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Abstract: Stress has emerged as a major concern in modern society, significantly impacting human
health and well-being. Statistical evidence underscores the extensive social influence of stress,
especially in terms of work-related stress and associated healthcare costs. This paper addresses
the critical need for accurate stress detection, emphasising its far-reaching effects on health and
social dynamics. Focusing on remote stress monitoring, it proposes an efficient deep learning
approach for stress detection from facial videos. In contrast to the research on wearable devices,
this paper proposes novel Hybrid Deep Learning (DL) networks for stress detection based on
remote photoplethysmography (rPPG), employing (Long Short-Term Memory (LSTM), Gated
Recurrent Units (GRU), 1D Convolutional Neural Network (1D-CNN)) models with hyperparameter
optimisation and augmentation techniques to enhance performance. The proposed approach
yields a substantial improvement in accuracy and efficiency in stress detection, achieving up to
95.83% accuracy with the UBFC-Phys’s dataset while maintaining excellent computational efficiency.
The experimental results demonstrate the effectiveness of the proposed Hybrid DL models for
rPPG-based-stress detection.

Keywords: 1D Convolutional Neural Network (1D-CNN); Deep Learning (DL); Gated
Recurrent Units (GRU); Long Short-Term Memory (LSTM); physiological signals; remote
photoplethysmography (rPPG); stress detection

1. Introduction

Stress in humans is related to mental health and well-being [1]. It is the biological response to
a situation such as a threat, challenge, or physical and psychological barrier [2]. The sympathetic
nervous system (SNS) and the parasympathetic nervous system (PNS) are two components of the
autonomic nervous system (ANS) that directly affect how the body reacts to stress [3,4]. In highly
stressful events, the SNS executes the fight or flight survival response. As a result, the body redirects
its efforts toward fighting off threats. Given its subjective nature, identifying and monitoring the
onset, duration, and severity of stressful events is challenging. This is especially true in workplace
situations [5] where there is often an intelligent choice to ignore stress for professional gain. Recent
studies have shown an increase in stress levels in the office environment [6]. Due to the plasticity
of the brain, chronic or persistent stress has been shown to increase the volume of the amygdala, a
structure within the limbic system that defines and regulates emotions, stores emotional memories,
and, most importantly, executes the fight or flight response [7]. Similarly, chronic stress is associated
with a reduction in the mass of the prefrontal cortex [8], which is used to intelligently regulate thoughts,
actions, and emotions.

Recent research in the field has introduced various sensor-based solutions for stress detection, as
evidenced by studies such as [4,9,10]. Although some of these solutions use only a single type of sensor,
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others employ multimodal sensing. Traditionally, electrocardiography (ECG) has been used to measure
heart rate variability (HRV) for stress detection [11]. Biomarkers like galvanic skin response (GSR),
electrodermal activity (EDA), respiration, and electromyography (EMG) are increasingly recognized
for assessing affective states and stress levels [12–14], utilising sensing devices. While these traditional
sensor types are considered the gold standard and provide excellent opportunities for the measurement
of stress-related biomarkers, the ease of use for these devices in a practical scenario becomes a challenge,
as experimentation can only be carried out in a designated equipped setting. The focus of research is
shifting to developing simpler and more convenient sensing solutions that are applicable to everyday
life to measure physiological parameters. Recent advances in technology have led to significant
developments in wearable and personal sensing devices with applications in healthcare, for example,
the use of a wearable device to capture physiological data for health monitoring [15–20]. These devices
include chest bands [15,21], [16,22] portable ECG devices [17,23] etc. HRV parameters can be measured
using wristbands such as Empatica E4 wristband [18,24], Microsoft Band 2 [19,25], Polar watch [20,26],
and Fitbit watch [20,26] among others. Researchers analyse personal data from these devices to provide
relevant insights into the individual’s physical and health status. Although these devices show promise
and provide a non-intrusive means of acquiring data for stress detection models, a major limitation of
these devices relates to the size, making them uncomfortable for practical use cases [27].

On the contrary, rPPG technology measures Blood Volume Pulse (BVP) using a camera,
eliminating the need for sensor attachments [28,29]. By extracting skin pixels from facial data captured
by the camera, rPPG technology utilises changes in skin colour corresponding to heartbeat to obtain
the BVP signal [28,30–32]. This method simplifies the measurement, reduces sensor complexity, and
avoids attachment-related problems. Furthermore, rPPG can be used to capture HRV measures for
analysis, especially in healthcare applications. The widespread availability of cameras in the form of
webcams or smartphones makes rPPG technology easily accessible to anyone. Due to its advantages,
rPPG finds applications in healthcare, fitness and forensic science. Integration rPPG technology into
smart mirrors or smartphones increases its potential as a professional health indicator. Although
still in an early stage, rPPG-based non-contact affective computing has become a growing area of
research in recent years, which can drastically improve human-computer interaction in real time for
stress detection. This paper explores the feasibility of end-to-end methods for recognising stress by
proposing a rPPG-based stress detection system to leverage non-contact and physiological techniques,
facilitating the continuous monitoring of pervasive long-term biomedical signals. The contributions
made in this paper are as follows:

• A novel system leveraging non-contact and physiological techniques is proposed, enabling the
continuous monitoring of pervasive biomedical signals for long-term stress detection.

• Hybrid DL networks and models for rPPG signal reconstruction and Heart Rate (HR) estimation
to significantly improve accuracy and efficiency in stress detection up to 95.83% with the
UBFC-Phys’s dataset.

• Extensive experiments and empirical evaluations of Deep Learning (DL) models for stress
detection provide valuable insights and comparisons.

The remainder of this paper is structured as follows. Section 2 presents a comprehensive literature
review of the existing approaches, while Section 3 introduces the methodology, collection protocol
and preprocessing steps. In Section 4, the experimental results are discussed while the conclusion and
future work plan are outlined in Section 5

