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Abstract: As the world increasingly becomes more interconnected, the demand for safety and 

security is ever-increasing, particularly for industrial networks. This has prompted numerous 

researchers to investigate different methodologies and techniques suitable for intrusion detection 

systems (IDS) requirements. Over the years, many studies have proposed various solutions in this 

regard including signature-based and machine-learning (ML) based systems. More recently, 

researchers are considering deep learning (DL) based anomaly detection approaches. Most 

proposed works in this research field aimed to achieve either one or a combination of high accuracy, 

considerably low false alarm rates (FARs), high classification specificity and detection sensitivity, 

achieving lightweight DL models, or other ML and DL-related performance measurement metrics. 

In this study, we propose a novel method to convert a raw dataset to an image dataset to magnify 

patterns. Based on this we devise an anomaly detection for IDS using a lightweight convolutional 

neural network (CNN) that classifies denial of service and distributed denial of service. The 

proposed methods were evaluated using a modern dataset, CSE-CIC-IDS2018, and a legacy dataset, 

NSL-KDD. We have also applied a combined dataset to assess the generalization of the proposed 

model across various datasets. Our experimental results have demonstrated that the proposed 

methods achieved high accuracy and considerably low FARs with high specificity and sensitivity. 

The resulting loss and accuracy curves have also demonstrated the excellent generalization of the 

proposed lightweight CNN model, effectively avoiding overfitting. This holds for both the modern 

and legacy datasets, including their mixed version. 

Keywords: anomaly detection; convolutional neural networks; deep learning; DDoS; DoS; image 

dataset; intrusion detection system; lightweight model; machine learning; pattern augmented; 

spectrogram 

 

1. Introduction 

Computer networks have revolutionized various aspects of our lives, including communication, 

knowledge acquisition, and interaction. Numerous sectors, such as healthcare, manufacturing, 

finance, education, aviation, and entertainment, heavily rely on computer networks, including cloud 

computing and online gaming. The proliferation of cloud computing has also paved the way for the 

internet of things (IoT), which has found applications across diverse industries. However, the 

widespread adoption of computer networks and the Internet has also created opportunities for 

cyberattacks, prompting cybersecurity concerns. Fortinet, a prominent network security provider, 

reports that global businesses expended more than $170 billion in 2022 to counter cybercrimes, 

highlighting the persistent disruption caused by these threats [1]. Malware & ransomware, phishing, 

distributed denial of service (DDoS), denial of service (DoS), structured query language (SQL) 

injection, zero-day exploit, domain name system (DNS) tunneling, and Man-in-the-middle are among 

the most common cyberattacks and network breaches. Particularly, DDoS and malware attacks can 

be considered the most dangerous attacks depending on the attack scales and the type of the attacked 

industry. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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In this study, we aim to specifically examine DDoS attacks. These attacks have been observed to 

exhibit a growing level of sophistication, frequency, volume, and efficiency, and possess the 

capability to cause massive damage against various entities. DDoS attacks are a significant 

cybersecurity threat, with over 8.4 million attacks recorded in 2019 alone, averaging 23,000 attacks 

per day or 16 attacks per minute [2]. These attacks can severely damage organizations, disrupting 

applications and services by overwhelming networks with malicious traffic. Motivations for DDoS 

attacks range from hacktivism to cybercrime and espionage [3]. Recent instances include attacks on 

government websites in Ukraine before the Russian invasion [4]. DDoS attacks utilize multiple 

compromised computers and IoT devices to flood networks, targeting critical assets such as physical 

locations, data centers, servers, and domains [3]. In cybersecurity and intrusion detection, various 

mechanisms have been proposed for detecting, identifying, and classifying cyberattacks. DDoS 

attacks can be categorized based on the network components they target, such as Layer-7 attacks like 

hypertext transfer protocol (HTTP) flood, Protocol attacks like synchronize (SYN) flood, volumetric 

attacks such as DNS amplification, and other forms of DDoS attacks with different techniques [5]. 

