

Article

Not peer-reviewed version

Monitoring of Soil Salinity for Precision Management using Electromagnetic Induction Method

[Mohamed G. Eltarably](#) , [Abdulrahman Ahmed Amer](#) , [Mohammad Farzamian](#) * , [Fethi Bouksila](#) , [Mohamed Elkiki](#) , [Tarek Selim](#)

Posted Date: 26 January 2024

doi: [10.20944/preprints202401.1889.v1](https://doi.org/10.20944/preprints202401.1889.v1)

Keywords: Electromagnetic Induction; Soil Salinity; Monitoring; Inversion

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Monitoring of Soil Salinity for Precision Management Using Electromagnetic Induction Method

Mohamed G. Eltarably ^{1,2}, Abdulrahman Amer ¹, Mohammad Farzamian ^{3,4,*}, Fethi Bouksila ⁵, Mohamed Elkiki ^{1,6} and Tarek Selim ¹

¹ Civil Engineering Department, Faculty of Engineering, Port Said University, Port Said, 42523, Egypt

² Department of Land, Air and Water Resources, University of California, Davis, 95616, CA, USA

³ Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2780-157 Oeiras, Portugal

⁴ Centre of Geographical Studies (CEG), IGOT, Universidade de Lisboa, 1600-276 Lisbon, Portugal

⁵ LR Valorization of Non-Conventional Waters (LR 16INRGREF02), National Institute for Research in Rural Engineering, Water, and Forestry (INRGREF), University of Carthage, BP10, 2080, Ariana, Tunisia.

⁶ Civil Engineering Department, Higher Institute for Engineering and Technology, New Damietta, Egypt.

* Correspondence: to: Mohammad Farzamian (mohammad.farzamian@iniav.pt)

Abstract: In this study, the temporal variation in soil salinity dynamics was monitored and analyzed using Electromagnetic Induction (EMI) in an agricultural area in Port Said, Egypt, which is at risk of soil salinization. To assess soil salinity, repeated CMD2 soil apparent electrical conductivity (EC_a) measurements were taken and inverted to generate electromagnetic conductivity imaging (EMCI), representing soil electrical conductivity (σ) distribution through time-lapse inversion. This process involved converting EMCI data into salinity cross sections using a site-specific calibration equation that correlates σ with the electrical conductivity of saturated soil paste extract (EC_e) for the collected soil samples. The study was performed from August 2021 to April 2023, involving six surveys during two agriculture seasons. The results demonstrated accurate prediction ability of soil salinity with an R^2 value of 0.81. The soil salinity cross sections generated on different dates observed changes in the soil salinity distribution. These changes can be attributed to shifts in irrigation water salinity resulting from canal lining, winter rainfall events, and variations in groundwater salinity. This approach is effective for evaluating agricultural management strategies in irrigated areas where it is necessary to continuously track soil salinity to avoid soil fertility degradation and a decrease in agricultural production and farmer's income.

Keywords : electromagnetic induction; soil salinity; inversion; monitoring

1. Introduction

Soil salinization, caused by soluble salts in the soil and/or irrigation water, is a leading factor in soil degradation (Stavi et al., 2021). The 2021 Food and Agriculture Organization (FAO) report estimates that globally, 833 million ha of agricultural land is salt-affected, including saline and sodic soils, with most of these areas located in arid and semi-arid regions (FAO, 2022). This salinity poses a severe threat to agricultural production and food security (Shrivastava and Kumar, 2015). Approximately 20% of cultivated lands and 33% of irrigated agricultural lands worldwide are affected by soil salinity, with an annual expansion rate of 10%, driven by many factors such as low precipitation and the use of saline irrigation water (Machado and Serralheiro, 2017).

Soil salinity is a significant driver of land degradation, negatively impacting crop growth and quality due to osmotic stress (Gorji et al., 2017). To mitigate the spread of soil salinization, efficient and time-saving methods are required to monitor soil salinity in agricultural plots. This necessity arises because conventional methods for measuring salinity are considered time-consuming and labor-intensive.

One method for quickly and reliably assessing soil salinity across different locations is through electromagnetic induction (EMI) (Bouksila et al., 2013; Paz et al., 2020a). Electromagnetic instruments measure the apparent electrical conductivity of soil (EC_a ; mS m^{-1}), which is often strongly correlated with the electrical conductivity of saturated soil paste extract (EC_e) (Bouksila et al., 2012). Recent advancements include the use of electromagnetic inversion software to account for vertical variation in EC_e , which involves the creation of electromagnetic conductivity images (EMCIs) for salinity mapping. Many researchers (e.g., Corwin and Yemoto, 2019; Wang et al., 2021; Xie et al., 2021; Flores et al., 2022) developed a linear regression (LR) relationship between soil electrical conductivity (σ), inverted from various combinations of EC_a data, and soil salinity.

Although EM38 and CMD mini-explorer devices are commonly employed for soil salinity mapping across various global locations (e.g., Brogi et al., 2019; Farzamian et al., 2019, 2021; Ben Slimane et al., 2022), the use of the CMD2 device has been comparatively limited. Utili (2020) employed the CMD2 device to establish a calibration relationship between water content and EC_a , to monitor water content in earthen embankments along the river Irvine in Galston, UK. Apostolopoulos and Kapetanios (2021) integrated CMD2 and CMD4 devices into an archaeological study to map the distribution of loose sediments in Lavreotiki, Greece, aiming to predict the path of ancient rivers. Koganti et al. (2018) established 3-dimensional maps of the electrical conductivity (EC_e) across an agricultural field in central Haryana, India. They used the DUALEM-2S, with a configuration (2mHcon) comparable to the CMD2 instrument in its vertical mode of operation, as the effective depth of exploration (DOE) is 3 m.

Yao et al. (2016) used repeated electromagnetic induction (EMI) measurements and linear mixed-effects models to map soil salinity in a coastal agricultural landscape in Jiangsu Province, China. Results demonstrated that EMI measurements were effective in calibrating and identifying the spatial distribution of soil salinity in the predominantly moderately and highly saline areas of the landscape. Yao and Yang (2010) used EM38 and EM31 instruments in a mobile EMI system to address soil salinity issues in the Lower Yellow River Delta. Their study aimed to assess soil salinity patterns by analyzing the relationship between apparent soil electrical conductivity (EC_a) measured by EM38h and EM31h and corresponding salinity levels through linear regression models. EM38h was found to sense shallow depths (0 to 40 cm), while EM31h detected deeper layers (40 to 100 cm) within the 0 to 100 cm range. Notably, the effective depth of investigation for EM38h is generally shallower (0.75 to 1.5 m), whereas EM31h has deeper penetration, reaching 6 to 9 m beneath the soil surface.

Since the inversion of EC_a for soil characterization using EMI is a relatively recent development, the lack of validation using independent datasets currently limits a more widespread use in salinity monitoring (Corwin and Scudiero, 2019). Moreover, a critical research question in the context of employing EMI for soil salinity monitoring, particularly using LR, is whether the LR developed within one survey can be applied to subsequent surveys without the necessity of establishing a new LR for each survey which requires further investigations.

The main objectives of this study were to a) evaluate CMD2's capability for tracking and monitoring soil salinity in intensely used agricultural land over an extended period, b) develop a site-specific calibration for using time-lapse EMCI inversion and individual EMCI inversion, c) assess and compare the predictive performance of the developed calibration equation from both techniques in predicting EC_e from EMCIs, and d) analyze and track the dynamics of soil salinity over time by creating soil salinity cross-sections for each data collection date. The indirect objective of the current research was to assess the impact of canal lining on soil salinity in the investigated agricultural plot.

2. Materials and methods

2.1. Study area

The study area is located approximately 10 km south of Port Said City in Egypt (Figure 1a). The study focused on one intensely used and representative agricultural plot in the area, as shown in Figure 1b. The Suez Canal bounds this area to the east and El-Manzala Lake to the west. The area is located between $32^{\circ} 15' E$ to $32^{\circ} 17' E$ longitude and $31^{\circ} 10' N$ to $31^{\circ} 11' N$ latitude, covering an

agricultural area of 1200 ha. This area has a relatively flat topography, with an elevation ranging from 1 to 2 m above mean sea level. According to the USDA Soil Taxonomy (USDA, 1999), the soil is sandy clay loam, and the region is classified as arid according to the Köppen-Geiger climate classification (Geiger, 1954). In the past, this area was part of Lake Manzala but was drained and converted into agricultural land in 1990, where sabkha deposits and salt crusts with remnants of seashells dominate the region. When the water was drained from the lake, it left behind a sediment layer that was rich in nutrients and organics. However, the sediment layer also contains high levels of salt, which can lead to soil salinization and decreased crop productivity over time (Aziz et al., 2022).

The plot is comprised of four basins, and the dimensions of each basin, as well as the location of the drainage water and irrigation water system, are depicted in Figure 1b. Figure 2 displays daily recordings of total rainfall and average temperature obtained throughout the study period at the Port Said meteorological station indicated by the yellow circle in Figure 1a, located at 31°15'36.0"N and 32°17'24.0"E, along with irrigation and survey events (source: <https://en.tutiempo.net/>, accessed on 6 October 2023). The average annual rainfall is 98 mm, mainly occurring in winter with a maximum amount of 49 mm in January. The average minimum and maximum temperatures are 4.2 and 42.6°C occurring in January and May, respectively. The groundwater level was measured during each survey and the recorded depth was similar and approximately around 0.85 m during all surveys.