2. Related Work

The term stress was initially introduced into medical terminology in 1936, defining it as a syndrome

produced by diverse nocuous agents that seriously threaten homeostasis [33]. Selye’s experiments
demonstrated that prolonged exposure to severe stress could lead to disease and tissue damage
[34]. Recently, research on stress, its causes, and implications has gained traction [4,9,10,12–14]. It
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has been defined as a complex interactional phenomenon, arising when a situation is deemed important,
carries the possibility of damage, and requires psychological, physiological, and/or behavioural
actions [4,9,10]. Understanding stress involves distinguishing between stressors, stress responses,
and stress biomarkers. Stressors are stimuli that disrupt normal activity, stress responses are
symptoms triggered by stressors, and biomarkers reflect interactions between a biological system and
potential hazards [3,4,9,10]. The human body responds to stressors through mechanisms such as the
hypothalamic-pituitary-adrenal (HPA) axis, ANS, and the immune system [35]. The HPA axis releases
hormones, including cortisol, in response to stressors, initiating the "fight or flight response", leading
to physiological reactions from the ANS, increasing SNS activity and decreasing PNS activity [3,4].
Cortisol levels and other physiological measures such as body temperature, respiration rate, pulse
rate, HRV, and blood pressure (BP) have been identified as standard stress biomarkers [15–17,21–23].
Several methods for stress detection include questionnaires, ECG, electroencephalogram (EEG), BP
using arm cuff, sampling saliva cortisol and other biomarkers from blood tests [36–38]. Self-reporting
tools such as the Perceived Stress Scale and Depression Anxiety Stress Scale are widely used to measure
perceived stress, but have limitations such as biased responses and subjectivity [39]. ECG measures
changes in heart rhythm due to emotional experiences, providing information about HRV usually
requires a visit to a medical facility. EEG captures electrical signals in the brain, correlating brain
waves (beta and alpha) to stress, but conventional EEG machines are impractical for managing daily
stress [40,41]. Biomarkers such as cortisol in salivary and hair samples are associated with chronic
stress but are invasive and time-consuming. Blood pressure measured with a sphygmomanometer
is accurate, but requires a trained professional [36–38]. Ambulatory Blood Pressure Measurement
(ABPM) devices offer home monitoring, but lack widespread validation and can be influenced by
factors other than stress [42]. While traditional sensor types are acknowledged as the gold standard,
offering excellent opportunities for measuring stress-related biomarkers, their practical use in everyday
situations poses a significant challenge. Emerging technologies have focused on developing simpler
and more convenient sensing solutions applicable to daily life to measure physiological biomarkers.
Wearable and personal sensing devices, such as chest bands, wrist bracelets, and portable ECG devices
[15,18,21,24], have played a pivotal role in this evolution.

Conventional approaches to stress detection have drawbacks that are not in line with modern
lifestyles and real-time monitoring. These methods are invasive, prone to bias, incur substantial costs,
and require time-consuming travel to clinical settings. Over the past two decades, there has been
a noticeable shift towards technology-driven approaches for more efficient, cost-effective, and less
intrusive stress measurement compatible with modern lifestyles. Wearable devices, mobile applications,
and Machine Learning (ML) algorithms have revolutionised stress detection and measurement. One
approach is measuring HRV using wearable devices such as smartwatches, fitness trackers, and chest
straps, allowing continuous and long-term monitoring of stress levels [16,17,20,23,26]. Typically as
HRV measures are inherently nonlinear, ML algorithms and other statistical data-driven methods such
as Modified Varying Index Coefficient Autoregression Model (MVICAR) [43] can be applied in stress
detection systems. ML algorithms have enabled accurate and efficient HRV-based stress detection
and classification systems [29,44–47]. EDA, which measures the electrical activity of sweat glands, is
another method that can be monitored with wearable devices, providing continuous and real-time
monitoring of stress levels. Mobile applications using EDA-based biofeedback help individuals
manage stress by providing real-time feedback and stress reduction techniques [16,25]. However, EDA
measurement is sensitive to environmental factors, skin conditions and medications, affecting the
precision.

The COVID-19 pandemic has stimulated interest in remote healthcare, leading to research
using cameras for the estimation of rPPG signals and real-time monitoring, addressing the need
for non-invasive, contactless and accessible methods for stress assessment [48,49]. rPPG offers a
non-invasive means of measuring BVP remotely. This approach requires only a camera and an ambient
light source. With this, HRV measures, pulse rate and breathing rate can be measured using an
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everyday camera for facial video analysis to remotely detect and monitor stress[28,30–32]. There have
been a growing number of research paper, for example Benezeth et al. [46] proposed an rPPG-based
algorithm that estimates HRV using a simple camera, showing a strong correlation between the HRV
features and different emotional states. Similarly, Sabour et al. [29] proposed an rPPG-based stress
estimation system with an accuracy of 85.48%. Some other works on the use of rPPG are encouraging,
indicating that noncontact measures of some human physiological parameters (e.g., breathing rate (BR)
and Heart Rate (HR)) are promising and have great potential for various applications, such as health
monitoring [47,50] and affective computing [51–53]. While these contributions are noteworthy, this
paper significantly advances the field by introducing Hybrid Deep Learning (DL) networks and models
for rPPG signal reconstruction and Heart Rate (HR) estimation. This novel approach presents about a
substantial improvement in accuracy and efficiency in stress detection, achieving up to 95.83% accuracy
with the UBFC-Phys’s dataset. The integration of Hybrid DL networks represents a contribution,
offering enhanced capabilities for signal reconstruction and stress classification. Considering these,
rPPG is well-suited for both business and everyday applications and has the significant advantage of
measuring ECG and photoplethysmography (PPG).

Wearable and contactless devices offer promising alternatives for stress measurement, providing
convenient and non-invasive methods for continuous monitoring. However, the quality and accuracy
of the data generated by these devices can vary. A major limitation to adapting rPPG is evident in the
decrease in the signal-to-noise ratio, which requires advanced signal processing. Many articles lack
peer review and validation in clinical settings, raising concerns about the reliability of data. Although
wearable devices can be sensitive to factors such as movement, heat, and transpiration, leading to
inaccurate measurements, ease of use, especially during sleep or physical activities, is another huge
limitation. Individuals with skin sensitivities, allergies, or specific health conditions may also find
wearing these devices intolerable.

3. Method

The proposed methodology consists of three main parts, as shown in Figure 1. The primary
objective is to detect social stress using contactless physiological signals extracted from facial videos
through DL techniques. In the first part, a pyVHR toolbox (Python framework for Virtual Heart
Rate) [54] is used to capture and estimate the beats per minute (BPM) from facial video data. The
second part involves the increase of the estimated BPM and is subsequently input into four DL
models (Recurrent Neural Network (RNN), LSTM, GRU, and 1D-CNN). The performance of these
models is then evaluated and compared on the basis of specific metrics. The proposed methodology
is implemented using Python 3 and relevant libraries for data manipulation, leveraging an NVIDIA
graphics processing unit (GPU) with Compute Unified Device Architecture (CUDA) version 12.2 and
CUDA Deep Neural Network (CuDNN) library. It should be noted that the default parameters of
pyVHR include a window size of 8, patch size of 40, and pre/post filter, were used for the estimation
of BPM. The selected methods include Regions of Interest (ROI) approaches: holistic and convex hull,
as well as CuPy CHROM, Torch CHROM, and CuPy POS. Refer to Table 1 for a brief overview of the
methods.
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Figure 1. Stress Detection Framework – The video frames serve as inputs to the pyVHR toolbox
enabling the extraction of rPPG signals BPM from facial regions within the frames. The derived BPM
signals are subsequently channelled through DL models (LSTM, GRU, and 1D-CNN), culminating in
stress classification outcomes.

