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Abstract: In this paper, a class of coupled competitive neural networks, which subject to disturbance
and discontinuous activation functions, is concerned. To realize the fixed-time quasi-bipartite
synchronization, an aperiodic intermittent controller is initially designed. Subsequently, by combining
the fixed-time stability theory and nonsmooth analysis, several criteria are established to ensure the
bipartite synchronization in fixed time. Moreover, synchronization error bounds and settling time
estimates are provided. Finally, numerical simulations are presented to verify the main results.
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1. Introduction

Since neural networks are widely used in computer science [1], remote sensing [2], autonomous
control systems [3], and other fields, their dynamic behaviors have been extensively studied over the
past several decades. It is worth noting that neural networks (NNs) only consider the dynamic level of
neural activity. However, it is essential to recognize that synaptic weights between neurons change
over time [4]. Consequently, Meyer-bése et al. [5] developed competitive neural networks (CNNs) with
different time scales in 1996, which can be viewed as an extension of Hopfield neural networks and
cellular networks [6,7]. CNNs are defined using two types of state variables: short-term memory (STM)
describes the rapid neural activity, while long-term memory (LTM) depicts the slow, unsupervised
synaptic modifications. On the other hand, coupled competitive neural networks(CCNNSs) consist of
several interconnected subsystems, and due to their complex dynamic behavior, they have garnered
significant attention [8,9].

The activation functions of NNs are widely recognized for describing the connection between
the input and output of a single neuron. They are commonly considered to be continuous. When the
activation function is believed to be at the high gain limit, however, the activation function approaches
discontinuity. As a result, an increasing number of scholars have been conducting considerable
research on NNs with discontinuous activation functions [10-13]. On the other hand, the dynamic
behaviors of NNs are frequently impacted by external disturbances, such as changs in network
structure, hardware facilities and environmental noise. As far as we are aware, there are few studies
take both discontinuous activation functions and external disturbances into account when discussing
CCNNs. Therefore, it is both intriguing and challenging to research discontinuous activation functions
and external disturbances in CCNNs.

Synchronization means that two or more dynamical systems adjust themselves to exhibit a
common dynamical behavior. The synchronization problem of NNs has garnered significant attention
recently due to its wide applicability in communication systems, biological sciences, mechanical
engineering and other domains [14-17]. However, the synchronization of the aforementioned NN
only considers the cooperative relationships between network nodes. In many practical systems,
relationships of competition and cooperation coexist. Therefore, the synchronization issue of NNs with
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both competitive and cooperative connections between nodes, known as bipartite synchronization, is
of crucial importance and has been researched in [18,19]. On the other hand, due to inherent network
constraints, complete synchronization may not be achievable, and instead, quasi-synchronization is
observed. Quasi-synchronization implies that the synchronization error no longer approaches zero but
rather converges to a bounded set. To our knowledge, few papers have addressed the quasi-bipartite
synchronization problem of CCNNs.

In addition to asymptotic synchronization or exponential synchronization, finite-time (FET)
synchronization has gained widespread attention as a more practical form of network synchronization
in recent years. In FET synchronization, the synchronization time is bounded, but it is dependent on
the initial state of the node. To eliminate this dependence on the initial state, fixed-time synchronization
is proposed based on the fixed-time (FXT) stability [20], and its synchronization time only depends on
the system or control parameters. Compared with the rich results of NNs [21,22], it is extremely scarce
at present to explore the FXT synchronization of CCNNs. In [23], authors studied the FET bipartite
synchronization of delayed CCNNs under quantized control. Whereas, to our knowledge, there are
limited reports on FXT quasi-bipartite synchronization of CCNNSs, and further research is needed.

Over the past few decades, the control problem of networks has been one of the most widely
studied topics, and many useful control methods have been developed, such as adaptive control,
sliding mode control, impulse control, and intermittent control, among others. Intermittent control
involves alternating periods of applying control input and periods of no control input, making it a more
economical choice compared to continuous control schemes. Hence, the intermittent control strategy
has received extensive attention [24-27]. In [28], the FXT synchronization problem of time-delay
complex networks under intermittent pinning control is studied. The author in [29] solved the FXT
and predefined-time cluster lag synchronization of stochastic multi-weighted complex networks via
intermittent quantized control. To our knowledge, there is currently no existing literature that addresses
the challenging problem of FXT quasi-bipartite synchronization of CCNNSs under intermittent control.

Motivated by the analysis provided above, the primary objective of this paper is to investigate
FXT quasi-bipartite synchronization in coupled competitive neural networks. Firstly, the model under
consideration incorporates time-varying delays, discontinuous activation functions, and external
disturbances simultaneously, rendering it more comprehensive. Secondly, we introduce an innovative
FXT aperiodic intermittent control scheme, making the pioneering endeavor to explore quasi-bipartite
synchronization in CCNNs. Furthermore, some robust criterion are established for FXT quasi-bipartite
synchronization based on the theory of practical FXT stability. Finally, we provide estimations for error
bounds and settling times.

Below are shown the remaining contents. Section 2 gives some necessary preliminary knowledge
and model description. Section 3 introduces the main theoretical conclusions. Section 4 provides
numerical examples to validate the theoretical conclusions. Section 5 finishes our study and discusses
future research.