Flood irrigation is the main irrigation method used in the study area. The agricultural plot received irrigation water from the final branch of the Port Said Canal, which receives its water supply from the Ismailia Canal. The irrigation canal used to irrigate the agricultural lands in the study area is part of the national canal rehabilitation project initiated by the Egyptian Government (source: <https://infonile.org>, accessed on 11 September 2023). This canal was recently lined with cement concrete during the period between January 2022 and May 2023. During the 2021 surveys, there was occasional seepage of drainage water into the canals due to the absence of canal lining. Before the lining, the measured electrical conductivity of the irrigation water (EC_w) was 4.0 dS m⁻¹, falling within the moderately saline range (2-10 dS m⁻¹) as defined by FAO guidelines (Rhoades et al., 1992). However, according to the guidelines for interpretations of water quality for irrigation, which take into account crop tolerance to salinity, the degree of restriction is severe for use for EC_w superior to 3 dS m⁻¹ (Ayer and Westcot, 1985). Following the initiation of canal lining, subsequent measurements indicated a significant reduction in EC_w , decreasing to 1 dS m⁻¹ which falls within the slightly saline range (0.7-2 dS m⁻¹). The surface drainage system consists of open drains in a V-shaped pattern with a depth of 1.0 meter and 17.5 meters apart. These drains ultimately converge into the branch drain, as shown in Figure 1b.

The main crops cultivated in the area are Sorghum Sudanese which is used as animal feed. The geophysical surveys were conducted to monitor soil salinity of the investigated plot at a 20 m transect shown in Figure 1b. These surveys mainly aimed to track the temporal variation in soil salinity distribution during a complete agricultural season. The salinity levels in the plot were relatively moderate, with vegetation covering the entire plot. The Turkmen Agricultural Institute found that planting Sorghum Sudanese in saline areas reduces soil salinity, promoting healthy crop growth and yields (Yollybayev and Gurbanov, 2018). Additionally, it lowers the groundwater level and prevents soil salinization (Clark, 2008; Yollybayev and Gurbanov, 2018). The productivity of Sorghum Sudanese has the potential for up to five annual harvests (Mirsharipova et al., 2023). The study area was initially prepared for planting Sorghum Sudanese in September 2021 when fertilization with potassium, nitrogen, and phosphate, as well as seed sowing, were conducted. However, the presence of harmful weeds caused a delay in cultivation until December 2021. The cultivation extended over six months, encompassing five harvests, with the last harvest in May 2022.

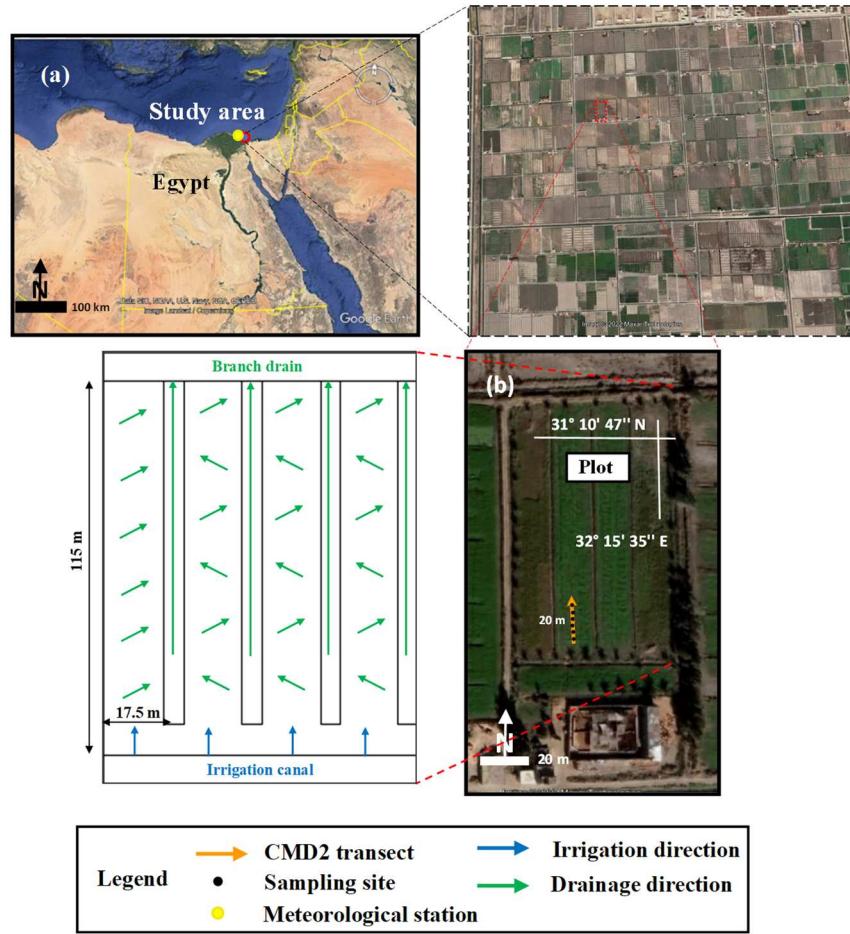


Figure 1. a) Location of the study area in southern Port Said City and b) location of the plot (CMD2 transect marked in orange lines and soil sampling sites in black dots) and the location of the drainage water and irrigation water system (irrigation and drainage direction marked in blue and green lines, respectively).

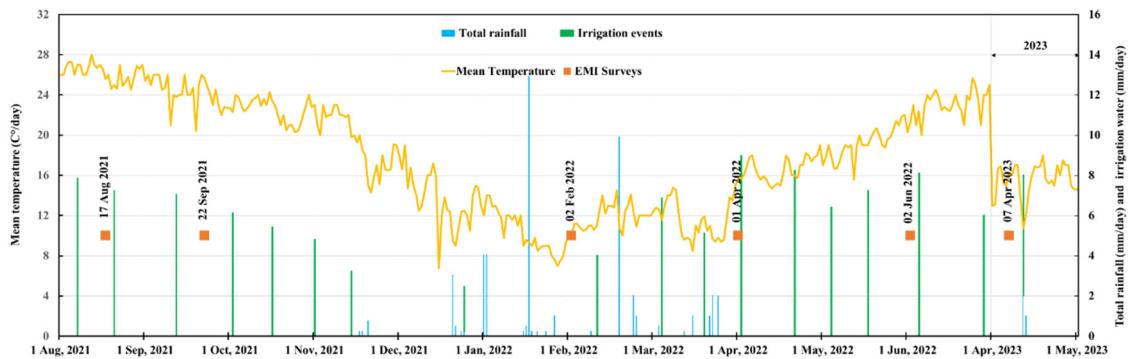


Figure 2. Distribution of daily rainfall (mm/day), and mean temperature (C°/day) recorded at the meteorological station located in the study area during the study period, including dates of irrigation events, the corresponding irrigation water amounts (mm/day), and EMI survey dates.

2.2. Soil sampling and laboratory analysis

As shown in Figure 1b, soil samples were taken along the investigated transect on all dates concurrently with EMI surveys. Between 1 and 6 boreholes were drilled, depending on the date of measurement, as illustrated in Table 1. At each borehole location, three soil samples were collected along 90 cm depth representing topsoil (0.0–0.3 m), subsurface (0.3–0.6 m), and subsoil (0.6–0.9 m).

The EC_e of the soil saturation paste extract was determined in the soil laboratory of the Faculty of Engineering, Port Said University, Egypt. According to Richards (1954), EC_e was measured in the extract obtained using suction filters from soil saturation paste using a conductivity meter (HI5521-01). In general and according to the terminology proposed by Barrett-Lennard et al. (2008), the soil can be classified as non-saline, slightly saline, moderately saline, highly saline, and severely saline if its EC_e ranged from (0-2 dS m⁻¹), (2-4 dS m⁻¹), (4-8 dS m⁻¹), (8-16 dS m⁻¹), and (>16 dS m⁻¹), respectively.

Table 1. Detailed information regarding the dates of measurements, agricultural state, number of drilled boreholes in each survey, and survey utilization.

Campaign	Date of measurement	State of agriculture	Number of boreholes	Survey data utilization
1 st	Aug 2021	Before cultivation	1	
2 nd	Sep 2021	After fertilization and sowing	2	Validation
3 rd	Feb 2022	After second harvesting	6	Calibration
4 th	April 2022	After fourth harvesting	6	
5 th	June 2022	After the last harvesting	6	Validation
6 th	June 2023	One year later	4	

2.3. Collection and inversion of EC_a data

EC_a data were collected using a low-frequency electromagnetic induction (EMI) technique (i.e., CMD2 conductivity meter; GF Instruments). The CMD2 has a transmitter coil consisting of horizontal (EC_{ah}) and vertical (EC_{av}) receiver arrays. It functions at a frequency of 10 kHz. The separation between the transmitter and receiver is 1.89 m, allowing for theoretical measurements of EC_a depths ranging from 0.0 to 1.5 m and 0.0 to 3.0 m for the EC_{ah} and the EC_{av} , respectively.

At the beginning, a pilot survey was conducted by CMD2 positioned approximately 1.00 m above the ground surface throughout the investigated plot (Figure 1b) to explore variations in soil salinity. Only the horizontal dipole orientation was considered during this survey. The objective of the initial investigation was to gain insights into the spatial variability of soil salinity across the field qualitatively and to identify a representative transect for further study. According to this survey, a specific transect within the investigated plot was selected for detailed study (Figure 1b). The location of this transect was selected based on the variability of measured EC_a values in the investigated plot (Figure 3).

