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Abstract: We construct hypergraphs to analyze functional brain connectivity, leveraging event-related
coherence in magnetoencephalography (MEG) data during the visual perception of a flickering
image. Principal network characteristics are computed for delta, theta, alpha, beta, and gamma
frequency ranges. Employing a coherence measure, a statistical estimate of correlation between
signal pairs across frequencies, we generate edge time series, depicting how an edge evolves
over time. This forms the basis for constructing an edge-to-edge functional connectivity network.
Emphasizing hyperedges as connected components in an absolute-valued functional connectivity
network, we focus on exploring these hyperedges in the context of individual variability. Our
coherence-based hypergraph construction specifically addresses functional connectivity among four
brain lobes: frontal, parietal, temporal, and occipital. This approach enables a nuanced exploration
of individual differences within diverse frequency bands, providing insights into the dynamical
nature of brain connectivity during visual perception tasks. The results furnish compelling evidence
supporting the hypothesis of cortico-cortical interactions occurring across varying scales. The
derived hypergraph illustrates robust activation patterns in specific brain regions, indicative of
their engagement across diverse cognitive contexts and different frequency bands. Our findings
suggest potential integration or multifunctionality within the examined lobes, contributing valuable
perspectives to our understanding of brain dynamics during visual perception.

Keywords: brain; magnetoencephalography (MEG); network; hypergraph; coherence.

1. Introduction

Understanding the intricacies of brain connectivity in response to diverse stimuli is crucial for
unraveling the mechanisms underlying information processing and decision-making within the brain.
This study delves into three essential forms of brain connectivity: structural, functional, and efficient
[1-4]. Structural connectivity entails the identification of anatomical neural networks, revealing
potential pathways for neural communication [5,6]. On the other hand, functional connectivity
explores active brain regions exhibiting correlated frequency, phase, and/or amplitude [7]. Finally,
effective connectivity utilizes information from functional connectivity to discern the dynamic flow of
information within the brain [8,9].

Measurement of effective and functional connectivity can be conducted in both the frequency
domain, employing methods such as coherence [10], and in the time domain, utilizing approaches like
Granger causality [4] or artificial neural network-based functional connectivity [11]. When a sufficiently
large population of neurons synchronizes, their electrical and magnetic activities become detectable
outside the skull through techniques like electroencephalography (EEG) and magnetoencephalography
(MEG) [12]. EEG measures return or bulk currents outside the neuron (secondary currents), while MEG
captures ionic currents inside the neuron (primary currents). Notably, MEG holds a distinct advantage
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over EEG due to its superior spatial resolution, rendering it an exceptional tool for investigating and
characterizing interactions between distinct brain regions [13].

To study functional connectivity, some researchers use approaches borrowed from graph theory
[14]. Using connections between the biorhythms of the brain in its various parts, a model of a complex
network is recreated, in which parts of the brain are considered as nodes, and the connection forces
between them are considered as links [15,16]. Using this approach makes it possible to identify not
only individual cognitive differences between subjects [17], but also helps to diagnose some diseases
at an early stage [18-20] and also monitor the aging process [21-24]. One of the important measures to
quantify neuronal synchrony is event-related coherence [10,25,26]. It examines the frequency-domain
relationship between two signals, indicating the degree to which their spectral components are
synchronized. Essentially, it is an assessment of the constancy of the relative amplitude and phase
between two signals within a given frequency range. There is a linear mathematical method that
creates a symmetrical matrix, devoid of any directional information. Identical signals produce a
coherence value of 1, while the coherence value approaches 0 as the difference between the signals
in question increases. Since then, coherence has been used in many brain connectivity studies in
patients and healthy individuals, including but not limited to studies of working memory [27], brain
lesions [28], hemiparesis [29], resting state networks [30], schizophrenia [31,32], favorable responses to
panic medications [33], and motor imagery [34]. Due to the individuality of human brains, different
patterns of coherent neuronal activity were found in different subjects. For example, the presentation
of flickering visual stimuli evokes in subjects coherent responses of the visual cortex to the flicker
frequency and its harmonics with different sizes of coherent neural networks [35,36].

To study functional connectivity in this work we use hypergraph analysis, a method from dynamic
graph theory [37]. We examine individual differences in functional connectivity networks in MEG data
obtained while subjects view a flickering image. The method is based on a generalization of standard
graph theory methods. Specifically, by defining a standard functional network of connectivity between
nodes over successive periods, we create a set of edge time series, that is, a vector of how an edge
changes over time. An edge-to-edge functional connectivity network is constructed by processing
these edge time series similarly to the node time series in the first stage and computing the connections
between each pair of edges. Here, we focus on “hyperedges,” which are the connected components of
an end-to-end absolute-valued functional connectivity network.

To create the networks, we use the coherence measure defined as a statistical estimate of the
correlation between pairs of signals as a function of frequency. The brain generates electromagnetic
activity in a wide frequency range, from slow waves of 0.5 Hz to very fast waves of 500 Hz or more [38].
These rhythms are classified according to their frequency and are assigned Greek letters. We consider
the five main frequency bands, each with distinctive characteristics. Delta waves (0—4 Hz) are the
slower rhythms, have a greater amplitude, and predominate in deep sleep states. Theta rhythms (4-7
Hz) are present both during sleep and in waking states. Alpha rhythms (8-13 Hz) are characteristic
of the waking state, predominantly in the occipital area. Beta waves (15-30 Hz) are higher frequency
rhythms. Gamma rhythms (30-90 Hz) are the fastest, indicative of an active and alert cerebral cortex.
The coherence measures correlations within discrete frequency bands for selected epoch lengths and
is mathematically independent of signal amplitude [39]. In this work, we construct a hypergraph of
functional connectivity based on coherence between four brain lobes: frontal, parietal, temporal, and
occipital.

