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Abstract: As the world increasingly becomes more interconnected, the demand for safety and
security is ever-increasing, particularly for industrial networks. This has prompted numerous
researchers to investigate different methodologies and techniques suitable for intrusion detection
systems (IDS) requirements. Over the years, many studies have proposed various solutions in this
regard including signature-based and machine-learning (ML) based systems. More recently,
researchers are considering deep learning (DL) based anomaly detection approaches. Most
proposed works in this research field aimed to achieve either one or a combination of high accuracy,
considerably low false alarm rates (FARs), high classification specificity and detection sensitivity,
achieving lightweight DL models, or other ML and DL-related performance measurement metrics.
In this study, we propose a novel method to convert a raw dataset to an image dataset to magnify
patterns. Based on this we devise an anomaly detection for IDS using a lightweight convolutional
neural network (CNN) that classifies denial of service and distributed denial of service. The
proposed methods were evaluated using a modern dataset, CSE-CIC-IDS2018, and a legacy dataset,
NSL-KDD. We have also applied a combined dataset to assess the generalization of the proposed
model across various datasets. Our experimental results have demonstrated that the proposed
methods achieved high accuracy and considerably low FARs with high specificity and sensitivity.
The resulting loss and accuracy curves have also demonstrated the excellent generalization of the
proposed lightweight CNN model, effectively avoiding overfitting. This holds for both the modern
and legacy datasets, including their mixed version.

Keywords: anomaly detection; convolutional neural networks; deep learning; DDoS; DoS; image
dataset; intrusion detection system; lightweight model; machine learning; pattern augmented;
spectrogram

1. Introduction

Computer networks have revolutionized various aspects of our lives, including communication,
knowledge acquisition, and interaction. Numerous sectors, such as healthcare, manufacturing,
finance, education, aviation, and entertainment, heavily rely on computer networks, including cloud
computing and online gaming. The proliferation of cloud computing has also paved the way for the
internet of things (IoT), which has found applications across diverse industries. However, the
widespread adoption of computer networks and the Internet has also created opportunities for
cyberattacks, prompting cybersecurity concerns. Fortinet, a prominent network security provider,
reports that global businesses expended more than $170 billion in 2022 to counter cybercrimes,
highlighting the persistent disruption caused by these threats [1]. Malware & ransomware, phishing,
distributed denial of service (DDoS), denial of service (DoS), structured query language (SQL)
injection, zero-day exploit, domain name system (DNS) tunneling, and Man-in-the-middle are among
the most common cyberattacks and network breaches. Particularly, DDoS and malware attacks can
be considered the most dangerous attacks depending on the attack scales and the type of the attacked
industry.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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In this study, we aim to specifically examine DDoS attacks. These attacks have been observed to
exhibit a growing level of sophistication, frequency, volume, and efficiency, and possess the
capability to cause massive damage against various entities. DDoS attacks are a significant
cybersecurity threat, with over 8.4 million attacks recorded in 2019 alone, averaging 23,000 attacks
per day or 16 attacks per minute [2]. These attacks can severely damage organizations, disrupting
applications and services by overwhelming networks with malicious traffic. Motivations for DDoS
attacks range from hacktivism to cybercrime and espionage [3]. Recent instances include attacks on
government websites in Ukraine before the Russian invasion [4]. DDoS attacks utilize multiple
compromised computers and IoT devices to flood networks, targeting critical assets such as physical
locations, data centers, servers, and domains [3]. In cybersecurity and intrusion detection, various
mechanisms have been proposed for detecting, identifying, and classifying cyberattacks. DDoS
attacks can be categorized based on the network components they target, such as Layer-7 attacks like
hypertext transfer protocol (HTTP) flood, Protocol attacks like synchronize (SYN) flood, volumetric
attacks such as DNS amplification, and other forms of DDoS attacks with different techniques [5].

Over the years, researchers have proposed diverse techniques for intrusion detection,
identification, and mitigation. These range from simple rule-based or signature-based systems to
machine learning (ML) and deep neural (DL) network-based approaches. Their pursuit of the optimal
technique is driven by objectives such as improving attack detection and classification accuracy,
processing time efficiency, resource requirements, real-time applicability, interpretability, and
minimizing false alarm rates (FARs). Researchers have explored various ML algorithms and DL
methods to develop efficient attack, classifier models. The central focus often revolves around ML
and/or DL-based anomaly detection for identifying and classifying malicious traffic flows. Anomaly
detection is a broad research field with diverse proposed techniques and approaches. An anomaly
can be defined as an observation that appears inconsistent with the rest of a dataset, exhibiting a
specific pattern that displays significant changes in a network’s normal traffic level [6]. Numerous
papers have proposed different anomaly-based models by employing statistical, ML, and DL
algorithms, such as Markov processes, statistical moments, multivariate distributions, Bayesian
networks, fuzzy logic, decision trees, and neural networks [7-12].

Among those, DL has recently gained popularity, demonstrating to be an effective approach for
cyberattack detection, classification, and mitigation across various network environments, including
industrial control systems and IoT environments. DL has facilitated the development of anomaly-
based detection models that require minimal human intervention and can detect zero-day attacks,
unlike signature-based approaches. DL offers advantages such as increased detection rates,
robustness to noise, high accuracy, improved system performance, computational efficiency, reduced
false alarm rates (FAR), and decreased system complexity [13-25], but none of the prior work
successfully achieved high performance with low system complexity.

