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Abstract: In this study, the temporal variation in soil salinity dynamics was monitored and analyzed 

using Electromagnetic Induction (EMI) in an agricultural area in Port Said, Egypt, which is at risk 

of soil salinization. To assess soil salinity, repeated CMD2 soil apparent electrical conductivity (ECa) 

measurements were taken and inverted to generate electromagnetic conductivity imaging (EMCI), 

representing soil electrical conductivity (σ) distribution through time-lapse inversion. This process 

involved converting EMCI data into salinity cross sections using a site-specific calibration equation 

that correlates σ with the electrical conductivity of saturated soil paste extract (ECe) for the collected 

soil samples. The study was performed from August 2021 to April 2023, involving six surveys 

during two agriculture seasons. The results demonstrated accurate prediction ability of soil salinity 

with an R2 value of 0.81. The soil salinity cross sections generated on different dates observed 

changes in the soil salinity distribution. These changes can be attributed to shifts in irrigation water 

salinity resulting from canal lining, winter rainfall events, and variations in groundwater salinity. 

This approach is effective for evaluating agricultural management strategies in irrigated areas 

where it is necessary to continuously track soil salinity to avoid soil fertility degradation and a 

decrease in agricultural production and farmer’s income. 

Keywords : electromagnetic induction; soil salinity; inversion; monitoring  

 

1. Introduction 

Soil salinization, caused by soluble salts in the soil and/or irrigation water, is a leading factor in 

soil degradation (Stavi et al., 2021). The 2021 Food and Agriculture Organization (FAO) report 

estimates that globally, 833 million ha of agricultural land is salt-affected, including saline and sodic 

soils, with most of these areas located in arid and semi-arid regions (FAO, 2022). This salinity poses 

a severe threat to agricultural production and food security (Shrivastava and Kumar, 2015). 

Approximately 20% of cultivated lands and 33% of irrigated agricultural lands worldwide are 

affected by soil salinity, with an annual expansion rate of 10%, driven by many factors such as low 

precipitation and the use of saline irrigation water (Machado and Serralheiro, 2017). 
Soil salinity is a significant driver of land degradation, negatively impacting crop growth and 

quality due to osmotic stress (Gorji et al., 2017). To mitigate the spread of soil salinization, efficient 

and time-saving methods are required to monitor soil salinity in agricultural plots. This necessity 

arises because conventional methods for measuring salinity are considered time-consuming and 

labor-intensive.  
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One method for quickly and reliably assessing soil salinity across different locations is through 

electromagnetic induction (EMI) (Bouksila et al., 2013; Paz et al., 2020a). Electromagnetic instruments 

measure the apparent electrical conductivity of soil (ECa; mS m−1), which is often strongly correlated 

with the electrical conductivity of saturated soil paste extract (ECe) (Bouksila et al., 2012). Recent 

advancements include the use of electromagnetic inversion software to account for vertical variation 

in ECe, which involves the creation of electromagnetic conductivity images (EMCIs) for salinity 

mapping. Many researchers (e.g., Corwin and Yemoto, 2019; Wang et al., 2021; Xie et al., 2021; Flores 

et al., 2022) developed a linear regression (LR) relationship between soil electrical conductivity (σ), 

inverted from various combinations of ECa data, and soil salinity.  

Although EM38 and CMD mini-explorer devices are commonly employed for soil salinity 

mapping across various global locations (e.g., Brogi et al., 2019; Farzamian et al., 2019, 2021; Ben 

Slimane et al., 2022), the use of the CMD2 device has been comparatively limited. Utili (2020) 

employed the CMD2 device to establish a calibration relationship between water content and ECa, to 

monitor water content in earthen embankments along the river Irvine in Galston, UK. 

Apostolopoulos and Kapetanios (2021) integrated CMD2 and CMD4 devices into an archaeological 

study to map the distribution of loose sediments in Lavreotiki, Greece, aiming to predict the path of 

ancient rivers. Koganti et al. (2018) established 3-dimensional maps of the electrical conductivity 

(ECe) across an agricultural field in central Haryana, India. They used the DUALEM-2S, with a 

configuration (2mHcon) comparable to the CMD2 instrument in its vertical mode of operation, as the 

effective depth of exploration (DOE) is 3 m. 

Yao et al. (2016) used repeated electromagnetic induction (EMI) measurements and linear 

mixed-effects models to map soil salinity in a coastal agricultural landscape in Jiangsu Province, 

China. Results demonstrated that EMI measurements were effective in calibrating and identifying 

the spatial distribution of soil salinity in the predominantly moderately and highly saline areas of the 

landscape. Yao and Yang (2010) used EM38 and EM31 instruments in a mobile EMI system to address 

soil salinity issues in the Lower Yellow River Delta. Their study aimed to assess soil salinity patterns 

by analyzing the relationship between apparent soil electrical conductivity (ECa) measured by 

EM38h and EM31h and corresponding salinity levels through linear regression models. EM38h was 

found to sense shallow depths (0 to 40 cm), while EM31h detected deeper layers (40 to 100 cm) within 

the 0 to 100 cm range. Notably, the effective depth of investigation for EM38h is generally shallower 

(0.75 to 1.5 m), whereas EM31h has deeper penetration, reaching 6 to 9 m beneath the soil surface. 

Since the inversion of ECa for soil characterization using EMI is a relatively recent development, 

the lack of validation using independent datasets currently limits a more widespread use in salinity 

monitoring (Corwin and Scudiero, 2019). Moreover, a critical research question in the context of 

employing EMI for soil salinity monitoring, particularly using LR, is whether the LR developed 

within one survey can be applied to subsequent surveys without the necessity of establishing a new 

LR for each survey which requires further investigations.  

