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Abstract: The aberrant glycosylation is a hallmark of cancer progression and chemoresistance.  It is also an 
immune therapeutic target for various cancers.  Tunicamycin (TM) is one of the potent nucleoside antibiotics 
and an inhibitor of aberrant glycosylation in various cancer cells, including breast cancer, gastric cancer, and 
pancreatic cancer, parallel with inhibition of cancer cell growth and progression of tumors.  Thus, TM can be 
considered a potent antitumor drug in various cancers and may promote chemosensitivity.  Mechanistically, 
TM impedes the role of the UDP-HexNAc enzyme in the biosynthesis of oligosaccharides, specialized 
macromolecules instrumental in N-linked glycosylation.  Further, like chemotherapies such as doxorubicin 
(DOX), 5'fluorouracil, etoposide, and Cisplatin, TM induces the unfolded protein response (UPR) by blocking 
aberrant glycosylation.   Despite TM's antitumor effectiveness, its lack of cell-type specific cytotoxicity 
impedes its anticancer efficacy.  Thus, various nanoencapsulation techniques and materials have been 
considered for use in experiments to reduce TM's cytotoxicity and improve efficacy as a targeted therapy.  The 
current review is a profound audit of the benefits and pitfalls of TM in various cancers, focusing on breast, 
colon, and pancreatic cancers.  Additional progressive studies have also discussed the use of TM in immune 
checkpoints and other unique pathways.  Cytotoxicity and other possibly adverse effects of TM are 
highlighted based on the data from in vitro and in vivo assays.  In addition, the recent advances in nano-based 
drug delivery systems regarding TM have been emphasized.  However, the potential of this nucleoside 
inhibitor requires thorough investigation and research to determine its likeliness as a viable chemotherapeutic.  

Keywords: Tunicamycin; breast cancer; nanoparticle; immunotherapy; glycosylation; drug 
resistance; multidrug therapy 
 

1. Introduction 

Protein glycosylation is a unique physiological and pathophysiological process that attaches 
glycans (carbohydrate-based polymers) to the protein backbone via N-linked glycosylation (at the 
asparagines or glutamines carboxamide side chain) or O-linked glycosylation (at the hydroxyl group 
of serine/threonine side chains) [1, 2].  Glycosylation is the most frequent post-translational 
modification of a protein [3] and the key molecular event associated with innate and adaptive 
immune systems [4].  It is involved in cell membrane formation, folding and unfolding, and protein 
stability [5].  Thus, the functional utilities of protein glycosylation in health and diseases are growing 
interest in biomedical research [4, 6].    

The aberrant glycosylation with unique structures, known as tumor-associated carbohydrate 
antigens (TACAs) [7-9], plays a vital role in malignant transformation, cancer progression, and 
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metastasis [10, 11].  Aberrant Glycosylation, particularly that associated with enzymes, is useful as 
a biomarker for cancer cells.  The enzymes that cause aberrant glycosylation express cancer-specific 
changes, especially over-expression of certain enzymes in cellular biosynthesis.  For example, in the 
proteomics study, analysis of the glycans and glycoproteins in cancer and normal cells can yield 
personalized diagnosis and treatments, partly because cancer cells' metabolism differs from normal 
cells.  By continuing to study the cancer-modified glycans, these biomarkers can better be used to 
detect and diagnose specific types of cancer [12].  The spreading of primary cancer cells to distant 
organs is coupled with alterations and degradation of the extracellular matrix (ECM), impacting 
cellular interactions and structural changes of surface proteins by glycosylation [4-6, 13-16].  Thus, 
glycosylation is now reconsidered in the era of cancer-targeted therapy[17].  Thereby, particular 
emphasis on glycosylation inhibitors is given for the rational development of immunologically 
targeted cancer therapies. 

Tunicamycin (TM), a mixture of homologous nucleoside antibiotic inhibitors of N-linked 
glycosylation, may inhibit drug resistance in multidrug therapy.  This drug impedes the transfer of 
UDP-N-acetylglucosamine (GlcNAc) to dolichol phosphate in the endoplasmic reticulum (ER) of 
eukaryotic cells, thus disrupting protein maturation by blocking oligosaccharides biosynthesis [18].  
Oligosaccharides are instrumental in N-linked glycosylation, linking to nitrogen atoms from 
asparagine residue.  The formulation and structure of proteins depend on this natural process.  The 
inhibition of this process results in unfolded protein response and cellular stress, therefore resulting 
in cell death.  However, as effective as it is, this stalwart offensive of canceling N-linked 
glycosylation is not cell-type specific.  TM in cancer treatment could prove hazardous, as residual 
cytotoxicity on surrounding normal tissue could worsen the state of the disease.  Nanocarriers, a 
prospective asset in the pharmaceutical world, may present a solution to hinder this drug's 
cytotoxicity.  