In this paper, our objective is to develop a lightweight model that achieves higher accuracy,
exhibits robust generalization across different datasets, and effectively reduces alarm rates in
detecting and classifying DoS and DDoS attacks, while avoiding overfitting. To achieve this, we
employ a feature transformation approach to convert the CSE-CIC-IDS2018 and NSL-KDD datasets
into spectrogram-based images. The underlying hypothesis is that by transforming the original
dataset into an image-based representation, we can enhance the patterns utilized by detector and
classifier algorithms. Consequently, we could design a lightweight IDS model that yields improved
performance metrics of significant importance.

The paper is structured as follows: Section I introduces the topic, Section II covers related works,
Section III presents the proposed methodology and model, Section IV showcases results and includes
experimental graphs, discussion, and comparison, and finally, Section V concludes with future
directions.

2. Related Work

Numerous studies employed different ML algorithms for anomaly-based intrusion detection
systems, including principal component analysis (PCA) based models as in reference [8] that
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proposed a novel general form for distance calculation and a new PCA-based detection method for
IoT networks. Similarly, reference [9] proposes a robust anomaly detection technique where the
training phase is supported using the decision tree algorithm and a hybrid of cuckoo search
optimization and k-means is cascaded for the detection. This model produced an improved detection
rate and FAR among the other measurement matrices. Similarly, reference [10] proposes ML-based
models to overcome the vulnerabilities of cloud computing networks from attacks such as DDoS
cyberattacks. In this study, the authors proposed an intrusion detection system that combines fuzzy
c-means clustering (FCM) and support vector machines (SVM) to significantly improve timely
detection accuracies in a cloud computing environment.

Other ML algorithms are also effective in detecting and classifying several cyberattacks in
various environments. Reference [11] presents supervised ML algorithms, which include k-nearest
neighbors (KNN), logistic regression (LR), SVM, multilayer perceptron (MLP), decision tree (DT),
and random forest (RF), for detection and classification in IoT security. In this study, the authors
successfully detected and classified specific attacks including DDoS, DoS, reconnaissance, and
information theft in IoT networks. As SVM is among the frequently used ML algorithms in anomaly
detection for network security, the study in [12] proposes a one-class SVM for anomaly detection.
Despite its computational expensiveness and significant memory requirement, this algorithm is
excellent at capturing traffic patterns and malicious anomalies in IoT environments.

Widely used DL approaches for handling complex and high-dimensional data include restricted
Boltzmann machines, deep belief networks, feed-forward neural networks, deep neural networks,
recurrent neural networks, CNNs, and deep auto-encoders, among others, as identified in various
survey papers [8]. DL is suitable for network various environments, such as IoT. The survey in
reference [9] details the application of DL approaches in IoT environments with a detailed review of
DL models that have been recently proposed for IoT intrusion detection. Based on [9], DL solutions
are classified comprehensively based on the application of DL for IoT cybersecurity as effective IoT
intrusion detection solutions. Numerous DL-based intrusion detection studies face challenges owing
to the shortcomings of publicly available datasets, as highlighted in various survey works [10]. These
datasets often suffer from poor representation, outdated information, high data redundancy,
unrealistic simulation, limited traffic diversity, and a lack of generalized modern traffic data. The
scarcity of high-quality datasets has prompted researchers to develop diverse DL-based solutions
specifically designed for intrusion detection systems.

To address zero-day cyberattacks in IoT infrastructure and reduce FARs, [11] proposes a DNN-
based IDS using mutual information (MI) for feature dimension reduction. This achieves high
accuracy and a low FAR with reduced network complexity. Reference [12] presents a DL-based IDS
against BotNet attacks in the IoT, utilizing CNNs to detect popular Botnet attacks and outperforming
RNN-based systems. Reference [13] introduces a customized DL approach for detecting and
classifying IoT-based cyberattacks, such as DoS, DDoS, data gathering, and data theft, achieving high
classification accuracy through feed-forward neural networks with embedding layers and transfer
learning. Reference [14] trains and evaluates robust IDS using commonly used datasets KDD Cup 99
and NSL-KDD. This study employs CNN-LSTM neural networks for cross-layer feature fusion,
capturing both temporal and global characteristics of intrusion information for enhanced detection
capabilities. By connecting CNN and LSTM, the IDS achieves accurate intrusion identification by
leveraging comprehensive features extracted from regional and periodic traffic signal characteristics.

Reference [15] introduces a bidirectional long short-term memory (BiLSTM) IDS to address high
FARs and low detection accuracies in certain attack classes, specifically user-to-root (U2R) and
remote-to-local (R2L) attacks in the NSL-KDD dataset. The proposed solution outperforms LSTM-
based IDSs, achieving better accuracies and significantly reduced FARs for U2R and R2L classes. In
reference [16], a self-adaptive IDS is proposed using a DL-based model that dynamically adjusts the
network structure for different attack types, enabling detection without altering the entire IDS
structure. This system, based on an improved genetic algorithm (GA) and deep belief network (DBN),
achieves high detection and recognition rates with a compact structure and reduced neural network
complexity. Reference [17] presents an anomaly detection-based approach that addresses model
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overfitting using temporal CNNs and U-Net networks for attack classification with generalization
characteristics. This study evaluates the proposed model on both the old KDD99 dataset and the
modern large-scale CSE-CIC-IDS2018 dataset, while mitigating data imbalance challenges using the
focal loss function. The results demonstrate the model's generalization ability and effectiveness in
handling severe class imbalance.