The main objectives of this study were to a) evaluate CMD2's capability for tracking and 

monitoring soil salinity in intensely used agricultural land over an extended period, b) develop a site-

specific calibration for using time-lapse EMCI inversion and individual EMCI inversion, c) assess and 

compare the predictive performance of the developed calibration equation from both techniques in 

predicting ECe from EMCIs, and d) analyze and track the dynamics of soil salinity over time by 

creating soil salinity cross-sections for each data collection date. The indirect objective of the current 

research was to assess the impact of canal lining on soil salinity in the investigated agricultural plot. 

2. Materials and methods 

2.1. Study area 

The study area is located approximately 10 km south of Port Said City in Egypt (Figure 1a). The 

study focused on one intensely used and representative agricultural plot in the area, as shown in 

Figure 1b. The Suez Canal bounds this area to the east and El-Manzala Lake to the west. The area is 

located between 32° 15' E to 32° 17' E longitude and 31° 10' N to 31° 11' N latitude, covering an 
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agricultural area of 1200 ha. This area has a relatively flat topography, with an elevation ranging from 

1 to 2 m above mean sea level. According to the USDA Soil Taxonomy (USDA, 1999), the soil is sandy 

clay loam, and the region is classified as arid according to the Köppen-Geiger climate classification 

(Geiger, 1954). In the past, this area was part of Lake Manzala but was drained and converted into 

agricultural land in 1990, where sabkha deposits and salt crusts with remnants of seashells dominate 

the region. When the water was drained from the lake, it left behind a sediment layer that was rich 

in nutrients and organics. However, the sediment layer also contains high levels of salt, which can 

lead to soil salinization and decreased crop productivity over time (Aziz et al., 2022). 

The plot is comprised of four basins, and the dimensions of each basin, as well as the location of 

the drainage water and irrigation water system, are depicted in Figure 1b. Figure 2 displays daily 

recordings of total rainfall and average temperature obtained throughout the study period at the Port 

Said meteorological station indicated by the yellow circle in Figure 1a, located at 31°15'36.0"N and 

32°17'24.0"E, along with irrigation and survey events (source: https://en.tutiempo.net/, accessed on 6 

October 2023). The average annual rainfall is 98 mm, mainly occurring in winter with a maximum 

amount of 49 mm in January. The average minimum and maximum temperatures are 4.2 and 42.6°C 

occurring in January and May, respectively. The groundwater level was measured during each 

survey and the recorded depth was similar and approximately around 0.85 m during all surveys.  

Flood irrigation is the main irrigation method used in the study area. The agricultural plot 

received irrigation water from the final branch of the Port Said Canal, which receives its water supply 

from the Ismailia Canal. The irrigation canal used to irrigate the agricultural lands in the study area 

is part of the national canal rehabilitation project initiated by the Egyptian Government (source: 

https://infonile.org, accessed on 11 September 2023). This canal was recently lined with cement 

concrete during the period between January 2022 and May 2023. During the 2021 surveys, there was 

occasional seepage of drainage water into the canals due to the absence of canal lining. Before the 

lining, the measured electrical conductivity of the irrigation water (ECw) was 4.0 dS m−1, falling within 

the moderately saline range (2-10 dS m−1) as defined by FAO guidelines (Rhoades et al., 1992). 

However, according to the guidelines for interpretations of water quality for irrigation, which take 

into account crop tolerance to salinity, the degree of restriction is severe for use for ECw superior to 3 

dS m-1(Ayer and Westcot, 1985). Following the initiation of canal lining, subsequent measurements 

indicated a significant reduction in ECw, decreasing to 1 dS m−1 which falls within the slightly saline 

range (0.7-2 dS m−1). The surface drainage system consists of open drains in a V-shaped pattern with 

a depth of 1.0 meter and 17.5 meters apart. These drains ultimately converge into the branch drain, 

as shown in Figure 1b.   

The main crops cultivated in the area are Sorghum Sudanese which is used as animal feed. The 

geophysical surveys were conducted to monitor soil salinity of the investigated plot at a 20 m transect 

shown in Figure 1b. These surveys mainly aimed to track the temporal variation in soil salinity 

distribution during a complete agricultural season. The salinity levels in the plot were relatively 

moderate, with vegetation covering the entire plot. The Turkmen Agricultural Institute found that 

planting Sorghum Sudanese in saline areas reduces soil salinity, promoting healthy crop growth and 

yields (Yollybayev and Gurbanov, 2018). Additionally, it lowers the groundwater level and prevents 

soil salinization (Clark, 2008; Yollybayev and Gurbanov, 2018). The productivity of Sorghum 

Sudanese has the potential for up to five annual harvests (Mirsharipova et al., 2023). The study area 

was initially prepared for planting Sorghum Sudanese in September 2021 when fertilization with 

potassium, nitrogen, and phosphate, as well as seed sowing, were conducted. However, the presence 

of harmful weeds caused a delay in cultivation until December 2021. The cultivation extended over 

six months, encompassing five harvests, with the last harvest in May 2022.  
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Figure 1. a) Location of the study area in southern Port Said City and b) location of the plot (CMD2 

transect marked in orange lines and soil sampling sites in black dots) and the location of the drainage 

water and irrigation water system (irrigation and drainage direction marked in blue and green lines, 

respectively. 

 

Figure 2. Distribution of daily rainfall (mm/day), and mean temperature (C°/day) recorded at the 

meteorological station located in the study area during the study period, including dates of irrigation 

events, the corresponding irrigation water amounts (mm/day), and EMI survey dates. 

