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Abstract: The Ca Mau Peninsula situated in the Mekong Delta of Vietnam, features a low-lying terrain. Over 

recent years, the region has encountered the adverse impacts of climate change, leading to both land subsidence 

and rising sea levels. In this study, we assessed the land subsidence susceptibility in the Ca Mau peninsula 

utilizing three Boosting machine learning models: AdaBoost, Gradient Boosting, and Extremely Gradient 

Boosting (XGB). Eight key factors were identified as the most influential in land subsidence within Ca Mau: 

land cover (LULC), groundwater levels, distance to roads, Digital Terrain Model (DTM), normalized vegetation 

index (NDVI), geology, soil composition, and proximity to rivers and streams. A dataset comprising 1950 

subsidence sample points was employed for model training, with 1910 points obtained from the PSInSAR 

Radar method, and the remaining points derived from leveling measurements. The sample points were split, 

with 70% allocated to the training set and 30% to the testing set. Following computation and execution, the 

three models underwent evaluation for accuracy using statistical metrics such as the ROC curve, Area under 

the curve (AUC), Specificity, Sensitivity, and Overall Accuracy. The research findings revealed that the XGB 

model exhibited the highest accuracy, achieving an AUC above 0.9 for both the training and test sets. 

Consequently, XGB was chosen to construct a land subsidence susceptibility map for the Ca Mau peninsula. 

Keywords: AdaBoost; Gradient Boosting; XGBoost; Ca Mau; Subsidence susceptibility 

 

1. Introduction 

Land subsidence is a common phenomenon in many regions around the world, often resulting 

from factors such as groundwater extraction, mineral exploitation, oil and gas extraction, and more. 

As land subsidence can lead to geological, hydrogeological, environmental, and/or economic 

impacts, it garners significant attention from governments, communities, and scientists. While it may 

not be entirely avoidable in industries like mining, sustainable control of land subsidence can be 

achieved through government regulations, industrial exploitation monitoring, and rational planning 

with the aid of predictive subsidence hazard maps [1]. Hence, the role of subsidence hazard maps is 

immensely crucial, enabling managers to develop mineral extraction, groundwater usage, urban 

development planning, and land-use conversion efficiently. 

In recent times, paralleling the advancements of Industry 4.0, the utilization of artificial 

intelligence and machine learning has become increasingly ingrained in the field of cartography. 

Many applications involving machine learning has emerged for constructing predictive models 

aimed at assessing land subsidence susceptibility. 

The first study we would like to present is a research conducted by Rahmati, which utilized two 

machine learning algorithms, namely MaxEnt (maximum entropy) and GARP (genetic algorithm 

rule-set production), to construct a subsidence assessment model in Kashmar, Iran [2]. The model 
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incorporated data related to land use, geology, distances to groundwater extraction sites, distances 

to reforestation projects, distances to fault lines, and groundwater level reduction. The research 

results indicated that the GARP algorithm outperformed the MaxEnt algorithm in terms of 

performance and accuracy. Both algorithms yielded reliable subsidence prediction outcomes. 

Another study by Abdollahi published the results of utilizing a support vector machine (SVM) 

model to create a subsidence susceptibility map for the Kerman province, Iran [3]. Data including 

slope, aspect, elevation, cross-sectional curvature, plan curvature, topographic wetness index (TWI), 

distance to rivers, groundwater level, geology, pressure variation, land use, and normalized 

difference vegetation index (NDVI) were incorporated into the model construction. The model 

yielded results with good accuracy, exhibiting (Area Under the Curve -AUC) values ranging from 

0.894 to 0.857. 

In the study [4], the authors established a subsidence susceptibility map in Jakarta Indonesia, 

the accuracy of subsidence prediction in Jakarta was assessed using machine learning models, 

including logistic regression, multilayer perceptron, meta-ensemble AdaBoost, and LogitBoost. They 

utilized Sentinel-1 (SAR) data from 2017 to 2020 to generate a subsidence-sensitive map. ROC 

analysis results demonstrated that the AdaBoost algorithm exhibited higher predictive accuracy 

(81.1%) compared to Multilayer Perceptron (80%), Logistic regression (79.4%), and LogitBoost 

(79.1%). 