Over the years, researchers have proposed diverse techniques for intrusion detection, 

identification, and mitigation. These range from simple rule-based or signature-based systems to 

machine learning (ML) and deep neural (DL) network-based approaches. Their pursuit of the optimal 

technique is driven by objectives such as improving attack detection and classification accuracy, 

processing time efficiency, resource requirements, real-time applicability, interpretability, and 

minimizing false alarm rates (FARs). Researchers have explored various ML algorithms and DL 

methods to develop efficient attack, classifier models. The central focus often revolves around ML 

and/or DL-based anomaly detection for identifying and classifying malicious traffic flows. Anomaly 

detection is a broad research field with diverse proposed techniques and approaches. An anomaly 

can be defined as an observation that appears inconsistent with the rest of a dataset, exhibiting a 

specific pattern that displays significant changes in a network’s normal traffic level [6]. Numerous 

papers have proposed different anomaly-based models by employing statistical, ML, and DL 

algorithms, such as Markov processes, statistical moments, multivariate distributions, Bayesian 

networks, fuzzy logic, decision trees, and neural networks [7-12]. 

Among those, DL has recently gained popularity, demonstrating to be an effective approach for 

cyberattack detection, classification, and mitigation across various network environments, including 

industrial control systems and IoT environments. DL has facilitated the development of anomaly-

based detection models that require minimal human intervention and can detect zero-day attacks, 

unlike signature-based approaches. DL offers advantages such as increased detection rates, 

robustness to noise, high accuracy, improved system performance, computational efficiency, reduced 

false alarm rates (FAR), and decreased system complexity [13-25], but none of the prior work 

successfully achieved high performance with low system complexity. 

In this paper, our objective is to develop a lightweight model that achieves higher accuracy, 

exhibits robust generalization across different datasets, and effectively reduces alarm rates in 

detecting and classifying DoS and DDoS attacks, while avoiding overfitting. To achieve this, we 

employ a feature transformation approach to convert the CSE-CIC-IDS2018 and NSL-KDD datasets 

into spectrogram-based images. The underlying hypothesis is that by transforming the original 

dataset into an image-based representation, we can enhance the patterns utilized by detector and 

classifier algorithms. Consequently, we could design a lightweight IDS model that yields improved 

performance metrics of significant importance. 

The paper is structured as follows: Section I introduces the topic, Section II covers related works, 

Section III presents the proposed methodology and model, Section IV showcases results and includes 

experimental graphs, discussion, and comparison, and finally, Section V concludes with future 

directions. 

2. Related Work  

Numerous studies employed different ML algorithms for anomaly-based intrusion detection 

systems, including principal component analysis (PCA) based models as in reference [8] that 
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proposed a novel general form for distance calculation and a new PCA-based detection method for 

IoT networks. Similarly, reference [9] proposes a robust anomaly detection technique where the 

training phase is supported using the decision tree algorithm and a hybrid of cuckoo search 

optimization and k-means is cascaded for the detection. This model produced an improved detection 

rate and FAR among the other measurement matrices. Similarly, reference [10] proposes ML-based 

models to overcome the vulnerabilities of cloud computing networks from attacks such as DDoS 

cyberattacks. In this study, the authors proposed an intrusion detection system that combines fuzzy 

c-means clustering (FCM) and support vector machines (SVM) to significantly improve timely 

detection accuracies in a cloud computing environment. 

Other ML algorithms are also effective in detecting and classifying several cyberattacks in 

various environments. Reference [11] presents supervised ML algorithms, which include k-nearest 

neighbors (KNN), logistic regression (LR), SVM, multilayer perceptron (MLP), decision tree (DT), 

and random forest (RF), for detection and classification in IoT security. In this study, the authors 

successfully detected and classified specific attacks including DDoS, DoS, reconnaissance, and 

information theft in IoT networks. As SVM is among the frequently used ML algorithms in anomaly 

detection for network security, the study in [12] proposes a one-class SVM for anomaly detection. 