2.2. Soil sampling and laboratory analysis 

As shown in Figure 1b, soil samples were taken along the investigated transect on all dates 

concurrently with EMI surveys. Between 1 and 6 boreholes were drilled, depending on the date of 

measurement, as illustrated in Table 1. At each borehole location, three soil samples were collected 

along 90 cm depth representing topsoil (0.0–0.3 m), subsurface (0.3–0.6 m), and subsoil (0.6–0.9 m). 
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The ECe of the soil saturation paste extract was determined in the soil laboratory of the Faculty of 

Engineering, Port Said University, Egypt. According to Richards (1954), ECe was measured in the 

extract obtained using suction filters from soil saturation paste using a conductivity meter (HI5521-

01). In general and according to the terminology proposed by Barrett‐Lennard et al. (2008), the soil 

can be classified as non-saline, slightly saline, moderately saline, highly saline, and severely saline if 

its ECe ranged from (0-2 dS m−1), (2–4 dS m−1), (4–8 dS m−1), (8–16 dS m−1), and (>16 dS m−1), 

respectively. 

Table 1. Detailed information regarding the dates of measurements, agricultural state, number of 

drilled boreholes in each survey, and survey utilization. 

Campaign 
Date of 

measurement 
State of agriculture 

Number of 

boreholes 

Survey data 

utilization 

1st Aug 2021 Before cultivation 1 
Validation 

2nd Sep 2021 After fertilization and sowing 2 

3rd Feb 2022 After second harvesting 6 Calibration  

4th April 2022 After fourth harvesting 6 

Validation  5th June 2022 After the last harvesting 6 

6th June 2023 One year later 4 

2.3. Collection and inversion of ECa data 

ECa data were collected using a low-frequency electromagnetic induction (EMI) technique (i.e., 

CMD2 conductivity meter; GF Instruments). The CMD2 has a transmitter coil consisting of horizontal 

(ECah) and vertical (ECav) receiver arrays. It functions at a frequency of 10 kHz. The separation 

between the transmitter and receiver is 1.89 m, allowing for theoretical measurements of ECa depths 

ranging from 0.0 to 1.5 m and 0.0 to 3.0 m for the ECah and the ECav, respectively. 
the beginning, a pilot survey was conducted by CMD2 positioned approximately 1.00 m above 

the ground surface throughout the investigated plot (Figure 1b) to explore variations in soil salinity. 

Only the horizontal dipole orientation was considered during this survey. The objective of the initial 

investigation was to gain insights into the spatial variability of soil salinity across the field 

qualitatively and to identify a representative transect for further study. According to this survey, a 

specific transect within the investigated plot was selected for detailed study (Figure 1b). The location 

of this transect was selected based on the variability of measured ECa values in the investigated plot 

(Figure 3). 

Notable heterogeneity in ECa values was observed along this transect. Furthermore, it was 

oriented parallel to the drainage direction, located between two drains to ensure that the CMD2 

readings were not affected by drainage water or its salinity. Subsequently, a series of CMD2 surveys 

were conducted along the selected single transect over a period spanning six dates from August 2021 

to April 2023. Measurements were obtained at intervals of 1 m along the 20 m transect (Figure 1c), 

using a GPS integrated with the device for registration of the position. ECa was collected with a CMD2 

lying on the ground surface in both horizontal and vertical dipole orientations.  
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Figure 3. The spatial distribution of apparent electrical conductivity (ECa, mS m-1) of CMD2 data 

obtained from a pilot survey using the horizontal dipole (ECah) orientation at a height of 1.00 m. 

For the inversion, the EM4Soil software (EMTOMO, 2018) was used to estimate the true electrical 

conductivity (σ, mS m−1) at any depth. These estimates were generated by using 1D laterally 

constrained inversion, Quasi 2D, a technique developed by Santos et al. (2010 & 2011) . A forward 

model based on the full solution of the Maxwell equations (Kaufman and Keller, 1983) was used in 

this study. This method is recommended when the ECa values are high (>100 mS m−1). Two different 

inversion algorithms, S1 (Sasaki, 1989) and S2 (Sasaki, 2001) were used that are based on Occam 

regularization (De Groot-Hedlin and Constable, 1990). To run this algorithm, the special Lagrangian 

multiplier (λ) should be determined. λ is responsible for regulating the balance between the 

smoothness of the spatial model and the misfit to the data response. A larger λ typically results in a 

model with a greater misfit error but smoother conductivity values. This is generally acceptable when 

soil conductivity changes follow a gradual pattern, leading to a more realistic model. Conversely, a 

smaller λ is usually required when anticipating sharper transitions in soil conductivity to accurately 

delineate abrupt boundaries. The determination of a suitable λ value typically conducts inversions 

with various λ values (e.g., Triantafilis and Monteiro Santos, 2013; Zare et al., 2020). 

The number and depth of layers in the initial model and the conductivities of each layer were 

determined based on the ECa data mean. The value of λ varied from 0.02 to a maximum of 3.0, with 

inversion stopping after a maximum of 10 iterations.  

Two different techniques were used to invert the six surveys, namely individual and time-lapse 

inversion. In the individual inversion, each survey was inverted independently, and only spatial 

regularization was applied. In contrast, in time-lapse inversion, the data for the six dates were 

simultaneously inverted and the temporal regularizations were also applied. Therefore, it was 

necessary to optimize the spatial and temporal Lagrangian multipliers. The temporal Lagrangian 

multiplier (α), functions as a temporal damping factor, assigning weight to the minimization of 

temporal conductivity changes along the time axis. The α remains constant and is determined by the 

similarity between two consecutive reference times. A higher α value yields more similar reference 
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models resulting from the inversion, while a value of zero signifies the absence of temporal 

constraints, resembling a traditional non-time-lapse inversion (Farzamian et al., 2022). 

