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Abstract: Cracks on concrete surfaces are vital factors affecting construction safety. Accurate and efficient crack
detection can prevent safety accidents. Using drones to photograph cracks on a concrete surface and detect
them through computer vision technology has the advantages of accurate target recognition, simple practical
operation, and low cost. To solve this problem, an improved CenterNet concrete crack-detection model is
proposed. First, a channel-space attention mechanism is added to the original model to enhance the ability of
the convolution neural network to pay attention to the image. Second, a feature selection module is introduced
to scale the feature map in the downsampling stage to a uniform size and combine it in the channel dimension.
In the upsampling stage, the feature selection module adaptively selects the combined features and fuses them
with the output features of the upsampling. Finally, the target size loss is optimised from a Smooth L1 Loss to
IoU Loss to improve its inability to adapt to targets of different sizes. The experimental results show that the
improved CenterNet model reduces the FPS by 123.7, increases the GPU memory by 62MB, increases the FLOPs
by 3.81, and increases the AP by 0.154 compared with the original model. The GPU memory occupancy
remained stable during the training process and exhibited good real-time performance and robustness.

Keywords: crack detection; attention mechanism; feature fusion; frameless; CenterNet

1. Introduction

With the rapid development of China's economy, civil engineering construction projects are
increasing, and as one of the pillar industries of the economy, the construction industry has played
an irreplaceable role in national construction. With the increasing number of buildings, roads,
bridges, tunnels, and other infrastructures, maintaining them in good working conditions is
extremely important for public safety. Concrete cracks are usually caused by internal stress and
environmental action, leading to the internal fatigue of the material and resulting in cracks and
fractures on the surface of the concrete [1] . The occurrence of cracks often represents a change in
the structure where the cracks occur. Over time, further cracking and falling off often occur, and
water seepage occurs. Therefore, crack detection is of great significance for the healthy operation of
construction projects [2] . Based on the location of cracks in the material, they can be divided into
surface and internal cracks. The main research object of this study was the surface cracks in
construction engineering concrete.

Surface crack detection methods include eye observation, ultrasonic detection [3], eddy current
detection [4], speckle interference [5], penetration detection [6], laser holography [7], X-ray detection
[8], computer vision detection [9]. Most of the aforementioned methods have formed a relatively
complete detection system that can perform surface crack detection well; however, they also have
their adaptation scenarios and shortcomings. For example, although ultrasonic detection is sensitive
to planar defects, it is difficult to detect nonplanar structures owing to acoustic coupling, and the
surface crack detection effect of arch structures facing some projects could be better. Although the
detection accuracy is high, optical detection is significantly affected by ambient light interference and
vibrations during actual operation. The infrared detection method has a fast detection speed;
however, the detection environment is limited due to the equipment's large size. Current computer
vision detection technology often obtains the surface image or video of the research object through a
camera and other sensing equipment; then, the obtained image or video is pre-processed and feature
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extracted, and different algorithm models are trained and tested to finally achieve the purpose of
target recognition or positioning [10].

Wang Fan [11] studied the problem of crack detection using mathematical morphology and
image fusion. Chambon [12] conducted a study on road crack detection and evaluation using
computer vision. Tongji University studied an MTI-100 tunnel-detection system and achieved crack
detection and location [13]. Soukup [14] used convolutional neural networks to detect the surface
cracks. Yaping et al. applied the SegNet network to surface crack detection and achieved satisfactory
results. Using an adaptive iterative method, Peng [15] used an improved Otsu threshold
segmentation algorithm to study crack images. Yang [16] proposed a new image analysis method for
concrete crack detection and conducted a detailed study on a detection method based on edge cracks.
Fernandez [17] studied a decision-tree heuristic algorithm for crack detection and achieved
satisfactory simulation results. Li [18] studied a concrete surface crack detection method by
combining the improved C-V model with the Canny iterative operator; however, the operation time
was relatively long, and there were certain limitations.

