
Article

Not peer-reviewed version

Machine Learning Predictive Analysis of

Liquefaction Resistance for Sandy Soils

Enhanced by Chemical Injection

Yuxin Cong , Toshiyuki Motohashi , Koki Nakao , Shinya Inazumi 

*

Posted Date: 26 January 2024

doi: 10.20944/preprints202401.1913.v1

Keywords: artificial intelligence; chemical injection; cyclic undrained triaxial test; liquefaction; machine

learning; sandy soil

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1211632


 

Article 

Machine Learning Predictive Analysis of 
Liquefaction Resistance for Sandy Soils Enhanced by 
Chemical Injection 

Yuxin Cong 1, Toshiyuki Motohashi 2, Koki Nakao 1 and Shinya Inazumi 3,* 

1 Graduate School of Engineering and Science, Shibaura Institute of Technology; na23107@shibaura-it.ac.jp 

(Y.C.); na21105@shibaura-it.ac.jp (K.N.) 
2 Osaka Bousui Construction Co. Ltd.; motohashi@obcc.co.jp 
3 College of Engineering, Shibaura Institute of Technology 

* Correspondence: inazumi@shibaura-it.ac.jp; Tel.: +81358598360 

Abstract: The objective of this study was to investigate the liquefaction resistance of chemically 

improved sandy soils in a straightforward and accurate manner. Using only the existing 

experimental databases and artificial intelligence, the goal was to make predictions without 

conducting physical experiments. Emphasis was placed on the significance of data from 20 loading 

cycles of cyclic undrained triaxial tests to determine the liquefaction resistance and the contribution 

of each explanatory variable. Different combinations of explanatory variables were considered. 

Regarding the predictive model, it was observed that a case with the liquefaction resistance ratio as 

the dependent variable and other parameters as explanatory variables yielded favorable results. In 

terms of exploring combinations of explanatory variables, it was found advantageous to include all 

variables as doing so consistently resulted in a high coefficient of determination. The inclusion of 

the liquefaction resistance ratio in the training data was found to improve the predictive accuracy. 

In addition, the results obtained when using a linear model for the prediction suggested the 

potential to accurately predict the liquefaction resistance using historical data. 

Keywords: artificial intelligence; chemical injection; cyclic undrained triaxial test; liquefaction; 

machine learning; sandy soil 

 

1. Introduction 

The significant structural damage often caused by the settlement or tilting of structures, due to 

the liquefaction of saturated sandy soils during large earthquakes, has long been a major concern in 

the field of geotechnical engineering, as shown in Figure 1. This phenomenon, which can have serious 

consequences, was particularly documented in a seminal studies [1–4]. The sudden instability of the 

ground during such events can lead to the catastrophic destruction of buildings and infrastructures, 

resulting in significant economic losses as well as the tragic loss of human life. This critical issue was 

further highlighted [5,6]. These concerns have led to a significant increase in the study and 

development of activities aimed at improving liquefaction resistance and developing other 

mitigation methods. This focus was particularly highlighted by the groundbreaking work [7,8], 

which contributed to a better understanding of these challenges. 

In response to these critical challenges, the chemical injection method has emerged as a 

prominent and innovative solution for mitigating subsurface liquefaction risks [9–13]. This technique 

involves injecting chemical agents into sandy soils to increase their stability and cohesion. However, 

the effective implementation of this method and the accurate execution of designs depend heavily on 

the availability of precise and reliable data on the liquefaction resistance of the targeted chemically 

treated sandy soils [14–18]. Traditionally, liquefaction resistance has been assessed using cyclic 

undrained triaxial tests, which are fundamental to building comprehensive databases reflecting a 

variety of test conditions and results [19–24]. Despite their critical importance in understanding soil 
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behavior, these tests are often time-consuming, expensive, and labor-intensive. In addition, they are 

limited by the diverse nature of the properties of sandy soils found in different geographic regions, 

requiring a large number of experiments for a thorough and comprehensive data collection [25–27]. 

 

Figure 1. General principle of liquefaction phenomenon. 