Table 1. Parameters and methods used for rPPG with pyVHR toolbox

Parameters Description

Window
The number of consecutive video frames processed to estimate the
physiological signal.

Holistic
Skin extraction technique that sets the stage for calculating the
Red, Greem amnd Blue (RGB) trace, which is achieved by calculating
the average intensity of facial skin colour for each channel separately.

Convexhull
A skin extractor that subtracts the eyes and mouth regions from the
rest of the entire face. It offers dependable real-time face and landmark
detection and tracking.

CuPy CHROM
A chrominance-based method used to infer the pulse signal from
the RGB traces built with the CuPy Python library designed for
GPU-accelerated computing with open-source arrays.

Torch CHROM
Built with PyTorch, that is an open-source ML framework that facilitates
building, training, and deploying DL models through a dynamic
computational graph.

Cupy POS
Plane Perpendicular to the Skinpos (POS) is another method also used
to infer the pulse signal from RGB traces, but from a projection plane that is
perpendicular to the skin tone built with the CuPy library.

3.1. Dataset and data processing

The UBFC-Phys dataset includes data from 56 healthy subjects, with 12 participants excluded due
to technical and consent issues [29]. The participants, aged between 19 and 38 (mean age 21.8, standard
deviation 3.11), comprise 46 women and 10 men. In the study, stress levels were induced using a
modified version of the Trier Social Stress Test (TSST) [55]. The participants completed three tasks: a
10-minute rest task serving as a baseline, a speech task, and an arithmetic task. Speech and arithmetic
tasks aimed to induce stress through a social evaluation threat. In the test scenario, the speech task
simulated a job interview, introducing an additional expert via video call to enhance social-evaluative
threat. The arithmetic task involved a countdown with variations. For the purposes outlined in this
paper, attention is given to ground-truth (GT) BVP signals labelled as T1 and T2 for the stress and
non-stress classes, respectively. These signals, obtained using the Empatica 4 wristband at a 64 Hz
sampling rate, consist of vectors with 11,520 data points each (64×180 = 11,520). Subsequently, the first
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500 data points of the GT BVP signals for subjects s1 to s4 were plotted to visually depict the impact of
stress (T1) and non-stress (T2) on signal behaviour. Refer to Figure 2 for these graphs.

Figure 2. GT BVP signals behaviour during no stress task (T1) and stress task (T2) of subjects s1 to s4

Data processing included the application of the Fast Fourier Transform (Fast Fourier Transform
(FFT)) to generate frequency domain features from the Blood Volume Pulse (BVP) signals. In addition,
the data augmentation was implemented with Linear Interpolation and Gaussian White Noise.

Linear interpolation, as illustrated by Equation 1 augments by estimating values between existing
data points creating straight lines connecting these points.

y = y1 + (x − x1)
y2 − y1

x2 − x1
(1)

Where x1 and y1 are the first coordinates, x2 and y2 are the second coordinates, x is the point to perform
the interpolation and y is the interpolated value.

Alternatively, the Gaussian white noise augmentation method generates series of random values
using the Gaussian distribution - see equation 2 below. The resulting sequence exhibits white noise
characteristics. Gaussian White Noise serves multiple purposes beyond dataset expansion. It is
valuable to simulate uncertainty, randomness, or inherent variability present in real-world data.

series[i] = Xi, f ori = 1, 2, 3, . . . , 1000 (2)

where X1, X2, X3, . . . , X1000 are independent and identically distributed random variables
following a Gaussian distribution with mean µ = 0.0 and standard deviation σ = 1.0.

3.2. Deep Learning Models

A set of DL models are selected to to detect stress and evaluate the effectiveness and efficiency
of the models. Due to intrinsic structural differences between DL models based on RNN, specifically
LSTM and GRU, and Convolutional Neural Networks (CNN), three 1D-CNN-Multilayer Perceptron
(MLP) models were designed. One of these models closely mirrors the architectures of RNN-based
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models in terms of the number of neurons, represented as "filters" in CNNs. However, instead of
utilising LSTM or GRU layers, Convolutional One Dimensional (Conv1D) layers were used. These
models also include Maxpooling1D layers and flatten layers, along with specific parameters and
functions such as kernel size and Rectified Linear Unit (ReLU) activation. The other two 1D-CNN
models have additional CNN and MLP layers and different "pool size". It is important to note that
the limited sample size of estimated BPM signals (only 172 data points per video) from the pyVHR
toolbox prevented the evaluation of the performance of 1D-CNN models versions 2 and 3, given their
respective architectures. For a detailed architecture, layer descriptions, parameters, and functions of
the 1D-CNN-MLP models, please refer to Table 2. The design flow of the 1D-CNN with 3 CNN and 2
MLP layers, labelled "CNNv2", is illustrated in Figure 3.

Figure 3. 1D 3x CNN-2x MLP architecture – labelled "1D-CNNv2". Image from the author.
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Table 2. DL methods implemented

DL Method # Layers Layer (Type)
Output
Shape

Param #
Total
Params

Trainable
Params

Non-Trainable
Params

LSTMv1 3
lstm 11519x64 16896

22,097 22,097 0lstm 16 5184
dense 1

LSTMv2 4

lstm 11519x64 16896

32,465 32,465 0lstm 11519x32 12416
lstm 16 3136
dense 1 17

GRUv1 3
gru 11519x64 12864

16,817 16,817 0gru 16 3936
dense 1 17

GRUv2 4

gru 11519x64 12864

24,689 24,689 0gru 11519x32 9408
gru 16 2400
dense 1 17

1D-CNNv1 5

conv1d 11517x64 256

1,480,001 1,480,001 0

max_pooling 5758x64 0
conv1d 5756x32 6167
max_pooling 5756x32 0
flatten 92096 0
dense 16 1473552
dense 1 17

1D-CNNv2 7

conv1d 5744x512 16896

2,765,441 2,765,441 1,792

max_pooling 1436x512 0
batch_normalisation 1436x512 2048
conv1d 1429x256 1048832
max_pooling 357x256 0
batch_normalisation 357x356 1024
conv1d 350x128 262272
max_pooling 87x128 0
batch_normalisation 87x128 512
flatten 11136 0
dense 128 1425536
dropout 128 0
dense 64 8256
dropout 64 0
dense 1 65

1D-CNNv3 7

conv1d 5744x512 16896

4,199,169 4,199,169 1,792

max_pooling 1436x512 0
batch_normalisation 1436x512 2048
conv1d 1429x256 1048832
max_pooling 357x256 0
batch_normalisation 357x256 1024
conv1d 350x128 262272
max_pooling 87x128 0
batch_normalisation 87x128 512
flatten 11136 0
dense 256 2851072
dropout 256 0
dense 64 16448
dropout 64 0
dense 1 65

3.3. Performance Evaluation

The metrics chosen to evaluate the models needed to be suitable for the classification of categorical
variables ”stress” and ”no-stress”. For that reason, the metrics Accuracy - Ac, Recall - Re, Precision -
Precision (Pr) and F1-Score (F1) were selected. Each of these metrics assess the models’ classification
performance from a different perspective. Accuracy - It provides a general sense of how well the
model is performing between stress and non-stress classification. The higher the value, the greater is
the model’s accuracy.