Notations: R represents the set of real numbers. The n-dimensional Euclidean space is represented
by the R". R"*™ is the set of n x m real matrices. Ny = {1,2,..., N}. I, is identity matrix. 0, denotes
zero matrix. |P| = (|pjj|)nxn. For a symmetric matrix B, Amax (B) represents the maximum eigenvalue
of matrix B. diag(-) represents the diagonal matrix. 1,, denotes that all elements of a column vector
are 1. Forany p = (py,...,pn)" € R", sgn(p) = diag(sign(p1), ..., sign(pn)), sign(-) represents the sign
function. Sign(D) = (sign(d;j))nxn- The 2-norm of the vector p is denoted by ||p||2. For vector w > 0
(<,>, <), all of the components of w are positive (negative, non-negative, non-positive). For vectors
qi1and q2, q1 < q2 (q1 < q2) implies q1 — q2 < 0 (q1 — q2 < 0). Notation ® denotes Kronecker
product. k > 0, C([—k, 0], R") denotes the set of continuous function from [—k, 0] to R".
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2. Model description and preliminaries
Consider the following competitive neural networks with time-varying delay:
n n
ezi(t) = — cxze(t) + ) ag fo(2g() + 3 bugfy(zq(t — (1))
q=1 q=1
1)

p
+ Ex Zwlmkl(t), k=1,..n,
=1

i (t) = — Gemy (t) + arewy fr(zi(t)), 1=1,..,p,

where zj(t) is the state variable. my;(t) represents synaptic efficiency. c, > 0 represents the
self-feedback coefficient. Connection weights and delay connection weights, respectively, are
represented by ay, and by,. fq(-) is the output of neuron which is discontinuous. wj is the weight
of an external stimulus. ¢ and a; are given constants. Ej is the intensity of the external stimulus. ¢
is the time scale of STM. Where 7 is a known constant, 7(t) is the time-varying delay that satisfies
0<1t(t) <.

Let s(t) = (s1(t), . sa(t))", sk(t) = LV wmy(t) and @ = (wy, .., wp)T. Without losing
generality, suppose ||w||3 = 1, then network (1) can be written as

z(t) = — Cz(t) + Af(z(t)) + Bf (z(t — T(¢t))) + Es(t), ®
s(t) = — Cs(t) + Af(z(1)),
b
where Z(t) = (Z1(f),..-,2n(t))T, f(Z(t)) = (fl(zl(t))r~-~rfn(zﬂ(t)))T/ A= (a?)nxn’ B = ( :q)nxn’
C= diag(%,..., %"),E = diag(cy, ..., Cn), A = diag(ay, ..., a,), E = diag(%,...,

%) The initial value of system (2) is given by z(t) = ¢,(t) € C([—7,0],R") and s(t) = ¢s(t) €

C([-7,0],R").
A class of CCNNs with external disturbances are modeled as follows:

Zi(t) = — CZi(t) + AF(Zi(1)) + BF(Zi(t — (1)) + ES(t)

N
+ 2 dijl (sign(di) Z(t) — Zi(t)) + Ri(t) + Ei(t),
= . 3)
Si(t) = = CSi(t) + Af(Zi(1)) + 21 |uij| (sign(u;j)Sj(t) — Si(t))
j=

+Ri(f) + Ei(t),i € Ny,

where Z;(t) = (Za(t), ..., Zin(t))T € R"and S;(t) = (Sa(t), ..., Sin(t))T € R" are the state variables
of STM and LTM, respectively; Z;(t) = (E (), ..., Ein(t)) " indicates the external disturbance vector.
D = (d;;) and U = (u;;) € RN*N are the adjacency matrix associated with the signed graph G(D) and
G(U) of the CCNNe, satisfying dj; = 0 (u;; = 0) fori € Ny; fori # j, dij # 0 (u;; # 0) if there is a
directed communication link from node j to node i, otherwise d;; = 0 (u;; = 0). R;(t) and R;(t) are
controllers to be designed. The initial conditions of network (3) meet: Z;(t) = ¢;(t) € C([—7,0],R")
and S;(t) = @;(t) € C([—7,0],R").

Remark 1. When d;; > 0 (uj; > 0), then the connection between nodes i and j is cooperative, the coupling
term is given as d;; (Z;(t) — Z(t)) (uij(Sj(t) — Si(t))). When d;; < 0 (uj; < 0), the connection between
nodes i and j is competitive, the coupling term is presented as —d;; (Z;(t) + Z;(t)) ( — u;;(S;(t) + Si(t))).
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For the convenience of discussion, define x;(t) = (ZI(t),SI(t)), A1 = (AT,ZT)T, B, =

- - =T C —E
(BT,On)T, W;(t) = (.:,iT(t),.:‘iT(i'))T, Ki(t) = (R;F(t),Ri (t))T, I = (Inron)/ G = 0 C ]’
n
d,']' 0
dij =1, ® Iy and Dy = (djj)2nNx2nN-
ui]'
Therefore, the coupled competitive neural networks (3) become:
%i(t) = = Coxi(8) + A f(Dai(£)) + B f (Ix (8 = 7(#))) + Ki(t)
u . (4)
+ ) |dij| [Sign(dyj)x;(£) — x;(£)] + Wi(t).
j=1
From (2), the tracking target can be described as follows:
y(t) = —Cuy() + A f(Iy(8)) + B1 f(Ty (t — 7(¢))), @)

where y(t) = (z1(t), sT(t))T is the state vector.
The necessary definitions, lemmas and assumptions are given below.