Despite its computational expensiveness and significant memory requirement, this algorithm is 

excellent at capturing traffic patterns and malicious anomalies in IoT environments.  

Widely used DL approaches for handling complex and high-dimensional data include restricted 

Boltzmann machines, deep belief networks, feed-forward neural networks, deep neural networks, 

recurrent neural networks, CNNs, and deep auto-encoders, among others, as identified in various 

survey papers [8]. DL is suitable for network various environments, such as IoT. The survey in 

reference [9] details the application of DL approaches in IoT environments with a detailed review of 

DL models that have been recently proposed for IoT intrusion detection. Based on [9], DL solutions 

are classified comprehensively based on the application of DL for IoT cybersecurity as effective IoT 

intrusion detection solutions. Numerous DL-based intrusion detection studies face challenges owing 

to the shortcomings of publicly available datasets, as highlighted in various survey works [10]. These 

datasets often suffer from poor representation, outdated information, high data redundancy, 

unrealistic simulation, limited traffic diversity, and a lack of generalized modern traffic data. The 

scarcity of high-quality datasets has prompted researchers to develop diverse DL-based solutions 

specifically designed for intrusion detection systems. 

To address zero-day cyberattacks in IoT infrastructure and reduce FARs, [11] proposes a DNN-

based IDS using mutual information (MI) for feature dimension reduction. This achieves high 

accuracy and a low FAR with reduced network complexity. Reference [12] presents a DL-based IDS 

against BotNet attacks in the IoT, utilizing CNNs to detect popular Botnet attacks and outperforming 

RNN-based systems. Reference [13] introduces a customized DL approach for detecting and 

classifying IoT-based cyberattacks, such as DoS, DDoS, data gathering, and data theft, achieving high 

classification accuracy through feed-forward neural networks with embedding layers and transfer 

learning. Reference [14] trains and evaluates robust IDS using commonly used datasets KDD Cup 99 

and NSL-KDD. This study employs CNN-LSTM neural networks for cross-layer feature fusion, 

capturing both temporal and global characteristics of intrusion information for enhanced detection 

capabilities. By connecting CNN and LSTM, the IDS achieves accurate intrusion identification by 

leveraging comprehensive features extracted from regional and periodic traffic signal characteristics.  

Reference [15] introduces a bidirectional long short-term memory (BiLSTM) IDS to address high 

FARs and low detection accuracies in certain attack classes, specifically user-to-root (U2R) and 

remote-to-local (R2L) attacks in the NSL-KDD dataset. The proposed solution outperforms LSTM-

based IDSs, achieving better accuracies and significantly reduced FARs for U2R and R2L classes. In 

reference [16], a self-adaptive IDS is proposed using a DL-based model that dynamically adjusts the 

network structure for different attack types, enabling detection without altering the entire IDS 

structure. This system, based on an improved genetic algorithm (GA) and deep belief network (DBN), 

achieves high detection and recognition rates with a compact structure and reduced neural network 

complexity. Reference [17] presents an anomaly detection-based approach that addresses model 
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overfitting using temporal CNNs and U-Net networks for attack classification with generalization 

characteristics. This study evaluates the proposed model on both the old KDD99 dataset and the 

modern large-scale CSE-CIC-IDS2018 dataset, while mitigating data imbalance challenges using the 

focal loss function. The results demonstrate the model's generalization ability and effectiveness in 

handling severe class imbalance. 

The utilization of deep learning-based generative models specifically generative adversarial 

networks (GANs) and variational autoencoders (VAEs), is emphasized in reference [18]. These 

models demonstrate remarkable performance in generating realistic dataset content for augmenting 

existing datasets and addressing class imbalance issues. Reference [19] leveraged generative 

networks to build an anomaly-based IDS with reduced FARs and improved generalization. The 

proposed weakly supervised model utilizes GANs to generate malicious samples during training, 

leading to improved detection rates and lower FARs.  