The utilization of deep learning-based generative models specifically generative adversarial
networks (GANs) and variational autoencoders (VAEs), is emphasized in reference [18]. These
models demonstrate remarkable performance in generating realistic dataset content for augmenting
existing datasets and addressing class imbalance issues. Reference [19] leveraged generative
networks to build an anomaly-based IDS with reduced FARs and improved generalization. The
proposed weakly supervised model utilizes GANs to generate malicious samples during training,
leading to improved detection rates and lower FARs.

We have managed to find only a handful of related works in the research area where a given
dataset is transformed into another format to produce better models. One work where the CSE-CIC-
IDS2018 as well as the KDD datasets are transformed into their respective image datasets to construct
an improved DL-based intrusion detection model for DoS attacks is presented in [18]. In this work, a
CNN model is proposed, wherein an input image is prepared by rearranging the dataset's features
into a matrix-like representation. For both datasets used in their work, they have generated colored
and grayscale image datasets by rearranging the features in both datasets and color coding them to
have image pixels of 13x9x1 or 3 (that is, 1 or 3 representing the color channels) and 13x6x1 or 3 for
both KDD and CSE-CIC-IDS2018 datasets, respectively. After that several CNN models with different
hyperparameters were tested for best performance based on the prepared image dataset. Though the
authors reported excellent model accuracies and performance for multi-class classification,
generalizing their proposed method to avoid overfitting remains a challenge.

A lightweight IDS was reported in [19] where raw traffic is converted into image data. In this
study, the proposed method improves computational efficiency, but the reported experimental
results demonstrate that the detection accuracy is considerably low. In contrast, in reference [20] the
authors proposed a system that takes grayscale 2D-image datasets as input which are prepared from
a few packets of captured raw traffic data. By creating the pattern for the raw traffic data, the authors
proposed an IDS model that consists of CNNs and AEs for auto-profiling the traffic patterns and
filtering abnormal traffic, and they have reported high classification accuracy and low false alarms in
their experimental results. While their unsupervised proposed DL model achieved high accuracy, the
FAR is substantially high. Besides the design model consists of layers of CNN cascaded with an auto-
profiling auto-encoder. This adds a considerable amount to the complexity of the systems, hence a
heavyweight network.

Another study, which is closely related to our method, is published in reference [21]. Expecting
to reduce the high FARs observed in many proposed IDSs, the authors of [21] proposed a network
IDS framework using a deep CNN that uses network spectrogram images generated using the short-
time Fourier transform consuming the CSE-CIC-IDS2017 network dataset. They successfully
converted the dataset into images and attempted to reduce the FAR to approximately 1.033% while
they managed to achieve an average of 98.758% accuracy for the multiclass classification. They have
also used a two-layer CNN and two layers of 128 neurons to build their fully connected module,
which results in numerous learnable parameters, which in turn increases system complexity.

In this study, we aim to reduce the FAR and increase the accuracy, specificity, and sensitivity by
proposing a light CNN-based IDS model capable of detecting and classifying DoS and DDoS
cyberattacks from a normal network flow.

3. Proposed Methodology and Model

Our approach is to transform a publicly available dataset into a more convenient format for DL
networks to ensure that a high-performance lightweight design is feasible. Using our proposed
methodology, we have converted publicly available datasets into an image format by taking the
spectrogram based on the short-term Fourier transform (STFT) technique. In signal analysis, this
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method is used for numerous purposes such as observing the frequency and time localizations,
mainly when it is represented in a waterfall display. In this study, we used this concept to augment
the distinctive pattern of processed network traffic signals. Based on this methodology, we
successfully converted the CSE-CIC-IDS2018 dataset and proposed a lightweight CNN system to
detect and classify network traffic flows. In addition, we have also acquired the NSL-KDD and
converted it into an image dataset to demonstrate the generalization of the proposed methodology
when applied to older traffic datasets and in a modern-day dataset.

As shown in Figure 1, we first collect the main dataset, CSE-CIC-IDS2018, from the Canadian
Institute for Cybersecurity (CIC) and also acquire the NSL-KDD dataset to verify if our proposed
methodology would generalize when tested in different network datasets. After obtaining both
datasets, we let the dataset pass through a data preprocessing step for data cleaning, which includes
removing unnecessary features, such as removing the time and date of recording of the traffic flow,
handling missing, and infinite values. Subsequently, we retained only the normal traffic flows and
the different types of DoS and DDoS attacks by excluding any other types of attacks. The retained
attack in addition to the normal traffic flows included the Hulk, GoldenEye, Slowloris, and
Slowhttptest as DoS attacks and Low Orbit Ion Canon HTTP (LOIC-HTTP), Low Orbit Ion Canon
UDP (LOIC-UDP), High Orbit Ion Cannon (HOIC) as DDoS attacks. This dataset as explained in [22]
has 80 features extracted using the CICFlowMeter-V3 tool. Similarly, after the preprocessing, 117
features were considered for the NSL-KDD dataset where only DoS attacks and normal flows were
considered (DoS types of apache2, back, land, Neptune, mailbomb, pod, processtable, smurf,
teardrop, udpstorm, and worm). After data cleaning, we converted each entry in the datasets into its
spectrogram representation both in horizontal and vertical display as shown in Figure 2.

