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Abstract: The objective of this study was to investigate the liquefaction resistance of chemically
improved sandy soils in a straightforward and accurate manner. Using only the existing
experimental databases and artificial intelligence, the goal was to make predictions without
conducting physical experiments. Emphasis was placed on the significance of data from 20 loading
cycles of cyclic undrained triaxial tests to determine the liquefaction resistance and the contribution
of each explanatory variable. Different combinations of explanatory variables were considered.
Regarding the predictive model, it was observed that a case with the liquefaction resistance ratio as
the dependent variable and other parameters as explanatory variables yielded favorable results. In
terms of exploring combinations of explanatory variables, it was found advantageous to include all
variables as doing so consistently resulted in a high coefficient of determination. The inclusion of
the liquefaction resistance ratio in the training data was found to improve the predictive accuracy.
In addition, the results obtained when using a linear model for the prediction suggested the
potential to accurately predict the liquefaction resistance using historical data.
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1. Introduction

The significant structural damage often caused by the settlement or tilting of structures, due to
the liquefaction of saturated sandy soils during large earthquakes, has long been a major concern in
the field of geotechnical engineering, as shown in Figure 1. This phenomenon, which can have serious
consequences, was particularly documented in a seminal studies [1-4]. The sudden instability of the
ground during such events can lead to the catastrophic destruction of buildings and infrastructures,
resulting in significant economic losses as well as the tragic loss of human life. This critical issue was
further highlighted [5,6]. These concerns have led to a significant increase in the study and
development of activities aimed at improving liquefaction resistance and developing other
mitigation methods. This focus was particularly highlighted by the groundbreaking work [7,8],
which contributed to a better understanding of these challenges.

In response to these critical challenges, the chemical injection method has emerged as a
prominent and innovative solution for mitigating subsurface liquefaction risks [9-13]. This technique
involves injecting chemical agents into sandy soils to increase their stability and cohesion. However,
the effective implementation of this method and the accurate execution of designs depend heavily on
the availability of precise and reliable data on the liquefaction resistance of the targeted chemically
treated sandy soils [14-18]. Traditionally, liquefaction resistance has been assessed using cyclic
undrained triaxial tests, which are fundamental to building comprehensive databases reflecting a
variety of test conditions and results [19-24]. Despite their critical importance in understanding soil
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behavior, these tests are often time-consuming, expensive, and labor-intensive. In addition, they are
limited by the diverse nature of the properties of sandy soils found in different geographic regions,
requiring a large number of experiments for a thorough and comprehensive data collection [25-27].
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Figure 1. General principle of liquefaction phenomenon.

To address these challenges and limitations, the present study introduces a novel and state-of-
the-art approach that employs machine learning and ensemble learning techniques [28-30]. The
authors of this study propose a predictive model for evaluating the liquefaction resistance of sandy
soils treated with solution-type chemical agents. This model is a synergistic combination of existing
experimental data and advanced algorithms with artificial intelligence (AI) [31-34]. This innovative
approach makes it possible to predict the liquefaction resistance of sandy soils without the need to
conduct additional laborious and costly experiments. The method is not only efficient, but also cost-
effective, providing significant advances in the formulation of liquefaction mitigation strategies and
enhancing risk assessment capabilities in geotechnical engineering [35]. The methodology of this
study begins with the meticulous collection and analysis of data from cyclic undrained triaxial tests.
The data form the basis of the machine-learning database used in the study. Employing ensemble
learning techniques, the authors successfully integrate the results of different prediction models to
produce more accurate and reliable predictions. The primary goal of this study is to comprehensively
assess the risk of sandy soil liquefaction and to provide reliable guidance for the design and
implementation of chemical injection methods. It is expected that the development of this innovative
non-experimental prediction method will contribute significantly to the sustainable development and
advancement of geotechnical engineering practices. This approach not only minimizes the
environmental impact, but also significantly reduces the time and costs associated with traditional
soil testing methods. By introducing Al as a transformative tool in geotechnical engineering for
predicting liquefaction resistance [36,37], this study aims to revolutionize the field and to improve
the safety and stability of sandy soils in earthquake-prone areas.