We have managed to find only a handful of related works in the research area where a given 

dataset is transformed into another format to produce better models. One work where the CSE-CIC-

IDS2018 as well as the KDD datasets are transformed into their respective image datasets to construct 

an improved DL-based intrusion detection model for DoS attacks is presented in [18]. In this work, a 

CNN model is proposed, wherein an input image is prepared by rearranging the dataset's features 

into a matrix-like representation. For both datasets used in their work, they have generated colored 

and grayscale image datasets by rearranging the features in both datasets and color coding them to 

have image pixels of 13x9x1 or 3 (that is, 1 or 3 representing the color channels) and 13x6x1 or 3 for 

both KDD and CSE-CIC-IDS2018 datasets, respectively. After that several CNN models with different 

hyperparameters were tested for best performance based on the prepared image dataset. Though the 

authors reported excellent model accuracies and performance for multi-class classification, 
generalizing their proposed method to avoid overfitting remains a challenge. 

A lightweight IDS was reported in [19] where raw traffic is converted into image data. In this 

study, the proposed method improves computational efficiency, but the reported experimental 

results demonstrate that the detection accuracy is considerably low. In contrast, in reference [20] the 

authors proposed a system that takes grayscale 2D-image datasets as input which are prepared from 

a few packets of captured raw traffic data. By creating the pattern for the raw traffic data, the authors 

proposed an IDS model that consists of CNNs and AEs for auto-profiling the traffic patterns and 

filtering abnormal traffic, and they have reported high classification accuracy and low false alarms in 

their experimental results. While their unsupervised proposed DL model achieved high accuracy, the 

FAR is substantially high. Besides the design model consists of layers of CNN cascaded with an auto-

profiling auto-encoder. This adds a considerable amount to the complexity of the systems, hence a 

heavyweight network. 

Another study, which is closely related to our method, is published in reference [21]. Expecting 

to reduce the high FARs observed in many proposed IDSs, the authors of [21] proposed a network 

IDS framework using a deep CNN that uses network spectrogram images generated using the short-

time Fourier transform consuming the CSE-CIC-IDS2017 network dataset. They successfully 

converted the dataset into images and attempted to reduce the FAR to approximately 1.033% while 

they managed to achieve an average of 98.758% accuracy for the multiclass classification. They have 

also used a two-layer CNN and two layers of 128 neurons to build their fully connected module, 

which results in numerous learnable parameters, which in turn increases system complexity.  

In this study, we aim to reduce the FAR and increase the accuracy, specificity, and sensitivity by 

proposing a light CNN-based IDS model capable of detecting and classifying DoS and DDoS 

cyberattacks from a normal network flow.  

3. Proposed Methodology and Model 

Our approach is to transform a publicly available dataset into a more convenient format for DL 

networks to ensure that a high-performance lightweight design is feasible. Using our proposed 

methodology, we have converted publicly available datasets into an image format by taking the 

spectrogram based on the short-term Fourier transform (STFT) technique. In signal analysis, this 
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method is used for numerous purposes such as observing the frequency and time localizations, 

mainly when it is represented in a waterfall display. In this study, we used this concept to augment 

the distinctive pattern of processed network traffic signals. Based on this methodology, we 

successfully converted the CSE-CIC-IDS2018 dataset and proposed a lightweight CNN system to 

detect and classify network traffic flows. In addition, we have also acquired the NSL-KDD and 

converted it into an image dataset to demonstrate the generalization of the proposed methodology 

when applied to older traffic datasets and in a modern-day dataset.  

