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Abstract: In this paper, a class of coupled competitive neural networks, which subject to disturbance

and discontinuous activation functions, is concerned. To realize the fixed-time quasi-bipartite

synchronization, an aperiodic intermittent controller is initially designed. Subsequently, by combining

the fixed-time stability theory and nonsmooth analysis, several criteria are established to ensure the

bipartite synchronization in fixed time. Moreover, synchronization error bounds and settling time

estimates are provided. Finally, numerical simulations are presented to verify the main results.

Keywords: competitive neural network; quasi-bipartite synchronization; fixed-time intermittent

control; external disturbance

1. Introduction

Since neural networks are widely used in computer science [1], remote sensing [2], autonomous

control systems [3], and other fields, their dynamic behaviors have been extensively studied over the

past several decades. It is worth noting that neural networks (NNs) only consider the dynamic level of

neural activity. However, it is essential to recognize that synaptic weights between neurons change

over time [4]. Consequently, Meyer-bäse et al. [5] developed competitive neural networks (CNNs) with

different time scales in 1996, which can be viewed as an extension of Hopfield neural networks and

cellular networks [6,7]. CNNs are defined using two types of state variables: short-term memory (STM)

describes the rapid neural activity, while long-term memory (LTM) depicts the slow, unsupervised

synaptic modifications. On the other hand, coupled competitive neural networks(CCNNs) consist of

several interconnected subsystems, and due to their complex dynamic behavior, they have garnered

significant attention [8,9].

The activation functions of NNs are widely recognized for describing the connection between

the input and output of a single neuron. They are commonly considered to be continuous. When the

activation function is believed to be at the high gain limit, however, the activation function approaches

discontinuity. As a result, an increasing number of scholars have been conducting considerable

research on NNs with discontinuous activation functions [10–13]. On the other hand, the dynamic

behaviors of NNs are frequently impacted by external disturbances, such as changs in network

structure, hardware facilities and environmental noise. As far as we are aware, there are few studies

take both discontinuous activation functions and external disturbances into account when discussing

CCNNs. Therefore, it is both intriguing and challenging to research discontinuous activation functions

and external disturbances in CCNNs.

Synchronization means that two or more dynamical systems adjust themselves to exhibit a

common dynamical behavior. The synchronization problem of NNs has garnered significant attention

recently due to its wide applicability in communication systems, biological sciences, mechanical

engineering and other domains [14–17]. However, the synchronization of the aforementioned NNs

only considers the cooperative relationships between network nodes. In many practical systems,

relationships of competition and cooperation coexist. Therefore, the synchronization issue of NNs with
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both competitive and cooperative connections between nodes, known as bipartite synchronization, is

of crucial importance and has been researched in [18,19]. On the other hand, due to inherent network

constraints, complete synchronization may not be achievable, and instead, quasi-synchronization is

observed. Quasi-synchronization implies that the synchronization error no longer approaches zero but

rather converges to a bounded set. To our knowledge, few papers have addressed the quasi-bipartite

synchronization problem of CCNNs.

In addition to asymptotic synchronization or exponential synchronization, finite-time (FET)

synchronization has gained widespread attention as a more practical form of network synchronization

in recent years. In FET synchronization, the synchronization time is bounded, but it is dependent on

the initial state of the node. To eliminate this dependence on the initial state, fixed-time synchronization

is proposed based on the fixed-time (FXT) stability [20], and its synchronization time only depends on

the system or control parameters. Compared with the rich results of NNs [21,22], it is extremely scarce

at present to explore the FXT synchronization of CCNNs. In [23], authors studied the FET bipartite

synchronization of delayed CCNNs under quantized control. Whereas, to our knowledge, there are

limited reports on FXT quasi-bipartite synchronization of CCNNs, and further research is needed.

Over the past few decades, the control problem of networks has been one of the most widely

studied topics, and many useful control methods have been developed, such as adaptive control,

sliding mode control, impulse control, and intermittent control, among others. Intermittent control

involves alternating periods of applying control input and periods of no control input, making it a more

economical choice compared to continuous control schemes. Hence, the intermittent control strategy

has received extensive attention [24–27]. In [28], the FXT synchronization problem of time-delay

complex networks under intermittent pinning control is studied. The author in [29] solved the FXT

and predefined-time cluster lag synchronization of stochastic multi-weighted complex networks via

intermittent quantized control. To our knowledge, there is currently no existing literature that addresses

the challenging problem of FXT quasi-bipartite synchronization of CCNNs under intermittent control.

Motivated by the analysis provided above, the primary objective of this paper is to investigate

FXT quasi-bipartite synchronization in coupled competitive neural networks. Firstly, the model under

consideration incorporates time-varying delays, discontinuous activation functions, and external

disturbances simultaneously, rendering it more comprehensive. Secondly, we introduce an innovative

FXT aperiodic intermittent control scheme, making the pioneering endeavor to explore quasi-bipartite

synchronization in CCNNs. Furthermore, some robust criterion are established for FXT quasi-bipartite

synchronization based on the theory of practical FXT stability. Finally, we provide estimations for error

bounds and settling times.

Below are shown the remaining contents. Section 2 gives some necessary preliminary knowledge

and model description. Section 3 introduces the main theoretical conclusions. Section 4 provides

numerical examples to validate the theoretical conclusions. Section 5 finishes our study and discusses

future research.

Notations: R represents the set of real numbers. The n-dimensional Euclidean space is represented

by the Rn. Rn×m is the set of n × m real matrices. N+ = {1, 2, ..., N}. In is identity matrix. 0n denotes

zero matrix. |P| = (|pij|)n×n. For a symmetric matrix B, λmax(B) represents the maximum eigenvalue

of matrix B. diag(·) represents the diagonal matrix. 1n denotes that all elements of a column vector

are 1. For any p = (p1, ..., pn)T ∈ Rn, sgn(p) = diag(sign(p1), ..., sign(pn)), sign(·) represents the sign

function. Sign(D) = (sign(dij))n×n. The 2-norm of the vector p is denoted by ∥p∥2. For vector w > 0

(<,≥,≤), all of the components of w are positive (negative, non-negative, non-positive). For vectors

q1 and q2, q1 < q2 (q1 ≤ q2) implies q1 − q2 < 0 (q1 − q2 ≤ 0). Notation ⊗ denotes Kronecker

product. k > 0, C([−k, 0], Rn) denotes the set of continuous function from [−k, 0] to Rn.
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2. Model description and preliminaries

Consider the following competitive neural networks with time-varying delay:



































εżk(t) =− ckzk(t) +
n

∑
q=1

akq fq(zq(t)) +
n

∑
q=1

bkq fq(zq(t − τ(t)))

+ Ek

p

∑
l=1

ωlmkl(t), k = 1, ..., n,

ṁkl(t) =− c̄kmkl(t) + ākωl fk(zk(t)), l = 1, ..., p,

(1)

where zk(t) is the state variable. mkl(t) represents synaptic efficiency. ck > 0 represents the

self-feedback coefficient. Connection weights and delay connection weights, respectively, are

represented by akq and bkq. fq(·) is the output of neuron which is discontinuous. ωl is the weight

of an external stimulus. c̄k and āk are given constants. Ek is the intensity of the external stimulus. ε

is the time scale of STM. Where τ is a known constant, τ(t) is the time-varying delay that satisfies

0 ≤ τ(t) ≤ τ.