Ac =
TP + TN

TP + FN + TN + FN
(3)
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Recall - This metric is also known as sensitivity metric, or true positive rate. It computes the proportion
of true positive predictions out of all actual positive instances. In the context of this research project, a
high recall value indicates that the model is sensitive to detecting social stress, which is critical for its
practical application.

Re =
TP

TP + FN
(4)

Precision - Calculates the proportion of true positive predictions out of all positive instances. The
higher the value, the more accurate the model is predicting the true positive instances. This helps
minimise false positives, which is crucial when dealing with stress assessment.

Pr =
TP

TP + FP
(5)

F1 - This metric provides a balanced view of the model’s performance by considering both precision
and recall. In stress classification, achieving a balance between minimising false positives Pr and false
negatives Re is vital. A high F1 indicates that the model accurately identifies instances of social stress
and minimises false classifications.

F1 = 2 ×
Pr.Re

Pr + Re
(6)

where True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN).

4. Experimental Results

The visualisations provided in Figure 4 offer a distinct view of the contrasting characteristics
between the non-stress task (T1) and the stress-induced task (T2) in both the time and frequency
domains. In the time domain analysis, the T1 signal exhibits fluctuations within the range of -250 to 250
units, while in the presence of stress during T2, this range becomes wider, spanning from -500 to 500
units. This change in range suggests a potentially heightened physiological response during the stress
task. Likewise, when we delve into the frequency domain, we notice a parallel pattern. In the frequency
domain representation, the T1 signal presents values oscillating between 0 and 1, whereas the T2 signal
exhibits a wider span of 0 to 5. This expanded variation in the frequency domain further emphasises
the distinction between the non-stress and stress-induced states. Moreover, the implications of these
observations extend beyond mere visualisation. The frequency domain signal has immense potential
as a feature for training and testing deep learning methods aimed at stress classification. While the raw
BVP signal encapsulates temporal patterns, the frequency domain offers insight into the underlying
frequency components that contribute to those patterns. By extracting features from the frequency
domain, deep learning models can potentially capture and leverage distinctive spectral characteristics
related to stress. The plots in Figure 4 illustrate the GT BVP signals of subject 1 during the tasks T1
and T2 before and after FFT being applied to the data.
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Figure 4. Graphs depicting the Time Domain (TD) and Frequency Domain (FD) representations of the
GT BVP signals for Subject 1 during tasks T1 and T2

Figure 5 shows the estimated heart rate (BPM) extracted from video T1 of subject 1, using the
CuPy CHROM method from the pyVHR toolbox. This visualisation illustrates the state before and
after augmentation using linear interpolation, where it is possible to infer that expanding the original
dataset of 173 data points to 11,009 data points did not alter the underlying signal, reinforcing the
consistency between the original and augmented data. The processed and augmented dataset is then
partitioned into training, validation, and test datasets using 10% for validation and 10% for testing.

Figure 5. Plot of Estimated BPM extracted from video T1 of subject 1, using the method CuPy CHROM,
before and after augmentation using linear interpolation
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Likewise, Figure 6 shows the estimated heart rate (BPM) plotted from the T1 and T2 videos of
subject 1, using the CuPy CHROM method from the pyVHR toolbox. This visualisation illustrates the
state before and after augmentation using white noise, where it is possible to infer that expanding the
original dataset of 173 data points to 11,180 data points did not alter the underlying signal.

Figure 6. Plot of Estimated BPM extracted from videos T1 of subject 1, using the method CuPy CHROM,
before and after augmentation using white noise

4.1. Classification Results

Three distinct DL methods (LSTM, GRU, 1D-CNN), each with different architectures (as detailed in
Table 2), were implemented to identify the optimal model to effectively classify stress levels. Although
this work focuses on building the best DL model to accurately classify stress status by extracting rPPG
from face videos, this classification task was conducted using both GT-BVP signals computed from
videos of the UBFC-Phys dataset separately in order to compare the performance of the DL models on
the GT-BVP and the rPPG.

4.1.1. Performance analysis of the DL methods applied to the GT signal

The results in Table 3 present the top performing results achieved in this article for both the
raw GT (TD) data and the processed GT (FD) data. The results are arranged in descending order,
highlighting the best performing models and their respective accuracy. Additionally, the computation
time for each model is also provided to allow for comparison of the execution times of the different
models. There is a noticeable difference in computational efficiency between the CNN models and the
LSTM and GRU models. The 1D-CNNv1 model completed 50 epochs in just 4.24 seconds, while the
LSTMv2 model required approximately 1 minute and 30 seconds to achieve the same. The accuracy of
the models varies between approximately 41.67% and 83.33%, and it is obvious that the best results
were obtained using the TD data. However, some models exhibit different performances depending
on the domain. For example, the 1D-CNNv2 model achieves significantly better accuracy (83.33%)
in the time domain compared to its accuracy (50.00%) in the frequency domain. On the contrary, the
GRUv2 model demonstrates a higher accuracy (62.50%) in the FD compared to its accuracy (58.33%) in
the TD. Concerning the number of epochs for training and testing the models, it is possible to infer
that the majority of the models only needed 50 or fewer epochs. On the other hand, the 1D-CNNv2
model achieved its higher performance around the 60th epoch, as can be seen in Figure 7.
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Figure 7. Validation Loss and Train & Accuracy curves of the GT-1D-CNNv2 model

Regarding the precision and recall in Table 3, precision in some cases is balanced with recall,
while in others, trade-offs are evident. As previously mentioned, models with both high precision and
high recall scores are effective at correctly classifying stress instances (true positives) and minimising
both false positives and false negatives. For instance, the 1D-CNNv2 model achieved this balance,
with an accuracy of 83.33%, Precision and Recall of 83.33%. On the other hand, models with high
Recall, but lower Precision predict more instances as stressed, including those that are uncertain. This
is useful when capturing all stress instances is a priority, even if it means more false positives. The
GRUv1 model in the FD shows this pattern with Recall of 91.67% but Precision of 61.11%. It is also
clear that the 1D-CNNv2 model achieved the highest accuracy (83.33%) among the tested methods.
This suggests that it might be the most effective model for classifying stress and non-stress states
from the GT-BVP signals. From Table 4, it can be inferred that the results achieved by the traditional
machine learning method employed by the dataset’s authors (75%) and the CNN-MLP model utilised
in the study by Hasanpoor et al. (82%) [54] were both exceeded in this work (83.33%).
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Table 3. GT-PPG DL models’ results