Definition 1 ([33]). Considering a system with discontinuous right-hand sides in the form of

where { € R", F({) : R"™ — R" is locally bounded and Lebesgue measurable. The function {(t) is said to be the
solution in Filippov sense which defined in the interval [0, t.), t. € [0,400), if {(t) is absolutely continuous
and satisfies the below differential inclusion

Z(t) € K[F)(C(t)),a.et € [0,ts),

where the set-valued map K[F] : R" — R" is defined as

KIF|(2(t) = () () co{F(B((1),6)\ O},

>0 u(Q)>0

where Co stands for the convex closure, p(QY) is the Lebesgue measure of the set (3, B({(t), ) denotes the open
ball centered at {(t) with radius 6.

Definition 2. The network (4) is said to achieve FXT quasi-bipartite synchronization with network (5) if there
is a constant Ty > 0, such that

{hmHTl Ixi () — wiy(t)[l2 < 0, 6)

Ixi(t) —wiy(t)]2 <6, Vt>Tyie Ny,
where 6 is a nonnegative constant.

Definition 3 ([34]). Aperiodically intermittent control is said to have an average control rate v € (0,1), if
there is T, > 0 such that
Tcon(trs) > ')/(t - S) - T’y/ Vt > s > to,

where Teon(t,s) denotes the total control interval length on [s, t), Ty is called the elasticity number.
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Lemma1 ([30]). Ifx; >0,i=1,..,n,0<¢ <1landy > 1, then
n (: n n 1 n
Vs (Y, L ()
i=1 i=1 i=1 i=1
Lemma 2 ([35]). Forany x,y € R", and positive-definite matrix 0 € R™*", such that
2xTy < xTox +yToly.
Lemma 3 ([36]). Assume that there is a Lyapunov function V(t) > 0 that satisfies
{V(t) < —mVI(t) —aVP(t) —azV(t) + o1, £ € [T ), )
V() SaV(t) + 92, tE [ Cir),

in which ay, a, as, as, p1, o2 are positive constants and 0 < p < 1, q > 1. It is said system practical fixed time
stable if ag — yd < 0and (1 —y)d — a3 < 0, in which d > 0. And the setting time T* satisfies

. 1+as(g—1)T, 1+as(1—-p)T,
T <
as(q —1)y as(1—p)y

7

where as = a1(1 — ¢) exp {T,(1 —q)d}, ag = a,(1 — ¢) and 0 < ¢ < 1. y and T, are defined in Definition
3. When t > T*, there is
V(t) < max {(51,52, (53},

_
03 = dy —ay’

=

_(P1yi 5 — (£
where 61 = ((Pal)'?,éz = (47!12)
For each q = 1, ..., n, the following assumptions are introduced:

Assumption 1 ([32]). f,(-) : R — R is continuous except on a countable set of isolated points {0} }, where
both the left limit f,~ (6] and right limit fi (07) exist. In addition, f,(-) has at most finite discontinuous jump
points in each bounded compact set.

Assumption 2 ([32]). There exist positive constants l, and hy such that
& —cql < lglu—v| +hg,Vu,v €R,

where &y € K[fy(u)], ¢4 € K[fy(v)] with K[fy(-)] =@0[f4(-)] = [mln{fq’(),fq*()},
max{fy (-), f () }].

Assumption 3 ([23]). The signed graphs are structurally balanced. In other words, the node sets V of G can be
divided into two unsigned subgraphs Vi and Vs, respectively. It satisfies V = Vi UVoand V1 NV, = . In
addition, the links inside each subgraph are nonnegative, while the links between two unsigned subgraphs are
negative.

Assumption 4. The activation functions f,(-) satisfies
fq(=2z) = —f4(2),Vz € R.
Assumption 5. There exists a positive constant My such that |f,(x)| < M.

Assumption 6. The external disturbance Z(t)(k =1, ...,2n) is bounded. That is, there is a positive constant
Wk such that |E‘ik(t)| S Wk'
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Assumption 3 implies that there exists a diagonal matrix w = diag(wy, ..., wy), where w; = 1 if
node v; € V), otherwise w; = —1. To achieve the FXT quasi-bipartite synchronization of CCNNs, the
intermittent controller is designed as follows:

—A(xi(t) — wiy(t)) — orsgn(x;(t) — wiy(t))|x;(t) — wiy (£)[*
R;(t) = ¢ —oasgn(x;(t) —wiy (1)) Ixi(t) —wiy(H)|P,  t€ [Cp i), (8)
0, t€ [ lri1)

wherei € Ny, 0 <a <1,B>1,A, 01,07 are positive constants.

Remark 2. The intermittent control proposed in this study can be accomplished in a fixed time, unlike the
previous intermittent control, which can only achieve asymptotic results. Moreover, the aperiodic intermittent
controller proposed in this study is different from the controller in [26,27] as follows:

—20(ei(0) - Ssgn(ale ) a0) [ + e 1)
t N t
«L;R>OMT (] e

Ri(t) = " ‘
xei(s)ds)f)”;g”z, mT <t < (m+80)T,
—%q(ei(t)), (m+6)T<t< (m+1)T,
and
— € — X S %“7“)
biealt 21—w1m> (5)4) = oo T2
(

t ol oe(t)
Ri(t) = ‘ﬁz LﬂﬁAﬂWJ()O%) Ta® 2
asign(e(8) | ext) | —sign(eit)) | () i, mT <t < (m+ )T,

—kiei(t), (m+9)T§ t < (m+1)T

A linear term does not need to be set in the rest interval. This approach is proposed first to achieve FXT
quasi-bipartite synchronization for coupled competitive neural networks. Furthermore, aperiodic intermittent
control can be degenerated into periodic intermittent control and continuous control. It is particularly suitable
for complex systems that require dynamic and flexible control.