The application of Al in this context is particularly noteworthy, as it represents a paradigm shift
in how geotechnical engineering challenges are addressed. By harnessing the power of machine
learning, the study bypasses the limitations of traditional experimental methods. The Al-driven
model is able to synthesize large amounts of experimental data, learn from different soil conditions,
and adapt to different chemical treatments. This leads to a more holistic understanding of soil
behavior under seismic activity, providing engineers with a powerful tool for predicting the soil
response in real-world scenarios. Of particular importance in this study is the use of ensemble
learning techniques. Ensemble learning involves combining multiple machine learning models to
improve prediction accuracy [38], thereby reducing the likelihood of erroneous predictions that could
lead to unsafe engineering practices. This approach ensures that the predictive model is not based on
a single data set or algorithm, but is a robust composite of multiple predictive insights, resulting in a
more reliable and trustworthy predictive model. In addition, the study's approach to integrating Al
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with traditional geotechnical engineering practices is an exemplary model of interdisciplinary
innovation. By bridging the gap between advanced computational techniques and practical
engineering applications, the study sets a precedent for future studies in the field. It demonstrates
the potential of Al to improve the accuracy and efficiency of engineering solutions, thereby
contributing to the development of safer and more resilient infrastructures. The study not only
addresses the immediate challenge of predicting and mitigating the liquefaction of sandy soils, but
also opens new avenues for study and innovation in geotechnical engineering. By harnessing the
power of Al and machine learning, it presents a forward-looking approach that could revolutionize
the field, leading to more sustainable, efficient, and safer engineering practices [39]. This study not
only contributes to the academic body of knowledge, but also has practical implications for the
construction industry, urban planning, and disaster risk management, especially in earthquake-
prone regions.

2. General Evaluation and Countermeasures to Liquefaction of Sandy Soils

2.1. Chemical Injection Method

The liquefaction of sandy soils during seismic events is a significant challenge in geotechnical
engineering [40,41]. It poses a risk to the stability and integrity of structures built on such soils. In
response, chemical injection has emerged as a promising technique for mitigating liquefaction in
sandy soils [9-13].

Liquefaction occurs when saturated sandy soils lose their strength and stiffness in response to
an applied stress, such as an earthquake, resulting in fluid-like behavior [42]. The chemical injection
method, also known as soil grouting, involves injecting chemical solutions into soils to improve their
physical and mechanical properties, thereby increasing their resistance to liquefaction.

The chemical injection process typically involves the use of materials such as silicates,
polyurethanes, or acrylamides. When injected into a soil, these chemicals react with the soil particles
or with each other to form a solidified matrix that binds the soil particles together, increasing their
density and shear strength. One common approach is to use sodium silicate, a water-soluble silicate
that reacts with calcium chloride to form a gel-like substance. This substance fills the voids between
the soil grains, reducing porosity and increasing soil cohesion. Another approach is to use organic
polymers that solidify when injected, creating a network of polymer chains that bind the soil particles
together.

Chemical injection has several advantages. It is a relatively quick process compared to other soil
stabilization methods and can be applied to specific areas without the need for an extensive
excavation or the disruption of existing structures. In addition, the method can be tailored to different
soil types and conditions [13].

Despite its advantages, the chemical injection method also faces several challenges and
limitations. The use of chemicals raises environmental concerns. Some chemicals used in the process
can be harmful to the environment, especially if they leach into the groundwater. Selecting
environmentally friendly chemicals that do not compromise soil stability is critical. In addition, the
long-term effectiveness of the treatment is uncertain. Over time, the injected chemicals may degrade
or the bond between soil particles may weaken, reducing the effectiveness of the treatment.
Achieving the uniform distribution of the chemical solution throughout the soil is challenging.
Inhomogeneous treatment can result in uneven soil properties that may not effectively mitigate
liquefaction hazards. Moreover, the process can be costly, especially for large-scale applications. The
cost of the chemicals and the need for specialized equipment and personnel can be significant. Finally,
it is also noted that not all sandy soils are suitable for chemical injection. The method is less effective
in soils with high organic content or those that are too coarse or too fine. Effective monitoring and
quality control are essential to ensuring successful treatment. This includes monitoring the
distribution of chemicals, the reaction process, and the final soil properties.