The value of λ used in the current study ranged from 0.02 to a maximum of 1.5, while α was set 

at either 0.5 or 0.1, with a maximum number of 10 iterations. To develop optimum electromagnetic 

conductivity images (EMCIs) relative to measured ECe, the CMD2 ECa data associated with the soil 

sampling sites were used. Subsequently, the optimal inversion method was determined based on 

whether individual or time-lapse inversion algorithm provides better LR for soil salinity calibration, 

and optimal inversion parameters were chosen. The selected parameters achieved a higher R2 value 

between σ and the measured ECe and lower model misfit error among different regression models 

(EMCIs). The R2 values were compared using the classification proposed by Moore and Kirkland 

(2007), where a strong agreement was defined as R2 > 0.70, moderate as 0.5 < R2< 0.7, weak as 0.3 < R2 

< 0.5, and very weak as R2 < 0.3. 

2.4. Prediction of ECe from EMCI using site-specific calibrations  

As a first step, a unique equation (i.e., a site-specific calibration equation) was derived for the 

investigated plot based only on the ECa data from the third survey. The best-selected sets of inversion 

parameters described in Section 2.3 were used to develop a linear regression model between σ and 

the measured ECe.  

After that, a cross-validation process was used to assess the predictive ability of the calibration 

equation. Cross-validation was carried out using the leave-one-out cross-validation (LOOCV) 

method. In this method, one sample was removed, and the calibration was established based on the 

remaining samples to predict ECe at the point where the sample was removed. This process was 

iteratively repeated for each sampling point from the sampling sites (18 soil sampling points) until 

each sample had been taken once. The ability of the site-specific calibration to predict ECe was 

assessed using several metrics. The root mean square error (RMSE; Eq. 1) was computed to evaluate 

the overall prediction accuracy and the mean error (ME; Eq. 2) was calculated to assess any prediction 

bias. Additionally, Lin's concordance correlation coefficient (LCCC; Lin, 1989) was calculated to 

evaluate the degree of similarity between the linear regression (LR) and the 1:1 relationship and to 

quantify the agreement between the two variables. 𝑀𝐸 = ଵ௡ ∑ ൫𝐸𝐶௠௜ − 𝐸𝐶௣௜൯௡௝ୀଵ                                   (1) 𝑅𝑀𝑆𝐸 = ටଵ௡ ∑ ൫𝐸𝐶௣௜ − 𝐸𝐶௠௜൯ଶ௡௝ୀଵ                              (2) 

where n is the total number of data, ECmi and ECpi are the measured and predicted ECe, respectively. 

In the second step, repeated EMI and ECe measurements, which were collected simultaneously 

with the EMI surveys for all measurement surveys except survey 3, were used as an independent 

validation dataset. This dataset was employed to assess (i.e., validate) the prediction ability of the 

site-specific calibration to predict ECe from EMCI at various depths over time. This is performed for 

both inversion techniques (i.e., time-lapse and individual inversions). 

In the last step, RMSE, ME, and LCCC were used as indicators to evaluate the ability of the site-

specific calibration equation to predict ECe. 

3. Results and discussion 

3.1. ECe data analysis 

Initially, the third survey was chosen as a calibration dataset based on the fact that this survey 

included both the minimum and maximum ECe values measured across all surveys (Table 2) and it 

had a wide range of ECe (ECe range = 12.32 dS m−1).  Moreover, the third survey was characterized by 

the largest number of soil samples collected during the surveys (i.e., n = 18). Table 3 summarizes 

descriptive statistics for the measured ECe in the calibration dataset (i.e., n = 18; the third survey). In 

the first layer (0.0–0.3 m), the minimum ECe was 4.63 dS m−1 which is classified as moderately saline 

(4–8 dS m−1). Both the mean (7.16 dS m−1) and the maximum (8.19 dS m−1) ECe values showed moderate 

and high salinity levels, respectively. The ECe in the second layer (0.3-0.6 m) was highly saline (8-16 
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dS m−1), with a minimum ECe value of 8.66 dS m−1 and a maximum of 11.50 dS m−1 and a mean of 9.96 

dS m−1. In the third layer (0.6-0.9 m), the minimum ECe value was 12.95 dS m−1 and the mean was 4.92 

dS m−1 indicating high salinity, while the maximum ECe value was 16.95 dS m−1 which classified as 

severely saline (16-32 dS m−1). 

It is worth noting that the minimum ECe at all depths, excluding topsoil, indicated highly saline 

conditions. The higher salinity values in the study area can be attributed to climate change, leading 

to sea-level rise (Dawoud, 2004). Consequently, this phenomenon impacted groundwater, causing an 

increase in saltwater intrusion from El Manzala Lake, located near the study area (Mabrouk et al., 

2013). Although Sorghum Sudanese is generally moderately salt-tolerant, the crop yield was high, 

which is consistent with the results of Almodares and Sharif (2007). Additionally, the extended trials 

conducted at the Turkmen Agricultural Institute demonstrated the feasibility of achieving a 

substantial Sorghum Sudanese yield, even in the presence of highly saline soils (Yollybayev and 

Gurbanov, 2018). Higher Sorghum Sudanese yield in the investigated plot can also be attributed to 

the use of organic and mineral fertilizers during the cultivation season.  