Notable heterogeneity in EC_a values was observed along this transect. Furthermore, it was oriented parallel to the drainage direction, located between two drains to ensure that the CMD2 readings were not affected by drainage water or its salinity. Subsequently, a series of CMD2 surveys were conducted along the selected single transect over a period spanning six dates from August 2021 to April 2023. Measurements were obtained at intervals of 1 m along the 20 m transect (Figure 1c), using a GPS integrated with the device for registration of the position. EC_a was collected with a CMD2 lying on the ground surface in both horizontal and vertical dipole orientations.

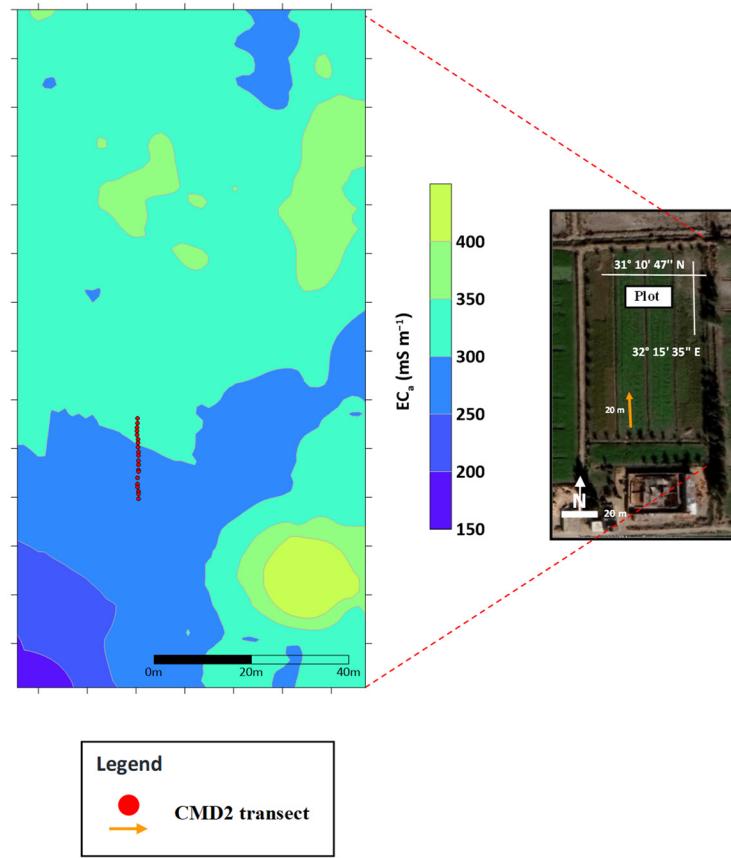


Figure 3. The spatial distribution of apparent electrical conductivity (EC_a , mS m^{-1}) of CMD2 data obtained from a pilot survey using the horizontal dipole (EC_{ah}) orientation at a height of 1.00 m.

For the inversion, the EM4Soil software (EMTOMO, 2018) was used to estimate the true electrical conductivity (σ , mS m^{-1}) at any depth. These estimates were generated by using 1D laterally constrained inversion, Quasi 2D, a technique developed by Santos et al. (2010 & 2011). A forward model based on the full solution of the Maxwell equations (Kaufman and Keller, 1983) was used in this study. This method is recommended when the EC_a values are high ($>100 \text{ mS m}^{-1}$). Two different inversion algorithms, S1 (Sasaki, 1989) and S2 (Sasaki, 2001) were used that are based on Occam regularization (De Groot-Hedlin and Constable, 1990). To run this algorithm, the special Lagrangian multiplier (λ) should be determined. λ is responsible for regulating the balance between the smoothness of the spatial model and the misfit to the data response. A larger λ typically results in a model with a greater misfit error but smoother conductivity values. This is generally acceptable when soil conductivity changes follow a gradual pattern, leading to a more realistic model. Conversely, a smaller λ is usually required when anticipating sharper transitions in soil conductivity to accurately delineate abrupt boundaries. The determination of a suitable λ value typically conducts inversions with various λ values (e.g., Triantafyllis and Monteiro Santos, 2013; Zare et al., 2020).

The number and depth of layers in the initial model and the conductivities of each layer were determined based on the EC_a data mean. The value of λ varied from 0.02 to a maximum of 3.0, with inversion stopping after a maximum of 10 iterations.

Two different techniques were used to invert the six surveys, namely individual and time-lapse inversion. In the individual inversion, each survey was inverted independently, and only spatial regularization was applied. In contrast, in time-lapse inversion, the data for the six dates were simultaneously inverted and the temporal regularizations were also applied. Therefore, it was necessary to optimize the spatial and temporal Lagrangian multipliers. The temporal Lagrangian multiplier (α), functions as a temporal damping factor, assigning weight to the minimization of temporal conductivity changes along the time axis. The α remains constant and is determined by the similarity between two consecutive reference times. A higher α value yields more similar reference

models resulting from the inversion, while a value of zero signifies the absence of temporal constraints, resembling a traditional non-time-lapse inversion (Farzamian et al., 2022).

The value of λ used in the current study ranged from 0.02 to a maximum of 1.5, while α was set at either 0.5 or 0.1, with a maximum number of 10 iterations. To develop optimum electromagnetic conductivity images (EMCIs) relative to measured EC_e , the CMD2 EC_a data associated with the soil sampling sites were used. Subsequently, the optimal inversion method was determined based on whether individual or time-lapse inversion algorithm provides better LR for soil salinity calibration, and optimal inversion parameters were chosen. The selected parameters achieved a higher R^2 value between σ and the measured EC_e and lower model misfit error among different regression models (EMCIs). The R^2 values were compared using the classification proposed by Moore and Kirkland (2007), where a strong agreement was defined as $R^2 > 0.70$, moderate as $0.5 < R^2 < 0.7$, weak as $0.3 < R^2 < 0.5$, and very weak as $R^2 < 0.3$.

2.4. Prediction of EC_e from EMCI using site-specific calibrations

As a first step, a unique equation (i.e., a site-specific calibration equation) was derived for the investigated plot based only on the EC_a data from the third survey. The best-selected sets of inversion parameters described in Section 2.3 were used to develop a linear regression model between σ and the measured EC_e .

After that, a cross-validation process was used to assess the predictive ability of the calibration equation. Cross-validation was carried out using the leave-one-out cross-validation (LOOCV) method. In this method, one sample was removed, and the calibration was established based on the remaining samples to predict EC_e at the point where the sample was removed. This process was iteratively repeated for each sampling point from the sampling sites (18 soil sampling points) until each sample had been taken once. The ability of the site-specific calibration to predict EC_e was assessed using several metrics. The root mean square error (RMSE; Eq. 1) was computed to evaluate the overall prediction accuracy and the mean error (ME; Eq. 2) was calculated to assess any prediction bias. Additionally, Lin's concordance correlation coefficient (LCCC; Lin, 1989) was calculated to evaluate the degree of similarity between the linear regression (LR) and the 1:1 relationship and to quantify the agreement between the two variables.

$$ME = \frac{1}{n} \sum_{j=1}^n (EC_{mi} - EC_{pi}) \quad (1)$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^n (EC_{pi} - EC_{mi})^2} \quad (2)$$

where n is the total number of data, EC_{mi} and EC_{pi} are the measured and predicted EC_e , respectively.

In the second step, repeated EMI and EC_e measurements, which were collected simultaneously with the EMI surveys for all measurement surveys except survey 3, were used as an independent validation dataset. This dataset was employed to assess (i.e., validate) the prediction ability of the site-specific calibration to predict EC_e from EMCI at various depths over time. This is performed for both inversion techniques (i.e., time-lapse and individual inversions).

In the last step, RMSE, ME, and LCCC were used as indicators to evaluate the ability of the site-specific calibration equation to predict EC_e .

3. Results and discussion

3.1. EC_e data analysis

Initially, the third survey was chosen as a calibration dataset based on the fact that this survey included both the minimum and maximum EC_e values measured across all surveys (Table 2) and it had a wide range of EC_e (EC_e range = 12.32 dS m⁻¹). Moreover, the third survey was characterized by the largest number of soil samples collected during the surveys (i.e., $n = 18$). Table 3 summarizes descriptive statistics for the measured EC_e in the calibration dataset (i.e., $n = 18$; the third survey). In the first layer (0.0–0.3 m), the minimum EC_e was 4.63 dS m⁻¹ which is classified as moderately saline (4–8 dS m⁻¹). Both the mean (7.16 dS m⁻¹) and the maximum (8.19 dS m⁻¹) EC_e values showed moderate and high salinity levels, respectively. The EC_e in the second layer (0.3–0.6 m) was highly saline (8–16

dS m^{-1}), with a minimum EC_e value of 8.66 dS m^{-1} and a maximum of 11.50 dS m^{-1} and a mean of 9.96 dS m^{-1} . In the third layer (0.6-0.9 m), the minimum EC_e value was 12.95 dS m^{-1} and the mean was 4.92 dS m^{-1} indicating high salinity, while the maximum EC_e value was 16.95 dS m^{-1} which classified as severely saline (16-32 dS m^{-1}).

It is worth noting that the minimum EC_e at all depths, excluding topsoil, indicated highly saline conditions. The higher salinity values in the study area can be attributed to climate change, leading to sea-level rise (Dawoud, 2004). Consequently, this phenomenon impacted groundwater, causing an increase in saltwater intrusion from El Manzala Lake, located near the study area (Mabrouk et al., 2013). Although Sorghum Sudanese is generally moderately salt-tolerant, the crop yield was high, which is consistent with the results of Almodares and Sharif (2007). Additionally, the extended trials conducted at the Turkmen Agricultural Institute demonstrated the feasibility of achieving a substantial Sorghum Sudanese yield, even in the presence of highly saline soils (Yollybayev and Gurbanov, 2018). Higher Sorghum Sudanese yield in the investigated plot can also be attributed to the use of organic and mineral fertilizers during the cultivation season.