The chemical injection method for liquefaction mitigation in sandy soils offers a viable solution
for improving soil stability in seismic areas [43]. However, it is imperative to address the
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environmental, technical, and economic challenges associated with this method. Future studies
should focus on developing environmentally friendly chemicals, improving application techniques
for uniform soil treatment, and evaluating the long-term performance of treated soils. With advances
in technology and a better understanding of soil behavior, chemical injection has the potential to
become a more effective and sustainable option for liquefaction mitigation in sandy soils.

2.2. Cyclic Undrained Triaxial Test

In geotechnical engineering, the cyclic undrained triaxial test is a critical method for evaluating
the liquefaction resistance of chemically treated sandy soils. This test simulates the stress conditions
experienced by soils during seismic events and provides important information on the behavior of
the soils under such conditions [19-24].

Liquefaction is the phenomenon in which saturated sandy soils significantly lose their strength
and stiffness in response to an applied load, such as seismic shaking, causing them to behave like a
liquid. The cyclic undrained triaxial test is a laboratory test designed to evaluate the resistance of soils
to liquefaction, which is particularly important for soils that have been treated with chemical agents
for stabilization. Figure 2 shows the typical appearance of the cyclic undrained triaxial test.
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Figure 2. Typical appearance of cyclic undrained triaxial test.

The test involves the cyclic loading of a cylindrical soil sample in a triaxial chamber. The soil
sample is first saturated and then subjected to axial cyclic loading at a controlled frequency and
amplitude. The test is undrained, meaning that no water can enter or leave the soil sample during the
test. This condition simulates the rapid loading that occurs during earthquakes. Parameters, such as
axial stress, axial strain, pore water pressure, and volume change, are recorded. The number of cycles
the soil can withstand before failure (defined by a certain level of strain or pore pressure) is used to
evaluate its resistance to liquefaction.

The cyclic undrained triaxial test is widely recognized for its ability to replicate the stress
conditions experienced by soils during earthquakes. It provides valuable data on the behavior of
chemically treated soils, including the stiffness, strength, and pore pressure response, which are
critical for evaluating the liquefaction potential [19-24].

Despite its advantages, the cyclic undrained triaxial test faces several challenges. Obtaining and
preparing undisturbed soil samples for testing is challenging. Sample disturbance can significantly
affect the test results, making it difficult to accurately represent the in-situ soil conditions. Each test
is conducted on a small-scale soil sample, which may not accurately represent the behavior of the soil
mass in the field due to scale effects. For chemically treated soils, it is difficult to ensure the uniform
distribution of the chemical agent throughout the sample. Inconsistent treatment can lead to variable
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results that do not accurately reflect the true behavior of the treated soil. The test is complex and
requires sophisticated equipment and skilled personnel, making it expensive and time-consuming.
Accurate measurement of the pore water pressure during the test is critical, but can be challenging,
especially in sands with low permeability. It is difficult to ensure the repeatability and reliability of
the test results due to the inherent variability of the soil properties and the sensitivity of the test to
experimental conditions.

The cyclic undrained triaxial test is an essential tool for evaluating the liquefaction resistance of
chemically treated sandy soils. However, overcoming the challenges associated with sample
preparation, scale effects, chemical interactions, test complexity, and measurement accuracy is critical
to obtaining reliable results. Future advances in test procedures, equipment, and analytical methods
are needed to overcome these challenges. By improving the cyclic undrained triaxial test, it can
continue to be a valuable method for evaluating the effectiveness of chemical treatments for
mitigating the liquefaction hazards of sandy soils.