To address these challenges and limitations, the present study introduces a novel and state-of-

the-art approach that employs machine learning and ensemble learning techniques [28–30]. The 

authors of this study propose a predictive model for evaluating the liquefaction resistance of sandy 

soils treated with solution-type chemical agents. This model is a synergistic combination of existing 

experimental data and advanced algorithms with artificial intelligence (AI) [31–34]. This innovative 

approach makes it possible to predict the liquefaction resistance of sandy soils without the need to 

conduct additional laborious and costly experiments. The method is not only efficient, but also cost-

effective, providing significant advances in the formulation of liquefaction mitigation strategies and 

enhancing risk assessment capabilities in geotechnical engineering [35]. The methodology of this 

study begins with the meticulous collection and analysis of data from cyclic undrained triaxial tests. 

The data form the basis of the machine-learning database used in the study. Employing ensemble 

learning techniques, the authors successfully integrate the results of different prediction models to 

produce more accurate and reliable predictions. The primary goal of this study is to comprehensively 

assess the risk of sandy soil liquefaction and to provide reliable guidance for the design and 

implementation of chemical injection methods. It is expected that the development of this innovative 

non-experimental prediction method will contribute significantly to the sustainable development and 

advancement of geotechnical engineering practices. This approach not only minimizes the 

environmental impact, but also significantly reduces the time and costs associated with traditional 

soil testing methods. By introducing AI as a transformative tool in geotechnical engineering for 

predicting liquefaction resistance [36,37], this study aims to revolutionize the field and to improve 

the safety and stability of sandy soils in earthquake-prone areas. 

The application of AI in this context is particularly noteworthy, as it represents a paradigm shift 

in how geotechnical engineering challenges are addressed. By harnessing the power of machine 

learning, the study bypasses the limitations of traditional experimental methods. The AI-driven 

model is able to synthesize large amounts of experimental data, learn from different soil conditions, 

and adapt to different chemical treatments. This leads to a more holistic understanding of soil 

behavior under seismic activity, providing engineers with a powerful tool for predicting the soil 

response in real-world scenarios. Of particular importance in this study is the use of ensemble 

learning techniques. Ensemble learning involves combining multiple machine learning models to 

improve prediction accuracy [38], thereby reducing the likelihood of erroneous predictions that could 

lead to unsafe engineering practices. This approach ensures that the predictive model is not based on 

a single data set or algorithm, but is a robust composite of multiple predictive insights, resulting in a 

more reliable and trustworthy predictive model. In addition, the study's approach to integrating AI 
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with traditional geotechnical engineering practices is an exemplary model of interdisciplinary 

innovation. By bridging the gap between advanced computational techniques and practical 

engineering applications, the study sets a precedent for future studies in the field. It demonstrates 

the potential of AI to improve the accuracy and efficiency of engineering solutions, thereby 

contributing to the development of safer and more resilient infrastructures. The study not only 

addresses the immediate challenge of predicting and mitigating the liquefaction of sandy soils, but 

also opens new avenues for study and innovation in geotechnical engineering. By harnessing the 

power of AI and machine learning, it presents a forward-looking approach that could revolutionize 

the field, leading to more sustainable, efficient, and safer engineering practices [39]. This study not 

only contributes to the academic body of knowledge, but also has practical implications for the 

construction industry, urban planning, and disaster risk management, especially in earthquake-

prone regions.  

2. General Evaluation and Countermeasures to Liquefaction of Sandy Soils 

2.1. Chemical Injection Method 

The liquefaction of sandy soils during seismic events is a significant challenge in geotechnical 

engineering [40,41]. It poses a risk to the stability and integrity of structures built on such soils. In 

response, chemical injection has emerged as a promising technique for mitigating liquefaction in 

sandy soils [9–13].  

Liquefaction occurs when saturated sandy soils lose their strength and stiffness in response to 

an applied stress, such as an earthquake, resulting in fluid-like behavior [42]. The chemical injection 

method, also known as soil grouting, involves injecting chemical solutions into soils to improve their 

physical and mechanical properties, thereby increasing their resistance to liquefaction. 

The chemical injection process typically involves the use of materials such as silicates, 

polyurethanes, or acrylamides. When injected into a soil, these chemicals react with the soil particles 

or with each other to form a solidified matrix that binds the soil particles together, increasing their 

density and shear strength. One common approach is to use sodium silicate, a water-soluble silicate 

that reacts with calcium chloride to form a gel-like substance. This substance fills the voids between 

the soil grains, reducing porosity and increasing soil cohesion. Another approach is to use organic 

polymers that solidify when injected, creating a network of polymer chains that bind the soil particles 

together. 