2. Origin and Basic Biology of Tunicamycin 

Tunicamycin (TM) is a nucleoside antibiotic consisting of tunicamine, uracil, N-
acetylglucosamine, and fatty acyl side chain (Figure 1).  Streptomyces lysosuperificus, classified by 
Tamura et al. in 1970, is the sole producer of this antibiotic [19].  This bacterium was cultivated in a 
fluid of 2% glucose, 2% gluten meal, 2% pharma media, 3% K2HPO4, 1.5% KH2PO4, and 0.3% CaCO3.  
After 30 hours in the culture broth, TM was detected as a product of fermentation of streptomyces 
lysosuperificus and accumulated over 100 hours.  Newcastle disease virus was used as a subject to 
test the antibiotic activity.  TM exhibits antibacterial activity due to its inhibition of phospho-
MurNAc-pentapeptide translocase (MraY), an enzyme essential in bacterial cell wall synthesis [20].  
MraY is classified as a translocase that helps in cell wall biosynthesis utilizing UDP-MurNAc, a 
pentapeptide necessary in peptidoglycan synthesis.  TM inhibits MraY similarly to how it blocks 
dolichol phosphate in N-linked glycosylation.  In a study conducted by Duskin et al., three variants 
of 3T3 fibroblasts were treated with TM: normal 3T3 cells, SV40-transformed 3T3 cells, and 
polyomavirus-transformed 3T3 cells [21].  TM was administered to variants in cell plates and 
displayed high cytotoxic effects on all 3T3 cell types, differing in some factors.  After 2-4 days, the 
cytotoxicity of TM altered the morphology of their regular epithelioid shapes into long, pointed 
structures.  These changes were present when TM was present in all cell plates.  However, when 
TM was removed, any physiological changes soon regressed into a normal state, proving that TM 
lingers around any targeted subject and applies cytotoxicity until removed from a subject. 
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Figure 1. Chemical structure of Tunicamycin. The molecule consists of various structural fragments 
crucial in its anti-cancer properties. The first fragment of interest is the aminosugar moiety, which 
consists of a hexose sugar called N, N'-diacetyl chitobiose. This fragment is responsible for the initial 
recognition and binding of Tunicamycin to its target enzyme, UDP-N-acetylglucosamine-dolichyl-
phosphate N-acetylglucosaminephosphotransferase (GPT). The interaction between the aminosugar 
and the enzyme is crucial for inhibiting the biosynthesis of N-linked glycoproteins, a process essential 
for cancer cell growth and metastasis.  Another vital fragment is the nucleoside moiety, which 
consists of a thymidine derivative known as 4-(2-amino-2-deoxy-α-D-glucopyranosyl) thymine.  It 
stabilizes the interaction between Tunicamycin and GPT, thereby enhancing the drug's potency.  The 
third fragment of interest is the fatty acid chain, which consists of a 17-carbon isoprenoid structure, 
sometimes called decaprenyl phosphate.  It is involved in anchoring the drug to the endoplasmic 
reticulum, the site of glycoprotein synthesis, facilitating its localization to the target enzyme. The fatty 
acid chain for various derivatives of Tunicamycin, composed of 14-17 carbon chain lengths, 
contributes to the overall hydrophobicity of Tunicamycin, which affects its pharmacokinetic 
properties.  Finally, the unsaturated uridine ring system, which binding to the target enzyme, and 
contributes to its inhibitory potency. 