DL method Domain Epochs Accuracy Precision Recall F1-score Time [s]

1D-CNNv2 time 100 83.33% 83.33% 83.33% 83.33% 28.08
LSTMv1 time 100 79.17% 100.00% 58.33% 73.68% 122.62
GRUv1 time 50 79.17% 81.82% 75.00% 78.26% 60.68
GRUv1 time 100 79.17% 81.82% 75.00% 78.26% 119.67
1D-CNNv3 time 50 79.17% 81.82% 75.00% 78.26% 15.21
LSTMv2 time 50 75.00% 87.50% 58.33% 70.00% 92.04
LSTMv2 time 100 75.00% 87.50% 58.33% 70.00% 182.08
GRUv2 time 50 75.00% 80.00% 66.67% 72.73% 89.58
GRUv2 time 100 75.00% 80.00% 66.67% 72.73% 175.43
1D-CNNv1 time 50 75.00% 87.50% 58.33% 70.00% 5.48
1D-CNNv1 time 100 75.00% 87.50% 58.33% 70.00% 7.62
1D-CNNv3 time 100 75.00% 100.00% 50.00% 66.67% 28.49
1D-CNNv3 frequency 100 75.00% 100.00% 50.00% 66.67% 28.74
LSTMv1 time 50 70.83% 100.00% 41.67% 58.82% 62.28
GRUv1 frequency 100 66.67% 61.11% 91.67% 73.33% 119.30
LSTMv1 frequency 50 62.50% 57.89% 91.67% 70.97% 61.96
GRUv2 frequency 100 62.50% 57.89% 91.67% 70.97% 175.16
LSTMv1 frequency 100 58.33% 55.00% 91.67% 68.75% 122.32
GRUv1 frequency 50 58.33% 56.25% 75.00% 64.29% 60.47
1D-CNNv1 frequency 100 54.17% 52.63% 83.33% 64.52% 7.49
LSTMv2 frequency 100 50.00% 50.00% 100.00% 66.67% 181.87
GRUv2 frequency 50 50.00% 50.00% 8.33% 14.29% 89.23
1D-CNNv1 frequency 50 50.00% 50.00% 100.00% 66.67% 4.24
1D-CNNv2 time 50 50.00% 50.00% 100.00% 66.67% 19.75
1D-CNNv2 frequency 50 50.00% 50.00% 8.33% 14.29% 15.42
1D-CNNv2 frequency 100 50.00% 50.00% 8.33% 14.29% 28.14
1D-CNNv3 frequency 50 50.00% 50.00% 8.33% 14.29% 15.07
LSTMv2 frequency 50 41.67% 41.67% 41.67% 41.67% 92.44

4.1.2. Performance analysis of the DL methods applied to the rPPG signal

Moving forward to the performance of the DL models on the estimated BPM, these were obtained
considering the different methods of BPM extraction on the pyVHR toolbox (CuPy-CHROM CuPy-POS,
and Torch-CHROM), different epochs (50-100), augmentation techniques (none, linear interpolation
and white noise), DL model versions, input domains (TD and FD), evaluation metrics (accuracy,
precision, recall, and F1 score) and execution times. The training and testing generated over two
hundred lines of results. The best results per DL model version and per pyVHR method are depicted
in Table 5. With regard to these results, several conclusions can be drawn from this table. On a
wider perspective, the accuracy ranges from 79.17% to 95.83%, indicating the DL models effectiveness
in distinguishing between stress and non-stress states, which in the opinion of the authors can be
considered a very good performance across the models. Precision and recall values vary across all
models, with some achieving 100% and other slightly lower (the lowest being 73.33%), and the F1 score
follows the same trend. Considering the time domains and augmentation techniques, it is possible
to infer that the majority of the models excelled in the frequency domain, whereas the 1D-CNNv3
demonstrated high scores across all metrics in TD. In terms of augmentation techniques, it is possible
to infer that interpolation and no additional augmentation achieved the best performances across all
models. Furthermore, both CuPy-CHROM and Torch-CHROM pyVHR methods can be a good choice
for estimating BPM from facial videos for stress classification, because all three CNN models achieved
higher performances, although with distinctive augmentation techniques and domains. Regarding the
train and test times, these range from few seconds to over two minutes, with CNN having the best
execution times compared with the LSTM and the GRU models.
In terms of the number of epochs for training and testing, it is possible to infer that, for the great
majority of the models, less than 50 epochs were needed to train and test the model, with a few
exceptions as in the case of the model that achieved the best overall performance, 1D-CNNv1 with
the configuration white noise and FD, whose performance slightly improved from around 91.70% to
95.83%. The validation loss and accuracy curves also reflect that difference, where it can be that the

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2024                   doi:10.20944/preprints202401.2121.v1

https://doi.org/10.20944/preprints202401.2121.v1


14 of 19

model’s performance slightly improved after around 60 epochs, with an increase of the testing curve
and decrease of the loss curve (refer to Figure 8).

Figure 8. Plot of Estimated BPM extracted from videos T1 of subject 1, using the method CuPy CHROM,
before and after augmentation using white noise

Considering the importance of accuracy, precision and recall metrics, along with the focus
on real-world deployment utilising edge devices, the following models appear to be the stronger
candidates; 1D-CNN models, namely 1D-CNNv1, using the CuPy-CHROM method, white noise
augmentation, FD and 100 epochs, with a mere 7.8 seconds of execution time; 1D-CNNv2 also using the
CuPy-CHROM method, with linear-interpolation augmentation, FD and 50 epochs, and the 1D-CNNv3
using the Torch-CHROM method, with linear-interpolation augmentation, TD and 50 epochs.
These models as illustrated in the normalised confusion matrix in Figure 9 has consistently achieve
high accuracy (95.83%), precision, and other metrics across TD, FD and pyVHR methods. They are
well-suited for real-time applications due to their relatively lower training times compared to the LSTM
and the GRU models. Furthermore, these models demonstrate that they are efficient in processing
sequential data like time series, making them suitable for processing heart rate data extracted from
videos. Moreover, the balanced precision and recall they offer make them well-suited for stress and
non-stress classification, as avoiding false positives and false negatives is crucial.