In summary, current methods for solving the surface crack detection problem based on
computer vision technology can be divided into three categories: image classification, object
detection, and pixel segmentation. With the continuous development of computer technology and
machine learning algorithms, concrete crack detection based on computer vision technology is
expected to be increasingly applied in various scenarios.Crack pictures on the surface of concrete
were collected by UAV shooting technology. Then the cracks on the surface of construction concrete
were detected using computer vision detection technology, which has the characteristics of simple
principle, convenient operation, strong flexibility, high precision, low cost, and no contact.

2. CenterNet

The CenterNet algorithm is a single-stage model without an anchor frame and was first
proposed in 2019 [19]. CenterNet algorithm has the characteristics of high precision, fast training
speed, and simple network structure. The principle of the CenterNet model is as follows: the center
point of the target is used to replace the anchor frame, the peak value of the thermal map is used as
the center point of the detection object, and then the threshold is set for screening and comparison of
the target center point, and finally the category information is obtained by regression using the image
features. The training process of CenterNet does not need to consider the anchor mechanism, nor
does it need to set or postprocess hyperparameters in advance, significantly reducing the
computational load on the entire network.

The original CenterNet uses ResNet18, DLA-34, and Hourglass convolutional networks for
feature extraction and then transfers the feature map to the detection module for processing. Finally,
the target centre point and category, target length and width prediction, and centre point bias are
transferred through the convolution operation [20]. A schematic of the CenterNet algorithm is shown
in Figure 1.
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Figure 1. Schematic diagram of CenterNet algorithm model.

The CenterNet algorithm model makes predictions through three convolution blocks: target
centre point and category, target length and width prediction, and centre point bias. The loss function
of the CenterNet algorithm consists of the loss function of the centre point and classification, loss
function of the target frame size, and loss function of the centre point bias [21].

The loss function Lk of the centre point and classification is the focal loss function, and the
calculation formula is shown in Equation (1) [22].
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In the above formula, the subscript k in the centre point and classification loss function Lk
represent the kth input image, N represents the number of keypoints in the image, subscript xyc
represents the positive and negative samples of the image, and Yxyc is the label of the true value.

The centre point bias loss function Lottt adopts the Lioss function, and the calculation formula is
shown in Equation (2) [23]:

1 AD o=
Loffset = — Oﬁ‘( — —P) 2
In the above formula, P is the coordinate of the true value of the original image target, and R
represents the subsampling multiple.
The Lioss function is used for the target frame size loss function Lsize. The calculation formulas are
shown in Equations (3) [24], where Sk represents the size of the original target frame.
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The final loss function was obtained by multiplying the loss function of the centre point by the
classification, the loss function of the target frame size, and the loss function of the centre point bias
by the corresponding coefficients, as shown in Equation (4).

L= Lk + AsizeLsize + }LoffLoff (4)

3. CenterNet Optimisation

The improvement of the original CenterNet model includes three aspects: adding a new channel
space attention mechanism, adding a feature selection module, and optimising the loss function.

3.1. Addition of Channel Space Attention Mechanism

In the convolutional block attention module (CBAM), the channel attention uses global average
pooling and global maximum pooling to obtain the global statistics of each channel, and learns the
weight of the channel through two fully connected layers. Each channel was scaled using a sigmoid
function to normalise the weights between 0 and 1. Finally, the scaled channel features are multiplied
by the original features to produce features with enhanced channel importance [25][26].

The function of the channel attention mechanism is to continuously enhance the importance of
the channel during the training process to improve the training effect on the network. The attention
mechanism diagram of the CenterNet channel used in this study is shown in Figure 2.
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Figure 2. CenterNet channel attention mechanism diagram.

The spatial attention module in the CBAM uses maximum and average pooling to obtain the
maximum and average values for each spatial position. Because more channels are generated after
convolution, the function of the spatial attention mechanism is to perform maximum pooling and
average pooling operations on the channels of each feature point, obtain two different results,
concatenate them, and then learn the weight of each spatial position through a convolution layer and
sigmoid function. Finally, weights were applied to each spatial position on the feature map to
produce features with enhanced spatial importance.