3. How does Tunicamycin work? 

A multifaceted mode of action of TM has been reported as a therapeutic drug.   In any cancer 
treatment, the development of drug resistance seems to be almost imminent, and this limiting factor 
prevents achieving cures in patients with cancers [22]. The aberrant glycosylation is one of the leading 
factors in developing drug resistance phenotypes in cancer cells [23].  Some oncoproteins and 
oncogenes promote aggressive phenotypes such as proliferation and drug resistance via N-linked 
glycosylation [24, 25]. TM inhibits N-linked glycosylation and other N-glycans via inducing ER stress 
and hindering the development of invasive behavior of cancer cells.  These include cancer stemness 
and drug resistance [26]. However, it is uncertain if TM could regulate the mutant effect of proto-
oncogenes associated with the above pathological events.  Mechanistically, TM can enter eukaryotes 
via the protein transporter major facilitator domain containing 2A (MFSD2A) and permeates through 
the endoplasmic reticulum (ER) membrane, causing stress [27, 28]. TM induces ER stress through the 
unfolded protein response (UPR), promoting TRAIL-induced apoptosis [29, 30].  The whole genome 
microarray analysis found that under sustained ER stress by TM, endothelial nitric oxide synthase 
(eNOS) upregulated in prostate cancer cells that activated mTORC1 through eNOS-RagC pathway 
and promote p62-reactive oxygen species (ROS) dependent mitochondrial apoptosis [30].  The UPR 
work through three receptors are located on the ER membrane.  These include Protein kinase RNA-
like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme (IRE1), and activating 
transcription factor 6 (ATF6) [31-35]. These receptors are usually found inactive in scenarios where 
UPR is nonexistent due to its regulation by glucose-reacting protein 78 (GRP78). The induction of TM 
inhibits N-acetyl glucosamine-phosphate transmission to UDP-dolichol phosphate, resulting in 
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unfolded proteins. GRP78 then activates the three UPR mediating receptors. The cytosolic portion of 
ATF6 then enters the nucleus and encodes a homologous C/EBP protein (CHOP) [36]. Overexpression 
of this CHOP protein leads to autophagy, which inevitably leads to apoptosis (Figure 2). 

 
Figure 2. The unfolded protein response (UPR) via TM. 

4. Tunicamycin in Cancer Therapy 

Despite having some issues, TM's anticancer properties, which are mediated through UPR 
induction due to N-linked glycosylation in eukaryotes, are well established [37-39]. The following 
sections briefly and categorically highlight TM's impact on various cancers. The in vitro and animal 
studies found that the most targeted tumors for Tunicamycin are the breast, liver, colon, lungs, and 
pancreas, depicted in Figure 3. 

Breast cancer- Breast cancers (BC) with metastasis are a global threat to female health as 
treatment options are still limited and weakly effective.   Systemic drug therapy is still the first-line 
option for metastatic breast cancer treatment with surgery and radiation therapy.  These include 
hormone therapy, chemotherapy, targeted therapy, and immunotherapy.   However, the current 
systemic drug therapies can most likely not remove all cancer cells.  Thus, new drugs and 
therapeutic options are urgently needed.  With several preclinical drugs, TM could be a potential 
drug for treating BC with metastasis, as preclinical studies showed TM blocks BC growth and 
metastasis through the regulation of the Akt/NF-kB-signaling pathway [40] and enhance 
trastuzumab antitumor activity on BC [41], suggesting a promising approach of combination therapy 
of TM and trastuzumab to improve trastuzumab's clinical efficiency [41].  The role of Wnt/β-captain 
in TM-induced ER-stressed mediated apoptosis in triple-negative breast cancer (TNBC) cells has been 
documented, providing additional TM mechanisms [42].  

Cancer stem cells (CSCs) play a significant role in tumor growth and drug resistance [43].  They 
are characterized to have the cell surface phenotypes CD44+/CD24-[43].  About 1-4% of BC cells 
carry CD44+/CD24-, which is considered highly aggressive[43].  TM-induced ER stress reduces the 
growth and invasion of CD44+/CD24- cells, indicating TM therapy is an exciting approach to target 
breast cancer stem cells [44]. 

Colon Cancer-  Colon cancer, which is also called colorectal cancer (CRC), is one of the most 
common digestive tract tumors and the leading cause of cancer-related death in the elderly 
population in the United States and globally [45]. However, early screening can find non-cancerous 
abnormal growths in the colon, called polyps, which can be removed (polypectomy) and prevent 
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cancerous growth in the colon.    In the advanced stage, chemotherapy is the only option before or 
after radiation. Targeted and immunotherapy is also considered for advanced colon cancer.   

The studies suggest TN could be an anti-CRC drug as TN treatment efficiently inhibits CRC cell 
growth and aggressive behavior by downregulating vimentin, FIB, and Ecacollagen type I and Slug 
expression levels and tumor-bearing mice's survival [46].  Further, TN has been found to enhance 
TRAIL-induced apoptosis in CRC cells by JNK-CHOP-mediated DR5 upregulation and inhibiting the 
EGFR pathway [47].  TN reprogramed cell-cell adhesion in undifferentiated CRC cells by inducing 
E-cadherin [48].  Interestingly, separate indirect studies claimed TM is a promoting factor of CRC 
[49, 50].  

