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Article 
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Abstract: Background: Early detection of atrial fibrillation (AF) is essential to prevent stroke and other cardiac 

and embolic complications. We compared the diagnostic properties for AF detection of the percentage of 

successive RR interval differences greater than or equal to 30 ms or 3.25% of the previous RR interval (pRR30 

and pRR3.25%, respectively), and asymmetric entropy descriptors of RR intervals. Previously, both pRR30 and 

pRR3.25% outperformed many other heart rate variability (HRV) parameters in distinguishing AF from sinus 

rhythm (SR) in 60-second electrocardiograms (ECGs). Methods: The 60-s segments with RR intervals were 

extracted from the publicly available Physionet Long-Term Atrial Fibrillation Database (84 recording, 24-hour 

Holter ECG). There were 31753 60-s segments of AF and 32073 60-s segments of SR. The diagnostic properties 

of all parameters were analysed with the receiver operator curve analysis, confusion matrix and logistic 

regression. The best model with  pRR30, pRR3.25% and total entropic features (H) had the largest area under 

the curve (AUC) – 0.98 compared to 0.959 for pRR30 - and 0.972 for pRR3.25%. However, the differences in 

AUC between pRR30, pRR3.25% alone and the combined model were negligible from a practical point of view. 

Moreover, combining pRR30, pRR3.25% with H significantly increased the number of false-negative cases by 

more than threefold. Conclusions: Asymmetric entropy has some potential in differentiating AF from SR in the 

60-s RR interval time series, but the addition of these parameters does not seem to make a relevant difference 

compared to pRR30 and especially pRR3.25%. 

Keywords: atrial fibrillation; cardiac arrhythmia; electrocardiography; heart rate variability; entropy 

 

1. Introduction 

Atrial fibrillation (AF) is a cardiac arrhythmia with irregular heartbeats. It can lead to the 

development of tachyarrhythmias, heart failure, dementia and arterial emboli, with ischaemic 

cerebral stroke being the most common complication [1]. AF also increases the risk of dying 

prematurely. 

AF is often asymptomatic, especially in men and older people [2] and its complications, e.g. 

ischaemic stroke, may be the first presentation of this arrhythmia. The incidence of AF increases with 

age and is usually associated with many diseases or risk factors like hypertension, obesity, smoking, 

coronary artery disease, valvular heart disease, lung disease and hyperthyroidism [3]. However, AF 

is not rare in otherwise healthy people, e.g. those involved in long-term endurance sports [4]. AF can 

also be caused by alcohol consumption and the abuse of illicit substances such as methamphetamine, 

cocaine, opiates and cannabis [5].  

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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An increasing incidence of AF and its clinical importance require effective and timely diagnosis. 

Recently, parameters derived from heart rate variability (HRV) analysis have become more 

commonly applied for AF detection in ECGs [6]. Several HRV descriptors have been proposed, such 

as standard deviation of the interbeat intervals (SDRR), root mean square of successive differences 

between normal heartbeats (rMSSD), percentage of differences higher than 50 ms (pRR50) [7].  

pRR50 is the most studied but specific example of a parameter from the pRRx family (percentage 

of successive RR interval differences greater than or equal to x ms). Buś et al. [8] explored different 

parameters from the pRRx family and found that the optimal diagnostic properties for AF detection 

were found for the threshold x = 31 ms (AUC = 0.958, sensitivity = 95.35%, specificity = 90.47). The 

study was performed on a dataset of over 60 thousands of 1-minute segments of RR intervals. Using 

the same data, they reported that the pRRx% parameters (defined like pRRx but with a threshold x% 

relative to the previous RR interval) have even better diagnostic properties with pRR3.25% (AUC = 

0.972, sensitivity = 97.16%, specificity = 93.75%) outperforming other pRRx% and pRRx parameters.  

Both the pRRx and pRRx% families count occurrences of unusually large successive differences in 

RR intervals and are generally much greater in AF than in normal sinus rhythm (SR).  

Asymmetric entropy based on monotonic runs, introduced by Piskorski and Guzik [9,10], is 

another set of features used in HRV analysis. Unlike other entropy measures, asymmetric entropy 

separately examines information derived from monotonic runs consisting of heart rate accelerations, 

decelerations, or consecutive RR intervals that do not change (neutral monotonic runs).  

