1)?

where p=1- p(0)and B = C2.
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Theorem 7.3 The functionn (c.f., (7.7)) satisfies the following;:
i)n is ell defined.
ii) n is One-to-One.
iii)n is surjective.
iv)n has a unique inverse, n~! determined which is characterized by
“1(p) — ez
@ - (1+5)| <% (7.8)
and
_1 1)\|?
[ +(1+ 2B)| <2 (7.9)
Proof
To prove i), it suffices to show that for all (p;, 81), (p2, ) such that p; # p, and B; # B, and
n(py, B1) = n(p2, B2) (7.10)
By (7.10), we have
P1 _ P2
(1-p)? (1—Pz)2(7'11)
and

B1 B2
—— = —=(71
(1+B1)? (1+ﬁ2)2( 2)

By (7.11), one gets:
(p1 = p2)(1 + p1p2) =0 (7.13)

(7.13) implies either p; = p, or p, = ;—1 (contradiction, since for example if p; = 2 implies thatp, =
1

—0.5 ¢ (0,1),1.e., enforcing instability of the underlyin stableM/G/1 QM). Therefore, the p branch of
the QIFMU is well-defined.

Following (7.12), we have
By —B)A—B1B2) =0 (7.14)

(7.14) implies either f§; = B, or f, = Bi (contradiction, since for example if ; = 2 implies thatfs, =
1

0.5 € (1, ), 1.e., enforcing instability of the underlyin stableM/G/1 QM). Therefore, the f branch of

the QIFMU is well-defined. This completes the proof of i).
As for ii), it suffices to show that all (pq,8;), (p2, B2) such that:

n(p1, B1) = n(pz, Bz)implies(py, B1) = (p2, f2)(7.15)
Clearly, by (7.13) and (7.14), (7.15) is satisfied. Hence, ii) follows.
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-B

p
Clearly, by (7.7), both of Gz nd %

are uniquely characterized by pand 8 respectively.

Thus, iii) holds.

iv) To compute 1!, assume that thee exists x,y such that

1

0 p
1-p)2 a2
s {57 L )(5)= (“_?2) = (%) (7.16)
0 (B+1)2 (B+1)?
Therefore,
# =x (7.17)
And
i (7.18)
Following (7.15), one gets
(2+)—lc)i%\/(1+4x2)
p=——"— (7.19)
Using (7.16) and following a similar argument as in (7.17), we have
—(2+3)+2V(1+4y?)
p=—>22L—(7.20)

2

Based on (7.19) and (7.20), it is determined for both p and branches ofn~' would
respectively satisfy that

- 1 1+4p2 1 1 1 2 .
U ORICEESIE %: 145 <5+ =% (since p € (01)) (cf,
(7.8)
Following similar argument, it could be shown that
- 1 1+4B2 1 .
B+ A+ = ¢ Zﬁf ) =1 +iE<1+1 =2 (since B € (1,0)) (cf,
(7.9)

This completes the proof of our theorem.

8. RICCI SCALAR,

R,CURVATURE OF SPACE TIME(EINESTEIN TENSOR)#, STRESS ENERGY TENSOR, @, THE
CORRESPONDING THRESHOLD THEOREMS FOR THE UNDERLYING CURVATURES
AND THE DUAL QUEUEING IMPACT ON THE EXISTENCE OF THE INVERSE FISHER
INFORMATION MATRIX (IFIM)

Theorem 8.1 The underlying QM satisfies:

i)The Ricci scalar subject to Angular Technique, R,ris determined by

2(p-1)(1+
Ry = CRNCRT/ N 8.1)
(1+(1-p))2(1+(1+£)2)2

where p=1- p(0)and CZ define server utilization and Squared coefficient of variations respectively.

ii) Ryr = 0 ifand only if p =1
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iif) R4y — 0 ifand only if f — o
for all p # 1(equivalently, whether the undelying QM is either stable or unstable)
iv) M/G/1 QM is unstable <
There exists a small enough positive number €, with € - 0 such thatAcy,yeq(€), Afiqe(€) (cf, (2.45))
must satisfy:
Acurvea(€) = Agiar(€) (8.2)

v)The Spacetime curvature(Einestein Tensor) subject to Angular Technique, §,r is determined by

_ (G11 Gy
Par = (Gz1 Gzz)(&?’)