After obtaining these spectrogram representations we integrated them to form a pattern-
augmented image representation of the dataset entry. The conversion was made possible using Eq.
(1), by taking the absolute value of the division of the squared values of the vertical spectrogram
points to the horizontal points, where a and 3 represent the vertical and horizontal spectrogram
images in complex number representation, respectively. Because the values of the spectrogram are
complex numbers, taking the absolute value is required to specify the color data as numeric or logical
values during the image creation.

la?|
T @
The integration of the two spectrogram image matrixes produces the 129X129 images as in

Figure 3.

After obtaining the images for each data entry in all the datasets used, we converted these into
grayscale images and stored them as an image dataset file to be used in the proposed DL networks.
Since we have converted the more colorful images into less-colored images as shown in Figure 3, we
could lower the file size and further decrease the file size by converting them into a grayscale format,
as shown in Figure 4 for normal and attack traffic flows. The benefits of our proposed method played
a central role in accelerating the detection and classification of our CNN model.

The proposed model is compared with an artificial neural network (ANN) model (Figure 5) to
highlight the significant reduction in network weight achieved through our dataset conversion
method, as demonstrated by the lightweight CNN model (Figure 6 & 7). As shown from the figures,
both models are considerably shallow neural networks, because our converted image dataset is of
high quality with an extremely low bias and variance within the data entries. The low bias-variance
characteristics of the converted dataset help design the intended lightweight IDS. This is reflected in
our experimental results, particularly the accuracy and loss curves during both the testing and
training times, presented in the following section. One objective of this study is to propose a
lightweight IDS model, and this is achieved owing to the cleanness of the prepared datasets by
avoiding the usual requirement for deeper and more complex neural networks.
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Figure 4. Traffic flow — Normal right and DDoS attack left.

As shown in Figure 5, the ANN model is an extremely shallow model of only a single hidden
layer with 15 neurons and consists of input and output layers. In this model, the input is a 1x129x129
grayscale image and the input layer should effectively accept this input. As shown in this Figure 6,
the input layer is set only for illustration purposes as it does not contain any learnable parameters,
unlike the hidden and output layers. These two layers have numerous learnable parameters as shown
in Table 3 (for the binary-class ANN model). In the case of multi-class classification, the output layer
of the network consists of eight neurons, representing the assumed seven classes of attacks along
with the normal class from the CSE-CIC-IDS2018 dataset. However, when performing binary-class
classification in both the ANN and CNN networks, the number of neurons in the output layer is
reduced to two.

We have set all the parameters and hyperparameters the same, including mainly the learning
rate, the weight initialization method, epoch numbers, batch sizes, the optimizer technique, and types
of activation functions. The ReLU activation function was used in all layers other than the output
layers where a softmax activation function was used. The CNN binary and multi-class classification
models are shown in Figures 6 and 7, respectively.

Both the multi and binary CNN models have almost similar structures and components except
that they slightly differ in the hidden and output layers. Similar to the ANN model, the input for the
CNN models is 1x129x129 pixels of an image. After the input layer, to process the image input, we
utilize two convolutional layers, each consisting of eight filters with a size of 3x3. The input-output
relation can be found in Table 4. The fully connected and output layers in the CNN models are similar
to those of the corresponding binary-class and multi-class ANN models with similar parameters and
hyperparameters. The relation among the inputs and outputs across the layers for the CNN models
is depicted in Table 3. Tables 3 and 4 demonstrate the distinct system complexity between the ANN
and CNN models, despite their similar performance in detecting and classifying cyberattacks. The
ANN networks outperform the CNN networks, but they also generate a high number of learnable
parameters when compared with the CNN counterpart models. Hence, the proposed CNN models
are useful as lightweight intrusion detection and classification systems.
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Figure 7. CNN-multi-class model.

4. Results and Discussion
In this section, we present the results and all the performance curves that we obtained during
our experiment. To evaluate our proposed models, we have used the CSE-CIC-IDS2018 and NSL-
KDD datasets separately as well as in combined form and this is summarized in Table 1.
Table 1. Evaluation Metrics for Binary-class classification.
Dataset Acc(%) Pre(%) FNR FPR
CIC-IDS2018 ANN:99.55 ANN:99.55 FNN:0.0121 FNN:0.0027
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CNN:99.42 CNN:99.42 CNN:0.0089  CNN:0.0037
ANN:99.87 ANN:99.87 FNN:0.0006 FNN:0.0009
NSL-KDD
CNN:99.82 CNN:99.82 CNN:0.0008  CNN:0.0022
. ANN:99.63 ANN:99.63 FNN:0.0058 FNN:0.0026
Combined
dataset CNN:99.37 CNN:99.37 CNN:0.0097  CNN:0.0034

1 Acc: Accuracy, Pre: Precision, FPR: False Positive Rate and FNR: False Negative Rate.

Based on our experimental results, as displayed in Table 2, we observe the efficacy of our dataset
conversion method reflected in the high accuracy, precision, recall, and F-1 scores for all the assumed
datasets applied to the binary-class models. We generated these evaluation metrics as they are crucial
for assessing our model.