2. Materials and Methods

In this study, we analyze the MEG data of 15 healthy subjects (age: 17 to 64 years; 10 males)
obtained in the experiment based on a flickering image paradigm [40] at the Center for Biomedical
Technology of the Universidad Politécnica de Madrid, Spain. The MEG data have been downloaded
from https:/ /zenodo.org/record /4408648#.X-72Ud Yo-Cc.
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2.1. Stimulus

The employed stimulus consisted of presenting an image of a gray square whose pixels’ intensity
was varied between different shades of gray. Brightness modulation of pixels was performed using a
harmonic signal with a frequency of f;; = 6.67 Hz and a maximum amplitude of 50% of the RGB color
model, i.e., between black (0) and grey (127). This frequency was chosen due to its ability to generate a
prominent spectral response in the visual cortex [35].

2.2. Experimental Protocol

The first stage of the experiment consisted of presenting a static square with a red dot in the
center, to which the participants were instructed to maintain their gaze for 120 seconds. After a brief
break, the modulated stimulus was presented, with the square changing the grey scale. The latter was
presented 2 to 5 times at intervals of 120 s, with a 30-s break between each presentation.

2.3. Signal Analysis in Brainstorm

The signal analysis was performed using the Brainstorm software. Brainstorm is a collaborative,
open-source application based on MATLAB dedicated to processing and analyzing brain recordings
obtained by different brain imaging techniques [41]. The tools included, along with the interface,
facilitated the creation of the scripts used in this article.

2.4. Head Model Adjustment

The default Brainstorm head model was adjusted to the head points recorded using a Polhemus
Fastrak system, with 2% deformation and automatic refinement of head points.

2.5. Signal Processing

Signal analysis involved reading MEG data, and applying a Notch filter to eliminate 50-Hz power
line frequencies and their harmonics. Artifacts from electrooculogram (EOG) and electrocardiogram
(ECG) signals were automatically identified and manually reviewed to ensure the inclusion of any
potentially omitted artifacts. Signal-space projection (SSP) methods were applied to correct artifacts by
order.

2.6. Event Segmentation

The signals were segmented into 120-s epochs for two experimental steps: step B (background, no
modulation) and step F (flickering image). The signal recorded during the B section was used as a
reference signal. These epochs were further divided into 3-s trials.

2.7. Source Reconstruction

Reconstruction of electrical activity in the brain from MEG measurements was done by creating a
forward model and a lead field matrix. Brainstorm’s overlapped spheres method was used, maintaining
the recommended 15000 cortical sources. The inverse solution was calculated using standardized
low-resolution electromagnetic tomography (sSLORETA).

2.8. Signal Coherence

Network construction was based on coherence calculated between signals, a mathematical
measure quantifying synchronization patterns between spatially separated sensors or between brain
areas [42]. The strength of network interactions was estimated according to coherence between 8 brain
areas (frontal left FL, frontal right FR, occipital left OL, occipital right OR, parietal left PL, parietal
right PR, temporal left TL, temporal right TR). The 15000 brain sources were grouped into these 8
lobes using Brainstorm’s segmentation model, PALS-12 Lobes with 10 structures, excluding the insula,
resulting in 8 structures or vertices.
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The stored vertices were used to average signals within each lobe, reducing complexity to 8
signals. The square magnitude coherence was calculated between the time series of each lobe with
the rest, for both F and B trials. This resulted in an 8 x 8 coherence matrix with 1s on the main
diagonal for each of the five frequency bands (delta, theta, alpha, beta, gamma), as illustrated in Fig.
1. Subsequently, the absolute difference between the coherence values of F and B was obtained and
normalized to the B activity giving Event-Related Coherence (ERC) as

|Cr — Cg|

ERC =
Cp

1)

2.9. Visualization with BrainNet

The output consisted of a tensor with dimensions 8 x 8 x 15. The average matrix of all
subjects was calculated for each frequency band, and these matrices were saved in ".edge" text
files for visualization with BrainNet Viewer. The latter is a tool that facilitates the visualization of
structural and functional connectivity patterns in brain networks [43]. The surface template used
was "BrainMesh_ICBM152_smoothed.nv", included in the "BrainNetViewer_20191031" folder when
downloaded.

A "Node.node" text file was created with the format defined by BrainNet Viewer to set the position
of nodes in the brain figure. The ".edge" files for each frequency band obtained earlier were used to
display interactions.

2.10. Fourier Analysis

Fast Fourier Transform (FFT) was used to show the dominant frequency of time series. Following
[35] brain study with the same stimulus, frequency tags were identified at the blink frequency (6.67 Hz)
and its harmonics. It was noted that frequency tags were more pronounced in the second harmonic
(13.33 Hz) than in the first.

2.11. Graph Construction

Coherence matrices showed coefficients between 0.1 and 2. A threshold ¢ was set for graph
construction, varying its value between 0.1 and 1.25. An analysis was conducted to assess how graph
characteristics change when including interactions above ¢.

Various centrality measures were calculated, such as degree centrality (number of edges [44]),
betweenness centrality (fraction of shortest paths passing through a node [45]), and eigenvector
centrality (importance of a node considering the importance of its neighbors [44]). Connected
components of the graphs were explored [45]. The shortest path distances between all node pairs were
calculated, and cycles in the graph were identified, and defined as connected graphs in which each
vertex has degree 2 [46].

A threshold value of 0.45 was decided upon, as lower values show coherence interactions that
include noise, and values higher than this completely lose one of our frequency bands.

With the determined threshold, graphs explicitly showing the mentioned measures were obtained
using MATLAB functions.

2.12. Hypergraph Construction

To contextualize the analysis of hypergraphs, we define the elements of graph theory used to
construct hypergraphs formed by nodes and edges, where nodes denote brain regions, or groups
of voxels, and edges denote correlations in activity between pairs of nodes over time. Significant
correlation in activity between pairs of edges over time is denoted as links. In this context, we define
hyperedge as a group of links connecting two or more edges with significantly correlated temporal
profiles. Finally, a set of hyperedges forms a hypergraph.
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The algorithm of [47] was used for part of the hypergraph visualization. The incidence matrix
was given as input. The obtained representations included the hypergraph, the incidence matrix in
linear form, star expansion, and the adjacency tensor.

Hypergraph characteristics were obtained along with some matrix representations of the same.