where the components Gi4, G1, G, andG,, are determined by

1+
Gy = () s (84)
(1-p) (14 (1-p))2(1+(14B)?)2
Gp=0 (8.5)
_ @
2T (a-p)?
(8.6)

where  a is the curvature parameter (c.f., definition (2.8))

-1
Gyp = @D ; (8.7)
1+B)(1+(1-p)2)2(1+(1+B)?)2

vi)The stress-energy tensor @ is devised by

o= (5 22) o9

where the components @;4, @,, @,; andw,, are determined by

4G
Wy, = C8n;1(8'9)
W1y =
0 (8.10)
4G
@y = ”87;1 (8.11)
4G
Wy, = CBH;Z (8.12)

where g is the universal gravitational constant, c is the speed of light
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Vii)RAT =
increasing in p, p=1+ % (instability phase)
: o m . (8.13)
increasing in p, p=1- NG (stability phase)
provided that m > 1
decreasing in p, p=1+ % (instability phase)
8.14
decreasing in p, p=1- % (instability phase) (8.14)
provided that 1 >m >0
X)Rar =
{decreasing in g, the underlying QM is stable 815
increasing in 3, the underlying QM is unstable (8.15)
xi)Gy; =
{increasing inp, theunderlying QM is stable or unstable,p # 1 316
deccreasing in 3, the underlying QM is stable (8.16)

Xii)G, is forever decreasing in a (curvature parameter) whether M/G/1 QM is stable or unstable. If
p = 1, the decreasability of G,; in a is undecidable.
xiii)G,, is forever increasing(decreasing) in p if M/G/1 QM is stable, a < 1(a > 1).

Xv)G,, is forever decreasing in p  if the either one of the following branches hold:

{ p € (0,1), the underlying QM is stable, a > 1 (8.17)

p>1, the underlying QM is unstable, a < 1
xvi) G, is forever increasing in p.
xvii) G, is forever increasing(decreasing) in f ifand onlyif p < 1(p > 1). If p =1, the decision
is undecidable.
Proof

i)Immediate by (6.9) and (2.44).

ii)By i), Rur = 2(p_1§)(1+ﬁ) 3. Hence, R,y — 0 if and only if (p —1)(1 + ) — 0. Since, § >
1+(1-p))2(1+(1+5)?)2

1, the required result follows.
iii)Since M/G/1 is a stable QM, p€(0,1) holds. This implies for all p#1

(equivalently, whether the undelying QM is either stable or unstable)
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. . 2(p-1) , (1+B) P
Rur — 0 if and only if ———limg,————5=0. By (1+ (1+p)*)z> (1+p), the proof
1+(1-p)?)2 (1+(1+8)%)2

follows.

iv)M/G/1 QM is unstable if and only if p = 1 , or equivalently R,y = 0. This holds if and only if

. 6 ACHTVE
Ryr = lime o 31 —ﬁ]z 0 (c.£.(2.45))

Acurved(€)

12 0.This completes the proof.
Aflac(€)

This is equivalent to [1 —

By (2.46), G = R{P-FAL g, =227 i j =12 Hence, it follows that
G1 = Rg?)'ﬁ%gn = Sni# (8.18)
Gip = RS) R;T 912 = Snifu (8.19)
Gy = RE? R/;T 911 = Bnifu (8.20)
Gaz = Rgg) R;T 922 = Snifzz (8.21)

Using (3.3) of Theorem 3.1, (6.50 of theorem (6.1) , (8.1) together with (8.18), (8.19), (8.20) and
(8.21), the proof of v) and vi) will follow.

vii)It could be verified that:

R 2(1-2(1-p)®)(1+B)
BZT = 5 3 (8.22)
1+(1-p)2)2(1+(1+5)?)2
Therefore,

o < 0(> 0) if and only if (1 —2(1—p)?) < 0(> 0)(8.23)

if (1-2(1-p)*) >0 is satisfied & Im e (1,0) satisfying (1 —p)? = m72, which 1—p = i%
orp=1+ % Following the preliminary theorem (PT) 2.15, this implies R,y is increasing in p if
and only if p=1+ % Foror p=1+ %, this enforces or p > 1, which violates the underlying
QM’s stability, or p=1— %, this enforces p < 1, which guarantees the stability of M/G/1 QM.