Table 3 summarizes the statistics of the measured EC_e in the validation dataset (i.e., $n = 57$). In the first layer, the minimum and the mean EC_e values were 5.29 and 7.47 dS m^{-1} , respectively, and moderately saline, while the maximum EC_e value was 11.8 dS m^{-1} and highly saline. In the second layer, the validation EC_e data had minimum, mean, and maximum EC_e values of 8.00, 10.89, and 12.59 dS m^{-1} , respectively. These values were slightly higher than the calibration data, except for the minimum. The validation EC_e data for the third layer demonstrated lower minimum, mean, and maximum values in comparison to the calibration dataset.

The statistics for all layers in the calibration samples fell within the same salinity classes, with only a difference in the maximum value of the third layer. This high level of consistency enhances confidence in the calibration model's ability to provide accurate estimations for EC_e values.

By comparing the calibration and the validation datasets, it can be noted that the mean EC_e value (i.e., 10.68 dS m^{-1}) was slightly higher for the calibration dataset. The standard deviation (SD) was also slightly higher for the calibration EC_e dataset and equal to 3.52 dS m^{-1} as compared to 2.94 dS m^{-1} corresponding to the validation EC_e dataset, indicating greater variability in the calibration EC_e data. Both the minimum and the maximum values were slightly higher for the calibration EC_e dataset. Furthermore, the coefficient of variation (CV) was higher for the calibration EC_e dataset and equal to 32.9% as compared to 27.9% for the validation EC_e dataset, suggesting that the calibration EC_e data exhibited relatively higher variability with its mean.

Table 2. Measured EC_e for each surveying campaign, all surveys, and validation surveys.

Surveys	EC_e min (dS m^{-1})	EC_e max (dS m^{-1})	EC_e range*	Number of soil samples
1 st survey	5.29	15.24	9.95	3
2 nd survey	9.51	15.70	6.19	6
3 rd (calibration) survey	4.63	16.95	12.32	18
4 th survey	5.45	13.58	8.13	18
5 th survey	6.10	15.16	9.06	18
6 th survey	6.40	14.90	8.50	12
All surveys	4.63	16.95	12.32	75
Validation surveys (all surveys except the 3 rd survey)	5.29	15.70	10.41	57

* EC_e range = EC_e max – EC_e min.

Table 3. Descriptive statistics of the measured electrical conductivity of the saturated soil paste extract (EC_e in $dS\ m^{-1}$) at various depths including topsoil (0.0–0.3 m), subsurface (0.3–0.6 m), and subsoil (0.6–0.9 m) at calibration ($n = 18$) and validation ($n = 57$) soil samples. SD and Cv are the standard deviation and variation coefficient, respectively.

EC _e Calibration data (dS m ⁻¹)						
Soil layer (m)	N	Min	Max	Mean	SD	Cv
All soil layers	18	4.63	16.95	10.68	3.52	32.92
0.0-0.3	6	4.63	8.19	7.16	1.37	19.11
0.3-0.6	6	8.66	11.50	9.96	1.06	10.65
0.6-0.9	6	12.95	16.95	14.92	1.39	9.30
EC _e Validation data (dS m ⁻¹)						
Soil layer (m)	N	Min	Max	Mean	SD	Cv
All soil layers	57	5.29	15.70	10.55	2.94	27.87
0.0-0.3	19	5.29	11.80	7.47	1.82	24.39
0.3-0.6	19	8.00	12.59	10.89	1.55	14.23
0.6-0.9	19	10.90	15.70	13.38	1.46	10.91

3.2. Determination of the optimal inversion parameters and inversion technique

After the analysis to determine the optimal parameters configuration for individual inversion and establish a calibration relationship between σ and the measured EC_e , the best sets of inversion parameters were assessed. These were obtained using the S2 inversion algorithm, FS forward modeling, and $\lambda = 0.4$. The calibration equation developed from the individual inversion was as follows with an R^2 value of 0.88:

$$EC_e = 0.3084 + 0.05039 \times \sigma \quad (3)$$

Likewise, to determine the optimal parameters configuration for time-lapse inversion and to develop a calibration relationship between σ and the measured EC_e , various EMCIs were generated. These were created by using EC_a data from all EMI survey dates, employing inversion algorithms (S1 and S2), and varying initial model conductivity, λ , and α values as described in Section 2.3.

Firstly, it is worth mentioning that the model derived using λ values exceeding 1 is not shown here. Using λ values higher than 1 led to a considerable misfit error between the predicted and measured EC_a . Therefore, opting for a high λ is not advisable, especially when expecting sharp vertical conductivity contrasts in the field. Regarding the impact of the temporal smoothing parameter (α), various values were investigated (results not presented here). It was observed that values exceeding 0.10 overly smoothed the anticipated temporal changes, making it challenging to resolve detailed variations. Hence, for this study, a value of 0.10 was determined to be the optimal choice for α in addressing the temporal variation of σ .

Analysis for the time-lapse inversion technique was conducted using the best-selected sets of inversion parameters. These parameters were achieved when using the S2 inversion algorithm, $\alpha = 0.10$, and $\lambda = 0.90$. The calibration equation developed from TL inversion was as follows with an R^2 value of 0.89.

$$EC_e = -9.1485 + 0.0910 \times \sigma \quad (4)$$

Table 4 presents the R^2 values between σ and measured EC_e for both individual (IN) and time-lapse (TL) inversion techniques. Moreover, it shows the RMSE, ME, and LCCC between measured and predicted EC_e for all data calculated by using site-specific calibration equations for both techniques (i.e., Eq. 3 and 4). These estimates were assessed by considering survey 3 (i.e., $n = 18$) as the calibration dataset and the remaining surveys (i.e., $n = 57$) as the validation dataset. The R^2 values were strong for all surveys (i.e., $R^2 > 0.70$) using both techniques, with R^2 values of 0.81 and 0.77 for time-lapse and individual inversion, respectively. This suggests that the time-lapse technique may offer a slightly more accurate calibration for the measured EC_e .

Considering the mean error (ME) between measured and predicted EC_e values for all surveys, it was clear that the least biased (i.e., closest to zero) inversion technique was the time-lapse inversion as it represented a ME value of 0.17 dS m^{-1} compared to 0.85 dS m^{-1} for the individual inversion.

Table 4. Statistical indicators for measured EC_e : RMSE, ME, LCCC, R^2 for all data types using both individual (IN) and time-lapse (TL) inversion techniques.

Surveys	Type of inversion	RMSE (dS m^{-1})	ME (dS m^{-1})	Lin's CCC	R^2
All surveys	IN	1.91	0.85	0.84	0.77
	TL	1.38	0.17	0.90	0.81
Validation surveys (all surveys except 3 rd survey)	IN	2.10	1.15	0.81	0.77
	TL	1.45	0.24	0.88	0.79
1 st survey	IN	1.48	0.04	0.93	0.87
	TL	1.52	0.95	0.92	0.93
2 nd survey	IN	3.65	3.48	0.55	0.96
	TL	1.24	-0.26	0.90	0.92
3 rd (calibration) survey	IN	1.15	0.00	0.94	0.88
	TL	1.14	0.00	0.94	0.89
4 th survey	IN	1.94	0.63	0.79	0.69
	TL	1.58	0.06	0.84	0.73
5 th survey	IN	1.62	0.57	0.86	0.79
	TL	1.35	-0.07	0.89	0.80
6 th survey	IN	1.96	1.81	0.81	0.94

According to Singh et al. (2005) and Farzamian et al. (2023), a satisfactory prediction RMSE should be half the standard deviation (SD) of the measured EC_e . As the SD of EC_e for all the validation data was 2.94 dS m^{-1} as shown in Table 3, the RMSE should be 1.47 dS m^{-1} or lower to achieve satisfactory prediction. As the RMSE was equal to 1.45 dS m^{-1} in the time-lapse inversion as compared to 2.10 dS m^{-1} in the individual inversion, the time-lapse inversion is considered the optimal inversion technique.

The LCCC between measured and predicted EC_e values for all surveys is displayed in Table 4. The analysis of LCCC reinforced the superiority of the time-lapse inversion technique, with a stronger agreement between measured and predicted EC_e ($LCCC = 0.90$) compared to individual inversion ($LCCC = 0.84$), indicating the effectiveness of time-lapse inversion in making predictions. Based on the results, the time-lapse inversion is recommended compared to individual inversion as it showed improved accuracy and effectiveness in EC_e prediction. Therefore, the time-lapse inversion technique was applied in this study and used for monitoring and mapping soil salinity, as shown below.

3.3. Time-lapse EMCIs

Figure 4 displays the obtained EMCIs from the time-lapse inversion of EMI surveys. The figure shows that σ increases with depth, consistent with the previously established soil salinity distribution.