Chemical injection has several advantages. It is a relatively quick process compared to other soil 

stabilization methods and can be applied to specific areas without the need for an extensive 

excavation or the disruption of existing structures. In addition, the method can be tailored to different 

soil types and conditions [13]. 

Despite its advantages, the chemical injection method also faces several challenges and 

limitations. The use of chemicals raises environmental concerns. Some chemicals used in the process 

can be harmful to the environment, especially if they leach into the groundwater. Selecting 

environmentally friendly chemicals that do not compromise soil stability is critical. In addition, the 

long-term effectiveness of the treatment is uncertain. Over time, the injected chemicals may degrade 

or the bond between soil particles may weaken, reducing the effectiveness of the treatment. 

Achieving the uniform distribution of the chemical solution throughout the soil is challenging. 

Inhomogeneous treatment can result in uneven soil properties that may not effectively mitigate 

liquefaction hazards. Moreover, the process can be costly, especially for large-scale applications. The 

cost of the chemicals and the need for specialized equipment and personnel can be significant. Finally, 

it is also noted that not all sandy soils are suitable for chemical injection. The method is less effective 

in soils with high organic content or those that are too coarse or too fine. Effective monitoring and 

quality control are essential to ensuring successful treatment. This includes monitoring the 

distribution of chemicals, the reaction process, and the final soil properties. 

The chemical injection method for liquefaction mitigation in sandy soils offers a viable solution 

for improving soil stability in seismic areas [43]. However, it is imperative to address the 
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environmental, technical, and economic challenges associated with this method. Future studies 

should focus on developing environmentally friendly chemicals, improving application techniques 

for uniform soil treatment, and evaluating the long-term performance of treated soils. With advances 

in technology and a better understanding of soil behavior, chemical injection has the potential to 

become a more effective and sustainable option for liquefaction mitigation in sandy soils. 

2.2. Cyclic Undrained Triaxial Test 

In geotechnical engineering, the cyclic undrained triaxial test is a critical method for evaluating 

the liquefaction resistance of chemically treated sandy soils. This test simulates the stress conditions 

experienced by soils during seismic events and provides important information on the behavior of 

the soils under such conditions [19–24].  

Liquefaction is the phenomenon in which saturated sandy soils significantly lose their strength 

and stiffness in response to an applied load, such as seismic shaking, causing them to behave like a 

liquid. The cyclic undrained triaxial test is a laboratory test designed to evaluate the resistance of soils 

to liquefaction, which is particularly important for soils that have been treated with chemical agents 

for stabilization. Figure 2 shows the typical appearance of the cyclic undrained triaxial test. 

 

Figure 2. Typical appearance of cyclic undrained triaxial test. 

The test involves the cyclic loading of a cylindrical soil sample in a triaxial chamber. The soil 

sample is first saturated and then subjected to axial cyclic loading at a controlled frequency and 

amplitude. The test is undrained, meaning that no water can enter or leave the soil sample during the 

test. This condition simulates the rapid loading that occurs during earthquakes. Parameters, such as 

axial stress, axial strain, pore water pressure, and volume change, are recorded. The number of cycles 

the soil can withstand before failure (defined by a certain level of strain or pore pressure) is used to 

evaluate its resistance to liquefaction. 

The cyclic undrained triaxial test is widely recognized for its ability to replicate the stress 

conditions experienced by soils during earthquakes. It provides valuable data on the behavior of 

chemically treated soils, including the stiffness, strength, and pore pressure response, which are 

critical for evaluating the liquefaction potential [19–24]. 

Despite its advantages, the cyclic undrained triaxial test faces several challenges. Obtaining and 

preparing undisturbed soil samples for testing is challenging. Sample disturbance can significantly 

affect the test results, making it difficult to accurately represent the in-situ soil conditions. Each test 

is conducted on a small-scale soil sample, which may not accurately represent the behavior of the soil 

mass in the field due to scale effects. For chemically treated soils, it is difficult to ensure the uniform 

distribution of the chemical agent throughout the sample. Inconsistent treatment can lead to variable 
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results that do not accurately reflect the true behavior of the treated soil. The test is complex and 

requires sophisticated equipment and skilled personnel, making it expensive and time-consuming. 

Accurate measurement of the pore water pressure during the test is critical, but can be challenging, 

especially in sands with low permeability. It is difficult to ensure the repeatability and reliability of 

the test results due to the inherent variability of the soil properties and the sensitivity of the test to 

experimental conditions. 