2.12.1. Degrees of vertices and hyperedges

The degrees of the vertices of the hypergraph were calculated. It was determined as Deg(v) =
|E(v)| which is the number of vertices incident on v. The degree of an edge is the number of vertices it
contains, that is, Deg(e) = |e|.

2.12.2. 2-Section of the hypergraph

The 2-section of the hypergraph (H), was obtained, which vertices are the vertices of H and
where two distinct vertices form an edge if and only if they are in the same hyperedge of H [48].

2.12.3. Adjacency and node stars

Adjacency between vertices is found when at least one hyperedge contains the two vertices [14].
From here you can observe the stars of the nodes. Which are defined as the collection of hyperedges
incident on a node i, (i) = {h|i € h} is called the star of i.

2.12.4. Incidence between hyperedges

The incidence between the hyperedges was also considered. It is defined that two hyperedges
h; and h; are said to be incident if h; N h; # @, i.e,, if they have at least one node in common [14].
The matrix of incidence can be obtained directly from the adjacency matrix I(H) = A(B(H)) of the
bipartite diagram B(H).

2.12.5. Relationship frequency matrix

The hypergraph relationship frequency matrix is another useful matrix that is defined as
. deg(i), ifi=j
Aijry = eS0T @
|hli,j € h|, ifi# ]

That is the result of

A;i(H) = I(A)  I[(A)

i
2.12.6. Transverse and independent vertex sets

A set of vertices, T, is transversal if for each edge of our hypergraph, there is a vertex in T that is
incident on that edge. The hypergraph is characterized with a transversal number T(H), the size of the
transversal minima of the hypergraph [48][46]. The independent set, S, is a set of vertices that do not
contain an edge as a subset (in other words, there does not exist an edge incident only to vertices in S).
This set is obtained from a hypergraph H = (V, E) where the set T is a transversal, then V — T is an
independent set [48][46].

2.12.7. Coincidence between edges and coverage numbers

The coincidence between the edges of the hypergraph was examined. A set of edges, M, is said
to be matching if the edges in M are pairwise disjoint [48][46]. Additionally, the coverage number
p(H) was determined. A set, C, of edges is a covering if for every vertex in our hypergraph, there is an
edge in C that is incident to that vertex [48]. The clique coverage number §(G) was calculated, which
indicates the size of the smallest set of cliques that exhausts the vertices of the graph [46].

doi:10.20944/preprints202401.1926.v1
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2.12.8. Line graph

The line graph of the hypergraph is also presented. Given our hypergraph H = (V, E), the line
graph, L(H), is the one whose vertex set is E, where a pair of vertices ¢; and ¢; in L(H) are adjacent
when their corresponding edges in the hypergraph share an incident vertex (when e; N e, # @)[46].

L(H) = (E,D): (E,Ej) €D <= ENE; #Q
The nature of the intersection of the hypergraph families was characterized. Intersecting families are
said to exist if all pairs of edges have a non-empty intersection, or equivalently if L(H) is a complete
graph. With this analysis, we can know if the hypergraph complies with the Helly property, i.e., if H’
is a star for every intersecting subfamily H' of H.

3. Results and Discussion

3.1. Coherence matrices

Coherence matrices were obtained for each frequency band, presented in the BrainNet Viewer
template (Figure 1). One can observe strong coherence between temporal right and left lobes for
delta waves (Figure 1a), frontal right and parietal and occipital right lobes for theta waves (Figure 1b),
frontal left/right and parietal right/left lobes for alpha waves (Figure 1c), frontal right and parietal left
lobes for beta waves (Figure 1d), and parietal and occipital lobes for gamma waves (Figure 1e). These
findings are most effectively illustrated in the left panel of the sections of Figure 1, specifically in the
brain representation. The peak coherence values are prominently depicted in the color bar, appearing
as a distinct shade of dark red. In the matrix, the color corresponding to the highest coherence value is
represented as yellow.

The presence of delta band oscillatory activity, commonly associated with slow-wave sleep [49],
raises the question of whether delta band oscillations observed during both slow-wave sleep and
wakeful states signify the same underlying phenomenon. Our study reveals a noteworthy coherence
in delta activity. Research has connected delta band oscillations in specific cortical areas with attention
[50]. Thus, our results suggest that coherence may find support in the context of these findings.

Additionally, it is noteworthy that our representation emphasizes the heightened connectivity
of low-frequency components compared to high frequencies, aligning with previous observations by
Salvador et al. [51]. This depiction offers a clearer insight into the variations in connectivity between
lobes within each frequency band.
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Figure 1. Coherence networks with their respective matrices for (a) delta, (b) theta, (c) alpha, (d) beta,
and (e) gamma waves. In the matrices, the lobes in order are: Left frontal (1), right frontal (2), left
occipital (3), right occipital (4), left parietal (5), right parietal (6), left occipital (7 ), right occipital (8).
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3.2. Power spectra

Figure 2 illustrates the modulated activity of each brain lobe, i.e. the absolute value of the signal

representation in the frequency domain.
a) b) c) d)
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Figure 2. FFT analysis of modulated activity in different brain lobes: (a) left frontal, (b) right frontal,
(c) left occipital, (d) right occipital, (e) left parietal, (f) right parietal, (g) left temporal, and (h) right
temporal. The dotted lines marked by letters M and H indicate the modulation frequency f;; and its
second harmonic 2f,, respectively.

The modulation frequency f,, = 6.67 Hz (M) is distinctly discernible in the power spectrum of
the temporal right lobe. Simultaneously, its second harmonic 2f;, = 13.34 Hz (H) is evident in the
power spectra of both occipital and parietal lobes, spanning both the right and left hemispheres. This
observation aligns cohesively with findings reported by Chholak et al. [40].

3.3. Network characteristics

Coherence allowed the comparison of the maximum coefficients achieved in each frequency band,
ranging from 0 to 2.468. A general decrease in the coherence coefficient between nodes was observed
with increasing frequency. As previously highlighted, our graph analyses encompass degree centrality,
betweenness centrality, eigenvalue centrality, connected components, shortest-path distances, number
of cycles, and node degrees.