2.3. Liquefaction Resistance Ratio

The concept of the liquefaction resistance ratio, often derived from the cyclic undrained triaxial
test, is a critical parameter in geotechnical engineering, particularly in assessing the stability of soils
under seismic conditions. This ratio is a measure of a soil's ability to resist liquefaction, a phenomenon
in which saturated soil loses much of its strength and stiffness in response to an applied stress, such
as an earthquake, causing it to behave like a fluid. In the context of the cyclic undrained triaxial test,
the liquefaction resistance ratio is defined as the ratio of the cyclic stress required to cause liquefaction
in a soil sample to the maximum cyclic stress experienced by the soil during an earthquake [14-18].
Liquefaction in this test is typically identified by a specific criterion, such as reaching a predetermined
level of axial strain or a significant increase in pore water pressure, indicating a loss of soil strength.
The cyclic undrained triaxial test involves subjecting a cylindrical soil sample, saturated and confined
in a triaxial chamber, to controlled cyclic axial loading. The loading simulates the stress conditions
that the soil would experience during seismic events. The cyclic stress required to induce liquefaction
is determined by gradually increasing the stress amplitude of the loading cycles until the soil sample
reaches the failure criterion. The liquefaction resistance ratio is an index that indicates the resistance
of the sandy soil to liquefaction. Specifically, it refers to the cyclic stress amplitude ratio when the
axial strain amplitude reaches 5% or the excess pore water pressure ratio reaches 95% and the number
of cyclic loads is 20 [13]. This index is calculated from the liquefaction intensity curve [13,44] obtained
as a result of the cyclic undrained triaxial test, as shown in Figure 3. The cyclic undrained triaxial test
simulates liquefaction phenomena under compacted and undrained conditions in a testing machine.
The collected undisturbed specimen is compacted under the original effective confining pressure,
subjected to cyclic shear stress equivalent to the stress during an earthquake, and tested. During the
test, experiments are performed at multiple cyclic stress levels and the number of cyclic loads at
which both axial strain amplitudes reach 5% is determined. A liquefaction intensity curve is
constructed from this data.
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Figure 3. Liquefaction intensity curves obtained from cyclic undrained triaxial tests.
3. Machine Learning Predictive Analysis

3.1. Ensemble Learning

Ensemble learning methods use multiple machine learning algorithms to produce weakly
predictive results based on features extracted through a variety of projections on the data and fuse
the results with various voting mechanisms to achieve a better performance than that obtained by
any constituent algorithm alone [45]. Neural networks have attracted attention in the field of machine
learning due to their high expressiveness in modeling nonlinear data. On the other hand, gradient
boosting decision trees excel in terms of interpretability and accuracy. It is expected that the
combination of these two methods will improve the predictive accuracy of the model.

A neural network is an interconnected collection of simple processing elements, units or nodes,
whose functionality is loosely based on the animal neuron. The processing capability of the network
is stored in the inter-unit connection strengths or weights, which are obtained through a process of
adaptation to, or learning from, a set of training patterns [46—49]. A model with many hidden layers
is called deep learning. Multiple inputs and outputs are possible, and neural networks enable
prediction, judgment, and classification. As shown in Figure 4, data are input into the input layer, the
features are input with indicators of the data, and the final results are calculated by inputting neurons
into the output layer.

Input layer Increased middle class Output layer

Figure 4. Schematic prediction flow of neural network.

The gradient boosting decision tree is an algorithm that learns multiple decision trees
sequentially, using the residuals from the previous decision tree in the learning process of the next
decision tree. This method also uses a gradient descent to minimize the errors in the predicted values
[50-52].

The ensemble model proposed in this study combines two models: a neural network and a
gradient boosting decision tree. As shown in Figure 5, it determines the weighted average of the
predictions from these models to generate the final prediction. Both models are known for their high
predictive performance in terms of tabular training data, and it is expected that the combination of
these models, through ensemble modeling, will further improve the accuracy.
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Figure 5. Schematic prediction flow of proposed ensemble model.
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Before constructing the ensemble model, a method is used to optimize the generalization ability
of each model. Specifically, the training data are divided into several subsets, and a technique called
random search is used for cross-validation to optimize the hyperparameters.