Table 2. Sample Dataset.

Dataset Normal Dataset Attack Training Vs Test split
CIC-IDS2018 200,000 140, 000 90% Vs 10%
NSL-KDD 65, 000 110, 000 90% Vs 10%
Combined Dataset 240, 000 170, 000 95% Vs 5%

As observed in Table 2, both models exhibit comparable performance, with the ANN slightly
outperforming the CNN architecture. When we interpret this in conjunction with other conditions,
such as the model complexity and loss/accuracy curves, we can deduce that CNN is a significantly
robust model. By examining Tables 3 and 4, it becomes evident that the CNN model achieves
commendable performance despite having a significantly smaller number of learnable parameters
when compared to the ANN model. The CNN model only required 8,521 learnable parameters to
achieve comparable performance to the ANN model for binary-class classification, while the ANN
required approximately a quarter of a million learnable parameters. This shows the manner in which
the image dataset prepared using our method aids the CNN model and achieves excellent
performance without requiring deeper networks that would result in a large number of parameters.

Table 3. ANN Binary-class Model Summary.

Layer (type) Output Shape Parameters
Flatten (None, 16641) 0
Dense (None, 15) 249630
Dense (None, 2) 32
Total params: 249,662
Trainable params: 249,662
Non-trainable params: 0
Table 4. CNN Binary-class Model Summary.
Layer (type) Output Shape Parameters
Conv2D (None, 43, 43, 8) 80
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10
Conv2D (None, 14, 14, 8) 584
Flatten (None, 1568) 0
Dense (None, 5) 7845
Dense (None, 2) 12

Total params: 8,521
Trainable params: 8,521

Non-trainable params: 0

In addition, the CNN model in both the binary and multi-class models has achieved excellent
performance in avoiding overfitting when compared with the ANN models. For this, we have
generated the loss/accuracy curves during the training and evaluation sessions, as shown in Figures
8 and 9.
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Figure 8. Binary-ANN loss/accuracy during training/testing.
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Figure 9. Binary - CNN loss/accuracy during training/testing.

As shown in Figures 8 and 9, the CNN model exhibits better generalization and avoids
overfitting more effectively than the ANN model. It has been recorded that both models avoided
overfitting, with ANN’s accuracy as Train: 0.9975, Test: 0.9955 and CNN’s accuracy as Train: 0.9956,
Test: 0.9948. From this, it is clear that, based on the bias-variance analysis, the ANN model effectively
minimizes the gap toward the maximum possible accuracy of 100%. However, the CNN model
performs well in reducing the disparity between training and testing accuracies, which is a crucial
indicator of its ability to handle unseen datasets compared to the ANN model. Thus far, the CNN
model has achieved remarkable performance while avoiding overfitting and with few learnable
parameters, which makes it an extremely lightweight model compared to the ANN model. Excellent
performance was also observed from the ROC-AUC-generated curves. From Figures 10 and 11, it is
evident that both models are effective in reducing FARs. The lightweight CNN model for the binary
class achieved an FPR of 0.0089 and an FNR of 0.0037, while the ANN model for the binary class
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achieved an FPR of 0.0121 and an FNR of 0.0027. This shows the excellent specificity and sensitivity
of the proposed models, and this is also an indication that the lightweight CNN model will likely
outperform other proposed systems for real-time applications.
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Figure 10. ROC-AUC curve for binary ANN.
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Figure 11. ROC-AUC curve for binary CNN.

To demonstrate the performance and generalization of our proposed approach and models on
both legacy and modern network traffic flows, we have generated separate performance curves for
the NSL-KDD dataset, which represents an older network dataset, and the CSE-CIC-IDS2018 dataset,
which is a more up-to-date network dataset. Furthermore, we compared the proposed approach with
different existing study articles; in terms of overall performance with achieved accuracy (Acc.),
detection rate (DR), and FAR whenever included in the study articles. As shown in Table 5, there are
several proposed techniques similar to ours, such as in terms of the model used and dataset selection.
The comparison table shows how our proposed approach outperforms other techniques and
approaches. In addition to achieving high accuracy with low FAR, our model presents a simple and
lightweight model.

We have also tested our proposed system for multi-class classification. All the results
demonstrated excellent performance both for the NSL-KDD and for multi-class classification for the
CSE-CIC-IDS2018 datasets. Figure 12 shows the confusion matrix for multi-class classification (that
is, classes Normal as normal, Hulk: Attackl, GoldenEye: Attack2, Slowloris: Attack3, Slowhttptest:
Attack4, LOIC-HTTP: Attack5, LOIC-UDP: Attack6, and HOIC: Attack?) using the CNN lightweight
model for multi-class classification. In addition, we have also evaluated our system's performance by
testing it with a mixture of these two datasets, which belong to different network versions and time
instances, serving as inputs to our proposed system. Subsequently, our system could effectively
classify the mixed normal and attack signals without difficulties as observed in Figure 13
(Loss/accuracy) for binary-class classification (achieving Train: 0.9955, Test: 0.9937 accuracy).
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Figure 12. Confusion matrix for the multi-class CNN model.
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Figure 13. NSL-KDD+CSE-CIC-IDS2018 CNN binary classification loss/accuracy.