Let s(t) =
(

s1(t), ..., sn(t)
)T

, sk(t) = ∑
p
l=1 ωlmkl(t) and ω = (ω1, ..., ωp)T . Without losing

generality, suppose ∥ω∥2
2 = 1, then network (1) can be written as

{

ż(t) =− Cz(t) + A f (z(t)) + B f (z(t − τ(t))) + Es(t),

ṡ(t) =− Cs(t) + A f (z(t)),
(2)

where z(t) =
(

z1(t), ..., zn(t)
)T

, f (z(t)) =
(

f1(z1(t)), ..., fn(zn(t))
)T

, A =
( akq

ε

)

n×n
, B =

( bkq

ε

)

n×n
,

C = diag
( c1

ε
, ...,

cn

ε

)

, C = diag(c1, ..., cn), A = diag(a1, ..., an), E = diag
(E1

ε
, ...,

En

ε

)

. The initial value of system (2) is given by z(t) = ϕz(t) ∈ C([−τ, 0], Rn) and s(t) = ϕs(t) ∈

C([−τ, 0], Rn).

A class of CCNNs with external disturbances are modeled as follows:















































Żi(t) =− CZi(t) + A f (Zi(t)) + B f (Zi(t − τ(t))) + ESi(t)

+
N

∑
j=1

|dij|
(

sign(dij)Zj(t)− Zi(t)
)

+ Ri(t) + Ξi(t),

Ṡi(t) =− CSi(t) + A f (Zi(t)) +
N

∑
j=1

|uij|
(

sign(uij)Sj(t)− Si(t)
)

+ Ri(t) + Ξi(t), i ∈ N+,

(3)

where Zi(t) =
(

Zi1(t), ..., Zin(t)
)T

∈ Rn and Si(t) =
(

Si1(t), ..., Sin(t)
)T

∈ Rn are the state variables

of STM and LTM, respectively; Ξi(t) =
(

Ξi1(t), ..., Ξin(t)
)T

indicates the external disturbance vector.

D = (dij) and U = (uij) ∈ RN×N are the adjacency matrix associated with the signed graph G(D) and

G(U) of the CCNNs, satisfying dii = 0
(

uii = 0
)

for i ∈ N+; for i ̸= j, dij ̸= 0
(

uij ̸= 0
)

if there is a

directed communication link from node j to node i, otherwise dij = 0
(

uij = 0
)

. Ri(t) and Ri(t) are

controllers to be designed. The initial conditions of network (3) meet: Zi(t) = φi(t) ∈ C([−τ, 0], Rn)

and Si(t) = φi(t) ∈ C([−τ, 0], Rn).

Remark 1. When dij > 0
(

uij > 0
)

, then the connection between nodes i and j is cooperative, the coupling

term is given as dij

(

Zj(t)− Zi(t)
) (

uij

(

Sj(t)− Si(t)
))

. When dij < 0
(

uij < 0
)

, the connection between

nodes i and j is competitive, the coupling term is presented as −dij

(

Zj(t) + Zi(t)
) (

− uij

(

Sj(t) + Si(t)
))

.
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For the convenience of discussion, define xi(t) =
(

ZT
i (t), ST

i (t)
)

, A1 =
(

AT , A
T)T

, B1 =

(

BT , 0n

)T
, Wi(t) =

(

ΞT
i (t), ΞT

i (t)
)T

, Ki(t) =
(

RT
i (t), R

T
i (t)

)T
, I =

(

In, 0n

)

, C1 =

[

C −E

0n C

]

,

dij =

[

dij 0

0 uij

]

⊗ In and D1 = (dij)2nN×2nN .

Therefore, the coupled competitive neural networks (3) become:

ẋi(t) =− C1xi(t) + A1 f (Ixi(t)) + B1 f (Ixi(t − τ(t))) + Ki(t)

+
N

∑
j=1

|dij|
[

Sign(dij)xj(t)− xi(t)
]

+ Wi(t).
(4)

From (2), the tracking target can be described as follows:

ẏ(t) = −C1y(t) + A1 f (Iy(t)) + B1 f (Iy(t − τ(t))), (5)

where y(t) =
(

zT(t), sT(t)
)T

is the state vector.

The necessary definitions, lemmas and assumptions are given below.

Definition 1 ([33]). Considering a system with discontinuous right-hand sides in the form of

ζ̇(t) = F(ζ(t)), ζ(0) = 0,

where ζ ∈ Rn, F(ζ) : Rn → Rn is locally bounded and Lebesgue measurable. The function ζ(t) is said to be the

solution in Filippov sense which defined in the interval [0, t∗), t∗ ∈ [0,+∞), if ζ(t) is absolutely continuous

and satisfies the below differential inclusion

ζ̇(t) ∈ K[F](ζ(t)), a.e.t ∈ [0, t∗),

where the set-valued map K[F] : Rn → Rn is defined as

K[F](ζ(t)) ≜
⋂

δ>0

⋂

µ(Ω)>0

co{F(B(ζ(t), δ) \ Ω},

where co stands for the convex closure, µ(Ω) is the Lebesgue measure of the set Ω, B(ζ(t), δ) denotes the open

ball centered at ζ(t) with radius δ.

Definition 2. The network (4) is said to achieve FXT quasi-bipartite synchronization with network (5) if there

is a constant T1 > 0, such that

{

limt→T1
∥xi(t)− wiy(t)∥2 ≤ θ,

∥xi(t)− wiy(t)∥2 ≤ θ, ∀t ≥ T1, i ∈ N+,
(6)

where θ is a nonnegative constant.

Definition 3 ([34]). Aperiodically intermittent control is said to have an average control rate γ ∈ (0, 1), if

there is Tγ ≥ 0 such that

Tcon(t, s) ≥ γ(t − s)− Tγ, ∀t > s > t0,

where Tcon(t, s) denotes the total control interval length on [s, t), Tγ is called the elasticity number.
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Lemma 1 ([30]). If xi ≥ 0, i = 1, ..., n, 0 < ξ ≤ 1 and η > 1, then

n

∑
i=1

x
ξ
i ≥ (

n

∑
i=1

xi)
ξ ,

n

∑
i=1

xi
η ≥ n1−η(

n

∑
i=1

xi)
η .