By introducing an attention module, the spatial attention mechanism enables the model to learn
the attention weights of different regions adaptively so that it can pay more attention to important
image regions while ignoring unimportant ones [27]. The spatial attention mechanism of CenterNet
added in this study is shown in Figure 3.
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Figure 3. CenterNet Schematic diagram of spatial attention mechanism.

In this study, a channel space attention mechanism was added, and a model combining channel
and space attention was constructed to enhance the focus of convolutional neural networks on images
and improve the algorithm's performance. The original network joining the CBAM mechanism is
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Figure 4. CenterNet Overall CBAM mechanism schematic.

3.2. Addition of Feature Selection Module

After adding the feature selection module, the feature map in the downsampling stage was
scaled to a unified size and combined with the channel dimensions. In the upsampling stage, the
feature selection module adaptively selects the combined features and then adds them to the output
features. The structure of the feature selection module is illustrated in Figure 5.
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Figure 5. Feature selection module diagram.

When the CenterNet model was proposed, the original network only extracted the most
profound feature map for detection, which led to poor retention of deep and shallow semantic
information in the entire network during training, ultimately leading to a decline in the accuracy of
the entire network. The feature selection module added in this study can effectively enhance the
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network extraction of target features and has a stronger ability to capture effective features. The
details of the feature selection module are shown in Figure 6.
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Figure 6. Feature selection module adds detail.

3.3. Optimization of the Loss Function

The target size loss changes from Smooth L1 Loss to IoU Loss because Smooth L1 Loss cannot
adapt to targets of different sizes. The calculation formula is shown in Eq (5). When calculating the
IoU Loss, it is assumed that the centre point is the same, and the calculation formula is shown in

Equation (6).
Lo |ANB|
ou — 1 — 5
T AUB| ©
Liov =In(10U (box1,box2)) (6)

The IoU Loss is an indicator used to evaluate the distance between two rectangular boxes. This
indicator has all the distance characteristics, including symmetry, nonnegativity, identity, and
triangular inequality. The advantages of using the IOU Loss include the following;:

1. It can more accurately measure the matching degree between the prediction box and the real
box;

2. It has scale invariance, which means that regardless of the size of the prediction box and the
actual box, as long as they are located near each other, their IoU values will be similar. This helps the
model to have a better generalisation ability when dealing with objects of different scales and sizes.

4. Experiment and Result Analysis

4.1. Experimental Environment

The experimental environment used in this paper was an Ubuntu18.04 64-bit operating system,
754GB running memory, a Tesla V100S graphics card, 32GB graphics memory, and an Intel(R)
Xeon(R) Gold 6240 CPU. The PyTorch deep learning framework was used to build the model with
CUDA version 10.1 and cudnn version 7.6.0.

4.2. Evaluation Index

Generally, current mainstream computer vision algorithm model evaluation indicators include
accuracy and performance [28]. The index used to measure the accuracy of the target detection
algorithm is generally the AP, and the performance index includes the FLOPs, FPS, and video
memory occupations.

Table 1. Evaluation index and meaning interpretation.

Index Implication

FLOP The number of floating-point operations used to measure the computational
s
complexity of the model
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The number of images the algorithm processes per second, the higher the

FPS

value, the faster the algorithm processes

The size of the video memory occupied by the algorithm in the inference
p stage. The smaller the video memory occupation, the less resources are

required

Average Precision (AP) was obtained by calculating the area of the PR curve. The calculation
formula is shown in Equation (7) [29]:

AP = p(z)d(7) o)

4.3. Data

The experimental dataset in this study consisted of 3000 crack pictures captured by the UAYV,
which were divided into training and test sets in a 9:1 ratio.

