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Abstract: Cracks on concrete surfaces are vital factors affecting construction safety. Accurate and efficient crack 

detection can prevent safety accidents. Using drones to photograph cracks on a concrete surface and detect 

them through computer vision technology has the advantages of accurate target recognition, simple practical 

operation, and low cost. To solve this problem, an improved CenterNet concrete crack-detection model is 

proposed. First, a channel-space attention mechanism is added to the original model to enhance the ability of 

the convolution neural network to pay attention to the image. Second, a feature selection module is introduced 

to scale the feature map in the downsampling stage to a uniform size and combine it in the channel dimension. 

In the upsampling stage, the feature selection module adaptively selects the combined features and fuses them 

with the output features of the upsampling. Finally, the target size loss is optimised from a Smooth L1 Loss to 

IoU Loss to improve its inability to adapt to targets of different sizes. The experimental results show that the 

improved CenterNet model reduces the FPS by 123.7, increases the GPU memory by 62MB, increases the FLOPs 

by 3.81, and increases the AP by 0.154 compared with the original model. The GPU memory occupancy 

remained stable during the training process and exhibited good real-time performance and robustness. 

Keywords: crack detection; attention mechanism; feature fusion; frameless; CenterNet 

1. Introduction 

With the rapid development of China's economy, civil engineering construction projects are 

increasing, and as one of the pillar industries of the economy, the construction industry has played 

an irreplaceable role in national construction. With the increasing number of buildings, roads, 

bridges, tunnels, and other infrastructures, maintaining them in good working conditions is 

extremely important for public safety. Concrete cracks are usually caused by internal stress and 

environmental action, leading to the internal fatigue of the material and resulting in cracks and 

fractures on the surface of the concrete［1］. The occurrence of cracks often represents a change in 

the structure where the cracks occur. Over time, further cracking and falling off often occur, and 

water seepage occurs. Therefore, crack detection is of great significance for the healthy operation of 

construction projects［2］. Based on the location of cracks in the material, they can be divided into 

surface and internal cracks. The main research object of this study was the surface cracks in 

construction engineering concrete. 

Surface crack detection methods include eye observation, ultrasonic detection [3], eddy current 

detection [4], speckle interference [5], penetration detection [6], laser holography  [7], X-ray detection 

[8], computer vision detection [9]. Most of the aforementioned methods have formed a relatively 

complete detection system that can perform surface crack detection well; however, they also have 

their adaptation scenarios and shortcomings. For example, although ultrasonic detection is sensitive 

to planar defects, it is difficult to detect nonplanar structures owing to acoustic coupling, and the 

surface crack detection effect of arch structures facing some projects could be better. Although the 

detection accuracy is high, optical detection is significantly affected by ambient light interference and 

vibrations during actual operation. The infrared detection method has a fast detection speed; 

however, the detection environment is limited due to the equipment's large size. Current computer 

vision detection technology often obtains the surface image or video of the research object through a 

camera and other sensing equipment; then, the obtained image or video is pre-processed and feature 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 January 2024                   doi:10.20944/preprints202401.1887.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202401.1887.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

extracted, and different algorithm models are trained and tested to finally achieve the purpose of 

target recognition or positioning [10]. 

Wang Fan [11] studied the problem of crack detection using mathematical morphology and 

image fusion. Chambon [12] conducted a study on road crack detection and evaluation using 

computer vision. Tongji University studied an MTI-100 tunnel-detection system and achieved crack 

detection and location [13]. Soukup [14] used convolutional neural networks to detect the surface 

cracks. Yaping et al. applied the SegNet network to surface crack detection and achieved satisfactory 

results. Using an adaptive iterative method, Peng [15] used an improved Otsu threshold 

segmentation algorithm to study crack images. Yang [16] proposed a new image analysis method for 

concrete crack detection and conducted a detailed study on a detection method based on edge cracks. 

Fernandez [17] studied a decision-tree heuristic algorithm for crack detection and achieved 

satisfactory simulation results. Li [18] studied a concrete surface crack detection method by 

combining the improved C-V model with the Canny iterative operator; however, the operation time 

was relatively long, and there were certain limitations. 