Lemma 2 ([35]). For any x, y ∈ Rn, and positive-definite matrix ∂ ∈ Rn×n, such that

2xTy ≤ xT∂x + yT∂−1y.

Lemma 3 ([36]). Assume that there is a Lyapunov function V(t) ≥ 0 that satisfies

{

V̇(t) ≤ −a1Vq(t)− a2Vp(t)− a3V(t) + ℘1, t ∈ [ζk, µk),

V̇(t) ≤ a4V(t) + ℘2, t ∈ [µk, ζk+1),
(7)

in which a1, a2, a3, a4,℘1,℘2 are positive constants and 0 < p < 1, q > 1. It is said system practical fixed time

stable if a4 − γd < 0 and (1 − γ)d − a3 < 0, in which d > 0. And the setting time T∗ satisfies

T∗ ≤
1 + a5(q − 1)Tγ

a5(q − 1)γ
+

1 + a6(1 − p)Tγ

a6(1 − p)γ
,

where a5 = a1(1 − ϕ) exp {Tγ(1 − q)d}, a6 = a2(1 − ϕ) and 0 < ϕ < 1. γ and Tγ are defined in Definition

3. When t > T∗, there is

V(t) ≤ max
{

δ1, δ2, δ3

}

,

where δ1 = ( ℘1
ϕa1

)
1
q , δ2 = ( ℘1

ϕa2
)

1
p , δ3 = ℘2

dγ − a4
.

For each q = 1, ..., n, the following assumptions are introduced:

Assumption 1 ([32]). fq(·) : R → R is continuous except on a countable set of isolated points {θ
q
r }, where

both the left limit f−q (θ
q
r ) and right limit f+q (θ

q
r ) exist. In addition, fq(·) has at most finite discontinuous jump

points in each bounded compact set.

Assumption 2 ([32]). There exist positive constants lq and hq such that

|ξq − ςq| ≤ lq|u − ν|+ hq, ∀u, ν ∈ R,

where ξq ∈ K
[

fq(u)
]

, ςq ∈ K
[

fq(ν)
]

with K
[

fq(·)
]

= co
[

fq(·)
]

=
[

min
{

f−q (·), f+q (·)
}

,

max
{

f−q (·), f+q (·)
}]

.

Assumption 3 ([23]). The signed graphs are structurally balanced. In other words, the node sets V of G can be

divided into two unsigned subgraphs V1 and V2, respectively. It satisfies V = V1 ∪ V2 and V1 ∩ V2 = ∅. In

addition, the links inside each subgraph are nonnegative, while the links between two unsigned subgraphs are

negative.

Assumption 4. The activation functions fq(·) satisfies

fq(−z) = − fq(z), ∀z ∈ R.

Assumption 5. There exists a positive constant Mq such that | fq(x)| ≤ Mq.

Assumption 6. The external disturbance Ξik(t)(k = 1, ..., 2n) is bounded. That is, there is a positive constant

Wk such that |Ξik(t)| ≤ Wk.
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Assumption 3 implies that there exists a diagonal matrix ω = diag(w1, ..., wN), where wi = 1 if

node vi ∈ V1, otherwise wi = −1. To achieve the FXT quasi-bipartite synchronization of CCNNs, the

intermittent controller is designed as follows:

Ri(t) =















−λ
(

xi(t)− wiy(t)
)

− σ1sgn
(

xi(t)− wiy(t)
)

|xi(t)− wiy(t)|
α

−σ2sgn
(

xi(t)− wiy(t)
)

|xi(t)− wiy(t)|
β, t ∈ [ζk, µk),

0, t ∈ [µk, ζk+1),

(8)

where i ∈ N+, 0 < α < 1, β > 1, λ, σ1, σ2 are positive constants.

Remark 2. The intermittent control proposed in this study can be accomplished in a fixed time, unlike the

previous intermittent control, which can only achieve asymptotic results. Moreover, the aperiodic intermittent

controller proposed in this study is different from the controller in [26,27] as follows:

Ri(t) =







































−
r

2
q(ei(t))−

k

2
sgn(q(ei(t)))(| ei(t) |

α + | ei(t) |
β)

−
k

2

(

(
∫ t

t−τ
eT

i (s)ei(s)ds)
1+α

2 + (
∫ t

t−τ
eT

i (s)

×ei(s)ds)
1+β

2
) ei(t)

∥ ei(t) ∥2
, mT ≤ t < (m + θ)T,

−
r

2
q(ei(t)), (m + θ)T ≤ t < (m + 1)T,

and

Ri(t) =















































−kiei(t)− α
3

∑
r=1

( ξr

1 − σr

∫ t

t−τr(t)
eT

i (s)ei(s)ds
)

p+1
2

ei(t)

∥ ei(t) ∥2

−β
3

∑
r=1

( ξr

1 − σr

∫ t

t−τr(t)
eT

i (s)ei(s)ds
)

q+1
2

ei(t)

∥ ei(t) ∥2

−αsign
(

ei(t)
)

| ei(t) |
p −βsign

(

ei(t)
)

| ei(t) |
q, mT ≤ t < (m + θ)T,

−kiei(t), (m + θ)T ≤ t < (m + 1)T.

A linear term does not need to be set in the rest interval. This approach is proposed first to achieve FXT

quasi-bipartite synchronization for coupled competitive neural networks. Furthermore, aperiodic intermittent

control can be degenerated into periodic intermittent control and continuous control. It is particularly suitable

for complex systems that require dynamic and flexible control.

Combined with controller (8), when t ∈ [ζk, µk), the CCNNs (4) is rewritten as follows:

ẋi(t) =− C1xi(t) + A1 f (Ixi(t)) + B1 f (Ixi(t − τ(t))) +
N

∑
j=1

d̄ijxj(t) + Wi(t)

− λ
(

xi(t)− wiy(t)
)

− σ1sgn
(

xi(t)− wiy(t)
)

|xi(t)− wiy(t)|
α

− σ2sgn
(

xi(t)− wiy(t)
)

|xi(t)− wiy(t)|
β,

(9)
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where D̄1 = (d̄ij)2nN×2nN , d̄ij = dij for i ̸= j and d̄ii = −∑
N
j=1,j ̸=i |dij|. Then, according to Assumption

3, the CCNNs (9) can be transformed into:

˙̃xi(t) =− C1x̃i(t) + A1 f (Ix̃i(t)) + B1 f (Ix̃i(t − τ(t))) +
N

∑
j=1

d̃ijx̃j(t)

− λ
(

x̃i(t)− y(t)
)

− σ1sgn
(

x̃i(t)− y(t)
)

|x̃i(t)− y(t)|α

− σ2sgn
(

x̃i(t)− y(t)
)

|x̃i(t)− y(t)|β + wiWi(t),

(10)

where x̃i(t) = wixi(t), d̃ij = wid̄ijwj = |dij| for i ̸= j and d̃ii = −∑
N
j=1,j ̸=i |dij|, i ∈ N+.