In the preprocessing stage, part of the training set was augmented to improve the generalisation
ability of the algorithm model. The image transformation method adopted in the dataset
enhancement was still close to the tunnel crack image collected after image processing, including
random brightness transformation, random horizontal flipping, and random vertical flipping. The
transformation results after processing are shown in Figure 7.

(a) Master drawing (b) Luminance

transformation

(c) Horizontal flip (d) Vertical flip

Figure 7. Random transformation used in training.
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The image was scaled and standardised before being input into the network. The widths and
heights of the scaled images were 512. The mean values of the standardized RGB three-channel are
(123.675,116.28,103.53), and the standard deviation is (58.395,57.12,57.375).

CenterNet determines the target's location by predicting the target centre point, target centre
point bias, and target size. Therefore, the corresponding labels of the image include the target centre-
point Gaussian heat map, target centre-point bias, and target size, which are represented by a tensor
of the same size as the network output.

4.4. Training Process and Experimental Results

To ensure the real and effective results of the comparative experiments, the training parameters
used in all the experiments involved in this study were completely consistent. The initial learning
rate of the training was 0.0001. The cosine annealing learning rate adjustment method was adopted,
and the minimum learning rate was 0.00001. The batch size was set to 8 during the training process.
A total of 300 epochs were trained using the SGD optimisation algorithm.

The training experiments were conducted in five groups: original CenterNet with the backbone
network of ResNet18, CenterNet with the channel space attention mechanism, CenterNet with the
feature selection module, CenterNet with target size loss improvement, and CenterNet with the
above three improvements. Table 2 compares the performance of CenterNet with the addition of
CBAM and feature-selection modules, including FLOPS, FPS, and video memory.

Table 2. Comparison of network performance before and after CenterNet optimization.

Network FLOPs Memory footprint/MB FPS  Video memory/MB
CenterNet 13.06  50.3 296.5 1347
CenterNet-CBAM 13.06  51.7 189.9 1349
CenterNet-FS 16.35 51.1 250.2 1405

In the data training process, owing to the different difficulties in data feature extraction, there
are overlaps and omissions in some data, as shown in Figure 8. Given this situation, the optimised
model in this study adopts the method of strengthening the feature extraction. This situation changed
significantly after adding the feature extraction module, and the data processing accuracy was
effectively improved.

(a) Valid detection (b) Detection misjudgment
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(c) Detection overlap (d) Invalid detection

Figure 8. Detection detail.

When the test environment of the controlled experiment was the same as that of the training
environment, the batch size of the experiment was set to one. The ablation experiments are
summarised in Table 3. From the ablation experiment, the following results were obtained:

After the CBAM module was added, the model size increased by 1.4MB, FPS decreased by 106.6,
video memory increased by 2MB, FLOPs remained unchanged, and AP increased by 0.072.

After adding the feature selection module, the model size increased by 0.8MB, FPS decreased by
46.3, video memory increased by 58MB, FLOPs increased by 3.29, and AP increased by 0.101
compared with the original model.

After IOU optimization in the original model, the size increased by 0.5MB, FPS decreased by
123.7, video memory increased by 31MB, FLOPs increased by 2.2, and AP increased by 0.021
compared with the original model.

Table 3. CenterNet optimized process ablation experiment.

Serial Memory Video
CenterNe CBA F Io FLOP
numbe footprint/M  FPS  memory/M AP
t M S u S
r B B
296. 0.75
1 N x x ox 50.3 1347 13.06
5 1
189. 0.82
2 N N x x 51.7 1349 13.06
9 3
250. 0.85
3 N x v x 51.1 1405 16.35
2 2
172. 0.77
4 N x x 50.8 1378 15.26
8 2
270. 0.90
5 N v v W 52.4 1409 16.87
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After the addition of the feature selection module, the optimised model decreased the target size
loss faster than the original CenterNet because the feature selection module can adaptively select the
underlying features (such as the target texture and edge information) in the downsampling process
and add them to the feature map in the upsampling process. Thus, the target size can be learned more
quickly.