Table 3 summarizes the statistics of the measured ECe in the validation dataset (i.e., n = 57). In 

the first layer, the minimum and the mean ECe values were 5.29 and 7.47 dS m−1, respectively, and 

moderately saline, while the maximum ECe value was 11.8 dS m−1 and highly saline. In the second 

layer, the validation ECe data had minimum, mean, and maximum ECe values of 8.00, 10.89, and 12.59 

dS m−1, respectively. These values were slightly higher than the calibration data, except for the 

minimum. The validation ECe data for the third layer demonstrated lower minimum, mean, and 

maximum values in comparison to the calibration dataset. 

The statistics for all layers in the calibration samples fell within the same salinity classes, with 

only a difference in the maximum value of the third layer. This high level of consistency enhances 

confidence in the calibration model's ability to provide accurate estimations for ECe values. 

By comparing the calibration and the validation datasets, it can be noted that the mean ECe value 

(i.e., 10.68 dS m−1) was slightly higher for the calibration dataset. The standard deviation (SD) was 

also slightly higher for the calibration ECe dataset and equal to 3.52 dS m−1 as compared to 2.94 dS 

m−1 corresponding to the validation ECe dataset, indicating greater variability in the calibration ECe 

data. Both the minimum and the maximum values were slightly higher for the calibration ECe dataset. 

Furthermore, the coefficient of variation (CV) was higher for the calibration ECe dataset and equal to 

32.9% as compared to 27.9% for the validation ECe dataset, suggesting that the calibration ECe data 

exhibited relatively higher variability with its mean. 

Table 2. Measured ECe for each surveying campaign, all surveys, and validation surveys. 

Surveys 
ECe min 

(dS m−1) 

ECe max 

(dS m−1) 
ECe range * 

Number of 

soil samples 

1st survey 5.29 15.24 9.95 3 

2nd survey 9.51 15.70 6.19 6 

3rd (calibration) survey 4.63 16.95 12.32 18 

4th survey 5.45 13.58 8.13 18 

5th survey 6.10 15.16 9.06 18 

6th survey 6.40 14.90 8.50 12 

All surveys 4.63 16.95 12.32 75 

Validation surveys (all surveys except 

the 3rd survey) 
5.29 15.70 10.41 57 

* ECe range = ECe max – ECe min. 
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Table 3. Descriptive statistics of the measured electrical conductivity of the saturated soil paste extract 

(ECe in dS m−1) at various depths including topsoil (0.0–0.3 m), subsurface (0.3–0.6 m), and subsoil 

(0.6–0.9 m) at calibration (n = 18) and validation (n = 57) soil samples. SD and Cv are the standard 

deviation and variation coefficient, respectively. 

ECe Calibration data (dS m−1) 

Soil layer (m) N Min Max Mean SD Cv 

All soil layers  18 4.63 16.95 10.68 3.52 32.92 

0.0-0.3   6 4.63 8.19 7.16 1.37 19.11 

0.3-0.6  6 8.66 11.50 9.96 1.06 10.65 

0.6-0.9  6 12.95 16.95 14.92 1.39 9.30 

ECe Validation data (dS m−1) 
Soil layer (m) N Min Max Mean SD Cv 
All soil layers 57 5.29 15.70 10.55 2.94 27.87 
0.0-0.3  19 5.29 11.80 7.47 1.82 24.39 
0.3-0.6  19 8.00 12.59 10.89 1.55 14.23 
0.6-0.9  19 10.90 15.70 13.38 1.46 10.91 

3.2. Determination of the optimal inversion parameters and inversion technique 

After the analysis to determine the optimal parameters configuration for individual inversion 

and establish a calibration relationship between σ and the measured ECe, the best sets of inversion 

parameters were assessed. These were obtained using the S2 inversion algorithm, FS forward 

modeling, and λ = 0.4. The calibration equation developed from the individual inversion was as 

follows with an R2 value of 0.88: 

ECe = 0.3084 + 0.05039 × σ                             (3) 

Likewise, to determine the optimal parameters configuration for time-lapse inversion and to 

develop a calibration relationship between σ and the measured ECe, various EMCIs were generated. 

These were created by using ECa data from all EMI survey dates, employing inversion algorithms (S1 

and S2), and varying initial model conductivity, λ, and α values as described in Section 2.3. 

Firstly, it is worth mentioning that the model derived using λ values exceeding 1 is not shown 

here. Using λ values higher than 1 led to a considerable misfit error between the predicted and 

measured ECa. Therefore, opting for a high λ is not advisable, especially when expecting sharp 

vertical conductivity contrasts in the field. Regarding the impact of the temporal smoothing 

parameter (α), various values were investigated (results not presented here). It was observed that 

values exceeding 0.10 overly smoothed the anticipated temporal changes, making it challenging to 

resolve detailed variations. Hence, for this study, a value of 0.10 was determined to be the optimal 

choice for α in addressing the temporal variation of σ.  

Analysis for the time-lapse inversion technique was conducted using the best-selected sets of 

inversion parameters. These parameters were achieved when using the S2 inversion algorithm, α = 

0.10, and λ = 0.90. The calibration equation developed from TL inversion was as follows with an R2 

value of 0.89.  

ECe = -9.1485 + 0.0910 × σ                             (4) 
Table 4 presents the R2 values between σ and measured ECe for both individual (IN) and time-

lapse (TL) inversion techniques. Moreover, it shows the RMSE, ME, and LCCC between measured 

and predicted ECe for all data calculated by using site-specific calibration equations for both 

techniques (i.e., Eq. 3 and 4). These estimates were assessed by considering survey 3 (i.e., n = 18) as 

the calibration dataset and the remaining surveys (i.e., n = 57) as the validation dataset. The R2 values 

were strong for all surveys (i.e., R2 > 0.70) using both techniques, with R2 values of 0.81 and 0.77 for 

time-lapse and individual inversion, respectively. This suggests that the time-lapse technique may 

offer a slightly more accurate calibration for the measured ECe . 
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Considering the mean error (ME) between measured and predicted ECe values for all surveys, 

it was clear that the least biased (i.e., closest to zero) inversion technique was the time-lapse inversion 

as it represented a ME value of 0.17 dS m−1 compared to 0.85 dS m−1 for the individual inversion. 