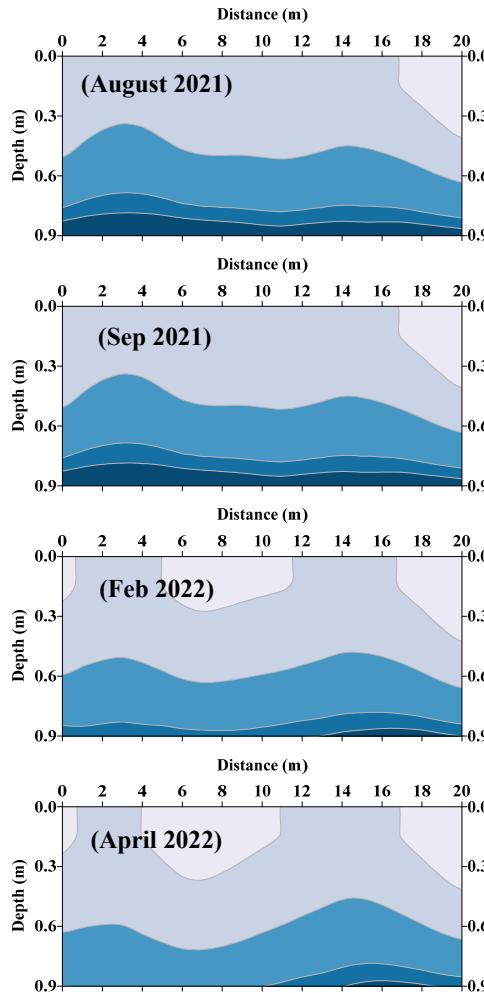
Across multiple EMI surveys conducted at the same location, the temporal variations in σ were monitored for one agricultural season spanning from August 2021 to June 2022. In August 2021, σ values fluctuated between a minimum value of 138.4 mS m^{-1} and a maximum value of 352.5 mS m^{-1} . This wide range indicated significant variability in σ compatible with the large measured EC_e within this timeframe.

In September 2021, the σ values ranged from 142.7 to 343.7 mS m^{-1} . The recorded σ ranges for both dates can be attributed to fertilizer application, irrigation water salinity ($EC_w = 4 \text{ dS m}^{-1}$), and the existence of shallow saline groundwater with a level of 0.85 m depth below the soil surface and a salinity of 14 dS m^{-1} . In arid climates and under evaporation, an important solute up-flow from the

shallow and salty groundwater (capillarity rise processes) could be the main cause of soil salinization (Bouksila, 2011).

In February 2022, the maximum σ values were decreased as compared to August and September 2021. The σ values in February 2022 ranged from 142.7 to 323.7 mS m^{-1} . April 2022 exhibited a similar pattern, with σ values ranging from 145.4 to 318.1 mS m^{-1} . This reduction in maximum σ values can be attributed to the winter rains as shown in Figure 2. This resulted in a corresponding decrease in measured EC_e which was agreed with the reduction in σ values in the subsoil as shown in Figure 4. In June 2022, a slight increase in minimum σ values was noted and the σ values ranged from 152.17 to 322.21 mS m^{-1} .

Finally, in April 2023, another agricultural season one year later, σ values ranged from 157.0 to 329.8 mS m^{-1} , maintaining an almost consistent pattern as observed during the antecedent four surveys. This pattern involves a decrease in σ values within the subsoil as compared to February 2022 as shown in Figure 4. This trend was also reflected in the measured EC_e values at the subsoil. The EC_e values decreased in the subsoil. The reduction in σ and measured EC_e values within the subsoil can be attributed to the decrease in irrigation water salinity due to the canal lining and the continued cultivation of Sudanese Sorghum. Although the decrease in irrigation water salinity resulted in a reduction of measured EC_e within the topsoil layer during the last survey, no corresponding decrease was observed in σ . This can be attributed to the lower sensitivity of the CMD2 to soil salinity within the root zone due to the existence of shallow groundwater which considerably affects the readings. Consequently, the ability to predict salinity from σ in the topsoil was diminished, as discussed later in Section 3.5.



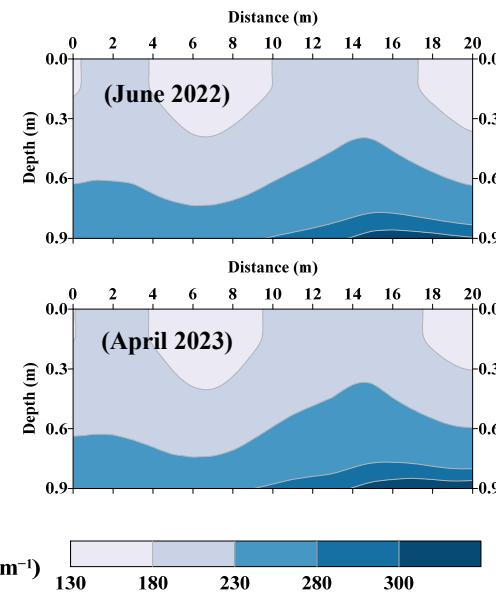


Figure 4. Time-lapse electromagnetic conductivity images (EMCIs) for the experimental plot.

3.4. Prediction of EC_e using site-specific calibration.

Figure 5a displays the calibration relationship between EC_e and σ using the calibration equation developed from survey 3 using the time-lapse technique and the best inversion parameters (i.e., S2 inversion algorithm, $\alpha = 0.10$, and $\lambda = 0.90$). The best LR equation gave R^2 equal to 0.89 expressed as:

$$EC_e = -9.1485 + 0.0910 \times \sigma \quad (5)$$

Figure 5b shows the predicted EC_e plotted versus the measured EC_e and the 1:1 line using the calibration equation developed using the time-lapse for different measurement dates and different measurement depths.

The validation of the calibration equation using time-lapse inversion resulted in an RMSE of 1.45 dS m^{-1} and a strong R^2 of 0.79, indicating acceptable predictive capability given the wide EC_e range (10.41 dS m^{-1}). These results concur with the findings of Zare et al. (2015) who observed a larger RMSE (5.28 dS m^{-1}) in an irrigated cotton field under a wider EC_e range (68.4 dS m^{-1}). However, in the current study, the predictive bias (ME) was small and equal to 0.24 dS m^{-1} indicating a slight tendency for overestimation of EC_e . This level of bias was slightly higher than the (ME) reported by Zare et al. (2015) which was 0.03 dS m^{-1} . However, it can be considered well within acceptable limits. A high LCCC of 0.88 indicates a strong agreement between measured and predicted EC_e during validation.

Figure 5b displays variations in the predictive accuracy of validation data for all EMI survey dates. The Figure showed that the predicted EC_e was generally slightly overestimated in the subsoil, particularly in April 2022. This result is unsurprising, given that the soil in April 2022 had the lowest maximum measured EC_e among other survey dates as shown in Table 2.

In contrast, the predicted EC_e in the subsurface was generally slightly underestimated except for April 2023. This discrepancy is likely due to April 2023 having the lowest EC_e among other survey dates. The greater variations in measured EC_e during survey 3 had a considerable impact on the calibration equation, limiting its ability to monitor the smaller variations observed in April 2022 and 2023. For the topsoil layer across all observation dates, the data points exhibit a dispersed distribution around the unity line (Figure 5b).

Generally, the statistical indicators presented in Table 4 for validation data, segregated by measurement date, indicate that the prediction ability remained relatively consistent across all five dates. These results indicate that the spatial variability of the data had a much stronger influence on the prediction ability of the site calibration than the temporal variability. To improve the spatial sensitivity of the site calibration, observation times can be extended, a number of EMI surveys can be also increased, and a different EM device with a shallow effective depth like the CMD mini explorer can be used. Paz et al. (2020b) recommended soil sampling and continuous monitoring of volumetric

water content (θ), soil temperature, groundwater level, and salinity to improve the spatial sensitivity of the site calibration.

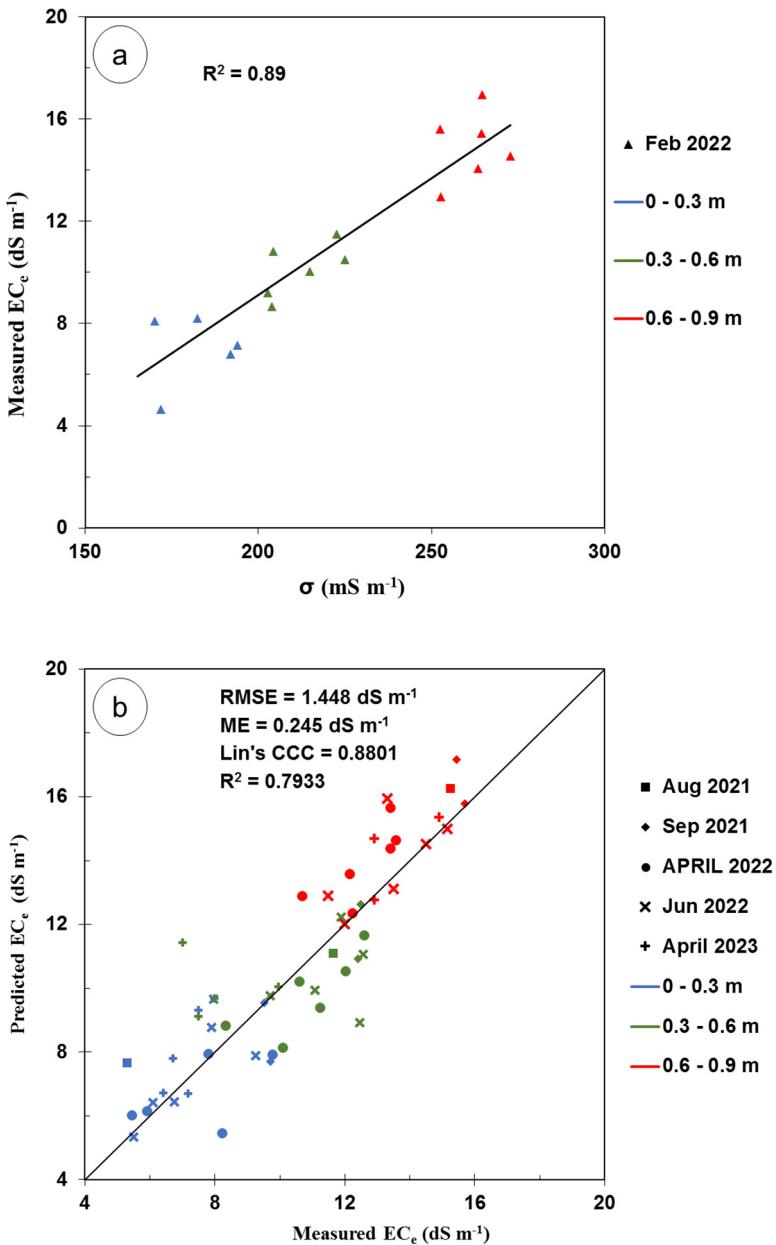


Figure 5. Plots of (a) soil electrical conductivity (σ , mS m⁻¹) and the measured electrical conductivity of the saturated soil paste extract (EC_e , dS m⁻¹) and the linear regression (LR) of the calibration equation using survey # 3 and Time-lapse inversion; (b) validation results of the LR calibration equation using other surveys excluding survey # 3.