In summary, current methods for solving the surface crack detection problem based on 

computer vision technology can be divided into three categories: image classification, object 

detection, and pixel segmentation. With the continuous development of computer technology and 

machine learning algorithms, concrete crack detection based on computer vision technology is 

expected to be increasingly applied in various scenarios.Crack pictures on the surface of concrete 

were collected by UAV shooting technology. Then the cracks on the surface of construction concrete 

were detected using computer vision detection technology, which has the characteristics of simple 

principle, convenient operation, strong flexibility, high precision, low cost, and no contact. 

2. CenterNet 

The CenterNet algorithm is a single-stage model without an anchor frame and was first 

proposed in 2019 [19]. CenterNet algorithm has the characteristics of high precision, fast training 

speed, and simple network structure. The principle of the CenterNet model is as follows: the center 

point of the target is used to replace the anchor frame, the peak value of the thermal map is used as 

the center point of the detection object, and then the threshold is set for screening and comparison of 

the target center point, and finally the category information is obtained by regression using the image 

features. The training process of CenterNet does not need to consider the anchor mechanism, nor 

does it need to set or postprocess hyperparameters in advance, significantly reducing the 

computational load on the entire network. 

The original CenterNet uses ResNet18, DLA-34, and Hourglass convolutional networks for 

feature extraction and then transfers the feature map to the detection module for processing. Finally, 

the target centre point and category, target length and width prediction, and centre point bias are 

transferred through the convolution operation [20]. A schematic of the CenterNet algorithm is shown 

in Figure 1. 
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Figure 1. Schematic diagram of CenterNet algorithm model. 

The CenterNet algorithm model makes predictions through three convolution blocks: target 

centre point and category, target length and width prediction, and centre point bias. The loss function 

of the CenterNet algorithm consists of the loss function of the centre point and classification, loss 

function of the target frame size, and loss function of the centre point bias [21]. 

The loss function Lk of the centre point and classification is the focal loss function, and the 

calculation formula is shown in Equation (1) [22]. 
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In the above formula, the subscript k in the centre point and classification loss function Lk 

represent the kth input image, N represents the number of keypoints in the image, subscript xyc 

represents the positive and negative samples of the image, and Yxyc is the label of the true value. 

The centre point bias loss function Loffset adopts the Lloss function, and the calculation formula is 

shown in Equation (2) [23]: 

=
p

poffset )P-
R

p
-(O

N

1
L

~ˆ~  (2) 

In the above formula, P is the coordinate of the true value of the original image target, and R 

represents the subsampling multiple. 

The Lloss function is used for the target frame size loss function Lsize. The calculation formulas are 

shown in Equations (3) [24], where Sk represents the size of the original target frame. 
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The final loss function was obtained by multiplying the loss function of the centre point by the 

classification, the loss function of the target frame size, and the loss function of the centre point bias 

by the corresponding coefficients, as shown in Equation (4). 

offoffsizesizek LλLλLL ++=  (4) 

3. CenterNet Optimisation 

The improvement of the original CenterNet model includes three aspects: adding a new channel 

space attention mechanism, adding a feature selection module, and optimising the loss function. 

3.1. Addition of Channel Space Attention Mechanism 

In the convolutional block attention module (CBAM), the channel attention uses global average 

pooling and global maximum pooling to obtain the global statistics of each channel, and learns the 

weight of the channel through two fully connected layers. Each channel was scaled using a sigmoid 

function to normalise the weights between 0 and 1. Finally, the scaled channel features are multiplied 

by the original features to produce features with enhanced channel importance [25][26]. 

The function of the channel attention mechanism is to continuously enhance the importance of 

the channel during the training process to improve the training effect on the network. The attention 

mechanism diagram of the CenterNet channel used in this study is shown in Figure 2. 
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Figure 2. CenterNet channel attention mechanism diagram. 

The spatial attention module in the CBAM uses maximum and average pooling to obtain the 

maximum and average values for each spatial position. Because more channels are generated after 

convolution, the function of the spatial attention mechanism is to perform maximum pooling and 

average pooling operations on the channels of each feature point, obtain two different results, 

concatenate them, and then learn the weight of each spatial position through a convolution layer and 

sigmoid function. Finally, weights were applied to each spatial position on the feature map to 

produce features with enhanced spatial importance. 