Similar analysis, for t ∈ [µk, ζk+1), one has

˙̃xi(t) =− C1x̃i(t) + A1 f (Ix̃i(t)) + B1 f (Ix̃i(t − τ(t)))

+
N

∑
j=1

d̃ijx̃j(t) + wiWi(t).
(11)

By definition 1, there is ϖ(t) =
(

ϖ1(t), ..., ϖn(t)
)T

∈ K[ f (Iy)] such that

ẏ(t) = −C1y(t) + A1ϖ(t) + B1ϖ(t − τ(t)). (12)

Similarly, there exists at least one measurable function h̄i(t) =
(

h̄i1(t), ..., h̄in(t)
)T

∈ K[ f (Ix̃i)]

such that







































































˙̃xi(t) =− C1x̃i(t) + A1h̄i(t) + B1h̄i(t − τ(t)) +
N

∑
j=1

d̃ijx̃j(t) + wiWi(t)

− λ
(

x̃i(t)− y(t)
)

− σ1sgn
(

x̃i(t)− y(t)
)

|x̃i(t)− y(t)|α

− σ2sgn
(

x̃i(t)− y(t)
)

|x̃i(t)− y(t)|β, t ∈ [ζk, µk),

˙̃xi(t) =− C1x̃i(t) + A1h̄i(t) + B1h̄i(t − τ(t))

+
N

∑
j=1

d̃ijx̃j(t) + wiWi(t), t ∈ [µk, ζk+1).

(13)

3. Main result

In this part, we will consider the case of Wi(t) = 0 and Wi(t) ̸= 0. The Fixed-time quasi-bipartite

synchronization criterion is derived by designing intermittent controller.

Define the synchronization error ei(t) = x̃i(t)− y(t), then the error dynamical system is:































































ėi(t) =− C1ei(t) + A1gi(t) + B1gi(t − τ(t)) +
N

∑
j=1

d̃ijej(t) + wiWi(t)

− σ1sgn(ei(t))|ei(t)|
α − σ2sgn(ei(t))|ei(t)|

β

− λ(ei(t)), t ∈ [ζk, µk)

ėi(t) =− C1ei(t) + A1gi(t) + B1gi(t − τ(t)) +
N

∑
j=1

d̃ijej(t)

+ wiWi(t), t ∈ [µk, ζk+1),

(14)

where gi(t) = h̄i(t)− ϖ(t), gi(t − τ(t)) = h̄i(t − τ(t))− ϖ(t − τ(t)).
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3.1. Fixed-time quasi-bipartite synchronization without disturbances

This section gives the results without external disturbances. Firstly, Theorem 1 gives a sufficient

condition for the quasi-bipartite synchronization of networks (12) and (13) in fixed time.

Theorem 1. Based on Assumptions 1-5 and the controller (8), if

2λ − λmax(Φ)− κ > 0,

ϱ1 + λmax(Φ) + κ > 0,

ϱ1 + λmax(Φ) + κ − γd < 0,

(1 − γ)d − 2λ + λmax(Φ) + κ < 0,

where Φ = −IN ⊗
(

C1 + CT
1

)

+ IN ⊗
(

|A1|LI + (|A1|LI)T
)

+
(

D̃1 + D̃T
1

)

, κ = κ1 + 2κ2, λ, ϱ1, d are

positive constants, γ ∈ (0, 1) stands for the average control rate, then the quasi-bipartite synchronization can be

ensured between networks (12) and (13) in fixed time. The settling time satisfies

T ≤
2 + a5

(

β − 1
)

Tγ

a5

(

β − 1
)

γ
+

2 + a6

(

1 − α
)

Tγ

a6

(

1 − α
)

γ
,

here a5 = 2σ2

(

2nN
)

1−β
2
(

1 − ϕ
)

exp
{1

2 Tγ

(

1 − β
)

d
}

, a6 = 2σ1

(

1 − ϕ
)

, Tγ represents the elasticity number,

0 < ϕ < 1. The state trajectory of (14) converges to a compact set Ω =
{

e(t) | ∥e(t)∥2 ≤
√

max{δ1, δ2, δ3}
}

,

δ1 =
( ℵ

2ϕσ2(nN)
1−β

2

)
2

β+1 , δ2 =
( ℵ

2ϕσ1

)
2

α+1 , δ3 = ℵ
dγ − ϱ

, ϱ = ϱ1 + λmax(Φ) + κ, ℵ =

N
κ1

(

|A1|h)
)T

|A1|h + 2N
κ2

(

|B1|M
)T

|B1|M.

Proof. Consider the following Lyapunov function

V(t) = eT(t)e(t),

where e(t) =
(

eT
1 (t), ..., eT

N(t)
)T

.

For t ∈ [ζk, µk), calculate the derivative of V(t) along the trajectory of the error system (14), one

has

V̇(t) =2
N

∑
i=1

eT
i (t)

(

− C1ei(t) + A1gi(t) + B1gi(t − τ(t)) +
N

∑
j=1

d̃ijej(t)

− λ(ei(t))− σ1sgn(ei(t))|ei(t)|
α − σ2sgn(ei(t))|ei(t)|

β
)

.

Based on Assumption 2, we get

2
N

∑
i=1

eT
i (t)A1gi(t) ≤ 2

N

∑
i=1

|eT
i (t)||A1||h̄i(t)− ϖ(t)|

≤ 2
N

∑
i=1

|eT
i (t)||A1|

[

LI|ei(t)|+ h
]

,

(15)

where L = diag{l1, ..., ln}, h = (h1, ..., hn)T .
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By Assumption 5, there is

2
N

∑
i=1

eT
i (t)B1gi(t − τ(t)) ≤ 2

N

∑
i=1

|eT
i (t)||B1||h̄i(t − τ(t))− ϖ(t − τ(t))|

≤ 4
N

∑
i=1

|eT
i (t)||B1||M,

(16)

where M = (M1, ..., Mn)T .

From (15) and (16), one has

V̇(t) ≤− 2
N

∑
i=1

eT
i (t)C1ei(t) + 2

N

∑
i=1

|eT
i (t)||A1|LI|ei(t)|+ 2

N

∑
i=1

|eT
i (t)||A1|h

+ 2
N

∑
i=1

eT
i (t)

N

∑
j=1

d̃ijej(t)− 2λ
N

∑
i=1

eT
i (t)ei(t) + 4

N

∑
i=1

|eT
i (t)||B1|M

− 2σ1

N

∑
i=1

eT
i (t)sgn(ei(t))|ei(t)|

α − 2σ2

N

∑
i=1

eT
i (t)sgn(ei(t))|ei(t)|

β.