Table 4. Statistical indicators for measured ECe: RMSE, ME, LCCC, R2 for all data types using both 

individual (IN) and time-lapse (TL) inversion techniques. 

Surveys 
Type of 

inversion 

RMSE 

(dS m−1) 

ME 

(dS m−1) 
Lin’s CCC R2 

All surveys 
IN 1.91 0.85 0.84 0.77 

TL 1.38 0.17 0.90 0.81 

Validation surveys  (all 

surveys except 3rd survey) 

IN 2.10 1.15 0.81 0.77 

TL 1.45 0.24 0.88 0.79 

1st survey 
IN 1.48 0.04 0.93 0.87 

TL 1.52 0.95 0.92 0.93 

2nd survey 
IN 3.65 3.48 0.55 0.96 

TL 1.24 -0.26 0.90 0.92 

3rd (calibration) survey 
IN 1.15 0.00 0.94 0.88 

TL 1.14 0.00 0.94 0.89 

4th survey 
IN 1.94 0.63 0.79 0.69 

TL 1.58 0.06 0.84 0.73 

5th survey 
IN 1.62 0.57 0.86 0.79 

TL 1.35 -0.07 0.89 0.80 

6th survey IN 1.96 1.81 0.81 0.94 

According to Singh et al. (2005) and Farzamian et al. (2023), a satisfactory prediction RMSE 

should be half the standard deviation (SD) of the measured ECe. As the SD of ECe for all the validation 

data was 2.94 dS m−1 as shown in Table 3, the RMSE should be 1.47 dS m−1 or lower to achieve 

satisfactory prediction . As the RMSE was equal to 1.45 dS m−1 in the time-lapse inversion as compared 

to 2.10 dS m−1 in the individual inversion, the time-lapse inversion is considered the optimal inversion 

technique.   

The LCCC between measured and predicted ECe values for all surveys is displayed in Table 4. 

The analysis of LCCC reinforced the superiority of the time-lapse inversion technique, with a stronger 

agreement between measured and predicted ECe (LCCC = 0.90) compared to individual inversion 

(LCCC = 0.84), indicating the effectiveness of time-lapse inversion in making predictions . Based on 

the results, the time-lapse inversion is recommended compared to individual inversion as it showed 

improved accuracy and effectiveness in ECe prediction. Therefore, the time-lapse inversion technique 

was applied in this study and used for monitoring and mapping soil salinity, as shown below.  

3.3. Time-lapse EMCIs 

Figure 4 displays the obtained EMCIs from the time-lapse inversion of EMI surveys. The figure 

shows that σ increases with depth, consistent with the previously established soil salinity 

distribution. 

Across multiple EMI surveys conducted at the same location, the temporal variations in σ were 

monitored for one agricultural season spanning from August 2021 to June 2022. In August 2021, σ 

values fluctuated between a minimum value of 138.4 mS m−1 and a maximum value of 352.5 mS m−1. 

This wide range indicated significant variability in σ compatible with the large measured ECe within 

this timeframe. 

In September 2021, the σ values ranged from 142.7 to 343.7 mS m−1. The recorded σ ranges for 

both dates can be attributed to fertilizer application, irrigation water salinity (ECw = 4 dS m−1), and 

the existence of shallow saline groundwater with a level of 0.85 m depth below the soil surface and a 

salinity of 14 dS m−1. In arid climates and under evaporation, an important solute up-flow from the 
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shallow and salty groundwater (capillarity rise processes) could be the main cause of soil salinization 

(Bouksila, 2011). 

In February 2022, the maximum σ values were decreased as compared to August and September 

2021. The σ values in February 2022 ranged from 142.7 to 323.7 mS m−1. April 2022 exhibited a similar 

pattern, with σ values ranging from 145.4 to 318.1 mS m−1. This reduction in maximum σ values can 

be attributed to the winter rains as shown in Figure 2. This resulted in a corresponding decrease in 

measured ECe which was agreed with the reduction in σ values in the subsoil as shown in Figure 4. 

In June 2022, a slight increase in minimum σ values was noted and the σ values ranged from 152.17 

to 322.21 mS m−1.  

Finally, in April 2023, another agricultural season one year later, σ values ranged from 157.0 to 

329.8 mS m−1, maintaining an almost consistent pattern as observed during the antecedent four 

surveys. This pattern involves a decrease in σ values within the subsoil as compared to February 2022 

as shown in Figure 4. This trend was also reflected in the measured ECe values at the subsoil. The ECe 

values decreased in the subsoil. The reduction in σ and measured ECe values within the subsoil can 

be attributed to the decrease in irrigation water salinity due to the canal lining and the continued 

cultivation of Sudanese Sorghum. Although the decrease in irrigation water salinity resulted in a 

reduction of measured ECe within the topsoil layer during the last survey, no corresponding decrease 

was observed in σ. This can be attributed to the lower sensitivity of the CMD2 to soil salinity within 

the root zone due to the existence of shallow groundwater which considerably affects the readings. 

Consequently, the ability to predict salinity from σ in the topsoil was diminished, as discussed later 

in Section 3.5. 

 

(April 2022) 

(Sep 2021) 

(Feb 2022) 

(August 2021) 
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Figure 4. Time-lapse electromagnetic conductivity images (EMCIs) for the experimental plot. 