Lung Cancer-  Lung cancer is the most common cancer-related death in the human population 
and is highly correlated with cigarette smoking [51].  The non-small cell lung cancer (NSCLC) is the 
primary subtype of lung cancer and accounts for about eighty percent of the new cases of lung cancer 
[51, 52].  The therapeutic options and efficacies of NSCLC are limited due to drug resistance.  Thus, 
the 5-year survival rate of NSCLC remains at 15% [51, 52].  In lung cancer, the therapeutic roles of 
TN are well documented.  The studies showed that TM enhances the anticancer effects of Cisplatin 
on lung cancer growth via deglycosylation of PTX3 through the AKT/NF-κB signaling pathway [52].  
Furthermore, TM promotes anti-immunity in a lung cancer mouse model with combination therapy 
[53].  

Pancreatic ductal adenocarcinoma (PDAC)- Among pancreatic cancers, PDAC is the deadliest 
cancer in the pancreas and constitutes 90% of pancreatic cancer.  PDAC represents the 7th most 
common cause of cancer-related death globally and has an overall 5-year survival rate not exceeding 
9% [54, 55].  It is anticipated that PDAC could be the second most common cause of cancer-related 
death in the USA by 2040 [54, 56].  Based on genomic alterations, PDAC can be classified into four 
groups. These include stable genomes (< 50 percent structural variants per genome), scattered 
genomes (50-200 structural variants per genome), locally rear-ranged genomes (>200 structural 
variants clustered on less than three chromosomes), and unstable genomes (>200 structural variants 
distributed in the genome)[57, 58]. This genome classification provides precision oncology 
knowledge and has clinical potential for PDAC patients [57]. 

Despite having a limited effect or no outcome of the therapy due to quick development 
resistance to drugs, the first-line treatments of PDAC are still  FOLFIRINOX (combination of 5FU, 
Leucovirin, Oxaliplatin, and Irinotecan), Gemcitabine alone or in combination with nab-Paclitaxel 
[54, 59].  The therapeutic limitations of PDAC show the urgency of finding new therapeutic options 
[54, 59].  Mutant K-RAS in the ductal epithelial cells is the driving force of the initiation and 
progression of  PDAC [57, 60-64], which can be promoted by multiple factors, including CCN-family 
proteins [65, 66]. Several preclinical studies are actively involved in discovering small molecules to 
target K-RAS mutants [67].  

Mutant K-RAS plays a critical role in the immunosuppression of PDAC microenvironment [68-
70].  Thus, immunologically, mutant K-RAS has an equally important target [71-73]. Despite having 
mixed and descriptive information on T-helper 2 (Th2) cells and associated cytokines in cancer, recent 
studies found that Th2 cells may be crucial regulators of colon and pancreas cancer progression by 
affecting immune cell composition and type II immune responses. In murine allograft models of 
colon and pancreatic cancers, the adoptive transfer of Th2 cells into tumor-bearing mice significantly 
reduces tumor growth by inducing cytotoxicity via eosinophils and macrophages' innate immune 
response. The studies also showed that IL-5 protects against tumor growth by recruiting and 
activating eosinophils [74]. Although glycosylation plays a vital role in regulating the above proteins, 
the impact of TM is underdetermined.   

Overexpression of eukaryotic translational initiation factors in various cancers, including in 
PDAC, is a common alteration.  The studies showed that one of the factors, eIF4E, is overexpressed 
in poorly differentiated and metastatic PDAC [54, 75].  eIF4E phosphorylation (p-eIF4E) at serine209 
by MNK1/2 serine/threonine kinases promotes its transformation activity [76, 77].  Thus, upon 
mutant K-RAS activation in PDAC, eIF4E activated and promoted tumor invasion and metastasis.  
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Studies have shown that TM treatment can inactivate eIF4E [78].  Based on these studies, we can 
deduce that TM treatment can be an ideal therapeutic approach for PDAC.  

 
Figure 3. The Therapeutic impact of Tunicamycin on various cancers.  The Therapeutic impact of 
Tunicamycin on various cancers.  Based on in vitro and preclinical animal studies, TM's 
antitumorigenic effects are found in the lungs, liver, breast, pancreas, and colons.  Thus, TM can be 
an ideal drug to treat human cancers in combination with other antibodies or chemotherapies. . 