3.2. Preparation of Dataset

Data sets play a crucial role in the implementation of machine learning. They are divided into
two main categories: training data and test data. Training data are used for model training, which is
the necessary basis for acquiring the generalization ability.

3.2.1. Details of training data

In this study, data from cyclic undrained triaxial tests on chemically improved sandy soils,
conducted to determine the liquefaction resistance, were used. These data include specimen
conditions, test conditions, and test results. Specifically, the variable elements shown in Table 1 were
extracted from previous test records to form the training data. A total of 272 specimens from 68 cases
of cyclic undrained triaxial tests were used. One case corresponds to one site. In order to obtain the
liquefaction resistance as shown in Figure 3, at least four specimens must be used for the cyclic
undrained trial tests conducted for each case (each site). All 272 specimens were chemically improved
sandy soils with 6%, 9%, and 12% silica concentrations, with four specimens being collected from
each of the 68 sites.

Table 1. Variable elements related to cyclic undrained triaxial test employed in training data.

Category Variable elements

Dry density (g/cm?)
Fine particle content (%)
Condition parameters for specimens of  Effective confining pressure (kN/m?)
chemically improved sandy soils Unconfined compressive strength (kN/m?)
Silica gel concentration of injected chemical solution (%)
Increase in silica content (mg/g)

Number of cycles to reach 5% strain in both amplitudes
Results obtained by cyclic undrained Number of cycles to reach 95% excess pore pressure ratio
triaxial test Cyclic stress amplitude ratio

Liquefaction resistance ratio*

*It refers to the cyclic amplitude stress ratio when the axial strain amplitude reaches 5% or the excess pore
water pressure ratio reaches 95% and the number of cyclic loads is 20.

3.2.2. Details of test data

The test data in this study are based on the above training data. However, the test data exclude
the target variables of the training data and mainly consist of explanatory variables from the training
data.

3.3. Distinguishing Explanatory and Target Variables

In this study, the training data are used to train an ensemble model and, after the learning
process, predictions are made by inputting test data. During this process, the predicted values are
compared with the target variables of the training data to validate the predictive performance of the
machine learning model. In this study, the distinction between the explanatory variables and the
target variables is made for four cases, namely, Case-1, Case-2, Case-3, and Case-4, as shown in Table
2. An example of the training data used in this study, i.e., data for 2 of the 272 specimens, are
presented in Table 3. The target variable for Case-3 and Case-4 is the same. The difference is that
Case-3 makes predictions without liquefaction resistance, while Case-4 makes them with liquefaction
resistance.
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Table 2. Explanatory and target variables employed for each prediction case.

Case Explanatory variables Target variables

Case-1 Variable elements shown in Table 1 Number of cycles to reach 5% strain in both
excluding the liquefaction resistance ratio amplitudes
and the target variable

Case-2 Variable elements shown in Table 1 Number of cycles to reach 95% excess pore
excluding the liquefaction resistance ratio pressure ratio

and the target variable

Case-3 Variable elements shown in Table 1 Cyclic stress amplitude ratio
excluding the liquefaction resistance ratio
and the target variable

Case-4 Variable elements shown in Table 1 Cyclic stress amplitude ratio
excluding the target variable

Table 3. Example of employed training data (data on 2 out of 272 specimens were extracted).