3.5. Generation of soil salinity cross sections from time-lapse EMC

Figure 6 shows the soil salinity cross sections for each EMI survey date. Consequently, the figure tracks the salinity dynamics over time. The cross-sections were generated by using the site-specific calibration equation to predict EC_e , which was classified into three salinity classes ranging from moderately to severely saline. The measured EC_e for each EMI survey's sampling sites and groundwater level are also displayed.

The salinity cross sections revealed that the salinity levels tended to increase with depth starting from a moderately saline level in the topsoil to a highly saline level in the subsoil. Severe saline zones were found at the bottom of the subsoil layer across every surveyed date. These saline zones

overestimated soil salinity compared to measured EC_e values. The observed overestimation can be attributed to the proximity of groundwater to the root zone. Shallow groundwater can affect CMD2 measurements because water is a significantly better conductor of electricity than soil. Consequently, this situation can lead to an overestimation of soil salinity. Furthermore, the elevated EC_{gr} reached a high saline level of 14 dS m^{-1} during the dry period of the year (i.e., summer of 2021). Higher groundwater salinity levels can be attributed to the absence of rainfall and the use of moderately saline irrigation water. However, the degree of salinity overestimation tended to subside during the winter surveys, due to rainfall which reduced the groundwater salinity to a relatively lower level ($EC_{gr} = 10 \text{ dS m}^{-1}$). Figure 6 depicts soil salinity fluctuations for all surveyed dates. Soil salinity at the subsurface layer was accurately predicted in most sampling sites on all dates. In contrast, soil salinity predictions for the topsoil tended to be slightly overestimated.

During September 2021, the salinity cross-section revealed a larger portion of high salinity within the topsoil layer. This increase can be primarily attributed to the application of fertigation practices and the use of saline irrigation water (EC_w of 4.0 dS m^{-1}). Subsequently, with the arrival of the winter and rainy seasons which represented 66% of the year 2021 total annual rainfall, the salinity levels decreased. In February and April 2022, many soil sample sites had reached a moderately saline level as indicated by the measured EC_e . It is worth mentioning that the initiation of canal lining in January 2022 led to a considerable reduction in irrigation water salinity. The salinity of irrigation water decreased to 1.0 dS m^{-1} by April 2023. This reduction in water salinity notably contributed to lower soil salinity levels. In April 2023, the measured EC_e in all sampling sites within the top and the subsurface soils showed a moderate saline level ($EC_e = 4-8 \text{ dS m}^{-1}$). However, the salinity cross sections for the topsoil estimated by CMD2 did not accurately reveal changes in soil salinity and tended to be overestimated. This inconsistency may be attributed to the weak correlation between the responses of the CMD2 device and the topsoil layer as demonstrated in similar results obtained with an EMI device having an effective depth of 2.0 m (Khongnawang et al., 2020). The CMD2 has an effective depth of 1.5 m for horizontal (EC_{ah}) and 3 m for vertical (EC_{av}) receiver arrays according to the manufacturer's guide. This exploration depth was significantly larger than the depth of topsoil, which makes it challenging to resolve EC_e changes in the topsoil (e.g., Ramos et al., 2023). In addition, a larger variability of other soil properties (e.g., water content and temperature) and smaller variability of EC_e at topsoil further limits the application of EMI sensors in monitoring EC_e in this zone (Paz et al., 2020b; Dragonetti et al., 2022).

The adoption of Sorghum Sudanese cultivation may be another factor for the occurring soil salinity reduction during the successive surveys. Mirsharipova et al. (2023) stated that the Sorghum Sudanese can absorb salts from the soil and thereby decrease the soil salinity. The yield of Sorghum Sudanese in the investigated agricultural plot increased by more than 10% during year 2023 which can be attributed to the reduction in soil salinity.

Considering the circumstances of elevated initial soil salinity, active water movement, salt conveyance, and the presence of a shallow groundwater table, salts migrated upward through capillary action and accumulated within the root zone. This phenomenon was particularly notable during the dry season of summer 2021. However, the use of slightly saline irrigation water (after canal lining) led to a gradual reduction in soil salinity, particularly within the topsoil, proven by subsequent EMI survey dates.

Using the information obtained from time-lapse spatial distribution maps, the classification of soil salinity becomes a valuable tool for rational crop allocation within the investigated agricultural field. The primary objective of this allocation strategy is to effectively maximize crop yield in salt-affected soils. This approach involves the cultivation of crops renowned for their high salt tolerance, such as cotton, barley, and sorghum, even in soils exhibiting moderate to heavy salinity levels. The results of the current study can help local farmers monitor soil salinity more accurately, allowing them to develop customized soil management strategies and make informed decisions in agriculture.

Challenges in generating soil salinity predictive maps in field-scale were faced due to the following reasons: i) Lack of repeated field-scale EMI surveys across the entire field; only having data from a single measurement. ii) Absence of soil sample collection on the day of the field-scale EMI

survey, preventing the upscaling of our approach for predictive maps, even on that single day. iii) Limited EMI measurements in a single orientation during the field-scale investigation, rendering them unsuitable for inversion modeling that was presented for quantitative investigation.

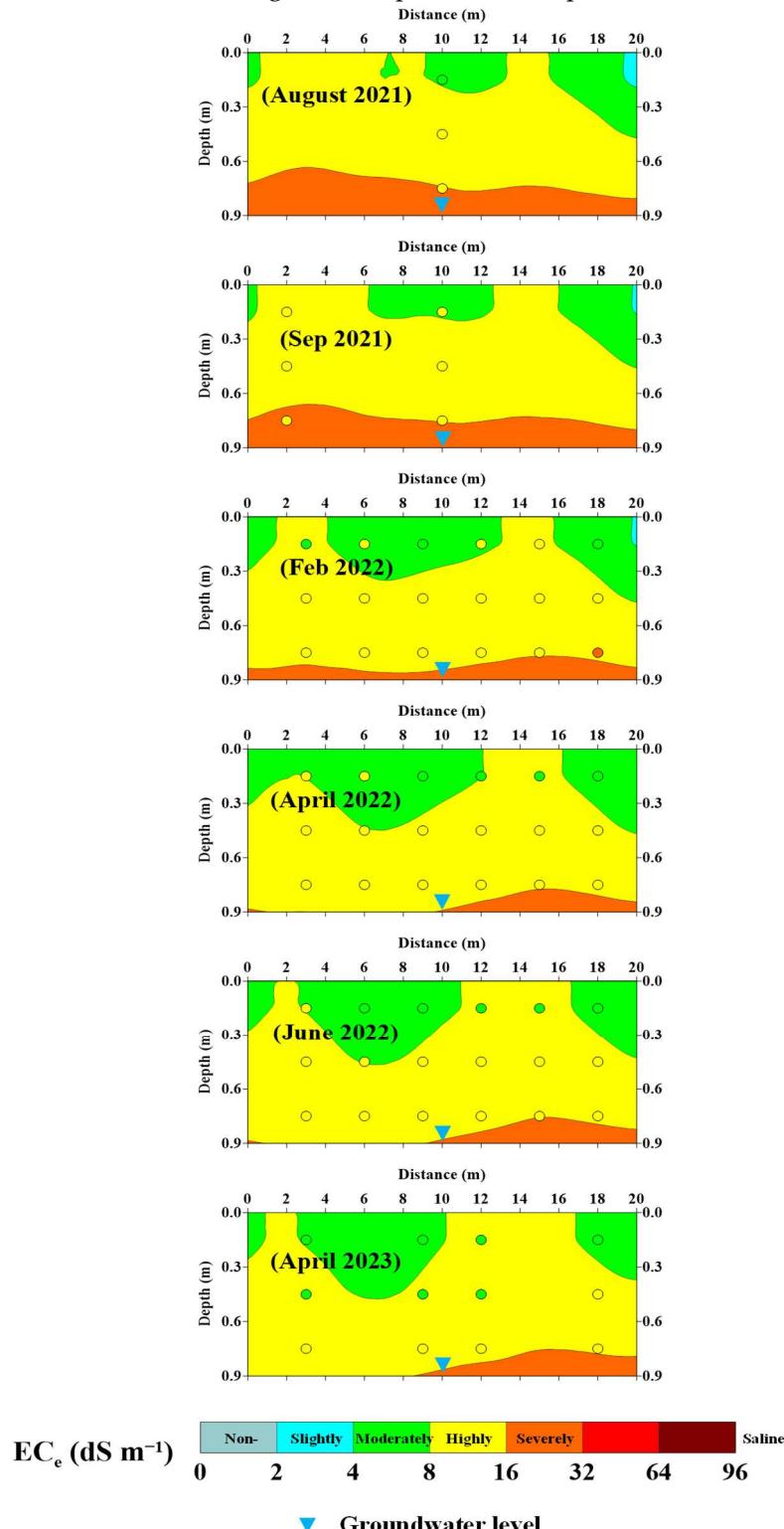


Figure 6. Predicted soil salinity maps along the vertical transects for plot with representation of measured EC_e (in circles), and groundwater level (blue triangles) at the sampling sites located in the middle of each transect for all surveying campaigns.