The dynamics of the graph measurements are illustrated in Figures 3-7, where we plot the
coefficients with respect to coherence threshold ¢ for different brain waves (delta Figure 3; theta Figure
4; alpha Figure 5; beta Figure 6; gamma Figure 7). The lobes are represented with different colors. The
graphical representations of shortest path distances and numbers of cycles depict averages in the case
of distances and totals in the case of cycles.


https://doi.org/10.20944/preprints202401.1926.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2024 doi:10.20944/preprints202401.1926.v1

9 of 23
Analysis Changing Threshold - Delta
a b c d
) Degree Centrality ) Betweenness Centrality ) Eigenvector Centrality ) Connected Components
8 am 15 0.3 8
— : -
bl - 0.25 =
6 e——— - . - = 6
S e— 10 - - 0.2 - =
- - - - -
oF - — o — 5 015 = e,
g -—= a m - o 0. —_ 3
-— 5 - oo — .- 0.1 / —?__' .
2 R ==t e — 7~ 2 -
— — 0.0 — —_—
0 0 0 0
0 0.5 1 15 0 0.5 1 15 0 0.5 1 1.5 0 0.5 1 15
o [oa o o
e) Shortestpaths distances 10000 Number of Cycles 9 8 Degree of nodes
e - 8000 | m— 6 ® FRONTAL LEFT
' - ®  FRONTAL RIGHT
” » 6000 - - - OCCIPITAL LEFT
i ° o ®  OCCIPITAL RIGHT
5 1 - S . g4 " — ®  PARIETAL LEFT
O 4000 —— ®  PARIETAL RIGHT
- ® TEMPORAL LEFT
0.5 - 2 — ® TEMPORAL RIGHT
2000
0 0 S— 0
0 0.5 1 0 0.5 1 0 0.5 1 1.5
o a o

Figure 3. Network characteristics versus coherence threshold value oy, for delta waves: (a) degree
centrality deg., (b) betweenness centrality b., (d) connected components, (e) shortest-path distances d,
(f) number of cycles Cycles, and (g) node degree deg.
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Figure 4. Network characteristics versus coherence threshold value oy, for theta waves: (a) degree
centrality deg., (b) betweenness centrality b, (d) connected components, (e) shortest-path distances d,
(f) number of cycles Cycles, and (g) node degree deg.
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(f) number of cycles Cycles, and (g) node degree deg.
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Figure 6. Network characteristics versus coherence threshold value oy, for beta waves: (a) degree
centrality deg., (b) betweenness centrality b., (d) connected components, (e) shortest-path distances d,
(f) number of cycles Cycles, and (g) node degree deg.
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Figure 7. Network characteristics versus coherence threshold value oy, for gamma waves: (a) degree
centrality deg., (b) betweenness centrality b., (d) connected components, (e) shortest-path distances d,
(f) number of cycles Cycles, and (g) node degree deg.

One can see that for each frequency range, there is a coherence threshold value of ¢y, at which
centrality measures, shortest-path distances, and degree of nodes undergo significant changes. This
threshold value depends on the wave frequency. Specifically, for delta and theta waves oy, ~ 0.5, for
alpha waves oy, = 0.25, for beta waves oy, ~ 0.2, and for gamma waves oy, ~ 0.15. This means that
oy, decreases as the wave frequency increases, i.e., the brain network of functional connectivity is more
stable in a low-frequency range.

In the degree centrality panel, it is notable that in the delta frequencies (Figure 3a), when oy, values
are below 0.5, certain lobes exhibit a degree centrality of 8. However, as 0y, values increase, a decrement
in degree centrality is observed. Interestingly, the left parietal lobe becomes the first node to be entirely
disconnected, a disconnection that manifests earlier at higher frequencies (Figures 5a-7a), where lower
coefficients are evident even at low ¢y, values. Contrastingly, betweenness centrality experiences a
more rapid decay to 0 at high frequencies (Figures 5b—7b) compared to lower frequencies (Figures
3b—4b). In the case of eigenvalue centrality, the coefficient stabilizes around an approximate value of 1.3,
with a longer duration needed to reach this value at lower frequencies (Figures 3c—4c) than at higher
ones (Figures 5¢—7c). Moreover, it is crucial to note that node behaviors exhibit frequency-dependent
variations.

Examining connected components provides insights into the formation of bins. At delta
frequencies (Figure 3d), nodes remain connected across most oy, values until approximately 1.2,
when a new bin emerges due to the disconnection of the left parietal lobe.

Figure 8 illustrates the results of the analysis of degree centrality in the brain network of the 8
lobes for the different frequency ranges. The node sizes indicate their importance as a function of edge
weights. One can see that the connectivity is stronger in a low-frequency range, i.e., for delta and theta
waves, and very weak for beta and gamma waves (Figure 8d and Figure 8e, respectively). Centrality,
as extensively documented in the electrophysiological literature, has consistently underscored the
non-uniform distribution of coherence across frequencies [52]. It has been well-established that
different systems of brain regions may exhibit varying levels of coherence at distinct frequencies [51].
The centrality patterns also demonstrate frequency-specific nuances. Specifically, at lower frequencies,
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centrality predominantly manifests in the frontal lobes, with noteworthy lateralization observed in
theta waves (Figure 8b). In the case of beta waves (Figure 8d), centrality becomes less distinct, and
coefficients show a tendency to converge among nodes. Notably, gamma waves (Figure 8e) reveal a
shift in centrality, now prominently observed in the occipital lobe.

Figure 9 displays another representation of the node degrees for the lobes. One can see that the
nodes exhibit more uniform coherence-related connections considering low-frequency bands (Figure
9a-b). Note that in the higher-frequency range (Figure 9c-e), the connections are weaker, depending on
the threshold chosen. However, the connections in the delta band (Figure 9a) are smaller compared
to the theta network (Figure 9b), which is completely connected. Notably, a more evident alteration
is evident in the alpha waves (Figure 9c), where only the right frontal lobe maintains a degree of 7,
while the other lobes experience a reduction in connections. Within the beta graph (Figure 9d), both
occipital lobes, along with the left frontal and left temporal lobes, cease to participate entirely, while
the rest show a grade of 1. Meanwhile, in the gamma waves (Figure 9e), engagement diminishes for
the left frontal, right frontal, and right temporal lobes, with a noteworthy contribution reemerging
from the occipital lobes. Particularly, the right occipital lobe demonstrates the highest degree, marked

at 2, within this band.
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Figure 8. Degree centrality for (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma waves at o = 0.45.
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Figure 9. Node degrees for (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma waves. FL — Left
frontal, FR — Right frontal, OL — Left occipital, OR — Right occipital, PL — Left parietal, PR — Right
parietal, TL — Left temporal, TR - Right temporal.