Variable Variable elements Data fo.r 2 of 272
specimens
Dry density (g/cm?) 1.684 1.484
Effective confining pressure (kN/m?) 90 165
Fine particle content (%) 14.8 11.4
Unconfined compressive strength (kN/m?) 539 483
Explanatory (Soi/fl’i)ca gel concentration of injected chemical solution 1 1
variables o
Increase in silica content (mg/g) 11.62 7.79
Number of cycles to reach 5% strain in both 18 65
amplitudes
rNaEr;lber of cycles to reach 95% excess pore pressure 37 8.4
Target variable Repetitive stress amplitude ratio

3.4. Evaluation of Prediction Accuracy

The coefficient of determination (R?) quantifies the proportion of variance explained by a
statistical model and is an important summary statistic of biological interest [53]. It is also widely
used in machine learning. This metric quantitatively indicates how well the predicted values of the
target variables, generated by a machine learning model using test data, match the actual values of
the target variables in the training data. When the predictions of a machine learning model are
perfectly accurate, R? is equal to 1, while it approaches 0 when the predictions are completely
unrelated to the actual values.

The formula for the coefficient of determination (R?) is defined as Eq. (1).

T (i — 92
X —y)?
where n is the total number of data, y; is the i-th actual value, J; is the i-th predicted value, and

y is the average of all the actual values.
In summary, the coefficient of determination (R?) provides a numerical measure of how well the

R?=1- (1)

predictions from a machine learning model match the actual values in the training data, ranging from
0 (no correlation) to 1 (perfect correlation).

4. Results And Discussion

4.1. Selecting Target Variables

Looking closely at Case-1, shown in Figure 6(a), the Y-axis represents the actual values of the
target variable in the training data, while the X-axis represents the values predicted by the ensemble
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model. In an ideal scenario, the yellow points would align closely along the upward sloping red line,
indicating a high degree of accuracy with minimal error between the actual and predicted values.
However, in Case-1, the coefficient of determination (R?) is significantly low at -0.0790. This low
accuracy is primarily due to the distribution characteristics of the target variable, "number of cycles
to reach 5% strain in both amplitudes," within the training data. Although the range in training data
for this goal variable is from 0 to 450, the occurrence of values above 200 is extremely rare. This
disproportionate distribution is likely to skew the model's predictive ability, negatively affecting its
accuracy.

In contrast, when examining Case-2, shown in Figure 6(b), the alignment of many yellow points
is seen to be closer to the red line, implying improved prediction accuracy compared to Case-1.
However, the coefficient of determination (R?) remains relatively low at 0.0296. This suggests that,
similar to Case-1, the intrinsic characteristics of the target variable (number of cycles to reach 95%
excess pore pressure ratio) influence the prediction results. It implies that, while the alignment of the
data points may visually suggest accuracy, the underlying distribution and nature of the target
variable play more significant roles in determining the actual predictive accuracy.
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Figure 6. Degrees of deviation between predicted and measured values in Case-1 and Case-2.

The target variable is changed to "repetitive stress amplitude ratio" in Case-3 and Case-4. This
change results in a remarkable agreement between the experimental results and the predicted values.
The results of Case-3 and Case-4 are provided in Figure 7, showing a clear and consistent alignment
of the yellow points along the red line, visually confirming the high accuracy of the model.
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Figure 7. Degrees of deviation between predicted and measured values in Case-3 and Case-4.

These observations underscore a crucial aspect: the predictive accuracy of the ensemble model
developed in this study is strongly influenced by the selection of both explanatory and target
variables. The distributional characteristics and inherent nature of these variables are key
determinants of the model's effectiveness.

Furthermore, this analysis highlights the importance of considering skewness and outliers in the
training data. The presence of outliers or a skewed distribution can lead to model overfitting or
underperformance, as seen in Case-1 and Case-2. In addition, the study highlights the potential
limitations of relying solely on graphical representations to assess accuracy. While visual alignment
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of data points provides an intuitive understanding of model performance, it does not always capture
the nuances of the predictive accuracy, especially in cases of non-uniform data distributions.

In addition, the results suggest that preprocessing techniques, such as the normalization or
transformation of target variables, could potentially improve model performance. These techniques
could help mitigate the problems posed by skewed distributions or outliers, thereby improving the
model's ability to generalize and predict more accurately.