4. Conclusions

This research used data from EMI surveys and soil sampling data collected between August 2021 and April 2023. These datasets, combined with a site-specific calibration, allowed for estimating soil salinity distribution through a 20 m transect within an intensely used agricultural plot. A preliminary analysis of soil salinity dynamics throughout the investigated transect was performed. Site-specific calibration demonstrated consistent prediction accuracy over time. The results supported the suitability of the CMD2 device for monitoring soil salinity across different soil depths with a limitation in measuring accuracy in only the topsoil layer (0–0.3 m). Therefore, sensors like the CMD mini explorer may be employed for effective monitoring of topsoil salinity.

Using time-lapse (EMCI) in combination with calibration to analyze the temporal changes in soil salinity is an evolving approach. The developed salinity cross-sections showed how soil salinity responds to inputs such as salts and water, whether through irrigation, rainfall, or changes in shallow groundwater salinity. This method can assess suitable agricultural management practices for salinity reduction. For instance, the results indicated that the cultivation of Sudanese Sorghum caused a reduction in soil salinity. Canal lining as well was another reason for the reduction in soil salinity due to its direct impact on EC_w .

The study underscores the positive impact of water management techniques, with a particular emphasis on the Egyptian Government's canal lining method. This intervention effectively reduced the salinity of irrigation water (EC_w) from 4.00 to 1.00 dS m⁻¹, leading to a reduction in the risk level of soil salinization. These results underscore the importance of coordinated efforts at the irrigation systems level to address salinity issues. It also suggests that similar initiatives in other regions facing salinity challenges could yield considerable agricultural benefits.

Addressing irrigation water and soil salinity management challenges is often complex, particularly at field and large scales. EMI method offers a non-invasive, rapid, and cost-effective solution for soil salinity dynamic monitoring that can cover expansive areas quickly. Although our study focused on a small transect, there is potential for scaling up from small-scale to field assessments due to the method's ability for rapid data collection. Our attempt is now towards securing additional funding to facilitate this undertaking in the near future. It's important to highlight that such applications have been very rare in Egypt, despite many lands facing issues with soil salinity and degradation. We consider this study as a proof of concept to demonstrate how EMI can be applied in this region for quantitative monitoring of soil salinity. This lays the foundation for further research to explore the efficacy of EMI sensors and incorporate them into broader 4D investigations for monitoring soil salinity in field and large scales.

Author Contributions: Conceptualization, Mohamed Eltarably, Mohammad Farzamian, Mohamed Elkiki and Tarek Selim; Data curation, Abdulrahman Amer and Mohammad Farzamian; Formal analysis, Mohamed Eltarably, Abdulrahman Amer, Mohammad Farzamian and Tarek Selim; Funding acquisition, Mohamed Eltarably, Mohamed Elkiki and Tarek Selim; Investigation, Mohamed Eltarably, Abdulrahman Amer and Tarek Selim; Methodology, Mohamed Eltarably, Abdulrahman Amer, Mohammad Farzamian, Fethi Bouksila, Mohamed Elkiki and Tarek Selim; Project administration, Mohamed Eltarably, Mohamed Elkiki and Tarek Selim; Resources, Mohamed Elkiki and Tarek Selim; Software, Abdulrahman Amer and Mohammad Farzamian; Supervision, Mohamed Eltarably, Mohammad Farzamian, Mohamed Elkiki and Tarek Selim; Validation, Abdulrahman Amer and Mohammad Farzamian; Visualization, Mohamed Eltarably, Mohammad Farzamian, Mohamed Elkiki and Tarek Selim; Writing – original draft, Abdulrahman Amer, Mohammad Farzamian and Tarek Selim; Writing – review & editing, Mohamed Eltarably, Mohammad Farzamian, Fethi Bouksila, Mohamed Elkiki and Tarek Selim.

Funding: This research did not receive funding from specific agencies in the public, commercial, or not-for-profit divisions.

Data Availability Statement: The data presented in this study is available on request from the corresponding author.

Acknowledgments: The authors acknowledge the partial funding of this study from the Egyptian Academy of Scientific Research and Technology through the SALTFREE project (ARIMNET2/0005/2015, Coordination of Agricultural Research in the Mediterranean Area) grant agreement N 618127.

Conflicts of Interest: The authors declare no conflict of interest.

References

Almodares, A., and Sharif, M. E. (2007). Effects of irrigation water qualities on biomass and sugar contents of sugar beet and sweet sorghum cultivars. *Journal of Environmental Biology*, 28(2), 213-218.

Apostolopoulos, G., and Kapetanios, A. (2021). Geophysical investigation, in a regional and local mode, at Thorikos Valley, Attica, Greece, trying to answer archaeological questions. *Archaeological Prospection*, 28(4), 435-452. <https://doi.org/10.1002/arp.1814>

Ayers R. S., and Westcot. D. W. (1985). Water quality for agriculture. *Irrig. Drain. Pap. No. 28*, FAO; Available at <https://www.fao.org/3/t0234e/T0234E00.htm>

Aziz, A., Berndtsson, R., Attia, T., Hamed, Y., and Selim, T. (2022). Noninvasive Monitoring of Subsurface Soil Conditions to Evaluate the Efficacy of Mole Drain in Heavy Clay Soils. *Water*, 15(1), 110. <https://doi.org/10.3390/w15010110>

Barrett-Lennard, E., Bennett, S., and Colmer, T. (2008). Standardizing the terminology for describing the level of salinity in soils. In: Proceedings of the 2nd International Salinity Forum: Salinity, Water and Society Global Issues, Local Action, Adelaide, SA, Australia, 31 Mar.-3 Apr. 2008. Geological Society of Australia, Hornsby, NSW, Australia.

Ben Slimane, A., Bouksila, F., Selim, T., and Jounada, F. (2022). Soil salinity assessment using electromagnetic induction method in a semi-arid environment—a case study in Tunisia. *Arabian Journal of Geosciences*, 15(11), 1-8. <https://doi.org/10.1007/s12517-022-10305-0>

Bouksila, F., Bahri, A., Berndtsson, R., Persson, M., Rozema, J., and van der Zee, S. (2013). Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia. *Environmental and Experimental Botany* 92, 176-185. <https://doi.org/10.1016/j.envexpbot.2012.06.002>

Bouksila, F., Persson, M., Bahri, A., and Berndtsson, R. (2012). Electromagnetic induction predictions of soil salinity and groundwater properties in a Tunisian Saharan oasis. *Hydrological Sciences Journal*, 57 (7), 1473-1486. <https://doi.org/10.1080/02626667.2012.717701>

Bouksila, F. (2011). Sustainability of irrigated agriculture under salinity pressure- A study in semi-arid Tunisia. Ph.D. Faculty of Engineering, Lund University, Lund Sweden. <https://portal.research.lu.se/portal/files/6160418/2201204.pdf>

Brogi, C., Huisman, J., Pätzold, S., Von Hebel, C., Weihermüller, L., Kaufmann, M., van der Kruk, J., and Vereecken, H. (2019). Large-scale soil mapping using multi-configuration EMI and supervised image classification. *Geoderma*, 335, 133-148. <https://doi.org/10.1016/j.geoderma.2018.08.001>

Clark, A. (2008). Managing Cover Crops Profitably (3rd Ed.). DIANE Publishing.

Corwin, D., and Yemoto, K. (2019). Measurement of soil salinity: Electrical conductivity and total dissolved solids. *Soil Science Society of America Journal*, 83(1), 1-2. <https://doi.org/10.2136/sssaj2018.06.0221>

Corwin, D. L., and Scudiero, E. (2019). Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. *Advances in agronomy*, 158, 1-130.

Dawoud, M. A. (2004). Design of national groundwater quality monitoring network in Egypt. *Environmental monitoring and assessment*, 96, 99-118. <https://doi.org/10.1023/B:EMAS.0000031718.98107.eb>

De Groot-Hedlin, C. and Constable, S. C.: Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data, *Geophysics*, 55, 1613–1624, <https://doi.org/10.1190/1.1442813>, 1990.

Dragonetti, G., Farzamian, M., Basile, A., Monteiro Santos, F. and Coppola, A. 2022. In-situ estimation of soil hydraulic and hydrodispersive properties by inversion of Electromagnetic Induction measurements and soil hydrological modeling, *Hydrology and Earth System Sciences*, 26, 5119–5136, <https://doi.org/10.5194/hess-26-5119-2022>.

EMTOMO. 2018. EMTOMO manual for EM4Soil: A program for 1-D laterally constrained inversion of EM data. EMTOMO, Lisbon, Portugal.