According to Lemma 1, one has

−2σ1

N

∑
i=1

eT
i (t)sgn(ei(t))|ei(t)|

α = −2σ1

N

∑
i=1

2n

∑
k=1

|eik(t)|
α+1

≤ −2σ1

N

∑
i=1

(

2n

∑
k=1

e2
ik(t)

)
α+1

2

≤ −2σ1

(

N

∑
i=1

eT
i (t)ei(t)

)
α+1

2 ,

(17)

and

−2σ2

N

∑
i=1

eT
i (t)sgn(ei(t))|ei(t)|

β = −2σ2

N

∑
i=1

2n

∑
k=1

|eik(t)|
β+1

≤ −2σ2

N

∑
i=1

2n

∑
k=1

(

e2
ik(t)

)

β+1
2

≤ −2(2nN)
1−β

2 σ2

(

N

∑
i=1

eT
i (t)ei(t)

)

β+1
2 .

(18)

From Lemma 2, it follows that

2
N

∑
i=1

|eT
i (t)||A1|h ≤ κ1

N

∑
i=1

|eT
i (t)||ei(t)|+

N

κ1

(

|A1|h
)T

|A1|h, (19)

and

4
N

∑
i=1

|eT
i (t)||B1|M ≤ 2κ2

N

∑
i=1

|eT
i (t)||ei(t)|+

2N

κ2

(

|B1|M
)T

|B1|M. (20)
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It follows from (17)-(20) that

V̇(t) ≤− 2
N

∑
i=1

eT
i (t)C1ei(t) + 2

N

∑
i=1

|eT
i (t)||A1|LI|ei(t)|+ κ1

N

∑
i=1

|eT
i (t)||ei(t)|

+ 2
N

∑
i=1

N

∑
j=1

eT
i (t)d̃ijej(t) + 2κ2

N

∑
i=1

|eT
i (t)||ei(t)|+

N

κ1

(

|A1|h
)T

|A1|h

+
2N

κ2

(

|B1|M
)T

|B1|M − 2λ
N

∑
i=1

eT
i (t)ei(t)− 2σ1

(

N

∑
i=1

eT
i (t)ei(t)

)
α+1

2

− 2σ2

(

2nN
)

1−β
2
(

N

∑
i=1

eT
i (t)ei(t)

)

β+1
2

≤− 2eT(t)
(

IN ⊗ C1

)

e(t) + 2eT(t)
(

IN ⊗ |A1|LI
)

e(t) + κ1eT(t)e(t)

+ 2eT(t)D̃1e(t) + 2κ2eT(t)e(t)− 2λeT(t)e(t)− 2σ1

(

eT(t)e(t)
)

α+1
2

− 2σ2(2nN)
1−β

2 (eT(t)e(t))
β+1

2 +
N

κ1

(

|A1|h
)T

|A1|h

+
2N

κ2

(

|B1|M
)T

|B1|M

≤
(

λmax(Φ) + κ1 + 2κ2 − 2λ
)

eT(t)e(t)− 2σ1

(

eT(t)e(t)
)

α+1
2

− 2σ2(2nN)
1−β

2
(

eT(t)e(t)
)

β+1
2 +

N

κ1

(

|A1|h
)T

|A1|h

+
2N

κ2

(

|B1|M
)T

|B1|M,

where Φ = −IN ⊗ (C1 + CT
1 ) + IN ⊗ (|A1|LI + (|A1|LI)T) + (D̃1 + D̃T

1 ).

Therefore,

V̇(t) ≤− λ1V(t)− 2σ1V(t)
α+1

2 − 2σ2(2nN)
1−β

2 V(t)
β+1

2 + ℵ

for t ∈ [ζk, µk), λ1 = 2λ− λmax(Φ)− κ, ℵ = N
κ1

(

|A1|h
)T

|A1|h+
2N
κ2

(

|B1|M
)T

|B1|M, and κ = κ1 + 2κ2.

Then, for t ∈ [µk, ζk+1), we have

V̇(t) ≤2eT(t)
[

− IN ⊗ C1 + IN ⊗ |A1|LI + D̃1

]

e(t) +
(

ϱ1 + κ
)

eT(t)e(t)

+
N

κ1

(

|A1|h
)T

|A1|h +
2N

κ2

(

|B1|M
)T

|B1|M

≤ϱV(t) + ℵ,

where ϱ = λmax(Φ) + ϱ1 + κ.

Based on Lemma 3, the networks (12) and (13) achieve FXT quasi-bipartite synchronization

and the settling time is estimated as T. Moreover, the system error e(t) will converge to Ω =
{

e(t) | ∥e(t)∥2 ≤
√

max{δ1, δ2, δ3}
}

within T, where δ1 =
( ℵ

2ϕσ2(nN)
1−β

2

)
2

β+1 , δ2 =
( ℵ

2ϕσ1

)
2

α+1 ,

δ3 = ℵ
dγ − ϱ

.

The theorem is proven.

Remark 3. A previous study [23] focused on studying FET bipartite synchronization in competitive neural

networks, whereby the settling time was dependent on the initial state. In contrast, Theorem 1 provides a

sufficient condition for achieving FXT quasi-bipartite synchronization in CCNNs where the settling time is no
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longer dependent on the initial state, but rather on the adjustable controller parameters and the average control

rate. Furthermore, our study utilizes a more practical intermittent controller compared to the one used in [23].

3.2. Fixed-time quasi-bipartite synchronization with disturbances

This section considers external disturbances. Theorem 2 gives sufficient conditions for

quasi-bipartite synchronization of systems (12) and (13) in fixed time.

Theorem 2. Based on Assumptions 1-6 and the controller (8), if

2λ − λmax(Φ)− κ̃ > 0,

ψ + λmax(Φ) + κ̃ > 0,

ψ + λmax(Φ) + κ̃ − γd̃ < 0,

(1 − γ)d̃ − 2λ + λmax(Φ) + κ̃ < 0,

where Φ = −IN ⊗
(

C1 + CT
1

)

+ IN ⊗
(

|A1|LI + (|A1|LI)T
)

+ (D̃1 + D̃T
1 ), κ̃ = κ1 + 2κ2 + κ3, ψ, λ, d̃ are

positive constants, γ ∈
(

0, 1
)

stands for the average control rate, then the quasi-bipartite synchronization can be

ensured between networks (12) and (13) in fixed time. The settling time satisfies

T∗ ≤
2 + ã5

(

β − 1
)

Tγ

ã5

(

β − 1
)

γ
+

2 + ã6

(

1 − α
)

Tγ

ã6

(

1 − α
)

γ
,

here ã5 = 2σ2

(

2nN
)

1−β
2
(

1 − ϕ
)

exp
{1

2 Tγ

(

1 − β
)

d̃
}

, a6 = 2σ1

(

1 − ϕ
)

, Tγ represents the elasticity number,

0 < ϕ < 1. The state trajectory of (14) converges to a compact set Ω̃ =

{

e(t) | ∥e(t)∥2 ≤
√

max{δ̃1, δ̃2, δ̃3}

}

within T∗, δ̃1 =
( ℵ̃

2ϕσ2(nN)
1−β

2

)
2

β+1 , δ̃2 =
( ℵ̃

2ϕσ1

)
2

α+1 , δ̃3 = ℵ̃
d̃γ − ψ̃

, ψ̃ = ψ + λmax(Φ) + κ̃, ℵ̃ =

N
κ1

(

|A1|h
)T

|A1|h + 2N
κ2

(

|B1|M
)T

|B1|M + N
κ3

WTW.