In conclusion, this detailed analysis confirms that the careful selection and preprocessing of
explanatory and target variables are critical to improving the predictive accuracy of ensemble
models. This insight is invaluable for future studies and applications, emphasizing the need for a
thorough understanding of data characteristics and the application of appropriate statistical methods
in predictive modeling. The findings from these cases provide a foundation for developing more
robust and accurate predictive models in various fields, especially when data distributions are
complex or skewed.

4.2. Selecting Explanatory Variables

As shown in Table 4, there are eight types of explanatory variables in Case-3 and Case-4, each
of which was predicted nine times. The first time, all eight explanatory variables were used
simultaneously, namely, Case-3 and Case-4, and their results are shown in Figure 7. The second time,
the remaining explanatory variables were used, except dry density, namely, Case-3(a) and Case-4(a),
and their results are shown in Figure 8(a). The third time, the remaining explanatory variables were
used, except effective confining pressure, namely, Case-3(b) and Case-4(b), and their results are
shown in Figure 8(b). The fourth time, the remaining explanatory variables were used, except the fine
particle content, namely, Case-3(c) and Case-4(c), and their results are shown in Figure 8(c). The fifth
time, the remaining explanatory variables were used, except unconfined compressive strength,
namely, Case-3(d) and Case-4(d), and their results are shown in Figure 8(d). The sixth time, the
remaining explanatory variables were used, except the silica gel concentration of the injected
chemical solution, namely, Case-3(e) and Case-4(e), and their results are shown in Figure 8(e). The
seventh time, the remaining explanatory variables were used, except the increase in silica content,
namely, Case-3(f) and Case-4(f), and their results are shown in Figure 8(f). The eighth time, the
remaining explanatory variables were used, except the number of cycles to reach 5% strain in both
amplitudes, namely Case-3(g) and Case-4(g), and their results are shown in Figure 8(g). The ninth
time, the remaining explanatory variables were used, except the number of cycles to reach 95% excess
pore pressure ratio, namely, Case-3(h) and Case-4(h), and their results are shown in Figure 8(h). These
approaches were taken to assess the individual impact of each explanatory variable on the predictive
accuracy of the model.

Table 3. Example of employed training data (data on 2 out of 272 specimens were extracted).

Case-3 and Case-4
Explanatory variables (a) (b) (c) (d) (e) (f) (8) (h)
Dry density (g/cm?) X
Effective confining pressure (kN/m?) X
Fine particle content (%) X
Unconfined compressive strength (kN/m?) X
Silica gel concentration of injected chemical
solution (%)
Increase in silica content (mg/g) X
Number of cycles to reach 5% strain in both
amplitudes
Number of cycles to reach 95% excess pore
pressure ratio
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To visualize these effects, Figure 9(a) presents a comprehensive comparison of the coefficients
of determination (R?) for Case-3 and Cases-3(a) to (h), highlighting the changes in the coefficient of
determination (R?) with the inclusion or exclusion of specific variables. Similarly, Figure 9(b)
illustrates these comparisons for Case-4 and Cases-4(a) to (h), providing a clear visual representation
of the differences between the two cases.
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Figure 8. Comparisons of accuracy for predictions in Case-3, Cases-3(a) to (h), Case-4 and Cases-4(a)
to (h).

A notable observation from these figures is that Case-4 and Cases-4(a) to (h) consistently showed
higher coefficients of determination (R?) compared to Case-3 and Cases-3(a) to (h). This improvement
is primarily due to the increased number and variety of data points used in Case-4 and Cases-4(a) to
(h), which improves the model's ability to generalize and accurately predict outcomes. Additionally,
an interesting trend observed in both cases is the increase in the coefficient of determination (R?)
(greater than 0.8) when uniaxial compressive strength is excluded from the training data. This finding
suggests that the training data, derived from tests on the same type of sandy soil, provided a
consistent and less variable data set, especially in terms of uniaxial compressive strength.