Figure 10 represents the results of the analysis of the betweenness centrality coefficient, which
quantifies the importance of a node in terms of the geodesics passing through it. Again, the connections
at higher frequencies are weaker (Figure 10c-d) than at lower frequencies (Figure 10a-b). One can also
see that the nodes with higher betweenness centrality vary in different frequency bands. In both the
beta and gamma graphs (Figure 10c-d), the nodes exhibit a uniform and reduced size. Interestingly, at
the delta frequency, the nodes with the highest degree centrality in the graph (Figure 8a; specifically,
the left frontal, right frontal, left temporal, and right temporal lobes) undergo a reduction in size in
the betweenness centrality graph (Figure 10a). Contrarily, in the theta graph (Figure 10b), a marked
enlargement is observed in the left frontal lobe compared to the other lobes, presenting a notable
contrast to the sizes depicted in the degree centrality graph (Figure 8b), where it initially appeared to
be the smallest.
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Figure 10. Betweenness centrality for (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma waves.

Eigenvector centrality which measures the importance of a node in terms of the importance of
its neighbors, is presented in Figure 11. Node sizes indicate their importance, which shows the same
patterns as those seen in Figure 8. Whereas, for beta waves, the nodes show the same size.
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Figure 11. Eigenvector centrality for (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma waves.

Figure 12 depicts the connected graph components, i.e., the subset of network nodes such that
there is a path from each node in the subset to any other node in the same subset [45]. The representation
of connected graph components can provide valuable insights into the collaborative dynamics of
distinct brain regions, particularly within different frequency ranges. By examining the functional
connectivity patterns captured within these components, we gain a nuanced understanding of how
various regions can coordinate their activities across the spectrum of brain oscillations.
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Figure 12. Connected graph components for (a) delta, (b) theta, (c) alpha, (d) beta, and (e) gamma
waves. Right frontal lobe (FR), Left frontal lobe (FL), Right parietal lobe (PR), Left parietal lobe (PL),
Right temporal lobe (TR), Left temporal lobe (TL), Right occipital lobe (OR), Left occipital lobe (OL).

Distances between nodes are represented as 8 x 8 matrices (0p,0p,ap,Bp, YD), showing the shortest
path distances. When the nodes are not connected, the distance is infinite. The largest value is 2 node
distance only seen in the alpha range.
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Figure 13 presents cycles formed in the networks for three frequency bands: delta, theta, and
alpha. A cycle is a connected graph in which each vertex has degree 2 [46]. The total number of
cycles found for that graph is also shown. The theta graph (Figure 13b) is characterized by complete
connectivity, thereby revealing the total number of cycles present within the network. In contrast, both
the alpha and delta graphs (Figure 13c-a, respectively) exhibit fewer connections. This aligns with the
broader concept in the literature suggesting that slower rhythmic patterns tend to encompass a more
global network configuration compared to their faster counterparts [53,54].
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Figure 13. Cycles of the graphs for (a) delta, (b) theta, and (c) alpha waves.

=

3.4. Hypergraphs

Figure 14 represents the hypergraph constructed on the base of a chosen threshold in different
forms with colors corresponding to different frequency bands. In particular, the hypergraph is shown
as a network in Figure 14a, a star expansion in Figure 14b with connections for each node, and in a
matrix form in Figure 14c. While all 8 lobes are coupled in the high-frequency ranges of the delta,
theta, and alpha waves, only 4 lobes (FR, TR, PL, and PR) are coupled in the beta waves, and 5 lobes
(TL, PL, PR, OL, and OR) in gamma waves.
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Figure 14. Hypergraph representation as (a) network, (b) star expansion, and (c) adjacency matrix.

The analysis was carried out following the basic properties of hypergraphs. The degrees of the
vertices and hyperedges are given in Table 1, where Deg(v) = |E(v)]| is the number of vertices incident
on v, and the degree of an edge Deg(e) = |e| is the number of vertices it contains.

Table 1. Vertices and hyperedges degrees.

Vertice |[E(w)| Hyperedge e
Frontal Left 3 Delta 8
Frontal Right 4 Theta 8
Occipital Left 4 Alpha 8
Occipital Right 4 Beta 4
Parietal Left 5 Gamma 5
Parietal Right 5
Temporal Left 4
Temporal Right 4

The 2-section of the hypergraph is presented in Figure 15, where FL, FR, TL, TR, PL, PR, OL, OR
constitutes the maximum clique in the 2-section, and it is also an edge in the hypergraph. Three of the
hyperedges in the hypergraph are maximal cliques, and all nodes in the hypergraph are adjacent due
to the definition of adjacency in hypergraphs. An all-to-all connectivity is shown by the 2-section of
the hypergraph, i.e., that all nodes are interconnected. This is due to the presence of at least one lobe
participating in both frequency bands. This underscores that certain brain regions are active across
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multiple contexts or tasks associated with different frequency bands. This observation implies the
potential existence of some form of integration or multifunctionality within the lobes.

Figure 15. 2-section of the hypergraph.

A star, as mentioned earlier, denotes a pattern where a central vertex, representing in this case,
a cerebral lobe, is intricately connected to multiple peripheral vertices, symbolizing different brain
frequency ranges. This graphical representation is valuable as it effectively portrays the intricate
relationship between a specific cerebral lobe and its involvement across diverse frequency bands. The
presence of stars within the graph signifies that the central cerebral lobe exhibits activation across
various cognitive conditions or mental states, indicative of its multifunctional nature.

The stars of each lobe are the following:

Left Frontal Lobe (node 1): Delta, theta, alpha.