We hypothesized that heart rate entropy derived from deceleration, acceleration, and neutral 

runs might differ between ECGs derived from sinus rhythm and atrial fibrillation. If so, the 

measurement of asymmetric entropy may be useful in distinguishing SR and AF segments of the 

ECG. This study compared the asymmetric entropy-based descriptors with pRR30 and pRR3.25% 

and their possible combinations for AF detection in 1-minute segments of RR intervals. 

2. Materials and Methods 

2.1. Data 

This study used de-identified data from the Long-Term Atrial Fibrillation Database (LTAFDB) 

[10,11]. The LTAFDB consists of 84 extended 24-hour Holter electrocardiographic (ECG) recordings 

sampled at 128 Hz. The database contains information on R-wave locations and corresponding heart 

rhythms (normal, supraventricular, ventricular, atrial and technical artefacts) in patients with 

paroxysmal AF and other arrhythmias. For our analysis, we selected only continuous ECG fragments 

with either AF or sinus rhythm (SR) lasting at least 60 seconds, discarding segments labelled as other 

rhythms. 

 The used data pre-processing method is shown in Figure 1. The RR interval time series were 

divided into 60-second contiguous segments. Each RR interval within the segment had to originate 

from SR to label the whole segment as SR. If not, the segment was excluded from further analysis. 

Similarly, for AF segments, each beat within the segment had to be AF, and segments containing 

ventricular beats were also excluded. To minimize the number of potentially unidentified technical 

artefacts, we removed RR intervals shorter than 240 ms or longer than 3000 ms for both SR and AF. 

In addition, we removed RR intervals corresponding to ventricular premature beats from both SR 

and AF ECGs. For SR only, supraventricular premature beats were also removed. Segments where 

the total length of excluded RR intervals exceeded 3% (1.8 s) of the segment length were excluded 

from the analysis. After preprocessing, the total 60-second RR series was 63,636 (31,919 SR, 31,717 

AF). ECG segments where the total length of RR intervals after filtering was less than 58 seconds 

were also discarded.  
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Figure 1. Data preprocessing scheme [8]. 

2.2. Software 

We used Python programming language (version 3.9, Python Software Foundation, 

Wilmington, DE, USA) for statistical analysis. Part of runs-based asymmetrical calculation was 

done thanks to free GPL3 software written in Python, HRAexplorer, which can be reviewed and 

downloaded at https://github.com/jaropis/HRAExplorer. An interactive online version of this 

software in the R programming language may be found at https://hraexplorer.com/. Data 

preprocessing and calculating pRRx and pRRx% parameters were done using the code from 

https://github.com/simonbus/prrx_af.  

2.3. Asymmetrical entropy 

Asymmetrical entropy is an approach presented in [9]. In summary, the RR series is partitioned 

into monotonic runs, as shown in Figure 1. If we define a series of RR intervals as: 𝑅𝑅𝑁 ≡ (𝑅𝑅1, 𝑅𝑅2, … , 𝑅𝑅𝑁) 

we can use this to build a series of differences. Starting from the second element, we subtract (i-1)-th 

element from i-th element like this: 𝛥 ≡ (𝛿1, 𝛿2, … , 𝛿𝑁−1) 
Where single difference looks like this: 𝛿𝑖 = 𝑅𝑅𝑖+1 − 𝑅𝑅𝑖 

We can use this series to construct a symbolic series of signs of those differences:  𝑠𝑔𝑛(𝛿𝑖) = {+,  𝛿𝑖 > 0 −,  𝛿𝑖 < 0 0,  𝛿𝑖 = 0  
Using this, we can write definitions for acceleration, deceleration and neutral    series: 

Definition 1. A deceleration series of length i (DRi) is an uninterrupted series of i decelerations (sign +) that 

starts and ends with acceleration (sign -) or neutral difference (sign 0).  
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Definition 2. An acceleration series of length i (ARi) is an uninterrupted series of i accelerations (sign -) that 

starts and ends with deceleration (sign +) or neutral difference (sign 0). 

Definition 3. A neutral series of length i (NRi) is an uninterrupted series of  i neutral differences (sign 0) 

that starts and ends with acceleration (sign -) or deceleration (sign +). 

 

Figure 2. Example of runs-based partitioning of a short tachogram. The runs can be classified as 

deceleration and acceleration runs of length i (DRi and ARi, respectively), with neutral runs 

represented by the symbol Ni, which can interrupt the deceleration/acceleration runs. A full grey 

circle indicates the start of a deceleration run. A full black circle marks the start of an acceleration run. 

These circles can be used as reference points for the respective runs [9]. 