However, it is important to note that uniaxial compressive strength is a critical parameter that
reflects the strength characteristics of the local sandy soil. Given its importance, its exclusion raises
questions about the potential impact on the predictive accuracy when applied to test results from
other sites with different soil characteristics. Therefore, while the current study suggests its lesser
significance in the context of the dataset used, further investigation is needed to validate this finding
across different soil types and conditions.

In addition, when all the explanatory variables were used in the prediction model, Case-4
showed a coefficient of determination (R?) of 0.85. This high value indicates a remarkable level of
accuracy and reliability in the predictions. It suggests that integrating ensemble learning methods
into the analysis can significantly improve the model's ability to predict the liquefaction resistance in
cyclic undrained triaxial tests with high accuracy.

In conclusion, the analysis in Case-4 underscores the importance of selecting appropriate
explanatory variables and the potential impact of each on the accuracy of the predictive model. It also
highlights the value of ensemble learning methods in improving predictive capabilities, especially in
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complex geotechnical scenarios such as liquefaction resistance prediction. The results of this study
provide a solid foundation for future studies and practical applications in the field of geotechnical
engineering.

5. Conclusions

In this study, the primary objective was to evaluate the liquefaction resistance of solution-type
chemical sandy soil amendments using a novel approach. By utilizing existing experimental
databases and artificial intelligence (Al), we sought to achieve accurate predictions without the need
to conduct physical experiments. This methodology focused on analyzing data from 20 loading cycles
of cyclic undrained triaxial tests and evaluating the impact of various explanatory variables, leading
to an investigation of the optimal combinations of these variables for making predictions.

The results of this study are summarized as follows:

(1) For the development of a predictive model, it is highly recommended to designate the
liquefaction resistance ratio as a dependent variable and the other parameters as explanatory
variables. This approach allows a more focused analysis and provides more reliable predictions
of the soil behavior under liquefaction conditions.

(2) The exploration of combinations of explanatory variables revealed that using all available
variables tends to produce a more stable coefficient of determination (R?). This stability is critical
to the reliability of the model, especially in applications where precision is paramount.

(3) Including the liquefaction resistance ratio in the training data set significantly increases the
predictive accuracy of the model. This finding underscores the importance of this particular
variable in understanding and predicting the behavior of chemically enhanced sandy soils under
stress.

(4) The results of using Al for making predictions highlight the potential of accurately predicting
liquefaction resistance using historical data. This approach not only saves time and resources,
but also opens new avenues for studies in soil mechanics and geotechnical engineering.

(5) In addition, this study aimed to validate the effectiveness of the solution-type chemical
improvement of sandy soils against liquefaction through Al-based analysis of existing data from
cyclic undrained triaxial tests. The results of this study confirmed that high-precision predictions
are achievable using the explanatory variables listed in Table 1. In particular, excluding uniaxial
compressive strength as an explanatory variable resulted in the highest accuracy, followed
closely by scenarios using all explanatory variables. This suggests a nuanced relationship
between the variables and their predictive power that warrants further investigation.

Looking ahead, several challenges and opportunities emerge. A key area for future study is to
expand the training dataset to include test results from multiple sites. This would improve the
generalizability and accuracy of the model and provide a more comprehensive understanding of soil
behavior under different geological conditions. In addition, the role of uniaxial compressive strength
as an explanatory variable merits further investigation. Its inclusion or exclusion from the model has
significant implications for predictive accuracy, suggesting a complex interplay with other variables.

Another future direction is to explore more advanced Al techniques and algorithms. The
potential of machine learning and deep learning for improving the predictive models for soil
liquefaction resistance is vast and largely untapped. These advanced methods could uncover deeper
insights into soil behavior and provide more robust predictive tools for geotechnical engineers.

In conclusion, this study represents a significant step forward in the application of Al for
predicting soil liquefaction resistance. It not only demonstrates the feasibility of using Al for such
predictions, but also sets the stage for more sophisticated analyses and applications in the field of
geotechnical engineering. The integration of Al with traditional soil mechanics offers a promising
avenue for future studies, with the potential to revolutionize the way in which soil improvement and
liquefaction resistance analysis are approached.
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