Combined with controller (8), when t € [, 1k ), the CCNNSs (4) is rewritten as follows:

N
Xi(t) = Clxi(t) + Alf(1x1< )) + Blf(lx t - T + Z dl]X] )
j=1

— A(xi(t) — wiy(t)) — orsgn(xi(t) — wiy(£)) [xi(t) — wiy (H)[* ©)

— oasgn (xi () — wiy () |xi(t) — wiy(t)[P,

doi:10.20944/preprints202401.1897.v1
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where Dy = (djj)2unx2nn, dij = djj fori # jand d;; = — Zjlil,j;éi |djj|. Then, according to Assumption
3, the CCNNs (9) can be transformed into:

3 N ~
%i(t) = — Ci%;(t) + Arf(I%;(4)) + Bof (I (£ — T(1))) + ) dij%;(t)
=1
— (%) = y(0) — asgn(%i(t) — (1) %:() = y(£)|* (10
— osgn(%;(t) — y (1)) [%i(t) — y (1) [P + w;Wi(t),
where X;(t) = wix;(t), d;j = wid;w; = |d;;| fori # jand d;; = — Zjl\il,j#i |dij|, i € N5
Similar analysis, for t € [, {x11), one has
Xi(t) = — Ci%i(t) + A1 f(I%;(t)) + B f (Ixi(t — 7(t)))
N (11)
+ ) i (1) + wiWi(t).
=1
By definition 1, there is @(t) = (@1 (t), ..., con(t))T € K[f(Iy)] such that
y(t) = —Cry(t) + Aj@(t) + By (t — T(t)). (12)

Similarly, there exists at least one measurable function ;(t) = (f;1(t), ..., hin(t))T € K[f(Ix)]
such that

(1) = — i)+ Aufs(t) + Bt — (1)) + 3 &% (1) + i)
j

—A(Xi(t) —y(t)) — oisgn(%;(t) — y(t))
—osgn(X:(t) —y())[%:(t) —y(B)|P, t€ [T mi), (13)

Xi(t) = — C1%;(t) + Arh(t) + Bahi(t — (1))

N
+ Z dzj)?](f) +w;W(t), te []/lk, €k+1)~
=1

3. Main result

In this part, we will consider the case of W;(t) = 0 and W;(t) # 0. The Fixed-time quasi-bipartite
synchronization criterion is derived by designing intermittent controller.
Define the synchronization error ¢;(t) = X;(t) — y(t), then the error dynamical system is:

é;i(t) = — Crei(t) + Algi(t) + Blgi(t —1(t)) + i &l]e](t) + w;W;(t)
=1

— oisgn(e; (1)) [e; (1) — oasgn(ei(1))le;(1)|P

—Alei(t)),  t € [Tk i) (14)

N
¢i(t) = — Crei(t) + Argi(t) + Bigi(t — (1)) + ) dije;(t)
j=1

+wiWi(t), t€ [k, Crr1),

where g;(t) = 1(t) — @(t), &i(t = T(t)) = hi(t — 7(t)) — @ (t — (t)).
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3.1. Fixed-time quasi-bipartite synchronization without disturbances

This section gives the results without external disturbances. Firstly, Theorem 1 gives a sufficient
condition for the quasi-bipartite synchronization of networks (12) and (13) in fixed time.

Theorem 1. Based on Assumptions 1-5 and the controller (8), if

20 = Amax (@) —x > 0,

01 + Amax(®P) + x>0,

01 + Amax(®) +x — yd <0,

(1 —7)d — 27 + Amax(®) +x < 0,

where ® = —Iy ® (C1 + Cl) + Iy ® (|A1|LT+ (|A1|LD)T) + (D1 + DI), x = 1 + 2%, A, 01, d are
positive constants, vy € (0,1) stands for the average control rate, then the quasi-bipartite synchronization can be
ensured between networks (12) and (13) in fixed time. The settling time satisfies

2+a5(—1)T, 2+4as(1—a)T,
<
T oas(B-1)y ag(1—a)y

4

1-
here as = 20 (2nN) o (1—¢)exp {%Tw (1—PB)d}, ag =201 (1 — ¢), T, represents the elasticity number,
0 < ¢ < 1. The state trajectory of (14) converges to a compact set Q) = {e(t) | le(®)|l2 < /max{dy, s, 53}},

5, = (— X yErog, = (Rye s = R Amax (® N =
1 17;3) ; 02 (2¢0-) ; 03 0 01 + max( )+K/
24’02(”1\])T !
R (jaxln) | Axln + 25 (1B M) " | By | M.
Proof. Consider the following Lyapunov function
V(1) = (t)e(t),
where e(t) = (eI (), ..., el ()"

For t € [k, uy), calculate the derivative of V (¢) along the trajectory of the error system (14), one
has

V(t) :zﬁef(t)(_clei(t)_‘_Algl( )+Blgz t_T +Zd1] j
i=1
— Alei(t)) —orsgn(ei(t))[ei(t)[* — oasgn(e;(t ))Iei( )IF).