On the other hand, if (1 —2(1 — p)?) < 0, it holds by (PT) 2.15, that R, is decreasing in p if and
only ifthere exists m € (0,1) satisfying (1 —p)? = mTZ, which 1—-p = iﬂz. Foror p=1+ %, this

enforces or p > 1, which indicates the underlying QM’s instability. Moreover, or p =1 — %, this

enforces p > 1 — %, which violates the stability of M/G/1 QM.

Following the above analytic results, vii) and viii) are immediate.

x)It could be shown that

aR 22(1+B)*-1)(1-p)
25 = o (8.24)
(1+(1-p))2(1+(1+B)?)2
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Undertaking similar mathematical mechanism as in vii) and viii), the proof follows.
xi) After some mathematical manipulation, we have
—p)2 -
0G1 — 2@A-p)*+1)(A-p)(1+B) (825)

ap 5 3
(1-p)2(1+(1-p)3)2(1+(145)?)2

611

(8.25) provides an evidence that > 0 forall p # 1. Applying (PT) 2.15, shows that G, is forever
increasing in p. This is applicable for stable and unstable M/G/1 QM, with p # 1(since p =

1, violates the continuity requirement of 2 ) Furthermore, it could be proved that Gi; is

increasing in p when the underlying QM is in the stability phase.

Moreover,

3G A-2(1+8))H(A-p)(1+B)
o5 = > < (8.26)
(1-p)(A+(1-p))Z(1+(1+B)?)2

Clearly from (8 26) and (PT) 2.16, ; it follows that G, is never increasing in ﬁ (since p =

1mphes:
1-21+p*»>0 (8.27)

This is equivalent to (1 + $)?%) <% (contradiction, since stability of M/G/1 QM enforces the
requirements p € (0,1) and B € (1,)). This suggests that the only left possibility is that G, is
forever increasingin B, or equivalently by (PT) 2.15, to(1 + B)?) > %, a satisfied condition by stable
M/G/1 QM.

xii) % = (1:;)2 , implies by (PF) 2.15 that G, is forever decreasing in « whether M/G/1 QM is

stable or unstable. If p =1, the decreasability of G,; in a is undecidable, since this means

9Ga,
oa

Furthermore, % = ?1(1;‘;3) Consequently, 921 > 0 if and only if M/G/1 QM is stable, a < 1,,
6(}21

< 0 if and only if M/G/1 QM is stable, a > 1 By (PT) 2.15, it follows that G, is forever

1ncreasmg(decrea51ng) in p if M/G/1 QM is stable, @ < 1(a > 1). This proves xiii).
Engaging the same technique proves xv).
We have
G2z _ (4(1-p)?+1) 3 and %622 _ (3(1+B)2+1)(1 -p)

0 (g A(1-p)DIAAR)D2 B (LepAr-p)DIA+R)D2

(8.28)

Engaging our technique, the reader can easily verify that both xvi) and xvii) will hold. The
completes the proof of our theorem.

Theorem 8.2 The underlying QM satisfies:
i)Ricci scalar subject to Monge Technique, Ry is determined by
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ii) There exists a small enough positive number €, with € — 0 such thatA ,,peq (€), Afiq (€) (c.f., (2.45))
must satisfy

Acurvea(€) = (Afiar(€)) (8.30)
iii)The Spacetime curvature(Einstein Tensor) subject to Angular Technique, ,r is determined by:

_ Gll GlZ)
pur = (g 52)63D)

where the components G4, Gi,, G2; andG,, are determined by

_ (1-o

17 2 = 621(8-32)
where  a is the curvature parameter (c.f., definition (2.8))
Gip =
0 (8.33)
_ 1
622 - m (8.34)
iv) The stress-energy tensor @ is devised by
_ (T11 12
our = (g o) (839
where the components @;4, @,,, @,; andw,, are determined by
‘G
Wy = Csn;1(8'36)
Wiz =
0 (8.37)
4G
Wy = Cgﬂ; (8.38)
4
2= G (839)
where g is the universal gravitational constant, c is the speed of light
G =G = { increasing in p, the underlying QM is stable or unstable 8.40
V) G =G = deccreasing in g, the underlying QM is stable (8.40)

vi) Gi,is forever decreasing in a (curvature parameter) whether M/G/1 QM is stable or unstable. If
p = 1, the decreasability of G,; in a isundecidable.
vii)Gy, is forever increasing(decreasing) in p if M/G/1 QM is stable, a < 1(a > 1).

viii)Gy4 is forever decreasing in p if the either one of the following branches hold:

{ p € (0,1), the underlying QM is stable, a > 1

p>1, the underlying QM is unstable, a < 1 (8:41)
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X) G, is forever increasing in S.

xi) G,,is forever increasing(decreasing) in f if and only if p < 1(p > 1). If p =1, the decision
is undecidable.