- Right Frontal Lobe (node 2): Delta, theta, alpha, beta.

- Left Occipital Lobe (node 3): Delta, theta, alpha, gamma.
Right Occipital Lobe (node 4): Delta, theta, alpha, gamma.
Left Parietal Lobe (node 5): Delta, theta, alpha, beta, gamma.
Right Parietal Lobe (node 6): Delta, theta, alpha, beta, gamma.
Left Temporal Lobe (node 7): Delta, theta, alpha, gamma.
Right Temporal Lobe (node 8): Delta, theta, alpha, beta.

Furthermore, the identification of parietal lobes emerges as noteworthy, given their coordination
across all frequency bands. Correlations between frequencies have been observed in previous studies
[55] and biophysical models have been proposed to explain interactions among different frequencies,
such as theta and gamma in [56]. However, further research, such as the current study, is necessary to
elucidate a potential coupling between the mechanisms generating these distinct frequencies.

The incidence matrix I(H) is obtained directly from the adjacency matrix A(B(H)) of the bipartite
diagram B(H):
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The frequency matrix of relations of H, A(H), is
33333333
343 3 4 4 3 4
33 4 4 4 4 4 3
33 3 4 4 4 4 3
A =13 4 4 455 4 4 @
34 4 45 5 4 4
33 3 4 4 4 4 3
343 3 4 4 4 4

All hyperedges are included as a part of another hyperedge. Multiple hyperedges are only found
in the delta, theta, and alpha regions containing the same nodes. The set of vertices T = LP, RP is a
transversal since they are included in all edges. The transversal number is T(H) = 1 with the minimum
transversals being LP and RP.

From the set of vertices, removing T yields an independent set S = LE, RF, LO, RO, LT, RT, as
illustrated in Figure 16. The edges of the hypergraph are connected, sharing at least 1 vertex all of
them, so there is no set of coincident edges. This satisfies the coincident/transverse relation, since
IT| > |M|=1>0.

Figure 16. Transversal of the hypergraph for delta (red), theta (blue), alpha (green), beta (magenta),
and gamma (yellow) waves.

The set of delta, theta, alpha, beta, and gamma waves is a cover since all edges are represented by
at least one hyperedge.
FI,FD,0I1,0D,PI,PDTI, TD € 4,

FI,FD,0I,0D,PI,PD,TI, TD €6,
FI,FD,0I,0D,PI,PD,TI, TD € a,
FD,PI,PD,TD € B,
OI,0D,PI,PD,TI € 1.

Therefore, the coverage number p(H) of the hypergraph is

p(H)=1.
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The clique cover number 6(G) of the graph G is also
0(G) = 1.

Figure 17 represents the line graph. The vertices are linked because they have a hyperedge
in common. It is satisfied that (H), = L(H*). This means that the 2-section of a hypergraph is
isomorphic to the line graph of the dual of the hypergraph. While the line graph offers a straightforward
and overarching perspective on the interconnections among hyperedges, the 2-section delves into
greater detail by incorporating both hyperedges and individual elements within a unified framework.
However, it upholds the previously mentioned implications.

{ Betﬁ
S

Figure 17. Line graph.

The evaluation of the intersecting families shows that they are non-empty, all hyperedges being
incident, i.e.

56 = {FL,FR,TL, TR, PL,PR,OL,OR} # @ 5)
0N« = {FL,FR,TL, TR, PL, PR,OL,OR} # @ (©6)
«Np = {FR, TR, PL, PR,OL,OR} # @ )
BN = {PL PR,PR} £ ®
yN6é = {TL,PL,PR,OL,OR} # @ ©)

The line graph is complete. All stars are intersecting families. Fulfilling this condition, H is a
Helly hypergraph. This satisfies that if H is Helly and has no empty edges, then 7(H) = 6(L(H)).

4. Conclusions

In this paper, we conducted a comprehensive hypergraph analysis of functional connectivity
based on event-related coherence using MEG data obtained from visual perception experiments.
By specifically examining individual differences within diverse frequency bands, we developed
a coherence-based hypergraph to investigate functional connectivity among different brain lobes,
namely frontal, parietal, temporal, and occipital. Our findings provide support for the hypothesis
that cortico-cortical interactions may occur at various scales. The resulting hypergraph reveals robust
activation patterns in specific brain regions across diverse cognitive contexts associated with different
frequency bands, suggesting potential integration or multifunctionality within these lobes.

The identification of stars in our graphical analysis emphasizes the multifunctional nature
inherent in the central lobes of the brain. These lobes exhibit close connections to peripheral vertices,
representing distinct frequency ranges within the brain. This perspective effectively highlights the
varied engagement of specific lobes in diverse cognitive or mental states. Moreover, the central role
played by the parietal lobes in coordinating across all frequency ranges underscores the significance of
information integration in various cognitive processes.
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While prior studies have observed correlations between frequencies and proposed biophysical
models to explicate interactions, our study emphasizes the need for additional research to unravel
potential connections between mechanisms generating different frequencies. Furthermore, we contend
that delving into hypergraph visualizations with a concentrated exploration of finer-grained neural
ensembles or smaller regions of interest (ROIs) can unveil captivating dynamics worthy of scholarly
investigation.

Author Contributions: N.P.S.: investigation, formal analysis; R.J.R.: resources, project administration, original
draft preparation; A.N.P.: conceptualization, methodology, review and editing.

Conlflicts of Interest: “The authors declare no conflicts of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to

publish the results’.

References

1. Friston, K.J.; Frith, C.D.; Liddle, P.F; Frackowiak, R.S. Functional connectivity: the principal-component
analysis of large (PET) data sets. |. Cereb. Blood Flow Metab. 1993, 13, 5-14.

2. Greenblatt, R.E.; Pflieger, M.E.; Ossadtchi, A.E. Connectivity measures applied to human brain
electrophysiological data. J. Neurosci. Methods 2012, 207, 1-16.

3. Greenblatt, R.E.; Pflieger, M.E.; Ossadtchi, A.E. Review of advanced techniques for the estimation of brain

connectivity measured with EEG/MEG. Comput. Biol. Med. 2011, 41, 1110-1117.