Based on Assumption 2, we get

N

2Y el () A1gi(t) <22w ) Al () — @(8)]

i=1 (15)
<22w )| Al [LJes(6)] + ],

where L = diag{ly, ..., I}, h = (h, .o i) T.
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By Assumption 5, there is

226 (t)Bygi(t — (¢ <22|e B[Rt = T(t)) — @(t — T(t))]
=1 (16)

<4Z|e )|[B1l[M,

where M = (My, ..., M,)T.
From (15) and (16), one has

z

V() <—2) el (t)Cie(t +2De )| A1|LT]e; (¢ |+22|e ) Axlh

i

z&

Zdl]] 2)\26 (t)ei(t) —|—4Z|e )||B1|M

—_

—20126 )sgn(e;(t))ei(t I—ZUzZe Jsgn(e;(t))]ei(t)[P.

According to Lemma 1, one has

20 Ze t)sgn(e;(t))lei(t)[* = *Zﬂlzzlek (1)

i=1k=
N 2n atl
< -201) () €il®) ? (17)
i=1 k=1
N . et
< =201( )¢ (Hei(t) 7,
i=1
and
—205 Ze )sgn(e;(t))|e;(t)|P = —20, Z Z leq(£)| P
i=1k=
N 2n ) p+1
< =205 ) ) (ei(1) 2 (18)
i=1k=1
_ N B+l
< —2(2nN) o (Y el (B)ei(t)) 2
i=1
From Lemma 2, it follows that
N
2) e ()||A1|h<1<12|€ Mei(t)] + - (|A1|h) |Aq|h, (19)
i=1 i=1
and

2N T
42 lef (£)||B1|M < 2x> Z le (t)]]ei(£)] + 72(|31|M) |B1|M. (20)
i=1
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It follows from (17)-(20) that

N
V() <—2) el (t)Cre;(t +22\e V|| Aq|LTe;(t |+K12|€ )|lei(t)
i=1
NN o
L23 Y (e (1) + 26 Yo (¢ )lei(B)] + = (|A1|h) | Al
i=1j=1 i=1
2N N a1
+—(]Bl|M) |B1|M — 2)\26 —201(Y el
i=1 i=1
1p N Bl
—205(2nN) 2 (Y e (tei(t)) 2

i=1

< —2eT(t)(In ® Cy)e(t) +2eT (t) (Iy ® | A1 |LT)e(t) + xre” (t)e(t)

+2¢7 () Dre(t) + 2ipe” (t)e(t) — 2Ae™ (t)e(t) — 207 (T (t)e(t)) =
Lp

~202(20N) 7 € (e0) T + £ (1A1l1) |

2N
+172(|]31|1\/1)T|31|1\/I

at+1

< (Amax (@) + &1 + 22 — 27 ) e (t)e(t )—201( ef(te(t)) =
1-B B+l
—202(2nN) 2 (" (H)e(t)) * + (|A1|h) | Aq|h

2N
+*(|B1|M) |B1|M,

where ® = —Iy ® (C; + C]) + Iy ® (|A1|L1+ (|A1|LT)T) + (D + D).
Therefore,

atl 1-8 B+l
2 2

V() < — MV(E) =20V ()5 = 20y(2nN) L V(05 0
fort € [Ck,yk), A= 2/\_/\max(q>) -, N = (|A1|h) |A1‘h+ 2N (|B]|M) |B]|M, and k = k1 + 2xp.

Then, for t € [y, (k1 1), we have

V(t) <2eT(t)[ — Iy ® Cy + Iy ® |A1|LI + Dqe(t) + (01 +x)e” (te(t)
N T 2N T
+a(|A1|h) |Al|h+?2(|B1|M) |B1|M
<oV(t) + R,

where 0 = Amax(®P) + 01 + .

Based on Lemma 3, the networks (12) and (13) achieve FXT quasi-bipartite synchronization
and the settling time is estimated as T. Moreover, the system error e(t) will converge to Q =

2 2
{e® [ lle(®)ll2 < vmax{o1, 8,03} } within T, where &) = (—X )P, & = (55) ",
2¢0y(nN) 2 !

b= N

dy -0
The theorem is proven. [
Remark 3. A previous study [23] focused on studying FET bipartite synchronization in competitive neural
networks, whereby the settling time was dependent on the initial state. In contrast, Theorem 1 provides a
sufficient condition for achieving FXT quasi-bipartite synchronization in CCNNs where the settling time is no

doi:10.20944/preprints202401.1897.v1
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longer dependent on the initial state, but rather on the adjustable controller parameters and the average control
rate. Furthermore, our study utilizes a more practical intermittent controller compared to the one used in [23].

3.2. Fixed-time quasi-bipartite synchronization with disturbances

This section considers external disturbances. Theorem 2 gives sufficient conditions for
quasi-bipartite synchronization of systems (12) and (13) in fixed time.

Theorem 2. Based on Assumptions 1-6 and the controller (8), if

20 = Amax (@) — % > 0,

P+ Amax(®) + & >0,

¥ + Amax (®) + & —d < 0,

(1 —9)d = 2A + Amax (@) + & < 0,

where ® = —INy ® (C1 + CT) + Iy ® (JA1|LL + (|A1|LD)T) + (D1 + DT), & = 1 + 210 + 3, 9, A, d are
positive constants, y € (0,1) stands for the average control rate, then the quasi-bipartite synchronization can be
ensured between networks (12) and (13) in fixed time. The settling time satisfies

24+d5(B-1)T, 2+ds(1—a)T,

D= -1y Fo(l—a)

1-
here a5 = 20, (2nN)) s (1—¢)exp {%T7 (1—B)d}, ag = 201 (1 — ¢), T, represents the elasticity number,

0 < ¢ < 1. The state trajectory of (14) converges to a compact set Q) = {e(t) | le(®)]l2 < maX{51,52,53}}
N N 2 ~
wzthln T*, 51 = (%)fﬂ»lr 52 — (
2¢por(nN) 2
T T
%(Ml'h) |Arlh+ 35 1By M) By M+ EwTw.