Proof

i)By (6.7), we have K; yr=—1. Following (2.44), we have Ryr =2K; yr = —2(c.f., (8.29)).

ii)Since Ryr = —2. Hence,

Rur = limeo (1 —%}: -2 (c.£.(2.45))
This is equivalent to [1 — %}2 —2.This completes the proof.
By (2.46), G;; = Ri(;x)-ﬁ% gij = Snffij ,i,j = 1,2. Hence, it follows that:

R 8
G = RPLg, =T (842)

2 c*

G = R3S g, =207 (843)

2 c*

621 - R(a) Rmt g11 = 8mgwz, (844)

2 c*

(a) RmT __ 8mgwy;
G, = R, S 922 =3

(8.45)

Using (3.3) of Theorem 3.1, (6.50 of theorem (6.1) , (8.29) together with (8.42), (8.43), (8.44) and
(8.45), the proof of iii) and iv) will follow.

The remaining proofs of v), vi), vii), viiii), x) and xi) are omitted since they are provable by
following the same analytic mechanism undertaken in (8.13)-(8.17).

Theorem 8.3 The underlying QM satisfies:

1
)R 47 has a relative minimum at (1 + = \/_, -1+ ﬁ)

ii) Both maxima and minima for all the components of the Spacetime curvature(Einestein Tensor)

subject to Angular Technique, §,r is undecidable.

Proof
—2(1-p)? 2_1y1-
)We have ZEAT - 202 pDCeh - SRar . 2GMD DAY . (of, (822) and (8.24))
P (1+(1-p)2)2(1+(1+B)?)2 A (1+(1-p)2)2(1+(1+4)?)2

respectively. Hence, 224 = 0224T The critical points are (pritican Beritica) = (1 F =, —1 + =)

P Y 7 ap ap p Pcriticats Peritical Nk TR
Moreover, we have
%Ry 6(3-2(1- P) )(1+B) GZRAT 2(1-14(1+8)3)(p-1)  3*Rgr 2(1-2(1-p)*)(1-2(1+B)%)

= = = < < (8.46)

W aepEiaraepdz B araopzaraemnr PP qsaep?pasaep??
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Hence, by (2.47)
D (1 ! 1+ ! )
V2’ V2
_ a2 :RAT _ 1 1. %RaT 1 92 :RAT _ 1 2 _ (32)3
= 1-= ﬁ) 352 1 1+ \/—) [, A-% -1+ f)] - 12~
0 (8.47)
. 82R 1024 1 1. . ..
Since p BZ (1 - T_, -1+ \/_) — — <0, it holds that ( ﬁ'_l + E)IS a relative minima
for R,r. similarly, ( \/_E’ -1- \/—E)IS a relatlve minima for Ry .
_ 2 _ — 2 -
ii) As for G;;, we have A 21-p) +1)(15 P)(1+P) _ ,5511 _ (1-2(1+p) )(2 p)(1+B) - (cf,
P (1-p)2(1+(1-p)2)2(1+(1+4)?)2 A (1-p)(1+(1-p)2)2(1+(1+B)?)2

(8.25) and (8.26)).

oy . 1 1
Hence, the critical point are (pcriticar Beriticar) = (1 -5 0),(1 +5 —2). Clearly, PBcriticar =

0,—2 are never permissible since, M/G/1 is stable. Thus, no conclusion can be drawn for Gy;.

Engaging the same procedure, it could be verified that both maxima and minima for all the remaining
components of the Spacetime curvature(Einstein Tensor) subject to Angular Technique, ,r is
undecidable.

Theorem 8.4 The underlying QM satisfies:

i)Both maxima and minima of R, is undecidable.

ii) Both maxima and minima for all the components of the Spacetime curvature(Einstein Tensor)
subject to Monge Technique, 7 is undecidable.

Proof

DRyr = —2 (cf, (8.29).Hence,‘”;;T

zero. Hence i) follows.