By introducing an attention module, the spatial attention mechanism enables the model to learn 

the attention weights of different regions adaptively so that it can pay more attention to important 

image regions while ignoring unimportant ones [27]. The spatial attention mechanism of CenterNet 

added in this study is shown in Figure 3. 
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Figure 3. CenterNet Schematic diagram of spatial attention mechanism. 

In this study, a channel space attention mechanism was added, and a model combining channel 

and space attention was constructed to enhance the focus of convolutional neural networks on images 

and improve the algorithm's performance. The original network joining the CBAM mechanism is 

illustrated in Figure 4. 
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Figure 4. CenterNet Overall CBAM mechanism schematic. 

3.2. Addition of Feature Selection Module 

After adding the feature selection module, the feature map in the downsampling stage was 

scaled to a unified size and combined with the channel dimensions. In the upsampling stage, the 

feature selection module adaptively selects the combined features and then adds them to the output 

features. The structure of the feature selection module is illustrated in Figure 5. 
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Figure 5. Feature selection module diagram. 

When the CenterNet model was proposed, the original network only extracted the most 

profound feature map for detection, which led to poor retention of deep and shallow semantic 

information in the entire network during training, ultimately leading to a decline in the accuracy of 

the entire network. The feature selection module added in this study can effectively enhance the 
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network extraction of target features and has a stronger ability to capture effective features. The 

details of the feature selection module are shown in Figure 6. 
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Figure 6. Feature selection module adds detail. 

3.3. Optimization of the Loss Function 

The target size loss changes from Smooth L1 Loss to IoU Loss because Smooth L1 Loss cannot 

adapt to targets of different sizes. The calculation formula is shown in Eq (5). When calculating the 

IoU Loss, it is assumed that the centre point is the same, and the calculation formula is shown in 

Equation (6). 

BA

BA
LIou




−=1  (5) 

)),(ln( 21 boxboxIOULIOU =  (6) 

The IoU Loss is an indicator used to evaluate the distance between two rectangular boxes. This 

indicator has all the distance characteristics, including symmetry, nonnegativity, identity, and 

triangular inequality. The advantages of using the IOU Loss include the following: 

1. It can more accurately measure the matching degree between the prediction box and the real 

box; 

2. It has scale invariance, which means that regardless of the size of the prediction box and the 

actual box, as long as they are located near each other, their IoU values will be similar. This helps the 

model to have a better generalisation ability when dealing with objects of different scales and sizes. 

4. Experiment and Result Analysis 

4.1. Experimental Environment 

The experimental environment used in this paper was an Ubuntu18.04 64-bit operating system, 

754GB running memory, a Tesla V100S graphics card, 32GB graphics memory, and an Intel(R) 

Xeon(R) Gold 6240 CPU. The PyTorch deep learning framework was used to build the model with 

CUDA version 10.1 and cudnn version 7.6.0. 

4.2. Evaluation Index 

Generally, current mainstream computer vision algorithm model evaluation indicators include 

accuracy and performance [28]. The index used to measure the accuracy of the target detection 

algorithm is generally the AP, and the performance index includes the FLOPs, FPS, and video 

memory occupations. 

Table 1. Evaluation index and meaning interpretation. 

Index Implication 

FLOPs 
The number of floating-point operations used to measure the computational 

complexity of the model 
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FPS 
The number of images the algorithm processes per second, the higher the 

value, the faster the algorithm processes 

p 

The size of the video memory occupied by the algorithm in the inference 

stage. The smaller the video memory occupation, the less resources are 

required 

Average Precision (AP) was obtained by calculating the area of the PR curve. The calculation 

formula is shown in Equation (7) [29]: 

=
1

0
)()(p  dAP  (7) 

4.3. Data  

The experimental dataset in this study consisted of 3000 crack pictures captured by the UAV, 

which were divided into training and test sets in a 9:1 ratio. 