It is common practice [9] [12] [13] to remove neutral runs from the record by adding white noise 

with a sufficiently small standard deviation. However, we will include neutral runs in our calculation 

and model building. 

We calculate the Shannon entropy for each type of the monotonic run. If we define the value p 

as a probability estimate of how likely it is to find an interval in the RR recording that belongs to a 

given run type of a given length: 𝑝𝑖,𝑘 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑖𝑘) × 𝑖𝑛  

where i is run length and k is run type and can be AR, DR, NR, the Shannon entropy for 

this estimator is as follows: 

 

𝐻𝑘 = − ∑𝑚𝑎𝑥 (𝑖)𝑘
𝑖=1 𝑝𝑖,𝑘 ∙ 𝑙𝑛 𝑝𝑖,𝑘 

Mathematical details can be found [9] 

2.4. pRR30 and pRR3.25% 

One of the key parameter in HRV analysis is pRR50, a special case of a pRRx parameter, which 

measures the percentage of successive RR intervals differing by at least x = 50 ms. Recent study [8] 

has explored a whole family of pRRx parameters and searched for a candidate for AF detection. They 

also explored pRRx% parameters (percentage of relative 

RR interval  differences of at least  x% of the previous RR interval). 

In these study we found pRR30 and pRR3.25% to be promising candidates for AF detection, 

outperforming pRR50 in 60 seconds long RR time series. 

2.5. Statistical analysis 

Data distribution was not normal [Guzik P, Więckowska B. Data distribution analysis – a 

preliminary approach to quantitative data in biomedical research. JMS. 2023 Jun. 27;92(2):e869. DOI: 

10.20883/medical.e869]. Non-parametric Spearman correlation analyzed associations between 
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parameters. Receiver operating characteristic (ROC) [13] was used to investigate which parameters 

discriminated between 60-second segments of sinus rhythm (SR) and atrial fibrillation (AF). For each 

HRV parameter studied, Youden’s criterion was used to calculate the optimal cutoff from the ROC 

curve [14].  

We used a 2:1 ratio to divide the final set of 63,826 recordings into the training dataset (42,763 

samples) and the test dataset (21,063 samples. Univariate and multivariate logistic regression 

examined individual parameters or their combinations with either pRR30 or pRR3.25% or both 

pRR30 and pRR3.25%. A non-parametric bootstrap with 1,000 samples was used to estimate 

classification metrics with a 95% confidence interval. Accuracy, sensitivity and specificity were 

compared between features using a paired t-test, and the diagnostic odds ratio (DOR) [15] was 

studied by the Wilcoxon test [16]. Only p < 0.05 was considered statistically significant.  

3. Results 

Our data consisted of 64738 segments, from which 912 were discarded after filtration, leaving 

63826 segments. 31753 of them were classified as AF and 32073 as SR. Mean RR is 698 ms for AF and 

858 ms for SR. 

3.1. Entropy distribution 

Figure 4 presents histograms for all studied types of asymmetrical entropy: total entropy (H), 

entropy of acceleration runs (HAR), entropy of deceleration runs (HDR) and entropy of neutral runs 

(HNR). All forms of entropy have narrower and higher histograms for AF than for SR. The peaks of 

histograms for H overlap for AF and SR, but are separated for HAR, HDR and HNR. Median HAR 

and HDR are higher for AF than for SR. In contrast, the median H and HNR is lower in AF.  

 

Figure 4. Histograms of different types of asymmetrical entropy for AF and SR. 

Figure 5 shows how the histograms of the pRR30 and pRR3.25% differ in AF and SR. For SR, the 

most common values of pRR30 and pRR3.25% are close to 0%. The rates gradually decrease for higher 

values of pRR30 and pRR.25%. In contrast, the distributions are shifted to the right for AF and the 

most common values of pRR30 and pRR3.25% are around  85%  and  90%, respectively. 
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Figure 5. Histograms of prr30 and prr3.25% for sinus rhythms and atrial fibrillation recordings. 

Figure 6 shows the Spearman correlation values between all the features examined for the SR 

and AF data separately. For SR, HNR correlated strongly and negatively (dark blue) with pRR30 (-

0.77) and pRR3.25% (-0.71). The correlations between HNR and pRR30 and pRR3.25% were weaker 

for AF, with the most pronounced correlations for HNR and pRR30 (-0.59).  
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Figure 6. Spearman correlation matrix for HRV parameters for SR and AF data. Lower triangle: 

correlation coefficients, upper triangle: p-values. 