The cyclic undrained triaxial test is an essential tool for evaluating the liquefaction resistance of 

chemically treated sandy soils. However, overcoming the challenges associated with sample 

preparation, scale effects, chemical interactions, test complexity, and measurement accuracy is critical 

to obtaining reliable results. Future advances in test procedures, equipment, and analytical methods 

are needed to overcome these challenges. By improving the cyclic undrained triaxial test, it can 

continue to be a valuable method for evaluating the effectiveness of chemical treatments for 

mitigating the liquefaction hazards of sandy soils. 

2.3. Liquefaction Resistance Ratio 

The concept of the liquefaction resistance ratio, often derived from the cyclic undrained triaxial 

test, is a critical parameter in geotechnical engineering, particularly in assessing the stability of soils 

under seismic conditions. This ratio is a measure of a soil's ability to resist liquefaction, a phenomenon 

in which saturated soil loses much of its strength and stiffness in response to an applied stress, such 

as an earthquake, causing it to behave like a fluid. In the context of the cyclic undrained triaxial test, 

the liquefaction resistance ratio is defined as the ratio of the cyclic stress required to cause liquefaction 

in a soil sample to the maximum cyclic stress experienced by the soil during an earthquake [14–18]. 

Liquefaction in this test is typically identified by a specific criterion, such as reaching a predetermined 

level of axial strain or a significant increase in pore water pressure, indicating a loss of soil strength. 

The cyclic undrained triaxial test involves subjecting a cylindrical soil sample, saturated and confined 

in a triaxial chamber, to controlled cyclic axial loading. The loading simulates the stress conditions 

that the soil would experience during seismic events. The cyclic stress required to induce liquefaction 

is determined by gradually increasing the stress amplitude of the loading cycles until the soil sample 

reaches the failure criterion. The liquefaction resistance ratio is an index that indicates the resistance 

of the sandy soil to liquefaction. Specifically, it refers to the cyclic stress amplitude ratio when the 

axial strain amplitude reaches 5% or the excess pore water pressure ratio reaches 95% and the number 

of cyclic loads is 20 [13]. This index is calculated from the liquefaction intensity curve [13,44] obtained 

as a result of the cyclic undrained triaxial test, as shown in Figure 3. The cyclic undrained triaxial test 

simulates liquefaction phenomena under compacted and undrained conditions in a testing machine. 

The collected undisturbed specimen is compacted under the original effective confining pressure, 

subjected to cyclic shear stress equivalent to the stress during an earthquake, and tested. During the 

test, experiments are performed at multiple cyclic stress levels and the number of cyclic loads at 

which both axial strain amplitudes reach 5% is determined. A liquefaction intensity curve is 

constructed from this data.  
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Figure 3. Liquefaction intensity curves obtained from cyclic undrained triaxial tests. 

3. Machine Learning Predictive Analysis 

3.1. Ensemble Learning 

Ensemble learning methods use multiple machine learning algorithms to produce weakly 

predictive results based on features extracted through a variety of projections on the data and fuse 

the results with various voting mechanisms to achieve a better performance than that obtained by 

any constituent algorithm alone [45]. Neural networks have attracted attention in the field of machine 

learning due to their high expressiveness in modeling nonlinear data. On the other hand, gradient 

boosting decision trees excel in terms of interpretability and accuracy. It is expected that the 

combination of these two methods will improve the predictive accuracy of the model. 

A neural network is an interconnected collection of simple processing elements, units or nodes, 

whose functionality is loosely based on the animal neuron. The processing capability of the network 

is stored in the inter-unit connection strengths or weights, which are obtained through a process of 

adaptation to, or learning from, a set of training patterns [46–49]. A model with many hidden layers 

is called deep learning. Multiple inputs and outputs are possible, and neural networks enable 

prediction, judgment, and classification. As shown in Figure 4, data are input into the input layer, the 

features are input with indicators of the data, and the final results are calculated by inputting neurons 

into the output layer. 

 

Figure 4. Schematic prediction flow of neural network. 

The gradient boosting decision tree is an algorithm that learns multiple decision trees 

sequentially, using the residuals from the previous decision tree in the learning process of the next 

decision tree. This method also uses a gradient descent to minimize the errors in the predicted values 

[50–52]. 