In the preprocessing stage, part of the training set was augmented to improve the generalisation 

ability of the algorithm model. The image transformation method adopted in the dataset 

enhancement was still close to the tunnel crack image collected after image processing, including 

random brightness transformation, random horizontal flipping, and random vertical flipping. The 

transformation results after processing are shown in Figure 7. 

  

（a）Master drawing （b）Luminance 

transformation 

  

（c）Horizontal flip （d）Vertical flip 

Figure 7. Random transformation used in training. 
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The image was scaled and standardised before being input into the network. The widths and 

heights of the scaled images were 512. The mean values of the standardized RGB three-channel are 

(123.675,116.28,103.53), and the standard deviation is (58.395,57.12,57.375). 

CenterNet determines the target's location by predicting the target centre point, target centre 

point bias, and target size. Therefore, the corresponding labels of the image include the target centre-

point Gaussian heat map, target centre-point bias, and target size, which are represented by a tensor 

of the same size as the network output. 

4.4. Training Process and Experimental Results 

To ensure the real and effective results of the comparative experiments, the training parameters 

used in all the experiments involved in this study were completely consistent. The initial learning 

rate of the training was 0.0001. The cosine annealing learning rate adjustment method was adopted, 

and the minimum learning rate was 0.00001. The batch size was set to 8 during the training process. 

A total of 300 epochs were trained using the SGD optimisation algorithm. 

The training experiments were conducted in five groups: original CenterNet with the backbone 

network of ResNet18, CenterNet with the channel space attention mechanism, CenterNet with the 

feature selection module, CenterNet with target size loss improvement, and CenterNet with the 

above three improvements. Table 2 compares the performance of CenterNet with the addition of 

CBAM and feature-selection modules, including FLOPS, FPS, and video memory. 

Table 2. Comparison of network performance before and after CenterNet optimization. 

Network FLOPs Memory footprint/MB FPS Video memory/MB 

CenterNet 13.06 50.3 296.5 1347 

CenterNet-CBAM 13.06 51.7 189.9 1349 

CenterNet-FS 16.35 51.1 250.2 1405 

In the data training process, owing to the different difficulties in data feature extraction, there 

are overlaps and omissions in some data, as shown in Figure 8. Given this situation, the optimised 

model in this study adopts the method of strengthening the feature extraction. This situation changed 

significantly after adding the feature extraction module, and the data processing accuracy was 

effectively improved. 

  

（a）Valid detection （b）Detection misjudgment 
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（c）Detection overlap （d）Invalid detection 

Figure 8. Detection detail. 

When the test environment of the controlled experiment was the same as that of the training 

environment, the batch size of the experiment was set to one. The ablation experiments are 

summarised in Table 3. From the ablation experiment, the following results were obtained: 

After the CBAM module was added, the model size increased by 1.4MB, FPS decreased by 106.6, 

video memory increased by 2MB, FLOPs remained unchanged, and AP increased by 0.072. 

After adding the feature selection module, the model size increased by 0.8MB, FPS decreased by 

46.3, video memory increased by 58MB, FLOPs increased by 3.29, and AP increased by 0.101 

compared with the original model. 

After IOU optimization in the original model, the size increased by 0.5MB, FPS decreased by 

123.7, video memory increased by 31MB, FLOPs increased by 2.2, and AP increased by 0.021 

compared with the original model. 

Table 3. CenterNet optimized process ablation experiment. 

Serial 

numbe

r 

CenterNe

t 

CBA

M 

F

S 

Io

u 

Memory 

footprint/M

B 

FPS 

Video 

memory/M

B 

FLOP

s 
AP 

1 √ × × × 50.3 
296.

5 
1347 13.06 

0.75

1 

2 √ √ × × 51.7 
189.

9 
1349 13.06 

0.82

3 

3 √ × √ × 51.1 
250.

2 
1405 16.35 

0.85

2 

4 √ × × √ 50.8 
172.

8 
1378 15.26 

0.77

2 

5 √ √ √ √ 52.4 
270.

9 
1409 16.87 

0.90

5 
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After the addition of the feature selection module, the optimised model decreased the target size 

loss faster than the original CenterNet because the feature selection module can adaptively select the 

underlying features (such as the target texture and edge information) in the downsampling process 

and add them to the feature map in the upsampling process. Thus, the target size can be learned more 

quickly. 