Proof. Construct the following Lyapunov function

V(t) = eT(t)e(t),

where e(t) =
(

eT
1 (t), ..., eT

N(t)
)T

.

For t ∈ [ζk, µk), one obtains

V̇(t) =2
N

∑
i=1

eT
i (t)

(

− C1ei(t) + A1gi(t) + B1gi(t − τ(t)) +
N

∑
j=1

d̃ijej(t)

+ wiWi(t)− λ(ei(t))− σ1sgn(ei(t))|ei(t)|
α − σ2sgn(ei(t))|ei(t)|

β
)

≤2
N

∑
i=1

eT
i (t)

(

− C1ei(t) + A1gi(t) + B1gi(t − τ(t)) +
N

∑
j=1

d̃ijej(t)

+ |Wi(t)| − λ(ei(t))− σ1sgn(ei(t))|ei(t)|
α − σ2sgn(ei(t))|ei(t)|

β
)

.

(21)

Based on Assumption 2 and Assumption 5, it is clear that there are

2
N

∑
i=1

eT
i (t)A1gi(t) ≤ 2

N

∑
i=1

|eT
i (t)||A1|

[

LI|ei(t) + h
]

,

2
N

∑
i=1

eT
i (t)B1gi(t − τ(t)) ≤ 4

N

∑
i=1

|eT
i (t)||B1|M,

(22)
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where L = diag{l1, ..., ln}, h = (h1, ..., hn)T , M = (M1, ..., Mn)T .

Combining (21) and (22), one has

V̇(t) ≤− 2
N

∑
i=1

eT
i (t)C1ei(t) + 2

N

∑
i=1

eT
i (t)|A1|LI|ei(t)|+ 2

N

∑
i=1

eT
i (t)|A1|h

+ 2
N

∑
i=1

eT
i (t)

N

∑
j=1

d̃ijej(t)− 2λ
N

∑
i=1

eT
i (t)ei(t) + 4

N

∑
i=1

eT
i (t)|B1|M

− 2σ1

N

∑
i=1

eT
i (t)sgn(ei(t))|ei(t)|

α − 2σ2

N

∑
i=1

eT
i (t)sgn(ei(t))|ei(t)|

β

+ 2
N

∑
i=1

eT
i (t)|Wi(t)|.

By Assumption 6, then

V̇(t) ≤− 2
N

∑
i=1

eT
i (t)C1ei(t) + 2

N

∑
i=1

eT
i (t)|A1|LI|ei(t)|+ 2

N

∑
i=1

eT
i (t)|A1|h

+ 2
N

∑
i=1

eT
i (t)

N

∑
j=1

d̃ijej(t)− 2λ
N

∑
i=1

eT
i (t)ei(t) + 4

N

∑
i=1

eT
i (t)|B1|M

(23)

− 2σ1

N

∑
i=1

eT
i (t)sgn(ei(t))|ei(t)|

α − 2σ2

N

∑
i=1

eT
i (t)sgn(ei(t))|ei(t)|

β

+ 2
N

∑
i=1

eT
i (t)W.

By Lemma 1, it is easy to get

−2σ1

N

∑
i=1

eT
i (t)sgn(ei(t))|ei(t)|

α ≤ −2σ1

(

N

∑
i=1

eT
i (t)ei(t)

)
α+1

2 ,

−2σ2

N

∑
i=1

eT
i (t)sgn(ei(t))|ei(t)|

β ≤ −2(2nN)
1−β

2 σ2

(

N

∑
i=1

eT
i (t)ei(t)

)

β+1
2 .

(24)

Based on Lemma 2, we obtain

2
N

∑
i=1

eT
i (t)W ≤κ3

N

∑
i=1

eT
i (t)ei(t) +

N

κ3
WTW,

2
N

∑
i=1

|eT
i (t)||A1|h ≤κ1

N

∑
i=1

eT
i (t)ei(t) +

N

κ1

(

|A1|h
)T

|A1|h,

4
N

∑
i=1

|eT
i (t)||B1|M ≤2κ2

N

∑
i=1

eT
i (t)ei(t) +

2N

κ2

(

|B1|M
)T

|B1|M.

(25)
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Submitting (24) and (25) into (23), we obtain

V̇(t) ≤− 2
N

∑
i=1

eT
i (t)C1ei(t) + 2

N

∑
i=1

eT
i (t)|A1|LI|ei(t)|+

N

κ1

(

|A1|h
)T

|A1|h

+ κ1

N

∑
i=1

eT
i (t)ei(t) + 2κ2

N

∑
i=1

eT
i (t)ei(t) + 2

N

∑
i=1

N

∑
j=1

eT
i (t)d̃ijej(t)

− 2λ
N

∑
i=1

eT
i (t)ei(t) + κ3

N

∑
i=1

eT
i (t)ei(t)− 2σ1

(

N

∑
i=1

eT
i (t)ei(t)

)
α+1

2

− 2σ2(2nN)
1−β

2
(

N

∑
i=1

eT
i (t)ei(t)

)

β+1
2 +

2N

κ2

(

|B1|M
)T

|B1|M

+
N

κ3
WTW

=− 2eT(t)
(

IN ⊗ C1

)

e(t) + 2eT(t)
(

IN ⊗ |A1|LI
)

e(t) + κ1eT(t)e(t)

+ 2eT(t)D̃1e(t) + 2κ2eT(t)e(t) + κ3eT(t)e(t) +
N

κ1

(

|A1|h
)T

|A1|h

− 2σ1

(

eT(t)e(t)
)

α+1
2 − 2σ2(2nN)

1−β
2
(

eT(t)e(t)
)

β+1
2 +

N

κ3
WTW

− 2λeT(t)e(t) +
2N

κ2

(

|B1|M
)T

|B1|M

≤− λ2V(t)− 2σ1V(t)
α+1

2 − 2σ2(2nN)
1−β

2 V(t)
β+1

2 + ℵ̃,

where Φ = −IN ⊗
(

C1 + CT
1

)

+ IN ⊗
(

|A1|LI + (|A1|LI)T
)

+
(

D̃1 + D̃T
1

)

, λ2 = 2λ − λmax(Φ) − κ̃,

κ̃ = κ1 + 2κ2 + κ3, ℵ̃ = N
κ1

(

|A1|h
)T

|A1|h + 2N
κ2

(

|B1|M
)T

|B1|M + N
κ3

WTW.