As shown in Figure 1, we first collect the main dataset, CSE-CIC-IDS2018, from the Canadian 

Institute for Cybersecurity (CIC) and also acquire the NSL-KDD dataset to verify if our proposed 

methodology would generalize when tested in different network datasets. After obtaining both 

datasets, we let the dataset pass through a data preprocessing step for data cleaning, which includes 

removing unnecessary features, such as removing the time and date of recording of the traffic flow, 

handling missing, and infinite values. Subsequently, we retained only the normal traffic flows and 

the different types of DoS and DDoS attacks by excluding any other types of attacks. The retained 

attack in addition to the normal traffic flows included the Hulk, GoldenEye, Slowloris, and 

Slowhttptest as DoS attacks and Low Orbit Ion Canon HTTP (LOIC-HTTP), Low Orbit Ion Canon 

UDP (LOIC-UDP), High Orbit Ion Cannon (HOIC) as DDoS attacks. This dataset as explained in [22] 

has 80 features extracted using the CICFlowMeter-V3 tool. Similarly, after the preprocessing, 117 

features were considered for the NSL-KDD dataset where only DoS attacks and normal flows were 

considered (DoS types of apache2, back, land, Neptune, mailbomb, pod, processtable, smurf, 

teardrop, udpstorm, and worm). After data cleaning, we converted each entry in the datasets into its 

spectrogram representation both in horizontal and vertical display as shown in Figure 2.  

After obtaining these spectrogram representations we integrated them to form a pattern-

augmented image representation of the dataset entry. The conversion was made possible using Eq. 

(1), by taking the absolute value of the division of the squared values of the vertical spectrogram 

points to the horizontal points, where α and β represent the vertical and horizontal spectrogram 

images in complex number representation, respectively. Because the values of the spectrogram are 

complex numbers, taking the absolute value is required to specify the color data as numeric or logical 

values during the image creation.   𝛾 =  |𝛼ଶ||𝛽ଶ|     (1)

The integration of the two spectrogram image matrixes produces the 129X129 images as in 

Figure 3. 

After obtaining the images for each data entry in all the datasets used, we converted these into 

grayscale images and stored them as an image dataset file to be used in the proposed DL networks. 

Since we have converted the more colorful images into less-colored images as shown in Figure 3, we 

could lower the file size and further decrease the file size by converting them into a grayscale format, 

as shown in Figure 4 for normal and attack traffic flows. The benefits of our proposed method played 

a central role in accelerating the detection and classification of our CNN model.  

The proposed model is compared with an artificial neural network (ANN) model (Figure 5) to 

highlight the significant reduction in network weight achieved through our dataset conversion 

method, as demonstrated by the lightweight CNN model (Figure 6 & 7). As shown from the figures, 

both models are considerably shallow neural networks, because our converted image dataset is of 

high quality with an extremely low bias and variance within the data entries. The low bias-variance 

characteristics of the converted dataset help design the intended lightweight IDS. This is reflected in 

our experimental results, particularly the accuracy and loss curves during both the testing and 

training times, presented in the following section. One objective of this study is to propose a 

lightweight IDS model, and this is achieved owing to the cleanness of the prepared datasets by 

avoiding the usual requirement for deeper and more complex neural networks.  
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Figure 1. Proposed dataset to image conversion module. 

 

Figure 2. Spectrogram display horizontal, right and vertical, left. 
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Figure 3. Pattern augmented image. 

 

Figure 4. Traffic flow – Normal right and DDoS attack left. 

As shown in Figure 5, the ANN model is an extremely shallow model of only a single hidden 

layer with 15 neurons and consists of input and output layers. In this model, the input is a 1x129x129 

grayscale image and the input layer should effectively accept this input. As shown in this Figure 6, 

the input layer is set only for illustration purposes as it does not contain any learnable parameters, 

unlike the hidden and output layers. These two layers have numerous learnable parameters as shown 

in Table 3 (for the binary-class ANN model). In the case of multi-class classification, the output layer 

of the network consists of eight neurons, representing the assumed seven classes of attacks along 

with the normal class from the CSE-CIC-IDS2018 dataset. However, when performing binary-class 

classification in both the ANN and CNN networks, the number of neurons in the output layer is 

reduced to two.  

We have set all the parameters and hyperparameters the same, including mainly the learning 

rate, the weight initialization method, epoch numbers, batch sizes, the optimizer technique, and types 

of activation functions. The ReLU activation function was used in all layers other than the output 

layers where a softmax activation function was used. The CNN binary and multi-class classification 

models are shown in Figures 6 and 7, respectively. 