3.4. Prediction of ECe using site-specific calibration. 

Figure 5a displays the calibration relationship between ECe and σ using the calibration equation 

developed from survey 3 using the time-lapse technique and the best inversion parameters (i.e., S2 

inversion algorithm, α = 0.10, and λ = 0.90). The best LR equation gave R2 equal to 0.89 expressed as: 

ECe = -9.1485 + 0.0910 × σ                              (5) 

Figure 5b shows the predicted ECe plotted versus the measured ECe and the 1:1 line using the 

calibration equation developed using the time-lapse for different measurement dates and different 

measurement depths. 

The validation of the calibration equation using time-lapse inversion resulted in an RMSE of 1.45 

dS m−1 and a strong R2 of 0.79, indicating acceptable predictive capability given the wide ECe range 

(10.41 dS m−1). These results concur with the findings of Zare et al. (2015) who observed a larger RMSE 

(5.28 dS m−1) in an irrigated cotton field under a wider ECe range (68.4 dS m−1). However, in the current 

study, the predictive bias (ME) was small and equal to 0.24 dS m−1 indicating a slight tendency for 

overestimation of ECe. This level of bias was slightly higher than the (ME) reported by Zare et al. 

(2015) which was 0.03 dS m−1. However, it can be considered well within acceptable limits. A high 

LCCC of 0.88 indicates a strong agreement between measured and predicted ECe during validation. 
Figure 5b displays variations in the predictive accuracy of validation data for all EMI survey 

dates. The Figure showed that the predicted ECe was generally slightly overestimated in the subsoil, 

particularly in April 2022. This result is unsurprising, given that the soil in April 2022 had the lowest 

maximum measured ECe among other survey dates as shown in Table 2. 
In contrast, the predicted ECe in the subsurface was generally slightly underestimated except for 

April 2023. This discrepancy is likely due to April 2023 having the lowest ECe among other survey 

dates. The greater variations in measured ECe during survey 3 had a considerable impact on the 

calibration equation, limiting its ability to monitor the smaller variations observed in April 2022 and 

2023. For the topsoil layer across all observation dates, the data points exhibit a dispersed distribution 

around the unity line (Figure 5b).    

Generally, the statistical indicators presented in Table 4 for validation data, segregated by 

measurement date, indicate that the prediction ability remained relatively consistent across all five 

dates. These results indicate that the spatial variability of the data had a much stronger influence on 

the prediction ability of the site calibration than the temporal variability. To improve the spatial 

sensitivity of the site calibration, observation times can be extended, a number of EMI surveys can be 

also increased, and a different EM device with a shallow effective depth like the CMD mini explorer 

can be used. Paz et al. (2020b) recommended soil sampling and continuous monitoring of volumetric 

(June 2022) 

(April 2023) 
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water content (θ), soil temperature, groundwater level, and salinity to improve the spatial sensitivity 

of the site calibration.  

 

 

Figure 5. Plots of (a) soil electrical conductivity (σ, mS m−1) and the measured electrical conductivity 

of the saturated soil paste extract (ECe, dS m−1) and the linear regression (LR) of the calibration 

equation using survey # 3 and Time-lapse inversion; (b) validation results of the LR calibration 

equation using other surveys excluding survey # 3. 

3.5. Generation of soil salinity cross sections from time-lapse EMC 

Figure 6 shows the soil salinity cross sections for each EMI survey date. Consequently, the figure 

tracks the salinity dynamics over time. The cross-sections were generated by using the site-specific 

calibration equation to predict ECe, which was classified into three salinity classes ranging from 

moderately to severely saline. The measured ECe for each EMI survey's sampling sites and 

groundwater level are also displayed.  

The salinity cross sections revealed that the salinity levels tended to increase with depth starting 

from a moderately saline level in the topsoil to a highly saline level in the subsoil. Severe saline zones 

were found at the bottom of the subsoil layer across every surveyed date. These saline zones 
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overestimated soil salinity compared to measured ECe values. The observed overestimation can be 

attributed to the proximity of groundwater to the root zone. Shallow groundwater can affect CMD2 

measurements because water is a significantly better conductor of electricity than soil. Consequently, 

this situation can lead to an overestimation of soil salinity. Furthermore, the elevated ECgr reached a 

high saline level of 14 dS m−1 during the dry period of the year (i.e., summer of 2021). Higher 

groundwater salinity levels can be attributed to the absence of rainfall and the use of moderately 

saline irrigation water. However, the degree of salinity overestimation tended to subside during the 

winter surveys, due to rainfall which reduced the groundwater salinity to a relatively lower level 

(ECgr = 10 dS m−1). Figure 6 depicts soil salinity fluctuations for all surveyed dates. Soil salinity at the 

subsurface layer was accurately predicted in most sampling sites on all dates. In contrast, soil salinity 

predictions for the topsoil tended to be slightly overestimated.  