3.3. Diagnostic properties of single HRV parameters 

Table 1 characterizes the diagnostic properties of all investigated parameters to differentiate AF 

from SR for the 1-minute ECG segments. As pRR3.25% has the highest AUC, it is considered the 

reference value for comparisons with other parameters and is included in all multivariate diagnostic 

models. AUC for the discrimination of AF from SR for the 1-minute RR interval ECG segments were 

all significantly different from 0.5. (p at least < 1 x 10-114). The top three strongest candidates for AF 

detection are pRR3.25% (AUC = 0.9727) pRR30 (0.9596), and HNR (0.9315). 

Table 1. Area under the ROC curve (AUC) and optimal cutoff values for the training set. Median 

values of classification metrics (from the confusion matrix) for AF detection in the test set using single 

HRV parameters with the optimal cutoff. 

Parameter AUC Cutoff for 

AF 

Accuracy Sensitivity Specificity PPV NPV DOR 

pRR3.25% 0.9727 <72.3684% 95.75 99.60 92.25 92.12 99.60 2931.82 

pRR30 0.9596 <66.8874% 91.00 95.62 86.80 86.82 95.62 143.70 

HNR 0.9315 <0.1884 84.86 95.45 75.26 77.83 94.79 63.82 

HAR 0.6951 <0.7546 67.85 86.83 50.59 61.52 80.86 6.76 

HDR 0.6686 <0.7726 67.68 91.49 46.00 60.66 85.61 9.16 

H 0.6186 <2.0647 60.03 85.68 36.69 55.18 73.80 3.47 

Figure 7 shows the classification metrics for AF detection on the testing dataset using the optimal 

cutoff method for single HRV parameters. For every metric, the best score achieved three parameters: 

pRR3.25%, pRR30 and HNR. The NPV difference between pRR30 and HNR is the smallest. The 

whiskers on the plots represent 95% confidence intervals from the bootstrap. 
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Figure 7. Classification metrics of AF detection on the test dataset using the optimal cutoff method. 

DOR - diagnostic odds ratio, PPV - positive predictive value, NPV - negative predictive value. 

3.4. Diagnostic values of models built using pRR30, pRR3.25% and asymmetric entropy indices 

Table 2 presents results of AF detection using univariate or multivariate logistic regression 

models on testing dataset. The highest AUC was achieved by model with three parameters: pRR30, 

pRR3.25% and H while pRR30, pRR3.25%, HAR has the highest DOR. From univariate models 

pRR3.25% has highest AUC and all other metrics. 

Table 2. Comparison of different metrics for AF detection using univariate and multivariate logistic 

regression models. The three top metrics with the highest AUC are bolded. pRR3.25% stands out as 

the most powerful individual metric, exhibiting the highest AUC. Notably, it consistently appears in 

the top-performing metric pairs and triplets, consistently demonstrating superior performance in 

distinguishing AF from SR. 

Feature AUC Accuracy DOR FP+FN [%] FP [%] FN [%] 

pRR3.25% 0.972 0.9513 643.0 4.87 3.98 0.88 

pRR30 0.959 0.9277 233.5 7.23 5.57 1.65 

H 0.613 0.6118 2.6 38.82 24.3 14.52 

HAR 0.7 0.6536 3.6 34.64 16.11 18.53 

HDR 0.67 0.6155 2.6 38.45 16.91 21.54 
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HNR 0.93 0.8842 84.5 11.58 09.03 2.55 

pRR3.25 & pRR30% 0.978 0.955 687.1 4.5 3.57 0.93 

pRR3.25% & H 0.986 0.9566 705.6 4.34 3.38 0.96 

pRR3.25% & HAR 0.982 0.9549 693.0 4.51 3.59 0.92 

pRR3.25% & HDR 0.977 0.9517 623.3 4.83 3.9 0.93 

pRR3.25% & HNR 0.974 0.9516 632.3 4.84 3.93 0.91 

pRR30 & H 0.973 0.9327 252.3 6.73 05.01 1.72 

pRR30 & HAR 0.969 0.9312 240.5 6.88 5.13 1.76 

pRR30 & HDR 0.963 0.9279 235.8 7.21 5.57 1.64 

pRR30 & HNR 0.96 0.9284 232.9 7.16 5.47 1.69 

pRR30 & pRR3.25%, & H 0.988 0.9577 695.5 4.23 3.2 01.03 

pRR30 & pRR3.25%, & HAR 0.985 0.9581 732.4 4.19 3.22 0.97 

pRR30 & pRR3.25%, & HDR 0.982 0.9541 633.7 4.59 3.58 1 

pRR30 & pRR3.25%, & HNR 0.979 0.9537 631.3 4.63 3.65 0.99 

HNR & HAR, & HDR 0.935 0.8838 82.8 11.62 09.01 2.61 

From Table 2 we selected three models for further validation. The best (in AUC) single feature 