Table 4. Comparison of different papers’ results on the UBFC-Phys’s data

Work PPG Method ML-method Accuracy

contact 83.33%This work remote 1D-CNN-MLP
95.83%

contact SVM-linear kernel 73.00%UBFC-Phys [29] remote SVM-RBF kernel 85.38%
Stress detection using PPG
signal and combined deep
CNN-MLP network [56]

contact CNN-MLP 82.00%
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Figure 9. Confusion matrix showing performance across different models

Table 5. Best DL methods results from the rPPG data

pyVHR method DL-method Version Aug. Domain Epochs Accuracy Precision Recall F1-score Time

v1 inter freq 50 83.33% 83.33% 83.33% 83.33% 59.4LSTM v2 none freq 100 83.33% 90.00% 75.00% 81.82% 9.8
v2 none freq 50 83.33% 83.33% 83.33% 83.33% 6.3GRU v1 none freq 50 79.17% 76.92% 83.33% 80.00% 4.6
v1 wn freq 100 95.83% 100.00% 91.67% 95.65% 7.8
v2 inter freq 50 95.83% 100.00% 91.67% 95.65% 14.5

CuPy_CHROM

1D-CNN
v3 inter time 50 91.67% 100.00% 83.33% 90.91% 15.0
v1 inter freq 50 83.33% 83.33% 83.33% 83.33% 59.6LSTM v2 none freq 50 83.33% 90.00% 75.00% 81.82% 6.6
v3 wn freq 100 83.33% 78.57% 91.67% 84.62% 114.7GRU v2 none freq 50 83.33% 83.33% 83.33% 83.33% 6.5
v3 inter time 50 95.83% 92.31% 100.00% 96.00% 15.1
v2 inter freq 100 91.67% 100.00% 83.33% 90.91% 27.6

Torch_CHROM

1D-CNN
v1 none freq 50 87.50% 84.62% 91.67% 88.00% 2.4
v2 none freq 50 83.33% 83.33% 83.33% 83.33% 6.0LSTM v1 inter time 50 79.17% 76.92% 83.33% 80.00% 59.2
v1 none time 50 83.33% 83.33% 83.33% 83.33% 5.3GRU v1 none time 100 83.33% 83.33% 83.33% 83.33% 9.7
v1 inter time 50 83.33% 83.33% 83.33% 83.33% 14.8
v3 wn time 50 83.33% 83.33% 83.33% 83.33% 14.5

CuPy_POS

1D-CNN
v1 none freq 50 79.17% 73.33% 91.67% 81.48% 2.1

Where: Aug. (Augmentation), inter (linear interpolation), wn (white noise), and s (seconds)

As shown in Table 6, two of the three CNN models (1D-CNNv2 and 1D-CNNv3) achieved perfect
scores (100%) in all performance metrics. These results were omitted from the best results in Table 5
and are likely the consequence of overfitting, due to training a heavy model on a small dataset. The
authors believe that it is reasonable to assume that the deployment of these models, along with their
associated weights, to real-world data scenarios would probably yield performance outcomes that are
less impressive.

Table 6. Overfitted results of the rPPG data

pyVHR method dl_method Aug. Domain Epochs Ac Pr Re F1 Time (s)

CuPy_CHROM 1D-CNNv3 inter frequency 50 1 1 1 1 14.59
CuPy_CHROM 1D-CNNv3 inter frequency 100 1 1 1 1 27.00
Torch_CHROM 1D-CNNv2 inter frequency 50 1 1 1 1 14.44
Where: Aug. (Augmentation), inter (linear interpolation), s (seconds)

5. Conclusion and Future Work

This paper has successfully established a robust framework for remote stress detection through
the analysis of physiological signals derived from facial videos. The primary goal was to ascertain an
advanced DL model for stress classification, surpassing the capabilities of traditional ML techniques.
The adoption of three DL methods (LSTM, GRU, and CNN) and their refinement through empirical
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optimization yielded significant achievements, including an impressive 95.83% accuracy in classifying
stress from rPPG signals. The outstanding computational efficiency of the best-performing DL
model, 1D-CNNv1, aligns seamlessly with the prospect of deploying the framework on edge devices.
The exploration of augmentation techniques, particularly linear interpolation and the absence of
augmentation, showcased promising outcomes, highlighting their efficacy in enhancing model
performance. The proposed methodology holds significant potential to influence stress-related policies,
practices, and management, potentially fostering increased user engagement with stress detection
tools. However, it is crucial to acknowledge a major limitation inherent in the rPPG approach, centered
around privacy concerns stemming from the utilisation of cameras and the diversity of the participants.
The privacy issue emphasises the need for user consent and necessitates a careful balance between
the potential advantages of the approach and the preservation of individual privacy rights. It is
imperative to underscore that the rich insights provided by this approach should be accompanied
by stringent privacy measures, ensuring that user consent is sought and respected throughout the
stress detection process. Future work will focus on improving signal extraction through alternative
physiological sensing tools and optimising parameters in existing toolboxes. Exploring additional
augmentation techniques and advancing DL methods, particularly focusing on 1D-CNN, stands as
promising paths for further enhancement. Rigorous validation through cross-validation and testing on
diverse datasets is paramount to assess model robustness and ensure generalisation across various
scenarios. Furthermore, future investigations could also consider the potential influence of participant
ethnicity on model accuracy, recognising the importance of addressing diversity in the dataset and its
implications for the broader applicability of the stress detection framework.

Author Contributions: Conceptualisation, L.F., PM and I.K.I; Methodology, LF.; Software, LF; Validation, L.F., PM
and I.K.I; Formal analysis, L.F., PM and I.K.I; Investigation, L.F; Resources, L.F. and PM.; Writing—original draft
preparation, L.F.; Writing—review and editing, L.F., P.M., D.V., S.Y., J.B, and I.K.I; Visualisation, L.F. and P.M.;
Supervision, I.K.I

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Siddique, C.; D’Arcy, C. Adolescence, stress, and psychological well-being. Journal of youth and adolescence

1984, 13, 459–473.
2. Everly, Jr, G.S.; Lating, J.M.; Everly, G.S.; Lating, J.M. The anatomy and physiology of the human stress

response. A clinical guide to the treatment of the human stress response 2019, pp. 19–56.
3. Thayer, J.F.; Åhs, F.; Fredrikson, M.; Sollers III, J.J.; Wager, T.D. A meta-analysis of heart rate variability and

neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neuroscience &

Biobehavioral Reviews 2012, 36, 747–756.
4. McCarty, R. The fight-or-flight response: A cornerstone of stress research; Elsevier, 2016; pp. 33–37.
5. Thorsteinsson, E.B.; Brown, R.F.; Richards, C. The relationship between work-stress, psychological stress

and staff health and work outcomes in office workers. Psychology 2014, 2014.
6. van Kraaij, A.W.J.; Schiavone, G.; Lutin, E.; Claes, S.; Van Hoof, C. Relationship between chronic stress and

heart rate over time modulated by gender in a cohort of office workers: cross-sectional study using wearable
technologies. Journal of medical Internet research 2020, 22, e18253.