For t ∈ [µk, ζk+1), we obtain

V̇(t) ≤2eT(t)
[

− IN ⊗ C1 + IN ⊗ |A1|LI + D̃1

]

e(t) + ψeT(t)e(t) + κ̃eT(t)e(t)

+
N

κ1

(

|A1|h
)T

|A1|h +
2N

κ2

(

|B1|M
)T

|B1|M +
N

κ3
WTW

=ψ̃V(t) + ℵ̃,

where ψ̃ = ψ + λmax(Φ) + κ̃.

Based on Lemma 3, the FXT quasi-bipartite synchronization can be realized and the

settling time is estimated as T∗. Moreover, the system error e(t) will converge to Ω̃ =
{

e(t) | ∥e(t)∥2 ≤
√

max{δ̃1, δ̃2, δ̃3}

}

within T∗, where δ̃1 =
( ℵ̃

2ϕσ2(nN)
1−β

2

)
2

β+1 , δ̃2 =
( ℵ̃

2ϕσ1

)
2

α+1 ,

δ̃3 = ℵ̃
d̃γ − ψ̃

.

The theorem is proven.

Remark 4. Unlike prior studies [31,36], our research takes into account the impact of discontinuous

activation functions, external disturbances, and competitive relationships between nodes, which more closely

mimics real-world networks. Specifically, due to the competitive nature among nodes and the presence of

external disturbances, the synchronization method employed in [36] is not directly applicable to achieve FXT

quasi-bipartite synchronization. Consequently, our main theorem extends the prior findings of FXT bipartite

synchronization and is tailored to suit the aforementioned conditions.

Remark 5. Predefined time control has emerged as a promising method that allows synchronization time to

be pre-set independently of system parameters. Due to its potential in various applications, predefined time
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synchronization has become a highly topical research area. However, there is still insufficient research into the

predefined time bipartite synchronization of CCNNs, therefore further investigation is necessary.

4. Numerical examples

Two numerical examples are given in this part to demonstrate the validity of the derived

theoretical conclusions.

Consider the following networks:







ż(t) =−
1

ε
Cz(t) +

1

ε
A f (z(t)) +

1

ε
B f (z(t − τ(t))) +

1

ε
Es(t),

ṡ(t) =− Cs(t) + A f (z(t)),
(26)

where z(t) = (z1(t), z2(t))
T , s(t) = (s1(t), s2(t))

T , y(t) =
(

zT(t), sT(t)
)T

, ε = 0.83, τ(t) =

2et

2(1 + et)
, f (z(t)) =

(

sin(z1(t)) + 0.01sign(z1(t)), sin(z2(t)) + 0.01sign(z2(t))
)T

, C = diag(2, 2),

C = diag(0.5, 0.6), A = diag(1.2, 1), E = diag(0.01, 0.01), A = [1, 2;−5.2, 3.2], B = [−4, 2.1; 2, 3.5].

Figure 1 shows the chaotic trajectories of network (26) with initial values z(0) = (−0.4, 0.6)T ,

s(0) = (−0.7, 0.1)T .

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1
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3

4

(a)

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5
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-0.5

0

0.5

1

1.5

(b)

Figure 1. (a) Chaotic trajectories of z(t); (b) Chaotic trajectories of s(t).

4.1. Fixed-time quasi-bipartite synchronization without disturbances

Now, consider CCNNs with 7 nodes as follows:



















































ẋi(t) =−
1

ε
Cxi(t) +

1

ε
A f (xi(t)) +

1

ε
B f (xi(t − τ(t))) +

1

ε
Eyi(t)

+
7

∑
j=1

|dij|
(

sign(dij)xj(t)− xi(t)
)

+ Ri(t),

ẏi(t) =− Cyi(t) + A f (xi(t)) +
7

∑
j=1

|uij|
(

sign(uij)yj(t)− yi(t)
)

+ Ri(t), i = 1, 2, ..., 7,

(27)

where xi(t) =
(

xi1(t), xi2(t)
)T

, yi(t) =
(

yi1(t), yi2(t)
)T

, xi(t) =
(

xT
i (t), yT

i (t)
)T

. Set the initial values

of network (27) to be x1(v) = (−1.9, 2.8)T , x2(v) = (−1.3,−1.4)T , x3(v) = (2.2, 1.4)T , x4(v) =

(−2.1,−2.9)T , x5(v) = (2.4,−1.8)T , x6(v) = (−1.2, 0.9)T , x7(v) = (−1.3, 0.2)T , y1(v) = (−2.6, 0.1)T ,

y2(v) = (0.4,−0.1)T , y3(v) = (0.1,−0.9)T , y4(v) = (−0.4,−1.6)T , y5(v) = (0.5, 1.6)T , y6(v) =

(0.1, 0.8)T , y7(v) = (−1.7, 0.7)T , v ∈ [−1, 0].
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The topology of the networks (27) are presented in Figure 2. Let V1 = {1, 2, 3}, V2 = {4, 5, 6, 7},

and take ω = diag(1, 1, 1,−1,−1,−1,−1),
(

eT
i (t), êT(t)

)T
= xi(t) − wiy(t). Figure 3 depicts the

trajectories of networks (26) and (27) under controller (8).
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(b)

Figure 2. (a) Topology structure of STM in network (27); (b) Topology structure of LTM in network (27).
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Figure 3. (a) The trajectory of the first component of STM under the action of controller (8) in network

(26) and (27) ; (b) The trajectory of the second component of STM under the action of controller (8) in

network (26) and (27); (c) The trajectory of the first component of LTM under the action of controller

(8) in network (26) and (27);(d) The trajectory of the second component of LTM under the action of

controller (8) in network (26) and (27).