4. Hramov, A.E.; Frolov, N.S.; Maksimenko, V.A.; Kurkin, S.A.; Kazantsev, V.B.; Pisarchik, A.N. Functional
networks of the brain: from connectivity restoration to dynamic integration. Phys. Uspekhi 2021, 64, 584-616.

5. Le Bihan, D.; Mangin, J.F.; Poupon, C. snd Clark, C.A.; Pappata, S.; Molko, N.; Chabriat, H. Diffusion
tensor imaging: concepts and applications. J. Magn. Reson. Imaging JMRI 2001, 13, 534-546.

6. Wedeen, VJ].; Wang, R.P.,; Schmahmann, ].D.; Benner, T.; Tseng, W.Y.I; Dai, G.; Pandya, D.N.; Hagmann, P.;
D’Arceuil, H.; de Crespigny, A.J. Diffusion spectrum magnetic resonance imaging (DSI) tractography of
crossing fibers. Neurolmage 2008, 41, 1267-1277.

7. Towle, V.L.; Hunter, ].D.; Edgar, ].C.; Chkhenkeli, S.A.; Castelle, M.C.; Frim, D.M.; Kohrman, M.; Hecox, K.
Frequency domain analysis of human subdural recordings. J. Clin. Neurophysiol. 2007, 24, 205-213.

8. Cabral, J.; Kringelbach, M.L.; Deco, G. Exploring the network dynamics underlying brain activity during
rest. Prog. Neurobiol. 2014, 114, 102-131.

9. Horwitz, B. The elusive concept of brain connectivity. Neurolmage 2003, 19, 466—470.

10.  Bowyer, S. Coherence a measure of the brain networks: past and present. Neuropsychiatr. Electrophysiol.
2016, 2, 1.

11. Frolov, N.; Maksimenko, V.; Liittjohann, A.; Koronovskii, A.; Hramov, A. Feed-forward artificial neural

network provides data-driven inference of functional connectivity. Chaos 2019, 29, 091101.

12. Héamaldinen, M.; Hari, R.; Ilmoniemi, R.J.; Knuutila, J.; Lounasmaa, O.V. Magnetoencephalography —
theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod.
Phys. 1993, 65, 413.

13. Burgess, R.C. Magnetoencephalography for localizing and characterizing the epileptic focus. Handb. Clin.
Neurol. 2019, 160, 203-214.

14. Boccaletti, S.; De Lellis, P.; del Genio, C.; Alfaro-Bittner, K.; Criado, R.; Jalan, S.; Romance, M. The structure
and dynamics of networks with higher order interactions. Phys. Rep. 2023, 1018, 1-64.

15.  Bullmore, E.; Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional
systems. Nat. Rev, Neurosci. 2009, 10, 186-198.
16. Friston, K.J. Functional and effective connectivity: a review. Brain Connectivity 2011, 1, 13-36.

17. Tavor, I; Jones, O.P,; Mars, R.; Smith, S.; Behrens, T.; Jbabdi, S. Task-free MRI predicts individual differences
in brain activity during task performance. Science 2016, 352, 216-220.
18. Zhang D, RM. Disease and the brain’s dark energy. Nat. Rev. Neurol. 2010, 6, 15-28.

19.  Greicius, M. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 2008,
21, 424-430.
20. Dennis, E.L.; Thompson, PM. Functional brain connectivity using fMRI in aging and Alzheimer’s disease.

Neuropsychol. Rev. 2014, 24, 49-62.


https://doi.org/10.20944/preprints202401.1926.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2024 doi:10.20944/preprints202401.1926.v1

22 0f 23

21. Tomasi, D.; Volkow, N.D. Aging and functional brain networks. Mol. Psychiatry 2012, 17, 549-558.

22. Contreras, ].A.; Gofii, J.; Risacher, S.L.; Sporns, O.; Saykin, A.J. The structural and functional connectome
and prediction of risk for cognitive impairment in older adults. Curr. Behav. Neurosci. Rep. 2015, 2, 234-245.

23. Sala-Llonch, R.; Bartrés-Faz, D.; Junqué, C. Reorganization of brain networks in aging: a review of
functional connectivity studies. Front. Psychol. 2015, 6.

24. Davison, E.N.; Turner, B.O.; Schlesinger, K.J.; Miller, M.B.; Grafton, S.T.; Bassett, D.S.; Carlson, J.M.
Individual differences in dynamic functional brain connectivity across the human lifespan. PLoS Comput.
Biol. 2016, 12, €1005178.

25. Andrew, C.; Pfurtscheller, G. Event-related coherence as a tool for studying dynamic interaction of brain
regions. Electroencephalogr. Clin. Neurophysiol. 1996, 98, 144-148.

26.  Pisarchik, A.; Hramov, A. Coherence resonance in neural networks: Theory and experiments. Phys. Rep.
2023, 1000, 1-57.

27. Gross, J.; Schmitz, F.; Schnitzler, I.; Kessler, K.; Shapiro, K.; Hommel, B.; Schnitzler, A. Modulation of
long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc. Natl. Acad.
Sci. USA 2004, 101, 13050-13055.

28. Guggisberg, A.G.; Honma, S.M.; Findlay, A.M.; Dalal, S.S.; Kirsch, H.E.; Berger, M.S.; Nagarajan, S.S.
Mapping functional connectivity in patients with brain lesions. Ann. Neurol. 2008, 63, 193—-203.

29. Belardinelli, P.; Ciancetta, L.; Staudt, M.; Pizzella, V.; Londei, A.; Birbaumer, N.; Romani, G.L.; Braun, C.
Cerebro-muscular and cerebro-cerebral coherence in patients with pre- and perinatally acquired unilateral
brain lesions. Neurolmage 2007, 37, 1301-1314.

30. de Pasquale, E; Della Penna, S.; Snyder, A.Z.; Lewis, C.; Mantini, D.; Marzetti, L.; Belardinelli, P.; Ciancetta,
L.; Pizzella, V.; Romani, G.L.; Corbetta, M. Temporal dynamics of spontaneous MEG activity in brain
networks. Proc. Natl. Acad. Sci. USA 2010, 107, 6040-6045.