5. Conclusion

From our study, we have observed the effectiveness of applications of signal analysis techniques,
such as STFT and other analysis tools, if used for image creation and pattern augmentation. We
successfully converted the datasets CSE-CIC-IDS2018 and NSL-KDD into their corresponding image
datasets for better performance in designing anomaly-based intrusion detection systems. As
observed from the results of our experiment, the conversion of the datasets into their corresponding
image datasets enabled us to design and propose an extremely lightweight intrusion detection model.
In addition to being lightweight, the model exhibits excellent system performance, demonstrated by
reduced FARs, high accuracy, and exceptional sensitivity and specificity measures. Furthermore, it
avoids the overfitting problem, which is an undesirable phenomenon in DL methodologies.

For future work, we aim to extend our work to different types of network datasets with better
models for IDS. Our next goal is to reduce the size of the images in the converted dataset without
degrading its quality (that is, to lower the size of 129x129 pixels of the grayscale image). Furthermore,
we plan to assess different ML and/or DL algorithms and networks for greater performance based on
the prepared dataset. Furthermore, inspired by the promising results of our experiment, we envision
applying this method to other application areas such as modulation identification. By leveraging the
insights gained from this study, we can explore new avenues for improving performance and
expanding the application of our approach.
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Article Used dataset Model Evaluation Criteria
Novaes et al. [23] CICDDo0S2019 GANs Acc: 94.38
Olaimat et al. [24] CICIDS2017 GANs Acc: 93.20
Huang et al. [25] NSLKDD IGANs Acc: 84.45
Dlamini et al. [26] NSLKDD CGANs F1 Score: 73.00

Han et al. [27] KDD9%9 GANSs Ensemble Precision: 96.70
Ezeme et al. [28] KDD9%9 cGANs Acc: 85.63
Imtiaz U. et al. [29] KDD99 cGANSs Precision: 99.05
E. min et al. [30] NSLKDD, CICIDS2017 Autoencoder DR: 99.00
W.Wang [31] DARPA 1998 & ISCX 2012 CNN+LSTM DR: 99.00, FAR: 0.02
M. Al-Qatf [32] KDD9%9 Autoencoder + SVM DR:95.00
Shone et al. [33] KDD99 & NSLKDD Asymmetric Autoencoder Acc: 97.90, FAR: 2.10
Ludwig SA [34] NSLKDD Ensemble combining AE, Acc: 9249, FAR: 0.147
DBN, DNN & ELM
Algorithms
Yin et al. [35] NSLKDD RNN network and Acc: 83.28, FAR: 0.07
comparison with machine
learning
A.Diro et al. [36] NSLKDD DNN with 4 hidden layers Acc:99.20
D. Aksu et al. [37] CICIDS2017 DNN with 7 hidden layers Acc: 98.00
T. Tang et al. [38] NSLKDD DNN with 3 hidden layers Acc: 75.75
Andresini et al. [39] CICIDS2017 Autoencoder and 1D CNN Acc: 97.00
Roopak et al. [40] CICIDS2017 CNN+LSTM Acc: 96.20
A.S. Khan [21] CICIDS2017 SDCNN Acc: 98.76
Atefinia & Ahmadi [41] CICIDS2018 Modular DNN Acc: 100
Basnet et al. [10] CICIDS2018 MLP Acc: 99
Catillo et al. [42] CICIDS2018 Deep Autoencoder Acc: 99.20
Kim et al. [18] CICIDS2018 CNN Acc: 99.99
Lin et al. [43] CICIDS2018 LSTM Acc: 96.20
Our system CICIDS2018, NSLKDD, & Lightweight CNN Acc: 99.37, Pre: 99.37, FNR:

mix of these two

0.0034, FPR: 0.0097

Funding: This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) under the Artificial Intelligence Convergence Innovation Human Resources Development
(IITP-2023-RS-2023-00255968) grant funded by the Korea government(MSIT).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: CSE-CIC-IDS. (2018). Datasets Research from Canadian Institute for Cybersecurity
j UNB, 2018. [Online]. Available: https://www.unb.ca/cic/datasets/ids-2018 html. NSL-KDD Dataset. Available
online: https://www.unb.ca/cic/datasets/nsL.html (accessed on 5 March 2023).

Conflicts of Interest: The authors declare no conflict of interest.


https://doi.org/10.20944/preprints202401.1875.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2024 doi:10.20944/preprints202401.1875.v1

14

References

1.  “cybersecurity-statistics @ www.fortinet.com.” [Online]. Available:
https://www fortinet.com/resources/cyberglossary/cybersecurity-statistics

2. C.Munroe, “IDC MarketScape IDC MarketScape : Worldwide Service Providers 2018 Vendor Assessment,”

no. January, pp. 1-6, 2018.