model which is pRR3.25%, best two-features model which is pRR3.25%& pRR30 and best three 

features model which is pRR3.25%,&pRR30& H. A 1000-resampled bootstrap test revealed a 

statistically significant difference in AUC (p-value = 0.02) between the one-feature and two-feature 

models. Furthermore, the comparisons between the one-feature versus three-feature and two-feature 

versus three-feature models yielded p-values less than 10^-6, indicating highly significant 

differences. The same bootstrap methodology was employed to assess the performance of the models 

in terms of accuracy, sensitivity, specificity, DOR, FN, and FP. In all cases, the differences between 

the models were statistically significant, with p-values consistently below 10^-5. Figure provides 

histograms with a visual representation of these findings. 

 

Figure 8. Histograms presenting 1000 times bootstrapped results of model built from pRR3.25% vs 

pRR30, pRR3.25% versus model built from pRR30,pRR3.25%,HAR. The biggest difference is in FN 

where adding H to the model increases the number of FN over three times compared to models 

without H. 
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It is worth noting that the scales in Figure 8 for accuracy, sensitivity and specificity on the 

respective x-axes have been adapted. In this way it is easier to see the small differences. In practice, 

however, the range of these differences is negligible. Optimizing the models for AUC is at the expense 

of undetection of AF. The median FN for pRR3.25% and pRR3.25% & pRR30 increases from less than 

200 to almost 700 undetected AF for the model with pRR3.25%, pRR30 and H. 

4. Discussion 

We found that both pRR3.25% and pRR30 outperformed all asymmetric entropy parameters in 

their diagnostic value for detecting AF in 1-minute ECGs. For AF detection, the best single parameter 

was pRR3.25% with an AUC of 0.972 and a DOR of 643, the second best was pRR30 with an AUC of 

0.959 and a DOR of 233.5, and the third best was HNR with an AUC of 0.93 and a DOR of 84.5. All 

combinations that had either a higher AUC or DOR than a single pRR3.25% contained pRR3.25%. 

The best combination when measured by AUC was pRR3.25%, pRR30and H, while when measured 

by DOR it was pRR3.25% and H. However, the combined models with higher AUC or DOR had 

increased false negative values. Using pRR3.25% as a reference, the observed increases in AUC were 

of negligible clinical value as they were up to 0.006, which is less than 1% improvement. In addition, 

using the best combination, i.e. pRR3.25%, pRR30 and H, was associated with a risk of increasing 

false-negative AF diagnoses - the number of undiagnosed AF episodes increased almost fourfold 

This study is not the first one to demonstrate entropy based features for AF detection. In [23] 

Richman JS and Moorman JR have introduced sample entropy, a novel method for comparing two 

physiological time series. Liu C et al. and Zhao L et al [21,22] have compared different entropic 

measures and proposed a novel one, called normalized fuzzy entropy for AF detection. They have 

achieved 0.86 accuracy for 60 beats long RR segments. Their approach and other tested features was 

based on sample entropy [23].  

Runs-based asymmetrical entropy is very different from sample entropy. It does not depend on 

parameters which represent matching radius for determining similarity between subsequences of 

data points within a time series and can break relative consistency which means it does not always 

provide consistent results when sample size is increasing [24]. Run-based asymmetric entropy has a 

more straightforward interpretation. It quantitatively separates the contributions of accelerating, 

decelerating and neutral runs to the overall asymmetry of the time series (Figure 2).  

We found a negative correlation between the asymmetric entropy of NR and pRR30. In addition, 

the HNR distribution differs between AF and SR. The AF classifier built from HNR alone has an 

accuracy of over 0.88, the best among other run-based asymmetric entropy parameters. Neutral runs 

are either ignored, removed from the analysis or replaced by the addition of white noise [9,12,13]. 

However, neutral runs may contain valuable information, especially in the context of AF detection. 

Typically, their contribution to HRV is either zero (to short-term HRV) or random and depends on 

the ECG sampling frequency. However, their lower rate in AF provides interesting information. 