The ensemble model proposed in this study combines two models: a neural network and a 

gradient boosting decision tree. As shown in Figure 5, it determines the weighted average of the 

predictions from these models to generate the final prediction. Both models are known for their high 

predictive performance in terms of tabular training data, and it is expected that the combination of 

these models, through ensemble modeling, will further improve the accuracy. 

 

Figure 5. Schematic prediction flow of proposed ensemble model. 
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Before constructing the ensemble model, a method is used to optimize the generalization ability 

of each model. Specifically, the training data are divided into several subsets, and a technique called 

random search is used for cross-validation to optimize the hyperparameters. 

3.2. Preparation of Dataset 

Data sets play a crucial role in the implementation of machine learning. They are divided into 

two main categories: training data and test data. Training data are used for model training, which is 

the necessary basis for acquiring the generalization ability. 

3.2.1. Details of training data 

In this study, data from cyclic undrained triaxial tests on chemically improved sandy soils, 

conducted to determine the liquefaction resistance, were used. These data include specimen 

conditions, test conditions, and test results. Specifically, the variable elements shown in Table 1 were 

extracted from previous test records to form the training data. A total of 272 specimens from 68 cases 

of cyclic undrained triaxial tests were used. One case corresponds to one site. In order to obtain the 

liquefaction resistance as shown in Figure 3, at least four specimens must be used for the cyclic 

undrained trial tests conducted for each case (each site). All 272 specimens were chemically improved 

sandy soils with 6%, 9%, and 12% silica concentrations, with four specimens being collected from 

each of the 68 sites. 

Table 1. Variable elements related to cyclic undrained triaxial test employed in training data. 

Category Variable elements 

Condition parameters for specimens of 

chemically improved sandy soils 

Dry density (g/cm3) 

Fine particle content (%) 

Effective confining pressure (kN/m2) 

Unconfined compressive strength (kN/m2) 

Silica gel concentration of injected chemical solution (%) 

Increase in silica content (mg/g) 

Results obtained by cyclic undrained 

triaxial test 

Number of cycles to reach 5% strain in both amplitudes 

Number of cycles to reach 95% excess pore pressure ratio 

Cyclic stress amplitude ratio 

Liquefaction resistance ratio*  

*It refers to the cyclic amplitude stress ratio when the axial strain amplitude reaches 5% or the excess pore 

water pressure ratio reaches 95% and the number of cyclic loads is 20. 

3.2.2. Details of test data 

The test data in this study are based on the above training data. However, the test data exclude 

the target variables of the training data and mainly consist of explanatory variables from the training 

data. 

3.3. Distinguishing Explanatory and Target Variables 

In this study, the training data are used to train an ensemble model and, after the learning 

process, predictions are made by inputting test data. During this process, the predicted values are 

compared with the target variables of the training data to validate the predictive performance of the 

machine learning model. In this study, the distinction between the explanatory variables and the 

target variables is made for four cases, namely, Case-1, Case-2, Case-3, and Case-4, as shown in Table 

2. An example of the training data used in this study, i.e., data for 2 of the 272 specimens, are 

presented in Table 3. The target variable for Case-3 and Case-4 is the same. The difference is that 

Case-3 makes predictions without liquefaction resistance, while Case-4 makes them with liquefaction 

resistance. 
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Table 2. Explanatory and target variables employed for each prediction case. 

Case Explanatory variables Target variables 

Case-1 Variable elements shown in Table 1 

excluding the liquefaction resistance ratio 

and the target variable 

Number of cycles to reach 5% strain in both 

amplitudes 

Case-2 Variable elements shown in Table 1 

excluding the liquefaction resistance ratio 

and the target variable 

Number of cycles to reach 95% excess pore 

pressure ratio 

Case-3 Variable elements shown in Table 1 

excluding the liquefaction resistance ratio 

and the target variable 

Cyclic stress amplitude ratio 

Case-4 Variable elements shown in Table 1 

excluding the target variable 

Cyclic stress amplitude ratio 

Table 3. Example of employed training data (data on 2 out of 272 specimens were extracted). 