7. McEwen, B.S. Neurobiological and systemic effects of chronic stress. Chronic stress 2017, 1, 2470547017692328.
8. McKlveen, J.M.; Morano, R.L.; Fitzgerald, M.; Zoubovsky, S.; Cassella, S.N.; Scheimann, J.R.; Ghosal, S.;

Mahbod, P.; Packard, B.A.; Myers, B.; others. Chronic stress increases prefrontal inhibition: a mechanism for
stress-induced prefrontal dysfunction. Biological psychiatry 2016, 80, 754–764.

9. Samson, C.; Koh, A. Stress monitoring and recent advancements in wearable biosensors. Frontiers in

bioengineering and biotechnology 2020, 8, 1037.
10. Dalmeida, K.M.; Masala, G.L. HRV features as viable physiological markers for stress detection using

wearable devices. Sensors 2021, 21, 2873.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2024                   doi:10.20944/preprints202401.2121.v1

https://doi.org/10.20944/preprints202401.2121.v1


17 of 19

11. Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Frontiers in public health

2017, p. 258.
12. Rodríguez-Arce, J.; Lara-Flores, L.; Portillo-Rodríguez, O.; Martínez-Méndez, R. Towards an anxiety and

stress recognition system for academic environments based on physiological features. Computer methods and

programs in biomedicine 2020, 190, 105408.
13. Greco, A.; Valenza, G.; Lázaro, J.; Garzón-Rey, J.M.; Aguiló, J.; De-la Camara, C.; Bailón, R.; Scilingo, E.P.

Acute stress state classification based on electrodermal activity modeling. IEEE Transactions on Affective

Computing 2021.
14. Pourmohammadi, S.; Maleki, A. Stress detection using ECG and EMG signals: A comprehensive study.

Computer methods and programs in biomedicine 2020, 193, 105482.
15. Marois, A.; Lafond, D.; Gagnon, J.F.; Vachon, F.; Cloutier, M.S. Predicting stress among pedestrian traffic

workers using physiological and situational measures. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting. SAGE Publications Sage CA: Los Angeles, CA, 2018, Vol. 62, pp. 1262–1266.

16. Sánchez-Reolid, R.; Martínez-Rodrigo, A.; López, M.T.; Fernández-Caballero, A. Deep support vector
machines for the identification of stress condition from electrodermal activity. International Journal of Neural

Systems 2020, 30, 2050031.
17. Tanev, G.; Saadi, D.B.; Hoppe, K.; Sorensen, H.B. Classification of acute stress using linear and non-linear

heart rate variability analysis derived from sternal ECG. 2014 36th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society. IEEE, 2014, pp. 3386–3389.

18. Garbarino, M.; Lai, M.; Bender, D.; Picard, R.W.; Tognetti, S. Empatica E3—A wearable wireless multi-sensor
device for real-time computerized biofeedback and data acquisition. 2014 4th International Conference on
Wireless Mobile Communication and Healthcare-Transforming Healthcare Through Innovations in Mobile
and Wireless Technologies (MOBIHEALTH). IEEE, 2014, pp. 39–42.

19. Shcherbina, A.; Mattsson, C.M.; Waggott, D.; Salisbury, H.; Christle, J.W.; Hastie, T.; Wheeler, M.T.; Ashley,
E.A. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse
cohort. Journal of personalized medicine 2017, 7, 3.

20. Caminal, P.; Sola, F.; Gomis, P.; Guasch, E.; Perera, A.; Soriano, N.; Mont, L. Validity of the Polar V800
monitor for measuring heart rate variability in mountain running route conditions. European journal of

applied physiology 2018, 118, 669–677.
21. Salai, M.; Vassányi, I.; Kósa, I. Stress detection using low cost heart rate sensors. Journal of healthcare

engineering 2016, 2016.
22. Moridani, M.; Mahabadi, Z.; Javadi, N. Heart rate variability features for different stress classification.

Bratislavske Lekarske Listy 2020, 121, 619–627.
23. Salahuddin, L.; Cho, J.; Jeong, M.G.; Kim, D. Ultra short term analysis of heart rate variability for monitoring

mental stress in mobile settings. 2007 29th annual international conference of the ieee engineering in
medicine and biology society. IEEE, 2007, pp. 4656–4659.

24. Schmidt, P.; Reiss, A.; Duerichen, R.; Marberger, C.; Van Laerhoven, K. Introducing wesad, a multimodal
dataset for wearable stress and affect detection. Proceedings of the 20th ACM international conference on
multimodal interaction, 2018, pp. 400–408.

25. Chudy, N.S. Testing of wrist-worn-fitness-tracking devices during cognitive stress: A validation study 2017.
26. Giles, D.; Draper, N.; Neil, W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest.

European journal of applied physiology 2016, 116, 563–571.
27. Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J. Wearable

sensors: modalities, challenges, and prospects. Lab on a Chip 2018, 18, 217–248.
28. McDuff, D. Camera Measurement of Physiological Vital Signs. ACM Computing Surveys 2023, 55.

doi:10.1145/3558518/ASSETS/HTML/IMAGES/CC-BY.JPG.
29. Sabour, R.M.; Benezeth, Y.; De Oliveira, P.; Chappe, J.; Yang, F. Ubfc-phys: A multimodal database for

psychophysiological studies of social stress. IEEE Transactions on Affective Computing 2021.
30. Cheng, Y.C.; Chou, T.I.; Indikawati, F.I.; Winiarti, S.; Dahlan, A.; Selatan, R.; Yogyakarta, D. Stress Detection

from Multimodal Wearable Sensor Data. IOP Conference Series: Materials Science and Engineering 2020,
771, 012028. doi:10.1088/1757-899X/771/1/012028.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2024                   doi:10.20944/preprints202401.2121.v1

https://doi.org/10.1145/3558518/ASSETS/HTML/IMAGES/CC-BY.JPG
https://doi.org/10.1088/1757-899X/771/1/012028
https://doi.org/10.20944/preprints202401.2121.v1


18 of 19

31. Herranz Olazábal, J.; Wieringa, F.; Hermeling, E.; Van Hoof, C. Camera-Derived Photoplethysmography
(rPPG) and Speckle Plethysmography (rSPG): Comparing Reflective and Transmissive Mode at Various
Integration Times Using LEDs and Lasers. Sensors 2022, 22, 6059.

32. Yang, Z.; Wang, H.; Lu, F. Assessment of Deep Learning-Based Heart Rate Estimation Using Remote
Photoplethysmography Under Different Illuminations. IEEE Transactions on Human-Machine Systems 2022,
52, 1236–1246. doi:10.1109/THMS.2022.3207755.