The change curve of the CenterNet target size loss after the original CenterNet and the addition
of the feature selection module are shown in Figure 9.

train loss[size]
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Figure 9. Loss curve of network target size between CenterNet and feature selection module.

The feature selection module can adapt to underlying features, which is also evident in the actual
detection effect. As shown in Figure 10, after adding the feature selection module, the optimised
model can predict the crack size more accurately owing to the inclusion of information such as the
crack edge.

(a) CenterNet (b) CenterNet-FS

Figure 10. Comparison of detection results between CenterNet and feature selection module.
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The CBAM and feature selection modules, particularly the CBAM module, significantly impact
the reasoning speed of the network. This is because, after the CBAM module is added to each
ResBlock, the FPS of the network decreases overall, whereas the feature selection module reduces the
FPS. Regarding the video memory usage, the impact of the two additional modules was relatively
small.

The feature information of the entire network is compressed by the subsampling module, which
reduces the workload of subsequent network training and increases the reasoning speed of the entire
network. The input information in the upper layer of the network is enhanced after the feature
extraction module, and the upsampling stage uses fewer convolutional layers to improve the running
speed of the network. The information on each input and output layer of the overall network
optimised in this study is shown in Table 4.

Table 4. CenterNet Improved network layer input and output.

Net Input size Input channel Outputsize Outputchannel
Convolution 1 512x512 3 128x128 64
Res-Block1 128x128 64 128x128 64
CBAM1 128x128 64 128x128 64
Res-Block?2 128x128 64 64x64 128
CBAM2 64x64 128 64x64 128
Res-Block3 64x64 128 32x32 256
CBAM3 32x32 256 32x32 256
Res-Block4 32x32 256 16x16 512
CBAM4 16x16 512 16x16 512
Upper sampling layer 1 16x16 512 32x32 256
Upper sampling layer 2 32x32 256 64x64 128
Upper sampling layer 3 64x64 128 128x128 64
Target center point 128x128 64 128x128 1
The target center is biased =~ 128x128 64 128x128 2
Target size 128%128 64 128%128 2

To demonstrate the performance improvement of the model before and after optimisation more
intuitively, five groups of training processes were randomly selected for comparison, as shown in
Figure 11. Dark blue represents the data processing accuracy of the original CenterNet model, and
yellow represents the improvement in accuracy brought about by the optimised CenterNet-CBAM-
FS-IOU model.

doi:10.20944/preprints202401.1887.v1
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Figure 11. Performance improvement after CenterNet optimization demonstration.

After optimisation, the overall processing accuracy of CenterNet improved to a certain extent,
and it could effectively identify cracks in construction concrete with less training time. The actual
detection effect is shown in Figure 12, where the red box represents the detection crack prompts, and
the number represents the detection number.

Figure 12. Actual detection.

As a classic anchor-free model in the field of computer vision, the CenterNet model has a wide
range of applications and optimisations in various disciplines. Table 5 lists the AP values of
CenterNet and the improved model structure for the dataset. The improvement in the AP values also
verifies the effectiveness of the proposed algorithm model optimisation scheme.

Table 5. AP values for CenterNet and its improved network on the test set.

Network AP

CenterNet 0.751
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CenterNet-IOU 0.772
CenterNet-CBAM 0.823
CenterNet-FS 0.852

CenterNet-CBAM-FS-IOU 0.905

5. Conclusions

Based on the original network of CenterNet, a detailed algorithm model optimisation
experiment was carried out for the problem of concrete crack detection in construction engineering
using pictures of concrete cracks taken by drones, including the addition of a double-attention
mechanism, introduction of a feature selection module, and optimisation of the loss function.

The experimental results show that the FPS of the improved CenterNet model is reduced by
123.7, the memory is increased by 62MB, FLOPs are increased by 3.81, and AP is increased by 0.154.
The proposed method for detecting cracks in construction projects based on the improved CenterNet
network has good robustness and accuracy for the processed datasets and has the potential to be
applied to target detection and recognition methods in relevant practical scenarios.
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