31. Kim, J.S.; Shin, K.S.; Jung, W.H.; Kim, S.N.; Kwon, ].S.; Chung, C.K. Power spectral aspects of the default
mode network in schizophrenia: an MEG study. BMC Neurosci. 2014, 15, 104.

32. Bowyer, S.M.; Gjini, K.; Zhu, X; Kim, L.; Moran, J.E.; Rizvi, S.U.; Gumenyuk, N.T.; Tepley, N.; Boutros,
N.N. Potential biomarkers of schizophrenia from MEG resting-state functional connectivity networks:
Preliminary data. J. Behav. Brain Sci. 2015, 5, 1.

33. Boutros, N.N.; Galloway, M.P,; Ghosh, S.; Gjini, K.; Bowyer, S.M. Abnormal coherence imaging in panic
disorder: a magnetoencephalography investigation. Neuroreport 2013, 24, 487-491.

34. Chholak, P,; Niso, G.; Maksimenko, V.A.; Kurkin, S.A.; Frolov, N.S.; Pitsik, E.N.; Hramov, A.E.; Pisarchik,
A.N. Visual and kinesthetic modes affect motor imagery classification in untrained subjects. Sci. Rep. 2019,
9,1-12.

35. Pisarchik, A.N.; Chholak, P; Hramov, A.E. Brain noise estimation from MEG response to flickering visual
stimulation. Chaos Solitons Fractals X 2019, 1, 100005.

36. Chholak, P.; Maksimenko, V.A.; Hramov, A.E.; Pisarchik, A.N. Voluntary and involuntary attention in
bistable visual perception: a MEG study. Front. Hum. Neurosci. 2020, 14, 555.

37.  Dai, Q.; Gao, Y. Hypergraph Computation; Springer: Singapore, 2023.

38. Bear, M.; Connors, B.; Paradiso, M.A. Neuroscience: exploring the brain, enhanced edition: exploring the brain;
Jones & Bartlett Learning, 2020.
39. French, C.C.; Beaumont, J.G. A critical review of EEG coherence studies of hemisphere function. Internat. J.

Psychophysiol. 1984, 1, 241-254.

40. Chholak, P.; Kurkin, S.A.; Hramov, A.E.; Pisarchik, A.N. Event-related coherence in visual cortex and brain
noise: an MEG study. Appl. Sci. 2021, 11, 375.

41. Tadel, E; Baillet, S.; Mosher, ]J.C.; Pantazis, D.; Leahy, R M. Brainstorm: A user-friendly application for
MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 2011, 1-13.

42.  Bowyer, S.M. Coherence a measure of the brain networks: past and present. Neuropsychiatr. Electrophysiol.
2016, 2, 1-12.

43. Xia, M.; Wang, J.; He, Y. BrainNet Viewer: a network visualization tool for human brain connectomics.
PloS One 2013, 8, e68910.

44. Golbeck, J. Analyzing the Social Web; Morgan Kaufmann: Boston, 2013.

45.  Zinoviev, D. Complex Network Analysis in Python: Recognize-Construct-Visualize-Analyze-Interpret; Pragmatic

Bookshelf, 2018.


https://doi.org/10.20944/preprints202401.1926.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2024 doi:10.20944/preprints202401.1926.v1

23 0f 23

46.  Voloshin, V.I. Introduction to Graph and Hypergraph Theory; Nova Science Publishers, 2009.

47. Pickard, J.; Chen, C.; Salman, R.; Stansbury, C.; Kim, S.; Surana, A.; Bloch, A.; Rajapakse, I. HAT:
hypergraph analysis toolbox. PloS Comput. Biol. 2023, 19, e1011190.

48.  Bretto, A. Hypergraph Theory: An Introduction; Mathematical Engineering, Springer: Cham, 2013.

49, Hobson, J.A.; Pace-Schott, E.F. The cognitive neuroscience of sleep: neuronal systems, consciousness and
learning. Nat. Rev. Neurosci. 2002, 3, 679-693.

50. Saleh, M.; Reimer, J.; Penn, R.; Ojakangas, C.L.; Hatsopoulos, N.G. Fast and slow oscillations in human
primary motor cortex predict oncoming behaviorally relevant cues. Neuron 2010, 65, 461-471.

51. Salvador, R.; Suckling, J.; Schwarzbauer, C.; Bullmore, E. Undirected graphs of frequency-dependent
functional connectivity in whole brain networks. Phil. Trans. Roy. Soc. B 2005, 360, 937-946.

52. Sun, E.T.; Miller, L.M.; D’esposito, M. Measuring interregional functional connectivity using coherence and
partial coherence analyses of fMRI data. Neuroimage 2004, 21, 647-658.
53. Von Stein, A.; Sarnthein, J. Different frequencies for different scales of cortical integration: from local

gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 2000, 38, 301-313.

54. Buzsaki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926-1929.

55.  Furl, N.; Coppola, R.; Averbeck, B.B.; Weinberger, D.R. Cross-frequency power coupling between
hierarchically organized face-selective areas. Cereb. Cortex 2014, 24, 2409-2420.

56. Pastoll, H.; Solanka, L.; van Rossum, M.C.; Nolan, M.F. Feedback inhibition enables theta-nested gamma
oscillations and grid firing fields. Neuron 2013, 77, 141-154.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202401.1926.v1

	Introduction
	Materials and Methods
	Stimulus
	Experimental Protocol
	Signal Analysis in Brainstorm
	Head Model Adjustment
	Signal Processing
	Event Segmentation
	Source Reconstruction
	Signal Coherence
	Visualization with BrainNet 
	Fourier Analysis
	Graph Construction
	Hypergraph Construction
	Degrees of vertices and hyperedges
	2-Section of the hypergraph
	Adjacency and node stars
	Incidence between hyperedges
	Relationship frequency matrix
	Transverse and independent vertex sets
	Coincidence between edges and coverage numbers
	Line graph


	Results and Discussion
	Coherence matrices
	Power spectra
	Network characteristics
	Hypergraphs

	Conclusions
	References