Both the multi and binary CNN models have almost similar structures and components except 

that they slightly differ in the hidden and output layers. Similar to the ANN model, the input for the 

CNN models is 1x129x129 pixels of an image. After the input layer, to process the image input, we 

utilize two convolutional layers, each consisting of eight filters with a size of 3x3. The input-output 

relation can be found in Table 4. The fully connected and output layers in the CNN models are similar 

to those of the corresponding binary-class and multi-class ANN models with similar parameters and 

hyperparameters. The relation among the inputs and outputs across the layers for the CNN models 

is depicted in Table 3. Tables 3 and 4 demonstrate the distinct system complexity between the ANN 

and CNN models, despite their similar performance in detecting and classifying cyberattacks. The 

ANN networks outperform the CNN networks, but they also generate a high number of learnable 

parameters when compared with the CNN counterpart models. Hence, the proposed CNN models 

are useful as lightweight intrusion detection and classification systems. 
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Figure 5. ANN model for binary and multi-class. 

 

Figure 6. CNN- Binary-Class Model. 

 

Figure 7. CNN-multi-class model. 

4. Results and Discussion 

In this section, we present the results and all the performance curves that we obtained during 

our experiment. To evaluate our proposed models, we have used the CSE-CIC-IDS2018 and NSL-

KDD datasets separately as well as in combined form and this is summarized in Table 1. 

Table 1. Evaluation Metrics for Binary-class classification. 

Dataset Acc(%) Pre(%) FNR FPR 

CIC-IDS2018 ANN:99.55 ANN:99.55 FNN:0.0121 FNN:0.0027 
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CNN:99.42 CNN:99.42 CNN:0.0089 CNN:0.0037 

NSL-KDD 
ANN:99.87 ANN:99.87 FNN:0.0006 FNN:0.0009 

CNN:99.82 CNN:99.82 CNN:0.0008 CNN:0.0022 

Combined 

dataset 

ANN:99.63 ANN:99.63 FNN:0.0058 FNN:0.0026 

CNN:99.37 CNN:99.37 CNN:0.0097 CNN:0.0034 

1 Acc: Accuracy, Pre: Precision, FPR: False Positive Rate and FNR: False Negative Rate. 

Based on our experimental results, as displayed in Table 2, we observe the efficacy of our dataset 

conversion method reflected in the high accuracy, precision, recall, and F-1 scores for all the assumed 

datasets applied to the binary-class models. We generated these evaluation metrics as they are crucial 

for assessing our model. 

Table 2. Sample Dataset. 

Dataset Normal Dataset Attack Training Vs Test split 

CIC-IDS2018 200,000 140, 000 90% Vs 10% 

NSL-KDD 65, 000 110, 000 90% Vs 10% 

Combined Dataset 240, 000 170, 000 95% Vs 5% 

As observed in Table 2, both models exhibit comparable performance, with the ANN slightly 

outperforming the CNN architecture. When we interpret this in conjunction with other conditions, 

such as the model complexity and loss/accuracy curves, we can deduce that CNN is a significantly 

robust model. By examining Tables 3 and 4, it becomes evident that the CNN model achieves 

commendable performance despite having a significantly smaller number of learnable parameters 

when compared to the ANN model. The CNN model only required 8,521 learnable parameters to 

achieve comparable performance to the ANN model for binary-class classification, while the ANN 

required approximately a quarter of a million learnable parameters. This shows the manner in which 

the image dataset prepared using our method aids the CNN model and achieves excellent 

performance without requiring deeper networks that would result in a large number of parameters. 

Table 3. ANN Binary-class Model Summary. 

Layer (type) Output Shape Parameters 

Flatten  (None, 16641)        0 

Dense (None, 15)         249630 

Dense (None, 2)         32 

Total params: 249,662 

Trainable params: 249,662 

Non-trainable params: 0 

Table 4. CNN Binary-class Model Summary. 