Variable Variable elements 
Data for 2 of 272 

specimens 

Explanatory 

variables 

Dry density (g/cm3) 1.684 1.484 

Effective confining pressure (kN/m2) 90 165 

Fine particle content (%) 14.8 11.4 

Unconfined compressive strength (kN/m2) 539 483 

Silica gel concentration of injected chemical solution 

(%) 
12 12 

Increase in silica content (mg/g) 11.62 7.79 

Number of cycles to reach 5% strain in both 

amplitudes 
18 6.5 

Number of cycles to reach 95% excess pore pressure 

ratio 
37 38.4 

Target variable Repetitive stress amplitude ratio   

3.4. Evaluation of Prediction Accuracy 

The coefficient of determination (𝑅2 ) quantifies the proportion of variance explained by a 

statistical model and is an important summary statistic of biological interest [53]. It is also widely 

used in machine learning. This metric quantitatively indicates how well the predicted values of the 

target variables, generated by a machine learning model using test data, match the actual values of 

the target variables in the training data. When the predictions of a machine learning model are 

perfectly accurate, 𝑅2  is equal to 1, while it approaches 0 when the predictions are completely 

unrelated to the actual values. 

The formula for the coefficient of determination (𝑅2) is defined as Eq. (1). 𝑅2 = 1 − ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛𝑖=1∑ (𝑦𝑖 − 𝑦̅)2𝑛𝑖=1  (1) 

where 𝑛 is the total number of data, 𝑦𝑖 is the 𝑖-th actual value, 𝑦̂𝑖 is the 𝑖-th predicted value, and 𝑦̅ is the average of all the actual values. 

In summary, the coefficient of determination (𝑅2) provides a numerical measure of how well the 

predictions from a machine learning model match the actual values in the training data, ranging from 

0 (no correlation) to 1 (perfect correlation). 

4. Results And Discussion 

4.1. Selecting Target Variables 

Looking closely at Case-1, shown in Figure 6(a), the Y-axis represents the actual values of the 

target variable in the training data, while the X-axis represents the values predicted by the ensemble 
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model. In an ideal scenario, the yellow points would align closely along the upward sloping red line, 

indicating a high degree of accuracy with minimal error between the actual and predicted values. 

However, in Case-1, the coefficient of determination (𝑅2) is significantly low at -0.0790. This low 

accuracy is primarily due to the distribution characteristics of the target variable, "number of cycles 

to reach 5% strain in both amplitudes," within the training data. Although the range in training data 

for this goal variable is from 0 to 450, the occurrence of values above 200 is extremely rare. This 

disproportionate distribution is likely to skew the model's predictive ability, negatively affecting its 

accuracy. 

In contrast, when examining Case-2, shown in Figure 6(b), the alignment of many yellow points 

is seen to be closer to the red line, implying improved prediction accuracy compared to Case-1. 

However, the coefficient of determination (𝑅2) remains relatively low at 0.0296. This suggests that, 

similar to Case-1, the intrinsic characteristics of the target variable (number of cycles to reach 95% 

excess pore pressure ratio) influence the prediction results. It implies that, while the alignment of the 

data points may visually suggest accuracy, the underlying distribution and nature of the target 

variable play more significant roles in determining the actual predictive accuracy. 

 

Figure 6. Degrees of deviation between predicted and measured values in Case-1 and Case-2. 

The target variable is changed to "repetitive stress amplitude ratio" in Case-3 and Case-4. This 

change results in a remarkable agreement between the experimental results and the predicted values. 

The results of Case-3 and Case-4 are provided in Figure 7, showing a clear and consistent alignment 

of the yellow points along the red line, visually confirming the high accuracy of the model. 

 

Figure 7. Degrees of deviation between predicted and measured values in Case-3 and Case-4. 

These observations underscore a crucial aspect: the predictive accuracy of the ensemble model 

developed in this study is strongly influenced by the selection of both explanatory and target 

variables. The distributional characteristics and inherent nature of these variables are key 

determinants of the model's effectiveness. 

Furthermore, this analysis highlights the importance of considering skewness and outliers in the 

training data. The presence of outliers or a skewed distribution can lead to model overfitting or 

underperformance, as seen in Case-1 and Case-2. In addition, the study highlights the potential 

limitations of relying solely on graphical representations to assess accuracy. While visual alignment 
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of data points provides an intuitive understanding of model performance, it does not always capture 

the nuances of the predictive accuracy, especially in cases of non-uniform data distributions. 

In addition, the results suggest that preprocessing techniques, such as the normalization or 

transformation of target variables, could potentially improve model performance. These techniques 

could help mitigate the problems posed by skewed distributions or outliers, thereby improving the 

model's ability to generalize and predict more accurately. 