During September 2021, the salinity cross-section revealed a larger portion of high salinity 

within the topsoil layer. This increase can be primarily attributed to the application of fertigation 

practices and the use of saline irrigation water (ECw of 4.0 dS m−1). Subsequently, with the arrival of 

the winter and rainy seasons which represented 66% of the year 2021 total annual rainfall, the salinity 

levels decreased. In February and April 2022, many soil sample sites had reached a moderately saline 

level as indicated by the measured ECe. It is worth mentioning that the initiation of canal lining in 

January 2022 led to a considerable reduction in irrigation water salinity. The salinity of irrigation 

water decreased to 1.0 dS m−1 by April 2023. This reduction in water salinity notably contributed to 

lower soil salinity levels. In April 2023, the measured ECe in all sampling sites within the top and the 

subsurface soils showed a moderate saline level (ECe = 4-8 dS m−1). However, the salinity cross 

sections for the topsoil estimated by CMD2 did not accurately reveal changes in soil salinity and 

tended to be overestimated. This inconsistency may be attributed to the weak correlation between 

the responses of the CMD2 device and the topsoil layer as demonstrated in similar results obtained 

with an EMI device having an effective depth of 2.0 m (Khongnawang et al., 2020). The CMD2 has an 

effective depth of 1.5 m for horizontal (ECah) and 3 m for vertical (ECav) receiver arrays according to 

the manufacturer's guide. This exploration depth was significantly larger than the depth of topsoil, 

which makes it challenging to resolve ECe changes in the topsoil (e.g., Ramos et al., 2023). In addition, 

a larger variability of other soil properties (e.g., water content and temperature) and smaller 

variability of ECe at topsoil further limits the application of EMI sensors in monitoring ECe in this 

zone (Paz et al., 2020b; Dragonetti et al., 2022). 
The adoption of Sorghum Sudanese cultivation may be another factor for the occurring soil 

salinity reduction during the successive surveys. Mirsharipova et al. (2023) stated that the Sorghum 

Sudanese can absorb salts from the soil and thereby decrease the soil salinity. The yield of Sorghum 

Sudanese in the investigated agricultural plot increased by more than 10% during year 2023 which 

can be attributed to the reduction in soil salinity. 

Considering the circumstances of elevated initial soil salinity, active water movement, salt 

conveyance, and the presence of a shallow groundwater table, salts migrated upward through 

capillary action and accumulated within the root zone. This phenomenon was particularly notable 

during the dry season of summer 2021. However, the use of slightly saline irrigation water (after 

canal lining) led to a gradual reduction in soil salinity, particularly within the topsoil, proven by 

subsequent EMI survey dates.  

Using the information obtained from time-lapse spatial distribution maps, the classification of 

soil salinity becomes a valuable tool for rational crop allocation within the investigated agricultural 

field. The primary objective of this allocation strategy is to effectively maximize crop yield in salt-

affected soils. This approach involves the cultivation of crops renowned for their high salt tolerance, 

such as cotton, barley, and sorghum, even in soils exhibiting moderate to heavy salinity levels. The 

results of the current study can help local farmers monitor soil salinity more accurately, allowing 

them to develop customized soil management strategies and make informed decisions in agriculture. 
Challenges in generating soil salinity predictive maps in field-scale were faced due to the 

following reasons: i) Lack of repeated field-scale EMI surveys across the entire field; only having data 

from a single measurement. ii) Absence of soil sample collection on the day of the field-scale EMI 
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survey, preventing the upscaling of our approach for predictive maps, even on that single day. iii) 

Limited EMI measurements in a single orientation during the field-scale investigation, rendering 

them unsuitable for inversion modeling that was presented for quantitative investigation. 

 
Figure 6. Predicted soil salinity maps along the vertical transects for plot with representation of 

measured ECe (in circles), and groundwater level (blue triangles) at the sampling sites located in the 

middle of each transect for all surveying campaigns. 

4. Conclusions 
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This research used data from EMI surveys and soil sampling data collected between August 

2021 and April 2023. These datasets, combined with a site-specific calibration, allowed for estimating 

soil salinity distribution through a 20 m transect within an intensely used agricultural plot. A 

preliminary analysis of soil salinity dynamics throughout the investigated transect was performed. 

Site-specific calibration demonstrated consistent prediction accuracy over time. The results 

supported the suitability of the CMD2 device for monitoring soil salinity across different soil depths 

with a limitation in measuring accuracy in only the topsoil layer (0–0.3 m). Therefore, sensors like the 

CMD mini explorer may be employed for effective monitoring of topsoil salinity.  

Using time-lapse (EMCI) in combination with calibration to analyze the temporal changes in soil 

salinity is an evolving approach. The developed salinity cross-sections showed how soil salinity 

responds to inputs such as salts and water, whether through irrigation, rainfall, or changes in shallow 

groundwater salinity. This method can assess suitable agricultural management practices for salinity 

reduction. For instance, the results indicated that the cultivation of Sudanese Sorghum caused a 

reduction in soil salinity. Canal lining as well was another reason for the reduction in soil salinity due 

to its direct impact on ECw.  

The study underscores the positive impact of water management techniques, with a particular 

emphasis on the Egyptian Government's canal lining method. This intervention effectively reduced 

the salinity of irrigation water (ECw) from 4.00 to 1.00 dS m−1, leading to a reduction in the risk level 

of soil salinization. These results underscore the importance of coordinated efforts at the irrigation 

systems level to address salinity issues. It also suggests that similar initiatives in other regions facing 

salinity challenges could yield considerable agricultural benefits.  

Addressing irrigation water and soil salinity management challenges is often complex, 

particularly at field and large scales. EMI method offers a non-invasive, rapid, and cost-effective 

solution for soil salinity dynamic monitoring that can cover expansive areas quickly. Although our 

study focused on a small transect, there is potential for scaling up from small-scale to field 

assessments due to the method's ability for rapid data collection. Our attempt is now towards 

securing additional funding to facilitate this undertaking in the near future. It's important to highlight 

that such applications have been very rare in Egypt, despite many lands facing issues with soil 

salinity and degradation. We consider this study as a proof of concept to demonstrate how EMI can 

be applied in this region for quantitative monitoring of soil salinity. This lays the foundation for 

further research to explore the efficacy of EMI sensors and incorporate them into broader 4D 

investigations for monitoring soil salinity in filed and large scales.  
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