C. Cisco, “5 Steps to Protecting Your Organization from a DDoS Attack”.

“tracking-cyber-operations-and-actors-russia-ukraine-war @ www.cfr.org.”

“index @ www.cloudflare.com.” [Online]. Available: https://www.cloudflare.com/

G. Fernandes, J. ]. P. C. Rodrigues, L. F. Carvalho, J. F. Al-Muhtadi, and M. L. Proenga, “A comprehensive

survey on network anomaly detection,” Telecommun. Syst., vol. 70, no. 3, pp. 447-489, 2019, doi:

10.1007/s11235-018-0475-8.

7. D. Protic and M. Stankovic, “A hybrid model for anomaly-based intrusion detection in complex computer
networks,” Proc. - 2020 21st Int. Arab Conf. Inf. Technol. ACIT 2020, pp. 2160-2167, 2020, doi:
10.1109/ACIT50332.2020.9299965.

8. M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cyber security intrusion

A

detection: Approaches, datasets, and comparative study,” J. Inf. Secur. Appl., vol. 50, p. 102419, 2020, doi:
10.1016/j.jisa.2019.102419.

9.  S.Tsimenidis, T. Lagkas, and K. Rantos, Deep Learning in IoT Intrusion Detection, vol. 30, no. 1. Springer US,
2022. doi: 10.1007/s10922-021-09621-9.

10. R.B.Basnet, R. Shash, C. Johnson, L. Walgren, and T. Doleck, “Towards detecting and classifying network
intrusion traffic using deep learning frameworks,” J. Internet Serv. Inf. Secur., vol. 9, no. 4, pp. 1-17, 2019,
doi: 10.22667/J1S15.2019.11.30.001.

11.  Z. Ahmad et al., “Anomaly detection using deep neural network for iot architecture,” Appl. Sci., vol. 11, no.
15, 2021, doi: 10.3390/app11157050.

12. I Idrissi, M. Boukabous, M. Azizi, O. Moussaoui, and H. El Fadili, “Toward a deep learning-based intrusion
detection system for iot against botnet attacks,” IAES Int. |. Artif. Intell., vol. 10, no. 1, pp. 110-120, 2021,
doi: 10.11591/ijai.v10.i1.pp110-120.

13. M. Ge, N.F. Syed, X. Fu, Z. Baig, and A. Robles-Kelly, “Towards a deep learning-driven intrusion detection
approach for Internet of Things,” Comput. Networks, vol. 186, no. August 2020, p. 107784, 2021, doi:
10.1016/j.comnet.2020.107784.

14. R. Yao, N. Wang, Z. Liu, P. Chen, and X. Sheng, “Intrusion detection system in the advanced metering
infrastructure: A cross-layer feature-fusion CNN-LSTM-based approach,” Sensors (Switzerland), vol. 21, no.
2, pp. 1-17, 2021, doi: 10.3390/s21020626.

15. Y.Imrana, Y. Xiang, L. Ali, and Z. Abdul-Rauf, “A bidirectional LSTM deep learning approach for intrusion
detection,” Expert Syst. Appl., vol. 185, no. June, p. 115524, 2021, doi: 10.1016/j.eswa.2021.115524.

16. Y.Zhang, P.Li, and X. Wang, “Intrusion Detection for IoT Based on Improved Genetic Algorithm and Deep
Belief Network,” IEEE Access, vol. 7, pp. 31711-31722, 2019, doi: 10.1109/ACCESS.2019.2903723.

17. A. Mezina, R. Burget, and C. M. Travieso-Gonzalez, “Network Anomaly Detection With Temporal
Convolutional Network and U-Net Model,” IEEE Access, vol. 9, pp. 143608-143622, 2021, doi:
10.1109/access.2021.3121998.

18. J. Kim, J. Kim, H. Kim, M. Shim, and E. Choi, “CNN-based network intrusion detection against denial-of-
service attacks,” Electron., vol. 9, no. 6, pp. 1-21, 2020, doi: 10.3390/electronics9060916.

19. V. Pham, E. Seo, and T. M. Chung, “Lightweight convolutional neural network based intrusion detection
system,” J. Commun., vol. 15, no. 11, pp. 808-817, 2020, doi: 10.12720/jcm.15.11.808-817.

20. R. H. Hwang, M. C. Peng, C. W. Huang, P. C. Lin, and V. L. Nguyen, “An Unsupervised Deep Learning
Model for Early Network Traffic Anomaly Detection,” IEEE Access, vol. 8, pp. 30387-30399, 2020, doi:
10.1109/ACCESS.2020.2973023.

21. A.S. Khan, Z. Ahmad, J. Abdullah, and F. Ahmad, “A Spectrogram Image-Based Network Anomaly
Detection System Using Deep Convolutional Neural Network,” IEEE Access, vol. 9, pp. 87079-87093, 2021,
doi: 10.1109/ACCESS.2021.3088149.