In conclusion, this detailed analysis confirms that the careful selection and preprocessing of 

explanatory and target variables are critical to improving the predictive accuracy of ensemble 

models. This insight is invaluable for future studies and applications, emphasizing the need for a 

thorough understanding of data characteristics and the application of appropriate statistical methods 

in predictive modeling. The findings from these cases provide a foundation for developing more 

robust and accurate predictive models in various fields, especially when data distributions are 

complex or skewed. 

4.2. Selecting Explanatory Variables 

As shown in Table 4, there are eight types of explanatory variables in Case-3 and Case-4, each 

of which was predicted nine times. The first time, all eight explanatory variables were used 

simultaneously, namely, Case-3 and Case-4, and their results are shown in Figure 7. The second time, 

the remaining explanatory variables were used, except dry density, namely, Case-3(a) and Case-4(a), 

and their results are shown in Figure 8(a). The third time, the remaining explanatory variables were 

used, except effective confining pressure, namely, Case-3(b) and Case-4(b), and their results are 

shown in Figure 8(b). The fourth time, the remaining explanatory variables were used, except the fine 

particle content, namely, Case-3(c) and Case-4(c), and their results are shown in Figure 8(c). The fifth 

time, the remaining explanatory variables were used, except unconfined compressive strength, 

namely, Case-3(d) and Case-4(d), and their results are shown in Figure 8(d). The sixth time, the 

remaining explanatory variables were used, except the silica gel concentration of the injected 

chemical solution, namely, Case-3(e) and Case-4(e), and their results are shown in Figure 8(e). The 

seventh time, the remaining explanatory variables were used, except the increase in silica content, 

namely, Case-3(f) and Case-4(f), and their results are shown in Figure 8(f). The eighth time, the 

remaining explanatory variables were used, except the number of cycles to reach 5% strain in both 

amplitudes, namely Case-3(g) and Case-4(g), and their results are shown in Figure 8(g). The ninth 

time, the remaining explanatory variables were used, except the number of cycles to reach 95% excess 

pore pressure ratio, namely, Case-3(h) and Case-4(h), and their results are shown in Figure 8(h). These 

approaches were taken to assess the individual impact of each explanatory variable on the predictive 

accuracy of the model. 

Table 3. Example of employed training data (data on 2 out of 272 specimens were extracted). 

 Case-3 and Case-4 

Explanatory variables  (a) (b) (c) (d) (e) (f) (g) (h) 

Dry density (g/cm3)  x        

Effective confining pressure (kN/m2)   x       

Fine particle content (%)    x      

Unconfined compressive strength (kN/m2)     x     

Silica gel concentration of injected chemical 

solution (%) 
     x    

Increase in silica content (mg/g)       x   

Number of cycles to reach 5% strain in both 

amplitudes 
       x  

Number of cycles to reach 95% excess pore 

pressure ratio 
        x 
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Figure 8. Degrees of deviation between predicted and measured values in Cases-3(a) to (h) and Cases-

4(a) to (h). 
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To visualize these effects, Figure 9(a) presents a comprehensive comparison of the coefficients 

of determination (𝑅2) for Case-3 and Cases-3(a) to (h), highlighting the changes in the coefficient of 

determination (𝑅2 ) with the inclusion or exclusion of specific variables. Similarly, Figure 9(b) 

illustrates these comparisons for Case-4 and Cases-4(a) to (h), providing a clear visual representation 

of the differences between the two cases. 

 

Figure 8. Comparisons of accuracy for predictions in Case-3, Cases-3(a) to (h), Case-4 and Cases-4(a) 

to (h). 

A notable observation from these figures is that Case-4 and Cases-4(a) to (h) consistently showed 

higher coefficients of determination (𝑅2) compared to Case-3 and Cases-3(a) to (h). This improvement 

is primarily due to the increased number and variety of data points used in Case-4 and Cases-4(a) to 

(h), which improves the model's ability to generalize and accurately predict outcomes. Additionally, 

an interesting trend observed in both cases is the increase in the coefficient of determination (𝑅2) 

(greater than 0.8) when uniaxial compressive strength is excluded from the training data. This finding 

suggests that the training data, derived from tests on the same type of sandy soil, provided a 

consistent and less variable data set, especially in terms of uniaxial compressive strength. 