Layer (type) Output Shape Parameters 

Conv2D (None, 43, 43, 8) 80 
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Conv2D (None, 14, 14, 8) 584 

Flatten  (None, 1568) 0 

Dense (None, 5) 7845 

Dense (None, 2) 12 

Total params: 8,521 

Trainable params: 8,521 

Non-trainable params: 0 

In addition, the CNN model in both the binary and multi-class models has achieved excellent 

performance in avoiding overfitting when compared with the ANN models. For this, we have 

generated the loss/accuracy curves during the training and evaluation sessions, as shown in Figures 

8 and 9. 

 

Figure 8. Binary-ANN loss/accuracy during training/testing. 

 

Figure 9. Binary - CNN loss/accuracy during training/testing. 

As shown in Figures 8 and 9, the CNN model exhibits better generalization and avoids 

overfitting more effectively than the ANN model. It has been recorded that both models avoided 

overfitting, with ANN’s accuracy as Train: 0.9975, Test: 0.9955 and CNN’s accuracy as Train: 0.9956, 

Test: 0.9948. From this, it is clear that, based on the bias-variance analysis, the ANN model effectively 

minimizes the gap toward the maximum possible accuracy of 100%. However, the CNN model 

performs well in reducing the disparity between training and testing accuracies, which is a crucial 

indicator of its ability to handle unseen datasets compared to the ANN model. Thus far, the CNN 

model has achieved remarkable performance while avoiding overfitting and with few learnable 

parameters, which makes it an extremely lightweight model compared to the ANN model. Excellent 

performance was also observed from the ROC-AUC-generated curves. From Figures 10 and 11, it is 

evident that both models are effective in reducing FARs. The lightweight CNN model for the binary 

class achieved an FPR of 0.0089 and an FNR of 0.0037, while the ANN model for the binary class 
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achieved an FPR of 0.0121 and an FNR of 0.0027. This shows the excellent specificity and sensitivity 

of the proposed models, and this is also an indication that the lightweight CNN model will likely 

outperform other proposed systems for real-time applications. 

 

Figure 10. ROC-AUC curve for binary ANN. 

 

Figure 11. ROC-AUC curve for binary CNN. 

To demonstrate the performance and generalization of our proposed approach and models on 

both legacy and modern network traffic flows, we have generated separate performance curves for 

the NSL-KDD dataset, which represents an older network dataset, and the CSE-CIC-IDS2018 dataset, 

which is a more up-to-date network dataset. Furthermore, we compared the proposed approach with 

different existing study articles; in terms of overall performance with achieved accuracy (Acc.), 

detection rate (DR), and FAR whenever included in the study articles. As shown in Table 5, there are 

several proposed techniques similar to ours, such as in terms of the model used and dataset selection. 

The comparison table shows how our proposed approach outperforms other techniques and 

approaches. In addition to achieving high accuracy with low FAR, our model presents a simple and 

lightweight model. 

We have also tested our proposed system for multi-class classification. All the results 

demonstrated excellent performance both for the NSL-KDD and for multi-class classification for the 

CSE-CIC-IDS2018 datasets. Figure 12 shows the confusion matrix for multi-class classification (that 

is, classes Normal as normal, Hulk: Attack1, GoldenEye: Attack2, Slowloris: Attack3, Slowhttptest: 

Attack4, LOIC-HTTP: Attack5, LOIC-UDP: Attack6, and HOIC: Attack7) using the CNN lightweight 

model for multi-class classification. In addition, we have also evaluated our system's performance by 

testing it with a mixture of these two datasets, which belong to different network versions and time 

instances, serving as inputs to our proposed system. Subsequently, our system could effectively 

classify the mixed normal and attack signals without difficulties as observed in Figure 13 

(Loss/accuracy) for binary-class classification (achieving Train: 0.9955, Test: 0.9937 accuracy). 
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Figure 12. Confusion matrix for the multi-class CNN model. 