The change curve of the CenterNet target size loss after the original CenterNet and the addition 

of the feature selection module are shown in Figure 9. 

 

Figure 9. Loss curve of network target size between CenterNet and feature selection module. 

The feature selection module can adapt to underlying features, which is also evident in the actual 

detection effect. As shown in Figure 10, after adding the feature selection module, the optimised 

model can predict the crack size more accurately owing to the inclusion of information such as the 

crack edge. 

  

（a）CenterNet （b）CenterNet-FS 

Figure 10. Comparison of detection results between CenterNet and feature selection module. 
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The CBAM and feature selection modules, particularly the CBAM module, significantly impact 

the reasoning speed of the network. This is because, after the CBAM module is added to each 

ResBlock, the FPS of the network decreases overall, whereas the feature selection module reduces the 

FPS. Regarding the video memory usage, the impact of the two additional modules was relatively 

small. 

The feature information of the entire network is compressed by the subsampling module, which 

reduces the workload of subsequent network training and increases the reasoning speed of the entire 

network. The input information in the upper layer of the network is enhanced after the feature 

extraction module, and the upsampling stage uses fewer convolutional layers to improve the running 

speed of the network. The information on each input and output layer of the overall network 

optimised in this study is shown in Table 4. 

Table 4. CenterNet Improved network layer input and output. 

Net Input size Input channel Output size Output channel 

Convolution 1 512×512 3 128×128 64 

Res-Block1 128×128 64 128×128 64 

CBAM1 128×128 64 128×128 64 

Res-Block2 128×128 64 64×64 128 

CBAM2 64×64 128 64×64 128 

Res-Block3 64×64 128 32×32 256 

CBAM3 32×32 256 32×32 256 

Res-Block4 32×32 256 16×16 512 

CBAM4 16×16 512 16×16 512 

Upper sampling layer 1 16×16 512 32×32 256 

Upper sampling layer 2 32×32 256 64×64 128 

Upper sampling layer 3 64×64 128 128×128 64 

Target center point 128×128 64 128×128 1 

The target center is biased 128×128 64 128×128 2 

Target size 128×128 64 128×128 2 

To demonstrate the performance improvement of the model before and after optimisation more 

intuitively, five groups of training processes were randomly selected for comparison, as shown in 

Figure 11. Dark blue represents the data processing accuracy of the original CenterNet model, and 

yellow represents the improvement in accuracy brought about by the optimised CenterNet-CBAM-

FS-IOU model. 
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Figure 11. Performance improvement after CenterNet optimization demonstration. 

After optimisation, the overall processing accuracy of CenterNet improved to a certain extent, 

and it could effectively identify cracks in construction concrete with less training time. The actual 

detection effect is shown in Figure 12, where the red box represents the detection crack prompts, and 

the number represents the detection number. 

 

Figure 12. Actual detection. 

As a classic anchor-free model in the field of computer vision, the CenterNet model has a wide 

range of applications and optimisations in various disciplines. Table 5 lists the AP values of 

CenterNet and the improved model structure for the dataset. The improvement in the AP values also 

verifies the effectiveness of the proposed algorithm model optimisation scheme. 

Table 5. AP values for CenterNet and its improved network on the test set. 

Network AP 

CenterNet 0.751 
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CenterNet-IOU 0.772 

CenterNet-CBAM 0.823 

CenterNet-FS 0.852 

CenterNet-CBAM-FS-IOU 0.905 

5. Conclusions 

Based on the original network of CenterNet, a detailed algorithm model optimisation 

experiment was carried out for the problem of concrete crack detection in construction engineering 

using pictures of concrete cracks taken by drones, including the addition of a double-attention 

mechanism, introduction of a feature selection module, and optimisation of the loss function. 

The experimental results show that the FPS of the improved CenterNet model is reduced by 

123.7, the memory is increased by 62MB, FLOPs are increased by 3.81, and AP is increased by 0.154. 

The proposed method for detecting cracks in construction projects based on the improved CenterNet 

network has good robustness and accuracy for the processed datasets and has the potential to be 

applied to target detection and recognition methods in relevant practical scenarios. 
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