=0= M;% for all p, B. It can be shown that D of (2.47) is

(1—‘1) = G,,. We have

ii)The proof is immediate for G;,, since it is zero(c.f.(8.33)). By (8.32), Gy1 = s

36y _ 20-@) 3Gy _
0 = (py ' da o p)z( =0 if and only if p — o). Hence, both maxima and minima is

undecidable for G4, G,q Finally, G, = alor ﬁ)z ——(cf., (8.34)). 6622 _ (1+25)3' Therefore, ag;z =0 if

and only if f — c. Consequently, it is not possible to decide maxima and minima for G,, .

The following theorem captures the impact of stability(instability) of M/G/1 QM on the
increasability (decreasability) of the only non-zero component of Ricci Curvature Tensor(RCT),
R (c.£.,(6.5)).

Theorem 8.5 The underlying QM satisfies:
)R(O)IS forever increasing in p < the underlying QM is unstable.

ii)Rg(;) forever decreases in p if and only if M/G/1 QM is stable.
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Proof
i)Necessity:

Assume that M/G/1 QM is unstable, then p > 1. We have :—p(Rgg)) = —ﬁ(8.48). By p>1,

% (RS;)) > 0, which directly implies by (PT) 2.15 that Rgg)is forever increasing in p.
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Sufficiency:

2
(1-p)3

Let RSP be forever increasing in p, then by (PT) 2.15, %(RSP) =-

> 0. This implies

(p — 1) > 0. Hence, p > 1. This provesi).

Engaging the same procedure, ii) follows.

The following theorem captures the dual impact between (IG) and Queueing Theory. This dual
impact is influencing the existence of FIM (c.f,(3.3)) upon the behaviour of A .

Theorem 8.6 The underlying QM satisfies:

1)A 4ijis forever increasing(decreasing) in p < the underlying QM is(stable) unstable.

2)A gijjis forever increasing(decreasing) in < the underlying QM is(unstable) stable.

3)The inflection point of A 4if) with respect to f is at p = 1, where A 4if) changes its behaviour
around this threshold p = 1.

Proof

adjlgij] _

1)We have [gV] = .

— 2
((10 2 —(,8(-)I- 1)2)(C.f., (3.5) of Theorem 3.1) . Therefore,

Ay = ~(B+ 1A~ p)? (8.49)

By (8.49), Aijy=0Oifand only if p =0 or B = —1(this is never permissible).

2~ 201 - p)(B + 1)
= 21— p)(B + 1)

(8.50)

Clearly from (8.50), it follows that:
8A[ | . i
% > 0(< 0)if and only if (p < 1)(p > 1)(8.51)

By (PT) 2.15, the proof of 1) follows.

2) We have

94 g1i) 2

T -2(1-p)*(B+1D) (8:52)
9 1941 . .
5 > 0(< 0)if and onlyif (p > 1)(p<1) (8.53)

By (PT) 2.15, the proof of 2) follows.
3)It is straightforward to see that

a%(a [gij](PuB))

= —2(1- p)*(8.54)

a%(a [gij](P.b’))
ap?
DATA A[gij]:A (9] for B =2,p€(0,1)

CASE ONE:

if and only if p = 1, which implies by 1) and 2) that the proof of 3) follows.
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IMPACT OF STABILITY OF MG 1 @M ONM {—det {{(FIM>>»_ SCW = =

=2

(-et ((FIM), ¥

L 4

=u
iTools -SubhashBose consSrapher

Figure 23.

As observed in Figure 23, det(IFIM) is increasing in server utilization if and only if M/G/1 QM is
stable. Also, this proves how the stability of the underlying QM impacts the existence of [g"/].
CASETWO: A iy for B =2,p €[1,)

Figure 24.

As observed in Figure 24, instability of M/G/1 QM is unstable <> A decreases in p.
CASE THREE: A (9] behaviour for 8 in stabilitly phase of M/G/1 QM, p = 0.5
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oM OMC—det {(IFIM>>} _SU = 0.5

iTool=s .SubhashBose ccomsgrapher

Figure 25.

SCW

As seen above in Figure 25, det(IFIM) is forever decreasing in SCV if and only if M/G/1 QM is

stable.

CASE FOUR: A [gY] behaviour for B in instabilitly phase of MG1 QM,p = 2

Figure 26.

C-deb CIFIMDD, SU = 2

IMPACT OF INSTABILITY OF MSsGA1 OM OMN{—det{IFIM}}.SU = 2

-

+ oz

+ ez

+ 3z

1.9 .5 3.7 4.8 5.5 Y

iTools.SubhashBose .comsgrapher

S0

As observed in Figure 26, within the instability phase of M/G/1 QM, g € (0,1), det(IFIM) is

decreasing in f.