 

Figure 13. NSL-KDD+CSE-CIC-IDS2018 CNN binary classification loss/accuracy. 

5. Conclusion 

From our study, we have observed the effectiveness of applications of signal analysis techniques, 

such as STFT and other analysis tools, if used for image creation and pattern augmentation. We 

successfully converted the datasets CSE-CIC-IDS2018 and NSL-KDD into their corresponding image 

datasets for better performance in designing anomaly-based intrusion detection systems. As 

observed from the results of our experiment, the conversion of the datasets into their corresponding 

image datasets enabled us to design and propose an extremely lightweight intrusion detection model. 

In addition to being lightweight, the model exhibits excellent system performance, demonstrated by 

reduced FARs, high accuracy, and exceptional sensitivity and specificity measures. Furthermore, it 

avoids the overfitting problem, which is an undesirable phenomenon in DL methodologies.  

For future work, we aim to extend our work to different types of network datasets with better 

models for IDS. Our next goal is to reduce the size of the images in the converted dataset without 

degrading its quality (that is, to lower the size of 129x129 pixels of the grayscale image). Furthermore, 

we plan to assess different ML and/or DL algorithms and networks for greater performance based on 

the prepared dataset. Furthermore, inspired by the promising results of our experiment, we envision 

applying this method to other application areas such as modulation identification. By leveraging the 

insights gained from this study, we can explore new avenues for improving performance and 

expanding the application of our approach. 
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Table 5. Comparison table. 

Article Used dataset Model Evaluation Criteria 

Novaes et al. [23] CICDDoS2019 GANs Acc: 94.38 

Olaimat et al. [24] CICIDS2017 GANs Acc: 93.20 

Huang et al. [25] NSLKDD IGANs Acc: 84.45 

Dlamini et al. [26] NSLKDD CGANs F1 Score: 73.00 

Han et al. [27] KDD99 GANs Ensemble Precision: 96.70 

Ezeme et al. [28] KDD99 cGANs Acc: 85.63 

Imtiaz U. et al. [29] KDD99 cGANs Precision: 99.05 

E. min et al. [30] NSLKDD, CICIDS2017 Autoencoder DR: 99.00 

W.Wang [31] DARPA 1998 & ISCX 2012 CNN+LSTM DR: 99.00, FAR: 0.02 

M. Al-Qatf [32] KDD99 Autoencoder + SVM DR:95.00 

Shone et al. [33] KDD99 & NSLKDD Asymmetric Autoencoder Acc: 97.90, FAR: 2.10 

Ludwig SA [34] NSLKDD Ensemble combining AE, 

DBN, DNN & ELM 

Algorithms 

Acc: 92.49, FAR: 0.147 

Yin et al. [35] NSLKDD RNN network and 

comparison with machine 

learning 

Acc: 83.28, FAR: 0.07 

A.Diro et al. [36] NSLKDD DNN with 4 hidden layers Acc: 99.20 

D. Aksu et al. [37] CICIDS2017 DNN with 7 hidden layers Acc: 98.00 

T. Tang et al. [38] NSLKDD DNN with 3 hidden layers Acc: 75.75 

Andresini et al. [39] CICIDS2017 Autoencoder and 1D CNN Acc: 97.00 

Roopak et al. [40] CICIDS2017 CNN+LSTM Acc: 96.20 

A.S. Khan [21] CICIDS2017 SDCNN Acc: 98.76 

Atefinia & Ahmadi [41] CICIDS2018 Modular DNN Acc: 100 

Basnet et al. [10] CICIDS2018 MLP Acc: 99 

Catillo et al. [42] CICIDS2018 Deep Autoencoder Acc: 99.20 

Kim et al. [18] CICIDS2018 CNN Acc: 99.99 

Lin et al. [43] CICIDS2018 LSTM Acc: 96.20 

Our system CICIDS2018,  NSLKDD, & 

mix of these two 

Lightweight CNN Acc: 99.37, Pre: 99.37, FNR: 

0.0034, FPR: 0.0097 
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