22, “ef23092713b1e5491cfcc5bc918d5322c5751c28 @ registry.opendata.aws.”  [Online].  Available:
https://registry.opendata.aws/cse-cic-ids2018/

23. M. P.Novaes, L. F. Carvalho, J. Lloret, and M. L. Proenca, “Adversarial Deep Learning Approach Detection
and Defense against DDoS Attacks in SDN Environments,” Futur. Gener. Comput. Syst., vol. 125, no. C, pp.


https://doi.org/10.20944/preprints202401.1875.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2024 doi:10.20944/preprints202401.1875.v1

15

156-167, Dec. 2021, doi: 10.1016/j.future.2021.06.047.

24. M. Al Olaimat, D. Lee, Y. Kim, J. Kim, and ]. Kim, “A Learning-based Data Augmentation for Network
Anomaly Detection,” in 2020 29th International Conference on Computer Communications and Networks
(ICCCN), 2020, pp. 1-10. doi: 10.1109/ICCCN49398.2020.9209598.

25. S. Huang and K. Lei, “IGAN-IDS: An imbalanced generative adversarial network towards intrusion
detection system in ad-hoc networks,” Ad Hoc Networks, vol. 105, p. 102177, 2020, doi:
https://doi.org/10.1016/j.adhoc.2020.102177.

26. G.Dlamini and M. Fahim, “DGM: a data generative model to improve minority class presence in anomaly
detection domain,” Neural Comput. Appl., vol. 33, no. 20, pp. 13635-13646, 2021, doi: 10.1007/s00521-021-
05993-w.

27. X.Han, X. Chen, and L. Liu, “GAN Ensemble for Anomaly Detection,” 2018.

28. O. M. Ezeme, Q. H. Mahmoud, and A. Azim, “Design and development of AD-CGAN: Conditional
generative adversarial networks for anomaly detection,” IEEE Access, vol. 8, pp. 177667-177681, 2020, doi:
10.1109/ACCESS.2020.3025530.

29. I Ullah and Q. H. Mahmoud, “A Framework for Anomaly Detection in IoT Networks Using Conditional
Generative Adversarial Networks,” IEEE Access, vol. 9, pp. 165907-165931, 2021, doi:
10.1109/ACCESS.2021.3132127.

30. E.Min,].Long, Q. Liu, J. Cui, Z. Cai, and J. Ma, “SU-IDS: A Semi-supervised and Unsupervised Framework
for Network Intrusion Detection BT - Cloud Computing and Security,” 2018, pp. 322-334.

31. W. Wang ef al., “HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural
Networks to Improve Intrusion Detection,” IEEE Access, vol. 6, pp. 1792-1806, 2018.

32. M. Al-Qatf, Y. Lasheng, M. Al-habib, and K. Al-Sabahi, “Deep Learning Approach Combining Sparse
Autoencoder With SVM for Network Intrusion Detection,” IEEE Access, vol. 6, pp. 52843-52856, 2018.

33.  N.Shone, T.N.Ngoc, V. D. Phai, and Q. Shi, “A Deep Learning Approach to Network Intrusion Detection,”
IEEE Trans. Emerg. Top. Comput. Intell., vol. 2, pp. 41-50, 2018.

34. S. A.Ludwig, “Intrusion Detection of Multiple Attack Classes using a Deep Neural Net Ensemble,” 2017.

35. C.Yin, Y. Zhu, J. Fei, and X.-Z. He, “A Deep Learning Approach for Intrusion Detection Using Recurrent
Neural Networks,” IEEE Access, vol. 5, pp. 2195421961, 2017.

36. A.A.Diro and N. K. Chilamkurti, “Distributed attack detection scheme using deep learning approach for
Internet of Things,” Futur. Gener. Comput. Syst., vol. 82, pp. 761-768, 2017.

37. D. Aksu and M. A. Aydin, “Detecting Port Scan Attempts with Comparative Analysis of Deep Learning
and Support Vector Machine Algorithms,” 2018 Int. Congr. Big Data, Deep Learn. Fight. Cyber Terror., pp. 77—
80, 2018.

38. T.A.Tang, L. Mhamdi, D. C. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep Recurrent Neural Network
for Intrusion Detection in SDN-based Networks,” 2018 4th IEEE Conf. Netw. Softwarization Work., pp. 202—
206, 2018.

39. G. Andresini, A. Appice, N. Di Mauro, C. Loglisci, and D. Malerba, “Multi-Channel Deep Feature Learning
for Intrusion Detection,” IEEE Access, vol. 8, pp. 53346-53359, 2020.

40. M. Roopak, G.-Y. Tian, and J. A. Chambers, “Deep Learning Models for Cyber Security in IoT Networks,”
2019 IEEE 9th Annu. Comput. Commun. Work. Conf., pp. 452-457, 2019.

41. R. Atefinia and M. Ahmadi, “Network intrusion detection using multi-architectural modular deep neural
network,” Journal of Supercomputing, vol. 77, no. 4. pp. 3571-3593, 2021. doi: 10.1007/s11227-020-03410-y.

42. M. Catillo, M. Rak, and U. Villano, “2L-ZED-IDS: A Two-Level Anomaly Detector for Multiple Attack
Classes BT - Web, Artificial Intelligence and Network Applications,” 2020, pp. 687-696.

43. P. Lin, K. Ye, and C. Xu, “Dynamic Network Anomaly Detection System by Using Deep Learning
Techniques,” 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202401.1875.v1