CASE FIVE:
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Figure 27.

Figure 27 justifies that the threshold of stability of M/G/1 QM, p =1 , would be the inflection
point of det(IFIM) as well as being the decision parameter which controls the existence of inverse of
(IFIM).

Define (QIGUs) by the triad functions, namely h¥'®",h3'°", h¥'Y | with

1

0
R, pYISY: MIG/1 QM - [gy], where [g;] = [ “™° . |(c.£.(3.3) of Theorem 3.1)

(B+1)?
R (0)= 911 = 5.0 € (O1) (8.55)
R () - ~922 = g P €
(1, ) (8.56)
Whoo(p, ) = —In(1 —p), n=0

QIGU _
hs (p'ﬁ)_{‘}’n>o(p, B) =ln(B+1)—In(1—-p)—In2,n>0 (8.57)

provided that W,_,(p, 8) , Wnso(p, B)are determined by (3.7),(3.14) of Theorem 3.1 respectively.

9. Queueing Theoretic Impact on the Continuity of New Devised Queueuing-Information
Geometric Unifiers (QIGU)

Theorem 9.1For the stable M/G/1 QM
1)h?IGU is continuous, for p € (0,1)
2)h¥ is well-defined.

3)h?IGU is one-to-one.

4)hYY s onto.

5) The inverse function of h?IGU is characterized by, (h?IGU)‘l(p)= 1- \/_1p, p € (0,1)
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6)hY"®Y is continuous, for B € (1, )
7)thG'U is well-defined.
8)h;2IGU is one-to-one.

9)hg2IGU is onto.

10) The inverse function of hglGU is characterized by, (thGU)‘l(ﬁ)= -1+ \/%,B € (1, ).

11)W,_o(p, B) is well defined.
12)W¥,,_,(p, B)is continuous if and only if M/G/1 QM is stable.

13)W,o(p, B) is discontinuous <« the instability of the underlying QM is satisfied.
14)¥,,_o(p, B) is one-to-one.
15)¥,,_,(p, B)is onto.

16) The inverse function of W,_(p, B) is characterized by, (W,—o(p,B8)) *(p) = 1 —e7?,p € (0,1).
17)W,50(p, B) characterizes a family of non-well defined (p, ) dependent functions

18)W,5o(p, B) is continuous if and only if M/G/1 QM is stable.

19)W,5o(p, B) is discontinuous <« the instability of the underlying QM is satisfied.

Proof

1)Let p, p, € (0,1)such that thereisa & > 0 satisfying

lp1 = p2| <6 9.1)

QIGU _ ,QIGU _r _ |CP1=p2)(p1t p2=-2)| _ Sl(patp2-2)| _ 9.2
o) = ()l A — | (1-p)2(1-p2)2 | = (1-p1)2(1-p2)? 62

Clearly by (2.48), the proof 1) follows.
It is also clear that if either p; = 1 orp, = 1. Then, the the underlying QM is unstable, which
implies by (9.2), that &€ — oo. This implies that h?IGUiS discontinuous at p = 1.

2) Let p,p, €(0,1),p, # p,. Assume that h?IGU(pl) = h?IGU(pZ). Hence, ﬁ = ﬁ ,
—P1 —P2

equivalently, (1—p;)? = (1— p,)?. This means, p; = p, orp; + p, = 2.We have to reject, p; =
p2. Also, p; + p, = 2is impossible since p,,p, € (0,1),Clearly, a contradiction follows. Therefore,
2) holds.

3)h?IGU (p) = h?IGU (p2), then following the same proof as in 2) implies that p; = p,. This proves 3).

4) Obviously, every p € (0,1) uniquely characterizes such that h?IGU(p) = g1 =

1
(1-p)?

IGU .
Hence, h? is onto.

1
a-p)?

5) Assume h?lGU(p) =y. Hence,

doi:10.20944/preprints202401.2124.v1


https://doi.org/10.20944/preprints202401.2124.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2024

44
()M e 1= 0 € O) 9.3)
which proves 5).
6)Let By, B, € (1,0)such that thereisa & > 0 satisfying
|B1 = B2l <6 (9.4)

QIGU _ ,QIGU _ i1 _ |B1=B2)(Bat B2=2)| _ & _ —
Ih3 B = hF B = g~ ! = Faspyrarsy | <ilBit B=Dl=e (9.5

Clearly by (2.48), the proof 6) follows.