Farzamian, M., Bouksila, F., Paz, A. M., Santos, F. M., Zemni, N., Slama, F., Ben Silmane, A., Selim, T., and Triantafilis, J. (2023). Landscape-scale mapping of soil salinity with multi-height electromagnetic induction and quasi-3d inversion in Saharan Oasis, Tunisia. *Agricultural Water Management*, 284, 108330. <https://doi.org/10.1016/j.agwat.2023.108330>

Farzamian, M., Autovino, D., Basile, A., De Mascellis, R., Dragonetti, G., Monteiro Santos, F., Binley, A., and Coppola, A. (2021). Assessing the dynamics of soil salinity with time-lapse inversion of electromagnetic data guided by hydrological modeling. *Hydrology and Earth System Sciences*, 25(3), 1509-1527. <https://doi.org/10.5194/hess-25-1509-2021>

Farzamian, M., Paz, M., Paz, A., Castanheira, N., Gonçalves, M., Monteiro Santos, F., and Triantafilis, J. (2019). Mapping soil salinity using electromagnetic conductivity imaging comparison of regional and location-specific calibrations. *Land Degradation & Development*, 30(12), 1393-1406. <https://doi.org/10.1002/lrd.3317>

FAO. (2022). Global Symposium on Salt-Affected Soils: Outcome Document.

Gf Instruments, Short guide for electromagnetic conductivity survey, www.gfinstruments.cz. (accessed on 10th September 2023).

Geiger, R. (1954). Classification of climates after W. Köppen. *Landolt-Börnstein - numerical values and functions from physics, chemistry, astronomy, geophysics, and technology*, old series. Berlin: Springer, 3, 603-607.

Flores, J., Rodríguez, M., Jiménez, A., Farzamian, M., Galán, J., Bellido, B., Sacristan, P., and Vanderlinden, K. (2022). Depth-Specific Soil Electrical Conductivity and NDVI Elucidate Salinity Effects on Crop Development in Reclaimed Marsh Soils. *Remote Sensing*, 14(14), 3389. <https://doi.org/10.3390/rs14143389>

Gorji, T., Sertel, E., and Tanik, A. (2017). Monitoring soil salinity via remote sensing technology under data-scarce conditions: A case study from Turkey. *Ecological indicators*, 74, 384-391. <https://doi.org/10.1016/j.ecolind.2016.11.043>

Infonile Org. Between Clay and Cement: Is Egypt's canal lining a solution or dilemma for farmers? Available online: <https://infonile.org/en/2023/01/is-egypts-canal-lining-a-solution-or-dilemma-for-farmers/> (accessed on 11 September 2023).

Kaufman, A. A. and Keller, G. V.: Frequency and transient soundings. *Methods in Geochemistry and Geophysics*, 16. Elsevier, New York, <https://doi.org/10.1111/j.1365-246X.1984.tb02230.x>, 1983.

Khongnawang, T., Zare, E., Srihabun, P., and Triantafilis, J. (2020). Comparing electromagnetic induction instruments to map soil salinity in two-dimensional cross-sections along the Kham-rean Canal using EM inversion software. *Geoderma*, 377, 114611. <https://doi.org/10.1016/j.geoderma.2020.114611>

Koganti, T., Narjary, B., Zare, E., Pathan, A. L., Huang, J., and Triantafilis, J. (2018). Quantitative mapping of soil salinity using the DUALEM-21S instrument and EM inversion software. *Land Degradation & Development*, 29(6), 1768-1781. <https://doi.org/10.1002/ldr.2973>

Lin, L. (1989). A concordance correlation coefficient to evaluate reproducibility. *Biometrics*, 45, 255-268. <https://doi.org/10.2307/2532051>

Mabrouk, M. B., Jonoski, A., Solomatine, D., and Uhlenbrook, S. (2013). A review of seawater intrusion in the Nile Delta groundwater system—the basis for assessing impacts due to climate changes and water resources development. *Hydrology and Earth System Sciences Discussions*, 10(8), 10873-10911. <https://doi.org/10.5194/hessd-10-10873-2013>

Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. *Horticulturae*, 3(2), 30. <https://doi.org/10.3390/horticulturae3020030>

Mirsharipova, G. K., and Mustafakulov, D. M. (2023, March). Planting rate of Sudan grass photosynthetic activity and dependence on the period of harvest. In IOP Conference Series: Earth and Environmental Science (Vol. 1142, No. 1, p. 012062). IOP Publishing. <https://doi.org/10.1088/1755-1315/1142/1/012062>

Monteiro Santos, F., Triantafilis, J., and Bruzgul's, K. (2011). A spatially constrained 1D inversion algorithm for quasi-3D conductivity imaging: Application to DUALEM-421 data collected in a riverine plain. *Geophysics*, 76, B43-B53. <https://doi.org/10.1190/1.3537834>

Monteiro Santos, F., Triantafilis, J., Bruzgul's, K., and Roe, J. (2010). Inversion of multiconfiguration electromagnetic (DUALEM-421S) profiling data using a one-dimensional laterally constrained algorithm. *Vadose Zone Journal*, 9, 117-125. <https://doi.org/10.2136/vzj2009.0088>

Moore, D. S., and Kirkland, S. (2007). The basic practice of statistics (Vol. 2). New York: WH Freeman.

Paz, A. M., Castanheira, N., Farzamian, M., Paz, M. C., Gonçalves, M. C., and Monteiro Santos, F. (2020a). Prediction of soil salinity and sodicity using electromagnetic conductivity imaging. *Geoderma*, 361, 114086. <https://doi.org/10.1016/j.geoderma.2019.114086>

Paz, M. C., Farzamian, M., Paz, A. M., Castanheira, N. L., Gonçalves, M. C., and Monteiro Santos, F. (2020b). Assessing soil salinity dynamics using time-lapse electromagnetic conductivity imaging. *Soil*, 6(2), 499-511. <https://doi.org/10.5194/soil-6-499-2020>

Ramos, T. B., Oliveira, A. R., Darouich, H., Gonçalves, M., Martínez-Moreno, F., Ramos, M., Vanderlinden, K., and Farzamian, M. (2023). Field-scale assessment of soil water dynamics using distributed modeling and electromagnetic conductivity imaging. *Agricultural Water Management*, 288, 108472. <https://doi.org/10.1016/j.agwat.2023.108472>

Rhoades, J. D., Kandiah, A., and Mashali, A. M. (1992). The use of saline waters for crop production-FAO irrigation and drainage paper 48. FAO, Rome, 133.

Richards, L. A. (Ed.). (1954). Diagnosis and improvement of saline and alkali soils (No. 60). US Government Printing Office.

Sasaki, Y. (1989). Two-dimensional joint-inversion of magnetotelluric and dipole-dipole resistivity data. *Geophysics*, 54, 254-262. <https://doi.org/10.1190/1.1442649>

Sasaki, Y. (2001). Full 3-D inversion of electromagnetic data on PC. *Journal of Applied Geophysics*, 46, 45-54. [https://doi.org/10.1016/S0926-9851\(00\)00038-0](https://doi.org/10.1016/S0926-9851(00)00038-0)

Santos, F. A. M. (2004). 1-D laterally constrained inversion of EM34 profiling data. *Journal of Applied Geophysics*, 56(2), 123-134. <https://doi.org/10.1016/j.jappgeo.2004.04.005>

Shrivastava, P., and Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. *Saudi journal of biological sciences*, 22(2), 123-131. <https://doi.org/10.1016/j.sjbs.2014.12.001>

Stavi, I., Thevs, N., and Priori, S. (2021). Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. *Frontiers in Environmental Science*, 330. <https://doi.org/10.3389/fenvs.2021.712831>

Triantafilis, J., and Santos, F. M. (2013). Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM-421 and inversion modelling software (EM4Soil). *Geoderma*, 211, 28-38. <https://doi.org/10.1016/j.geoderma.2013.06.001>

USDA (1999). Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys. The United States Department of Agriculture (USDA), Agriculture Handbook N 436. Second Edition.

Utili, S. (2020). Monitoring of earthen long linear embankments by geophysical tools integrated with geotechnical probes. In E3S Web of Conferences (Vol 195, p. 01031). EDP Sciences. <https://doi.org/10.1051/e3sconf/202019501031>

Wang, F., Yang, S., Wei, Y., Shi, Q., and Ding, J. (2021). Characterizing soil salinity at multiple depth using electromagnetic induction and remote sensing data with random forests: A case study in Tarim River Basin of southern Xinjiang, China. *Science of the Total Environment*, 754, 142030. <https://doi.org/10.1016/j.scitotenv.2020.142030>

Xie, W., Yang, J., Yao, R., and Wang, X. (2021). Spatial and Temporal Variability of Soil Salinity in the Yangtze River Estuary Using Electromagnetic Induction. *Remote Sensing*, 13(10), 1875. <https://doi.org/10.3390/rs13101875>

Yao, R., and Yang, J. (2010). Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method. *Agricultural Water Management*, 97(12), 1961-1970. <https://doi.org/10.1016/j.agwat.2010.02.001>

Yao, R., Yang, J., Wu, D., Xie, W., Gao, P., and Jin, W. (2016). Digital mapping of soil salinity and crop yield across a coastal agricultural landscape using repeated electromagnetic induction (EMI) surveys. *PLoS one*, 11(5), e0153377. <https://doi.org/10.1371/journal.pone.0153377>

Yollybayev, A., and Gurbanov, A. CULTIVATION OF SORGHUM AND SUDAN GRASS ON SALINE AREAS.

Zare, E., Huang, J., Santos, F. M., and Triantafilis, J. (2015). Mapping salinity in three dimensions using a DUALEM-421 and electromagnetic inversion software. *Soil Science Society of America Journal*, 79(6), 1729-1740. <https://doi.org/10.2136/sssaj2015.06.0238>

Zare, E., Li, N., Khongnawang, T., Farzamian, M., and Triantafilis, J. (2020). Identifying Potential Leakage Zones in an Irrigation Supply Channel by Mapping Soil Properties Using Electromagnetic Induction, Inversion Modelling, and a Support Vector Machine. *Soil System*, 4(2), 25, <https://doi.org/10.3390/soilsystems4020025>.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.