Al
S—

=

T

1]

|

z
=

= P+ Amax(®) + & R =

Proof. Construct the following Lyapunov function

where e(t) = (elT(t),...,e{](t))T.
For t € [{, px), one obtains

N N
V(t) =2 el (t)(— Crei(t) + Argi(t) + Bigi(t — T(t)) + Y dijej(t)
i=1 j=1
+wiW‘( ) = Alei(t)) — orsgn(ei(t))]ei(t)|* — oasgn(ei(t))]ei (1)[P) 1)
N
<22€ — Ciei(t) + Argi(t) + Bigi(t — T(t)) + Y dije;(t)
j=1
+ [ Wi(t)| — Alei(t)) — osgn(ei(t))lei(t)|* — oasgn(es(t))es (1) |F)-
Based on Assumption 2 and Assumption 5, it is clear that there are
2 i ef (£)A1gi(t) <2 i lef (D)1 Ax| [LX]e;(t) + 1],
i:;\I i=1 (22)

2Y el (t)Bigi(t —T(t <4Z|e )||B1|M,

doi:10.20944/preprints202401.1897.v1
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where L = diag{ly, ..., I}, h = (h1, . )T, M = (My, ..., My)T.
Combining (21) and (22), one has
. N N
V() <—2Y el (HCrei(t) +2) e (t)|Aq|LT|e; ()] +2 Z el (t)|A1|h
i=1 i=1
N N N
+2ZeT()Z (t)—Z)\Ze +4Y el (t)|B1|M
i=1 =1 i=1
— 20 Ze )sgn(e;i(t))lei(t)|* — 207 Z‘,t‘sz(f)Sgn(ei(t))|ei(t)|’3
i=1
+2 ZeiT(t) W;(t
i=1
By Assumption 6, then
' N N
V() <=2 el (£)Crei(t) +2 ) ef ()| A1|LI|e;(t) |+ZZe )| Aq |k
i=1 i=1 23
N N N . (23)
+2Y el (1) Y dyjej(t) — 24 Y el (t)es(t +4Ze )|B1|M
a T
=201 ) _e; (t)sgn(e;(t))[ei(t)|* — 202 Ze )sgn(e;(t))]e;(t )|ﬂ
i=1
N
+2Y el (W
i=1
By Lemma 1, it is easy to get
N arl
20, ze Jsgn(e:(1))ler (1) < 201 (Y el (Bei(1) T,
i=1 (24)
1-p N T liad
20, ze Jsgn(ei(0) e (D)]F < ~2(20N) F o (Y el (Der(t)) 7
i=1
Based on Lemma 2, we obtain
N N N
2 ZeiT(t)W <3 Ze?(t)ei(t) + K—WTW,
i=1 i=1 3
N T
2 Z |€ |A1|h <K1 Ze t) + E(lAllh) |A1|h, (25)

i=1

2N
4Z|e )||B1|M <2K226 t)+K—2(|Bl|M)T‘B1]M.
i=1
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Submitting (24) and (25) into (23), we obtain

Z

) N T
V() <—2) el ()Cre(t +2Ze AILLei(D)] + (| Aulh) | Aulh
i:1
N N N .
+ 1K Ze ) + 2K Z el (ei(t)+2)_ Y el (t)djje;(t)
i=1 i:1j:1

a+l

el (t)e;(t)) ?

o8

Il
-

N
—2A Z el (H)ei(t) +x3 Y el (H)ei(t) — 209 (
i=1 i=1

1

T (Dei(t) T + 2N

&=

Il
—_

1
—205(2nN) 2 ( (|Bl|M) |B1|M

N
T
= —2eT(t) (In ® C1)e(t) +2¢T (t) (Iy ® | A1|LT)e ( ) + el (te(t)

+ 2eT (1) Dre(t) + 2x0eT (t)e(t) + xzel (t)e(t) + = (|A1|h) |Aq|h

N
K3

wiw

at+1

_zgl(eT(t)€<t))T—2(72(271N)Tﬁ( (t)e(t))ﬁz L Nwtw

2N
—2xeT (Be(t) + K—(|B1|M)T|Bl|M
2

atl 1-p Bl
<— MV —20V(H)T —20,(2nN) 7 V(1) T + 1§,

where ® = —Iy® (C; +C]) + [y ® (|A1|LI+ (|A1|LI) Y+ (D1 + D), A3 = 24 — Amax(®) — %,
R =11 +260 + 53, R = Nl ay|n)" |4y |n+ 3D (1B M) [By M+ wTw.
For t € [y, k1), we obtain

V(t) <2eT(t)[ — Iy ® C1 + Iy ® |A1|LL + Dy]e(t) + e’ (t)e(t) + ke (t)e(t)

N 2N N

+ i (a0 (B M) By M+
=PV (t) + RN

where f = ¢ + Amax (P) +&.
Based on Lemma 3, the FXT quasi-bipartite synchronization can be realized and the

wiw

settling time is estimated as T*. Moreover, the system error e(t) will converge to O =
T = < . 2 3|2

{e(t) le())]2 < \/max{51,52,53}} within T*, where § = (— X )71, §, = (2(%)“1,

2¢0>(nN) 2 !