33. Schneiderman, N.; Ironson, G.; Siegel, S.D. Stress and health: psychological, behavioral, and biological
determinants. Annu. Rev. Clin. Psychol. 2005, 1, 607–628.

34. Selye, H. Short letter. Nature 1936, 138, 32.
35. Dhama, K.; Latheef, S.K.; Dadar, M.; Samad, H.A.; Munjal, A.; Khandia, R.; Karthik, K.; Tiwari, R.; Yatoo,

M.I.; Bhatt, P.; Chakraborty, S.; Singh, K.P.; Iqbal, H.M.; Chaicumpa, W.; Joshi, S.K. Biomarkers in stress
related diseases/disorders: Diagnostic, prognostic, and therapeutic values. Frontiers in Molecular Biosciences

2019, 6. doi:10.3389/FMOLB.2019.00091.
36. Can, Y.S.; Arnrich, B.; Ersoy, C. Stress detection in daily life scenarios using smart phones and wearable

sensors: A survey. Journal of biomedical informatics 2019, 92, 103139.
37. Arsalan, A.; Anwar, S.M.; Majid, M. Mental stress detection using data from wearable and non-wearable

sensors: a review. arXiv preprint arXiv:2202.03033 2022.
38. Nath, R.K.; Thapliyal, H. Smart wristband-based stress detection framework for older adults with cortisol as

stress biomarker. IEEE Transactions on Consumer Electronics 2021, 67, 30–39.
39. Chan, S.F.; La Greca, A.M. Perceived stress scale (PSS). In Encyclopedia of behavioral medicine; Springer, 2020;

pp. 1646–1648.
40. Cheng, B.; Fan, C.; Fu, H.; Huang, J.; Chen, H.; Luo, X. Measuring and computing cognitive statuses of

construction workers based on electroencephalogram: a critical review. IEEE Transactions on Computational

Social Systems 2022, 9, 1644–1659.
41. Wang, X.; Li, D.; Menassa, C.C.; Kamat, V.R. Investigating the effect of indoor thermal environment on

occupants’ mental workload and task performance using electroencephalogram. Building and Environment

2019, 158, 120–132.
42. Abellán-Huerta, J.; Prieto-Valiente, L.; Montoro-García, S.; Abellán-Alemán, J.; Soria-Arcos, F. Correlation of

blood pressure variability as measured by clinic, self-measurement at home, and ambulatory blood pressure
monitoring. American Journal of Hypertension 2018, 31, 305–312.

43. Chen, Y.; Rao, M.; Feng, K.; Niu, G. Modified Varying Index Coefficient Autoregression Model
for Representation of the Nonstationary Vibration From a Planetary Gearbox. IEEE Transactions on

Instrumentation and Measurement 2023, 72, 1–12.
44. Shahid, M.M.; Agada, G.E.; Kayyali, M.; Ihianle, I.K.; Machado, P. Towards Enhanced Well-Being: Monitoring

Stress and Health with Smart Sensor Systems. 2023 International Conference Automatics and Informatics
(ICAI). IEEE, 2023, pp. 432–437.

45. Ihianle, I.K.; Machado, P.; Owa, K.; Adama, D.A.; Otuka, R.; Lotfi, A. Minimising redundancy, maximising
relevance: HRV feature selection for stress classification. Expert Systems with Applications 2024, 239, 122490.

46. Benezeth, Y.; Bobbia, S.; Nakamura, K.; Gomez, R.; Dubois, J. Probabilistic signal quality metric for reduced
complexity unsupervised remote photoplethysmography. 2019 13th International Symposium on Medical
Information and Communication Technology (ISMICT). IEEE, 2019, pp. 1–5.

47. Hassan, M.; Malik, A.; Fofi, D.; Saad, N.; Meriaudeau, F. Novel health monitoring method using an RGB
camera. Biomedical optics express 2017, 8, 4838–4854.

48. Selvaraju, V.; Spicher, N.; Wang, J.; Ganapathy, N.; Warnecke, J.M.; Leonhardt, S.; Swaminathan, R.; Deserno,
T.M. Continuous monitoring of vital signs using cameras: A systematic review. Sensors 2022, 22, 4097.

49. Lee, R.J.; Sivakumar, S.; Lim, K.H. Review on remote heart rate measurements using photoplethysmography.
Multimedia Tools and Applications 2023, pp. 1–30.

50. Abbas, L.; Samy, S.; Ghazal, R.; Eldeib, A.M.; ElGohary, S.H. Contactless Vital Signs Monitoring for Public
Health Welfare. 2021 9th International Japan-Africa Conference on Electronics, Communications, and
Computations (JAC-ECC). IEEE, 2021, pp. 183–186.

51. Yu, Z.; Li, X.; Zhao, G. Facial-video-based physiological signal measurement: Recent advances and affective
applications. IEEE Signal Processing Magazine 2021, 38, 50–58.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2024                   doi:10.20944/preprints202401.2121.v1

https://doi.org/10.1109/THMS.2022.3207755
https://doi.org/10.3389/FMOLB.2019.00091
https://doi.org/10.20944/preprints202401.2121.v1


19 of 19

52. Casado, C.Á.; Cañellas, M.L.; López, M.B. Depression recognition using remote photoplethysmography
from facial videos. IEEE Transactions on Affective Computing 2023.

53. Lokendra, B.; Puneet, G. AND-rPPG: A novel denoising-rPPG network for improving remote heart rate
estimation. Computers in biology and medicine 2022, 141, 105146.

54. Hasanpoor, Y.; Motaman, K.; Tarvirdizadeh, B.; Alipour, K.; Ghamari, M. Stress Detection Using PPG Signal
and Combined Deep CNN-MLP Network. 2022 29th National and 7th International Iranian Conference on
Biomedical Engineering (ICBME). IEEE, 2022, pp. 223–228.

55. Kirschbaum, C.; Pirke, K.M.; Hellhammer, D.H. The ‘Trier Social Stress Test’–a tool for investigating
psychobiological stress responses in a laboratory setting. Neuropsychobiology 1993, 28, 76–81.

56. Boccignone, G.; Conte, D.; Cuculo, V.; D’Amelio, A.; Grossi, G.; Lanzarotti, R.; Mortara, E. pyVHR: a Python
framework for remote photoplethysmography. PeerJ Computer Science 2022, 8, e929.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2024                   doi:10.20944/preprints202401.2121.v1

https://doi.org/10.20944/preprints202401.2121.v1

	Introduction
	Related Work
	Method
	Dataset and data processing
	Deep Learning Models
	Performance Evaluation

	Experimental Results
	Classification Results
	Performance analysis of the dl methods applied to the gt signal
	Performance analysis of the dl methods applied to the rppg signal


	Conclusion and Future Work
	References