5. Tunicamycin in Immunotherapy 

Tumor initiation and progression are linked with altered or deluded immunity [79] or 
reprogramming of immune cells within the tumor microenvironment [80, 81].   The communication 
between tumor cells and the immune system is dynamic, reminiscent of a balance of immunity factors 
[79, 80].   Thus, immunooncology is now at the forefront of basic, preclinical, and clinical research 
and has recently been harnessed as one of the pillars of cancer therapy [79, 82-86].  The central 
principle of cancer immunotherapy is eliminating cancer cells by host cytotoxic immune CD8+ T cells 
[79, 84-87].   However, this does not always happen in the tumor ecosystem, as tumor cells 
manipulate the system, cause tumor-specific CD8+ T cell dysfunction via antigen-derive 
differentiation program [88], or activate various immune checkpoint suppressive mechanisms.  
These include regulatory T (Treg) cells, over-expression of program death-1 (PD-1) receptor and its 
ligand PD-L1, CTLA-4, and others [83, 84, 89, 90], which are briefly depicted in Figure 4.  

In many different malignancies, immune-targeted therapy primarily focuses on the T-cell base 
[79], as the T-cells have the potency to suppress tumor growth clinically [79, 87, 91, 92]. Despite the 
clinical successes of immune checkpoint inhibitors, the mechanisms underlying inhibitors' 
upregulation in cancer cells and infiltrating T cells have only begun to be understood.  The emerging 
findings showed that Indoleamine 2,3-dioxygenase 1 (IDO1) is overproduced in highly tumorigenic 
self-renewing repopulating cancer cells [93].  IDO1 catalyzes the committing and rate-limiting step 
of the kynurenine (KYN) metabolic pathway, leading to abundant KYN release [93, 94].  KYN is then 
absorbed in CD8+ T cells, activating the aryl hydrocarbon receptor (AhR) that causes PD-1 
overexpression [93]. This sequential event adopts a tumor immunological microenvironment that is 
defective in recognizing and killing cancer cells [94].  
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The PD-L1 regulation in cancer cells is mediated by multiple pathways depending on the cancer 
type. These pathways are genomic alterations, epigenetic modifications, transcriptional and post-
transcriptional regulation, post-translation modifications, and exosomal transport [95-97].   

In the tumor microenvironment, the PD-1 receptor is highly N-glycosylated in T cells to maintain 
PD-1 stability and interaction with the PD-L1 ligand expressed in tumor cells to dampen the activity 
of T-cell receptor (TCR)/CD28) signals [98].  The studies showed several N-glycosylated inhibitors, 
including TM treatment deglycosylated PD-1[98, 99] (Fig.4).  Thus, TM could be considered an ideal 
therapy to target PD-1 alone or in combination of other PD-1 inhibitors.   

Like PD-1, PD-L1 is also highly N-glycosylated to maintain its stability and binding affinity with 
PD-1 in various cancers and eradicate Triple-negative Breast cancer (TNBC) by targeting glycosylated 
PD-L1  [100].   Thus, studies suggest targeting PD-L1 glycosylation could be an ideal therapeutic 
option by rationale combination of cancer immunotherapies [101-104].   

Interleukins (ILs) are secreted cytokines that play vital roles in the biology of cancers and 
immune functions [105].  Although some ILs (i.e., IL-6, IL-10, and IL-17) boost tumor growth, some 
ILs may promote the immune system's antitumor response. These include IL-2, IL-12 and IL-5 [105, 
106]. Previous studies have shown that glycosylation plays a role in IL-12 biogenesis, but the loss of 
glycosylation has little or no effect on IL-12 and IL-23 secretion, heterodimerization, and biological 
activities [107].  IL-5 is produced by both hematopoietic and non-hematopoietic cells [108].  T-cell-
derived IL-5 controls eosinophil production and their activation via JAK-STAT and RAS/Raf-ERK 
signaling pathways [108].  Recent studies have shown that IL-5-producing CD4-positive T cells and 
eosinophils collectively enhance response to immune checkpoint blockade (ICB) in breast cancer.  
Further, it has also been reported that ICB increased IL-5 production by CD4 T-cells elevated 
eosinophil production from bone marrow and infiltration that eventually enhanced ICB efficacy [106, 
109].  T-cell-derived IL-5 exhibits heterogeneous glycosylation with four N-glycosylation sites in the 
extracellular regions, and removal of N- or O-linked glycosylation on IL-5 enhances the potency of 
the cytokine [110], without  having effect on lymphocyte proliferation in a lymphocyte proliferation 
assay following the treatment of glycosylation inhibitor tunicamycin (TM) [108, 111].  Previously, 
however, it has been shown that in humans, IL-5 acts only on eosinophils and basophils for their 
growth, maturation and activation as these cells express IL-5 receptors [112-114]. Thus, the results of 
these studies suggest that inhibition of glycosylation in IL-5 by TM could be effective only on 
eosinophil production, maturation and their activation.  However, further studies are warranted.   