5 N

03 = =——

dy —¢

The theorem is proven. O

Remark 4. Unlike prior studies [31,36], our research takes into account the impact of discontinuous
activation functions, external disturbances, and competitive relationships between nodes, which more closely
mimics real-world networks. Specifically, due to the competitive nature among nodes and the presence of
external disturbances, the synchronization method employed in [36] is not directly applicable to achieve FXT
quasi-bipartite synchronization. Consequently, our main theorem extends the prior findings of FXT bipartite
synchronization and is tailored to suit the aforementioned conditions.

Remark 5. Predefined time control has emerged as a promising method that allows synchronization time to
be pre-set independently of system parameters. Due to its potential in various applications, predefined time

doi:10.20944/preprints202401.1897.v1
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synchronization has become a highly topical research area. However, there is still insufficient research into the
predefined time bipartite synchronization of CCNNGs, therefore further investigation is necessary.

4. Numerical examples

Two numerical examples are given in this part to demonstrate the validity of the derived
theoretical conclusions.
Consider the following networks:

s(t) = — Cs(t) + Af(2(1)),

(1) = — - Calt) + L AF(=(6)) + L Bf((t — T(6))) + <Es(t), o6

where (1) = (21(6), ()7, s(t) = (s1(8),2(0)7, y(t) = (T(0),s7(1)7, ¢ = 083, (t) =

2(12——{61‘), f(z(t)) = (sin(z1(t)) + 0.01sign(z1(t)), sin(z2(t)) + 0.Olsign(zz(t)))T, C = diag(2,2),

C = diag(0.5,0.6), A = diag(1.2,1), E = diag(0.01,0.01), A = [1,2;-5.2,3.2], B = [—4,2.1;2,3.5].
Figure 1 shows the chaotic trajectories of network (26) with initial values z(0) = (—0.4,0.6)T,
s(0) = (—0.7,0.1)T.

Z9 (t)

Zl(zt) . - 0!
(a) (b)

Figure 1. (a) Chaotic trajectories of z(t); (b) Chaotic trajectories of s(t).

4.1. Fixed-time quasi-bipartite synchronization without disturbances

Now, consider CCNNs with 7 nodes as follows:

5(1) =~ 2Cx(t) + L Af (D) + TBf(u(t — (1)) + 1 Eyi(t)
7
+ Y ldij| (sign(dij)xj(t) — x;(t)) + Ri(t),
=1 (27)
7
yi(t) = — Cyi(t) + Af (xi(t) + Zi |uij| (sign(uij)yi(t) — yi(t))
e
+Ri(t), i=12,.,7

where x;(t) = (xil(t),xiz(t))T, yi(t) = (yil(t),yiz(t))T, x;(t) = (x]'(t),y7 (t)) . Set the initial values
of network (27) to be x1(v) = (=1.9,2.8)T, x(v) = (=1.3,-14)7T, x3(v) = (22,1.4)7, x4(v) =
(—2.1,-29)7, x5(v) = (2.4, -1.8)T, x6(v) = (—1.2,0.9)7, x7(v) = (-1.3,0.2)7, y1(v) = (—2.6,0.1)7,
ya(v) = (04,—0.1)7T, y3(v) = (0.1,-09)T, y4(v) = (-0.4,-1.6)7, ys(v) = (0.5,1.6)7, ys(v) =
(0.1,0.8)T, y7(v) = (—1.7,0.7)T, v € [-1,0].

T
T
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The topology of the networks (27) are presented in Figure 2. Let V; = {1,2,3}, V, = {4,5,6,7},
and take w = diag(1,1,1,-1,-1,-1,-1), (eiT(t),éT(t))T = x;(t) — w;y(t). Figure 3 depicts the

trajectories of networks (26) and (27) under controller (8).

(b)

Figure 2. (a) Topology structure of STM in network (27); (b) Topology structure of LTM in network (27).

2.06536!
2.06534!
206532}

4.232 4.234 4.236

1,2,..,7)

zi(t), s1(t)(i

—_ i)

0.82005

0.82]

4285 4.29 4295

1,2,..,7)

-0.6611
-0.66115|
-0.6612]

-
=
=
= sk yn(t)
R 2225 223 2235 e 21 () 4
= —_— (1)
= -2 — i (£)
B — s (1)
—ya(t)
251 —yn(t)
| - ==
3 R . 3
0 1 2 3 4 5 6 7 8 0 1 2

—yu(t)
——yn(t)| |
—ysa(t)

ya(t)
——ysa(t)
—ve(t) ||
—_—yn(t)
- =)

©

3 4 5 6 7 8

(d)

Figure 3. (a) The trajectory of the first component of STM under the action of controller (8) in network
(26) and (27) ; (b) The trajectory of the second component of STM under the action of controller (8) in
network (26) and (27); (c) The trajectory of the first component of LTM under the action of controller
(8) in network (26) and (27);(d) The trajectory of the second component of LTM under the action of

controller (8) in network (26) and (27).