The control intervals of the intermittent controller is designed as follows:

+∞
⋃

k=0

[

ζk, µk

)

=
+∞
⋃

l=0

[

0.2l, 0.2l + 0.05
)

∪
[

0.2l + 0.1, 0.2l + 0.18
)

.
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By simple calculation, γ = 0.65 and λ = 32. Choose α = 0.96, β = 3, σ1 = 20, σ2 = 25,

κ1 = 0.01, κ2 = 10, ϕ = 0.5 , d = 98 and Tγ = 0.0001. By Theorem 1, the networks (26) and (27) are

FXT quasi-bipartite synchronization and it is obtained that T = 5.58s and error bound is 2.96. The

simulation results are presented in Figures 4 and 5.
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Figure 4. (a) The trajectory of the first component of the error of STM under the action of controller (8)

in networks (26) and (27); (b) The trajectory of the second component of the error of STM under the

action of controller (8) in networks (26) and (27); (c) The trajectory of the first component of the error

of LTM under the action of controller (8) in networks (26) and (27) ;(d) The trajectory of the second

component of the error of LTM under the action of controller (8) in networks (26) and (27).
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Figure 5. (a) Trajectories of E1(t) with E1(t) = ∥e(t)∥2; (b)Trajectories of E2(t) with E2(t) = ∥ê(t)∥2.
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4.2. Fixed-time quasi-bipartite synchronization with disturbances

Consider the CCNNs with 7 nodes as follows:















































ẋi(t) =− Cxi(t) + A f (xi(t)) + B f (xi(t − τ(t))) + Eyi(t)

+
7

∑
j=1

|dij|(sign
(

dij)xj(t)− xi(t)
)

+ Ri(t) + Ξi(t),

ẏi(t) =− Cyi(t) + A f (xi(t)) +
7

∑
j=1

|uij|
(

sign(uij)yj(t)− yi(t)
)

+ Ri(t) + Ξi(t), i = 1, 2, ..., 7,

(28)

the model parameters are selected in section 4.1, where Ξi1(t) = 0.2cos(t), Ξi2(t) = 0.1sin(2t). Figure

6 presents the trajectories of (26) and (28) with controller (8).
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Figure 6. (a) The trajectory of the first component of STM under the action of controller (8) in network

(26) and (28) ; (b) The trajectory of the second component of STM under the action of controller (8) in

network (26) and (28); (c) The trajectory of the first component of LTM under the action of controller

(8) in network (26) and (28);(d) The trajectory of the second component of LTM under the action of

controller (8) in network (26) and (28).

In the following, the FXT quasi-bipartite synchronization of the networks (26) and (28) will be

verified. According to the parameters in section 4.1, γ = 0.65, Tγ = 0.0001 and ϕ = 0.5. Select α = 0.96,

β = 3, σ1 = 20, σ2 = 25, κ1 = 0.01, κ2 = 10, κ3 = 1, λ = 35. Evidently, all conditions in Theorem 2

are satisfied and the networks (28) with controller (8) is synchronized with (26) within settling time

T∗ = 5.59s. Theoretical error bound is 2.97. The corresponding numerical results are illustrated in

Figures 7 and 8.
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Figure 7. (a) The trajectory of the first component of the error of STM under the action of controller (8)

in networks (26) and (28); (b) The trajectory of the second component of the error of STM under the

action of controller (8) in networks (26) and (28); (c) The trajectory of the first component of the error

of LTM under the action of controller (8) in networks (26) and (28) ;(d) The trajectory of the second

component of the error of LTM under the action of controller (8) in networks (26) and (28).
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Figure 8. (a) Trajectories of E1(t) with E1(t) = ∥e(t)∥2; (b)Trajectories of E2(t) with E2(t) = ∥ê(t)∥2.

5. Conclusion

In this study, the problem of FXT quasi-bipartite synchronization for CCNNs is considered by

intermittent control strategy. Compared with the existing FXT intermittent control strategy, the linear

term on the rest interval is removed, which makes our control method simpler and more economical.

In addition, the influence of discontinuous activation functions, external disturbances and competitive
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relationships between nodes are considered in synchronous analysis, which makes the obtained

criteria more general. Note that we can implement control measures on all nodes to achieve FXT

synchronization when network topology is known. In practical scenarios, it is often either infeasible or

unnecessary to control every single node. Therefore, the intermittent pinning control will be considered

in forthcoming research.
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5. Meyer-Bäse, A.; Pilyugin, S. Wismüller,A.; Foo, S. Local exponential stability of competitive neural networks

with different time scales. Eng. Appl. Artif. Intell. 2004, 17, 227–232.

6. Chen, T. Global exponential stability of delayed Hopfield neural networks. Neural Netw. 2008, 14, 977–980.

7. Arik, S.; Tavsanoglu, V. On the global asymptotic stability of delayed cellular neural networks. IEEE Trans.

Circuits Syst. I-Regul. Pap. 2000, 47, 571–574.

8. Shi, Y.; Zhu, P. Synchronization of stochastic competitive neural networks with different timescales and

reaction-diffusion terms. Neural Comput. 2014, 9, 2005–2024.

9. Yang, W.; Wang, Y.; Shen, Y.; Pan, L. Cluster synchronization of coupled delayed competitive neural networks

with two time scales. Nonlinear Dyn. 2017, 90, 2767–2782.

10. Wei, C.; Wang, X.; Hui, M.; Zeng, Z. Quasi-synchronization of fractional multiweighted coupled neural

networks via aperiodic intermittent control. IEEE T. Cybern. doi: 10.1109/TCYB.2023.3237248.

11. He, Z.; Li, C.; Cao, C.; Li, H. Periodicity and global exponential periodic synchronization of delayed neural

networks with discontinuous activations and impulsive perturbations. Neurocomputing 2021, 431, 111–127.

12. Xiang, J.; Ren, J.; Tan, M. Stability analysis for memristor-based stochastic multi-layer neural networks with

coupling disturbance. Chaos Solitons Fractals 2022, 165, 112771.

13. Hu, J.; Tan, H.; Zeng, C. Global exponential stability of delayed complex-valued neural networks with

discontinuous activation functions. Neurocomputing 2020, 416, 1–11.

14. Han, Z.; Chen, N.; Wei, X,; M. Yuan, H.; Li, H. Projective synchronization of delayed uncertain coupled

memristive neural networks and their application. Entropy 2023, 25, 1241.

15. Peng, H.; Lu, R.; Shi, P. Synchronization control for coupled delayed neural networks with time-varying

coupling via markov pinning strategy. IEEE Syst. J. 2022, 16, 4071–4081.

16. Cao, Y.; Zhao, L.; Wen, S.; Huang, T. Lag H∞ synchronization of coupled neural networks with multiple

state couplings and multiple delayed state couplings. Neural Netw. 2022, 151, 143–155.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 January 2024                   doi:10.20944/preprints202401.1897.v1

https://doi.org/10.20944/preprints202401.1897.v1


20 of 20

17. Sheng, Y.; Gong, H.; Zeng, Z. Global synchronization of complex-valued neural networks with unbounded

time-varying delays. Neural Netw. 2023, 162, 309–317.

18. Zhu, S.; Bao, H.; Cao, J. Bipartite synchronization of coupled delayed neural networks with

cooperative-competitive interaction via event-triggered control. Physica A 2022, 600, 127586.

19. Mao, K.; Liu, X.; Cao, J.; Hu, Y. Finite-time bipartite synchronization of coupled neural networks with

uncertain parameters. Physica A 2022, 585, 126431.

20. Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans.

Autom. Control 2012, 57, 2106–2110.
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