However, it is important to note that uniaxial compressive strength is a critical parameter that 

reflects the strength characteristics of the local sandy soil. Given its importance, its exclusion raises 

questions about the potential impact on the predictive accuracy when applied to test results from 

other sites with different soil characteristics. Therefore, while the current study suggests its lesser 

significance in the context of the dataset used, further investigation is needed to validate this finding 

across different soil types and conditions. 

In addition, when all the explanatory variables were used in the prediction model, Case-4 

showed a coefficient of determination (𝑅2) of 0.85. This high value indicates a remarkable level of 

accuracy and reliability in the predictions. It suggests that integrating ensemble learning methods 

into the analysis can significantly improve the model's ability to predict the liquefaction resistance in 

cyclic undrained triaxial tests with high accuracy. 

In conclusion, the analysis in Case-4 underscores the importance of selecting appropriate 

explanatory variables and the potential impact of each on the accuracy of the predictive model. It also 

highlights the value of ensemble learning methods in improving predictive capabilities, especially in 
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complex geotechnical scenarios such as liquefaction resistance prediction. The results of this study 

provide a solid foundation for future studies and practical applications in the field of geotechnical 

engineering. 

5. Conclusions 

In this study, the primary objective was to evaluate the liquefaction resistance of solution-type 

chemical sandy soil amendments using a novel approach. By utilizing existing experimental 

databases and artificial intelligence (AI), we sought to achieve accurate predictions without the need 

to conduct physical experiments. This methodology focused on analyzing data from 20 loading cycles 

of cyclic undrained triaxial tests and evaluating the impact of various explanatory variables, leading 

to an investigation of the optimal combinations of these variables for making predictions. 

The results of this study are summarized as follows: 

(1) For the development of a predictive model, it is highly recommended to designate the 
liquefaction resistance ratio as a dependent variable and the other parameters as explanatory 
variables. This approach allows a more focused analysis and provides more reliable predictions 
of the soil behavior under liquefaction conditions. 

(2) The exploration of combinations of explanatory variables revealed that using all available 
variables tends to produce a more stable coefficient of determination (𝑅2). This stability is critical 
to the reliability of the model, especially in applications where precision is paramount. 

(3) Including the liquefaction resistance ratio in the training data set significantly increases the 
predictive accuracy of the model. This finding underscores the importance of this particular 
variable in understanding and predicting the behavior of chemically enhanced sandy soils under 
stress. 

(4) The results of using AI for making predictions highlight the potential of accurately predicting 
liquefaction resistance using historical data. This approach not only saves time and resources, 
but also opens new avenues for studies in soil mechanics and geotechnical engineering. 

(5) In addition, this study aimed to validate the effectiveness of the solution-type chemical 
improvement of sandy soils against liquefaction through AI-based analysis of existing data from 
cyclic undrained triaxial tests. The results of this study confirmed that high-precision predictions 
are achievable using the explanatory variables listed in Table 1. In particular, excluding uniaxial 
compressive strength as an explanatory variable resulted in the highest accuracy, followed 
closely by scenarios using all explanatory variables. This suggests a nuanced relationship 
between the variables and their predictive power that warrants further investigation. 
Looking ahead, several challenges and opportunities emerge. A key area for future study is to 

expand the training dataset to include test results from multiple sites. This would improve the 

generalizability and accuracy of the model and provide a more comprehensive understanding of soil 

behavior under different geological conditions. In addition, the role of uniaxial compressive strength 

as an explanatory variable merits further investigation. Its inclusion or exclusion from the model has 

significant implications for predictive accuracy, suggesting a complex interplay with other variables. 

Another future direction is to explore more advanced AI techniques and algorithms. The 

potential of machine learning and deep learning for improving the predictive models for soil 

liquefaction resistance is vast and largely untapped. These advanced methods could uncover deeper 

insights into soil behavior and provide more robust predictive tools for geotechnical engineers. 

In conclusion, this study represents a significant step forward in the application of AI for 

predicting soil liquefaction resistance. It not only demonstrates the feasibility of using AI for such 

predictions, but also sets the stage for more sophisticated analyses and applications in the field of 

geotechnical engineering. The integration of AI with traditional soil mechanics offers a promising 

avenue for future studies, with the potential to revolutionize the way in which soil improvement and 

liquefaction resistance analysis are approached. 
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