The control intervals of the intermittent controller is designed as follows:

“+o00 “+o00

U [Zk ) = U [0.21,021 +0.05) U [0.2 +0.1,0.2 4 0.18).
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By simple calculation, 7y = 0.65 and A = 32. Choose &« = 0.96, B = 3, 07 = 20, o = 25,
k1 = 0.01,xp =10, ¢ = 0.5,d = 98 and T,, = 0.0001. By Theorem 1, the networks (26) and (27) are
FXT quasi-bipartite synchronization and it is obtained that T = 5.58s and error bound is 2.96. The
simulation results are presented in Figures 4 and 5.

3 25
ok
ok
15F
—~ —~
= =
Tt 7
o o 05
'ﬁ' 0 T 0 <4
s en(t) 05 en® |
= 4 en(t)| | = enll)
\:/ ea(t) X en(t) |
9 en(t) ) enl(t)
es(t) 15F —c(t) |
2t —_—ci(t) | eca(t)
en(t) 2t en(t) |
o T o T
3 -25 L
0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
t t
(a) (b)
15 1.5F
1k
s
— 05 —
= " o0s
Lo i L
| =0
0.5 |
Il ‘ Il
= A )] | = 051 —_—rta(t) | ]
= én(t) = én(t)
= én(t) = én(t)
& 15 —_— () [ < 1 én(t)|]
éx(t) éx(t)
éqa(t) éaa(t)
2r én(t)[1 5 én)] ]
o T o T
25l . . . . . .
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
t t
(c) (d)

Figure 4. (a) The trajectory of the first component of the error of STM under the action of controller (8)
in networks (26) and (27); (b) The trajectory of the second component of the error of STM under the
action of controller (8) in networks (26) and (27); (c) The trajectory of the first component of the error
of LTM under the action of controller (8) in networks (26) and (27) ;(d) The trajectory of the second
component of the error of LTM under the action of controller (8) in networks (26) and (27).
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Figure 5. (a) Trajectories of Eq (t) with E1(t) = |le(t)]|2; (b)Trajectories of E;(¢) with Ex(¢) = ||é(#) |2
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4.2. Fixed-time quasi-bipartite synchronization with disturbances

Consider the CCNNs with 7 nodes as follows:

yi(t)

j=1

+Ri(t) + E(t),

j=1
i=1,2,..,7,

—_
H .
—

17 of 20

%i(t) = = Cxi(t) + Af (xi(t)) + Bf (xi(t — 7(t))) + Eyi(t)

7
+ Z |dij| (sign (dyj)x;(t) — x;i(t)) + Ri(t) + Zi(t),

(28)

7
Cyi(t) + Af (xi(t)) + Z |uij| (sign(uij)yi(t) — yi(t))

the model parameters are selected in section 4.1, where &1 () = 0.2cos(t), Ejp(t) = 0.1sin(2t). Figure
6 presents the trajectories of (26) and (28) with controller (8).

1,2,..,7)

Tl (t)7 S1 (t) (Z

1,2,..

yin (t), 21 ()i

2.066

2,065 M

2.064
4.225 423 4235 4.24
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e

6.515 652 6.525

0.571

yn(®)| |
(1)
— 31 (t)
—yu(t) [
1 (t)
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——yn(t)|]
—_—z(t)

4
t

(©

1,2,..

Yia(t), z2(t) (@

4288 4.29

.

6.536 6.538 6.54

—_—na(t) PN
y(t) |
—ysa(t)
yaa(t)
—ys2(t)
—2(t) ||

—yn(t)

)

4 5 6 7 8

(d)

Figure 6. (a) The trajectory of the first component of STM under the action of controller (8) in network
(26) and (28) ; (b) The trajectory of the second component of STM under the action of controller (8) in
network (26) and (28); (c) The trajectory of the first component of LTM under the action of controller
(8) in network (26) and (28);(d) The trajectory of the second component of LTM under the action of
controller (8) in network (26) and (28).

In the following, the FXT quasi-bipartite synchronization of the networks (26) and (28) will be
verified. According to the parameters in section 4.1, y = 0.65, T, = 0.0001 and ¢ = 0.5. Select & = 0.96,
B =30 =20,00 =251 =001, x, =10, k3 = 1, A = 35. Evidently, all conditions in Theorem 2
are satisfied and the networks (28) with controller (8) is synchronized with (26) within settling time
T* = 5.59s. Theoretical error bound is 2.97. The corresponding numerical results are illustrated in

Figures 7 and 8.
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Figure 7. (a) The trajectory of the first component of the error of STM under the action of controller (8)
in networks (26) and (28); (b) The trajectory of the second component of the error of STM under the
action of controller (8) in networks (26) and (28); (c) The trajectory of the first component of the error
of LTM under the action of controller (8) in networks (26) and (28) ;(d) The trajectory of the second
component of the error of LTM under the action of controller (8) in networks (26) and (28).
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Figure 8. (a) Trajectories of Eq (t) with E1(t) = |le(t)]2; (b)Trajectories of E; (¢) with E;(¢) = ||é(¢) |-

5. Conclusion

In this study, the problem of FXT quasi-bipartite synchronization for CCNNSs is considered by
intermittent control strategy. Compared with the existing FXT intermittent control strategy, the linear
term on the rest interval is removed, which makes our control method simpler and more economical.
In addition, the influence of discontinuous activation functions, external disturbances and competitive
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relationships between nodes are considered in synchronous analysis, which makes the obtained
criteria more general. Note that we can implement control measures on all nodes to achieve FXT
synchronization when network topology is known. In practical scenarios, it is often either infeasible or
unnecessary to control every single node. Therefore, the intermittent pinning control will be considered
in forthcoming research.
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