1 1
A+pD?  +(B)? 7

7) Let By, B, € (1,0),8, # B,. Assume that hL(B) = h¥Y(B,). Hence,

equivalently, (1+ ;)= (1+B;)?. This means, f; = f,orp; + B, =—2. We must reject ,
Br= B,. Also, P+ B, =-2 is impossible since B;,B, € (1,»), Clearly, a contradiction

follows. Therefore, 7) holds.

Itis also clear that even if the underlying QM is unstable(or equivalently, € (0,1]which implies
by (9.5), that & + o). This implies that hY'®" is everywhere continuous.

Engaging the same procedureasin 3)and 4), the proofs of 8)and 9) are easily verified respectively.

10)Assume thGU(ﬁ) = (1+16)2 =w, B € (1,). These leaves one choice,
1
= -1+ T 9.6)
This shows that, (thGU)‘l(ﬁ)= 1- \/iﬁ, B € (1, ©@)which proves 10).

11)Let pq,p, €(0,1),p1 # p,. Assume that W,_o(p) = Wno(p2)- Hence, —In(1-p,)=
—In(1—p,) , equivalently, (1—p;) = (1 —p,). This means, p; = p,. Clearly, a contradiction
follows. Therefore, 12) holds.

12) Necessity: Assume that M/G/1 QM is stable, then p,, p, € (0,1)

Suppose that thereisa & > 0 satisfying:

lp1— p2l <6 9.7)
[Wn=0(p1) = Pn=o(p2)| = |In(1 = p;) — In(1 — p,)| 9.8)
It is well known that Maclauren’s series of In (1 — p), for p € (0,1) is determined by

In(1-p) = -T2, 2 (c.f, (249) (9.10)

Thus, it follows that

lIn(1—py) —In(1 —p)| <8 Timi(pr ™t +pf 2+ 4+ 1) = (1_8p1) =e (9.12)
This proves continuity.
Sufficiency:
By (9.12), there exists 5 &g >0, 2 & >0, with 6§ =min(6,8,) >0, =

(1-p1) (1-p2)
min (&, &;) satisfying, (9.7) and (9.12). Consequently, p4,p, € (0,1), which directly implies the

underlying QM'’s stability.

doi:10.20944/preprints202401.2124.v1


https://doi.org/10.20944/preprints202401.2124.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 January 2024 doi:10.20944/preprints202401.2124.v1

45

13) Following (9.12), discontinuity of W,-, occurs if and if p; = 1 to enforce ¢ to be infinite of any

negative real number. Therefore, 13) holds.

The validity of both 14) and 15) can easily be verified.
Assume ¥,_4(p) = —In (1 — p) = m,p € (0,1). Thus, itholds that 1 — p = e™™ . Consequently,
p = 1—e ™. This shows that, (Wh=0) (p)= 1—e~?,p € (0,1), which proves 16).

17)  Let py,pz € (0,1), (B, B2) € (1, )such thatp; # py, B # B,  Assume that W,5o(py, 1) =

Wos0(p2, B2). Hence,

BatD) _ BatD) Thic means,
1-p1) (1-p2)

(Br = B2) + (p1 — p2) = (B2p1 — B1p2) (9.13)

By (9.13), 17) holds.

It is obvious that W,., is continuous for all 8 € (1,),p € (0,1). This proves the necessity
requirement. As for the sufficiency requirement, let ¥,-,(p, 8) be continuous. This directly implies
that [n(1— p) attains non- infinite real values. Consequently, 1—p > 0. Hence, the underlying
M/G/1 QM is stable. This proves 18).

To prove 19), itis clear that W,~(p,B) is discontinuous if and only if both In(8 + 1) and in(1 —
p) is discontinuous. This is equivalent to § > —1,p > 1. Equivalently, M/G/1 QM is unstable.

10. Closing Remarks with Next Phase Research

This paper discusses the application of information geometric concepts in queueing theory,
specifically focusing on the specified QM. It introduces the Fisher information metric, the a-
connection, and analyses the geometric properties of the queue manifold, such as Gaussian and Ricci
curvatures. The paper also highlights the potential for further research in IG unification with existent
knowledge of scientific fields.
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