The nature of AF makes RR intervals highly random with low stability. This results in a low 

probability of finding two or more consecutive RR intervals of the same duration. It also explains 

why there are fewer neutral runs in AF than in SR. Changes in RR interval duration in SR are gradual. 

They are controlled by many physiological mechanisms that modulate sinus node depolarisation. In 

AF, fast fibrillation waves above 350 depolarisations/minute reset and quieten the sinus node. 

Changes between successive RR intervals in AF are less well controlled and therefore more dramatic. 

We have previously reported higher values of pRRx and pRRx% in AF than in SR [8]. Therefore, the 

probability of small changes between consecutive RR intervals is low in AF but higher in SR. Here 

we show that information derived from neutral runs has some diagnostic properties. However, it is 

uncertain whether this information should be incorporated into AF detection algorithms. All run-

based asymmetric entropy measures, either as single parameters or in combination with pRR3.25% 

or pRR30 , are not particularly effective in discriminating AF from SR. They are also more complex 

to calculate than pRR3.25% or pRR30 . 

As previously shown, the pRRx and pRRx% families have interesting diagnostic properties for 

distinguishing ECG segments with AF from SR. First, we demonstrated that pRR30 outperformed 
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other commonly used HRV indices including SDNN, SD1, SD2, SD2/SD1, coefficient of variation, for 

the same purpose [25]. Second, we showed that pRR30 is outperformed by the pRRx% family, 

especially pRR3.25%. In this study, we report that both pRR30 and pRR3.25 have better diagnostic 

properties for AF detection than any of the run-based asymmetric entropy descriptors. Adding 

asymmetric entropy-derived descriptors to models with pRR30 or pRR3.25 slightly improved their 

AUC or DOR, but at the cost of increasing FN. 

The impact of false positive and false negative results can vary depending on the specific 

condition being tested for and the context in which the test is performed. For example, a false positive 

result for a serious condition may lead to unnecessary treatment or further testing. Conversely, a false 

negative result may delay necessary treatment. In AF, a false-negative diagnosis appears to be more 

harmful than a positive diagnosis. A patient with undiagnosed AF will not receive antithrombotic 

treatment and will remain at increased risk of ischaemic stroke. In contrast, a false-positive result 

leads to further testing and has no immediate negative consequences [19] [20]. 

Our study had several limitations. The analysis was based on RR intervals from 1-minute ECGs 

only, potentially missing longer-term cardiac dynamics that contribute to entropy. We cannot 

extrapolate our findings to ECGs of shorter or longer duration. The sampling frequency of our data 

was only 128 Hz, which increases the rate of neutral RR intervals for technical rather than 

physiological reasons. In this study we tested the ability to detect AF using classic simple logistic 

regression models. Although we achieved a high accuracy rate of 0.96, there is potential for even 

higher accuracy rates using more complex machine learning models. ML algorithms [21] may 

perform better with random forest than with logistic regression. Whether this applies to our results 

is uncertain. It is noteworthy that the AUC for AF detection by pRR3.25% is already close to 1 and 

there is not much room for improvement. However, it may be worth exploring a wider range of 

machine learning models, such as XGBoost or Random Forest, to determine their ability to detect AF 

from the asymmetric entropy of neutral runs. These models may be able to capture more complex 

relationships between the features and the target variable.  

The novelty of our study lies in the comprehensive investigation of AF detection using a novel 

combination of runs-based asymmetric entropy and pRR30 with pRR3.25% and pRR30 . Runs based 

asymmetric entropy has not previously been tested as a candidate for AF detection. Another novelty 

was not to remove neutral runs but to include them and analyze their characteristics, which seems to 

be useful. 

5. Conclusions 

pRR3.25% stands out as a robust and reliable choice for effectively identifying AF episodes, even 

in comparison with runs-based asymmetrical entropy. While it is observed that more complex 

models such as pRR3.25%, pRR30 and H exhibit slightly enhanced performance on a general scale, 

this marginal improvement is often overshadowed by the substantial drawback of a nearly fourfold 

increase in false negatives. Notably, it is worth emphasizing that every superior model inherently 

encompasses the pRR3.25% parameter. This underscores the foundational importance of pRR3.25% 

in contributing to the diagnostic accuracy of any enhanced model. In practical clinical applications, 

the single-parameter model with pRR3.25% emerges as the optimal choice, delivering a 

commendable balance between detection precision and false-negative rates.  

Our results suggest that HNR may be a helpful parameter for AF detection, and future studies 

should investigate its potential further. 
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