In pancreatic cancer progression, IL-5/IL-5Rα roles are possibly a double-edged sword, with 
both pro- and antitumor activities being discovered recently [74, 115-117].  However, the 
mechanistic roles of IL-5 are still unclear.  Studies have shown that TM can inhibit endoplasmic-
reticulum (ER)-stress-mediated autophagy and promote the effectiveness of chemotherapies on 
pancreatic cancer cells [118].  Further, studies showed ER-stressed inhibitors reduce IL-5 production 
in the Th-2 cells (naïve CD4+ T cells) [119], which inhibit colon and pancreatic cancer growth by 
promoting antitumorigenic responses from macrophages and eosinophils [74]. However, the effect 
of ER-stressed inhibitors, including TM, on IL-5 in pancreatic cancer cells and localized eosinophils 
is still uncertain.   

In conclusion, TM shows promise in drug-induced immunotherapy when combined with other 
PD-1 and PD-L1 inhibitors, such as monoclonal antibodies or various chemotherapeutics (Fig. 4). 
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Figure 4. Effect of Tunicamycin on tumor cell killing by blocking PD-1-PD-L1 axis inhibition.  The 
antigen-producing cells (APC) promote the maturation/activation of naïve T cells.  The active CD8+ 
T cells, via their receptors (TCR), bind with tumor cell-producing antigens with MHC I and activate 
tumor cell-killing mechanisms.  However, aggressive tumor cells produced program cell death 
ligand 1 (PD-L1) that binds with its receptor PD-1 in CD8+ T cells and deactivates T cells, which 
decreases the antitumor activities of T cells.  . 

6. The Pitfalls of the Use of Tunicamycin 

As much as TM promises to be an efficient drug in chemo-and immunotherapy, evidence of its 
cytotoxicity proves that it affects all cells, whether healthy or cancerous. Thus, TM could prove 
consequential if TM's residual cytotoxicity affects surrounding tissues around a tumor, possibly 
weakening body systems depending on where TM is inducted. Direct administration of TM in 
murine models of leukemia resulted in potent liver toxicity. Unfortunately, as much as TM is 
adequate in meeting the thresholds of chemotherapy, TM's cytotoxicity is not cell-type specific. This 
makes TM a liability in its free form. However, nanoparticle encapsulation technology can bypass 
this problem. Nanoscale particles, particularly those engineered with cell-specific ligands, can 
recognize specific cell types. As such, encapsulating TM inside a nanoparticle can rescue healthy cells 
from non-specific effects of TM. Further, chemical conjugation of TM to an antibody or to a 
macromolecule like PEG, can result in the formation of antibody-drug conjugates (ADCs) or polymer-
drug conjugates (PDCs) respectively. Both variants can be used to augment cellular accumulation of 
TM inside cancer cells. Collectively, nontechnology can also provide exciting prospects that may 
improve TM's implications with cytotoxicity and efficiency [120-123]. 

7. Outlook 

Tunicamycin shows promise if it is to be proven applicable in targeted therapy; however, in 
vivo, experiments and assays may prove the need for more research and trials in mice models before 
it can be approved. For such a cytotoxic drug with an effect as such, many precautions need to be 
taken when it comes to nanoparticle delivery. Glycotherapy modeled after a TM-focused approach 
can suppress the invasion of cancer cells that spread beyond the tumor mass. The UPR holds many 
risks as TM could have a toxic buildup in surrounding healthy tissue. It should be recalled that TM's 
cytotoxicity is not cell-type specific. However, the morphological effects of TM can be reversed by 
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taking TM out of the equation, as shown earlier. The antitumorigenic effects of TM can be used in 
next-generation cancer therapy. Many things can go wrong as the carrier does not reach the 
predetermined deposition site. This method should be perfected as, with many nanocarriers, toxic 
buildup in the organs usually leads to more complications and may result in a weaker prognosis. 
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