The XGBoost machine learning method was employed by Liyuan Shi and colleagues to develop 

a subsidence predicting model for the North China Plain region [5]. Factors incorporated into the 

model included groundwater level variations, the thickness of the Quaternary sediments, and an 

index-based accumulation index (IBI), in combination with Sentinel-1 image-derived subsidence and 

Persistent Scatterer Interferometry (PSI) measurements. The research results highlighted the excellent 

accuracy of this method (0.9431). 

A study conducted by Elham Rafiei Sardooi which was published, compared four machine 

learning and statistical models: the evidential belief function (EBF), Index of Entropy (IoE), Support 

Vector Machine (SVM), and random forest (RF) for subsidence prediction in the Rafsanjan plain 

region of Iran [6]. The model training data included 11 factors such as slope percent, aspect, 

topographic wetness index (TWI), plan and profile curvatures, normalized difference vegetation 

index (NDVI), land use, lithology, distance to rivers, groundwater drawdown, and elevation. The 

study utilized the Boruta algorithm to determine the significance of the causal factors. The research 

findings revealed that the SVM model achieved the highest predictive accuracy (AUC = 0.967, TSS = 

0.91), followed by RF (AUC = 0.936, (True Skill Statistic -TSS = 0.87), EBF (AUC = 0.907, TSS = 0.83), 

and IoE (AUC = 0.88, TSS = 0.8). A comprehensive study conducted by Bui involved the comparison 

of machine learning techniques, including Bayesian Logistic Regression, Support Vector Machine 

(SVM), Logistic Model Tree, and alternative decision tree models, to construct a land subsidence risk 

prediction model in South Korea [7]. Nevertheless, as far as our understanding goes, the study might 

be subject to significant bias due to a limited number of sample points used for training and 

validation. 

Wang and colleagues have published a study on the application of land subsidence prediction 

using the Artificial Neural Network BPNN and the Random Forest (RF) method in the Shandong 

region of China [8]. The data used for subsidence prediction consisted of groundwater level 

variations and subsidence data from the period 2017 to 2020, identified through SBAS-InSAR 

technique. The research results indicated that the BPNN model exhibited higher accuracy than the 

RF model. 

Mohammadifar applied Stacking- and voting-based ensemble deep learning models (SEDL and 

VEDL) along with active learning (AL) to establish subsidence susceptibility maps in the Minab and 

Shamil-Nian plains of Hormozgan province, southern Iran [9]. According to the study, groundwater 

level decline had a significant impact on the models' output results. Based on Taylor diagrams and 

R2 values, the predictive outcomes of the SEDL-AL model (R2 > 95%) demonstrated higher 

performance and accuracy compared to the SEDL model. 
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With a diverse range of machine learning algorithms mentioned above applied in many different 

countries, each region has distinct geographical and geological features. Models are not completely 

effective for every area, they need to be tailored to the specific geographical features of the study 

area. In this paper, we aim to explore several Boosting machine learning algorithms—Adaboost, 

Gradient Boosting and XGBoost to predict land subsidence susceptibility in Ca Mau Peninsula, 

Vietnam. Located in the southernmost part of Vietnam, Ca Mau is facing the risks of land subsidence, 

sea level rise, flooding and saline intrusion. Research by Erban demonstrated subsidence in the Ca 

Mau Peninsula and across the entire Mekong Delta in excess of several centimeters per year, 

surpassing the present absolute sea level rise [10]. 

The reason for choosing the Boosting method is due to the flat terrain and low topography in 

this delta where the main cause of land subsidence is still unknown. Therefore, Boosting models, 

based on decision trees, merge weak models to form a strong model; The weights of the next layers 

are updated from the previous weights, which can help improve the accuracy of the prediction. The 

sample data input includes land subsidence points determined by the PSInSAR method and levelling 

survey. Moreover, the Ca Mau area lacks any prior study utilizing Boosting models for land 

subsidence prediction. Hence, our experiment can be considered pioneering, aiding in effective and 

sustainable land use planning in this region. 

2. Study area 

 

Figure 1. Ca Mau research area on the map of Vietnam. 

Ca Mau Province is located in the southernmost part of the Mekong Delta, Vietnam 

encompassing both mainland and several islands, with a total area of 5,329 square kilometers, 

equivalent to about 13.10% of the Mekong Delta's area and 1.57% of the country's total area. It shares 

its northern border with Kiên Giang Province, its eastern border with Bac Lieu Province, its western 

border with the West Sea (Gulf of Thailand), and its southern and eastern borders with the East Sea. 

2.1. Topographical and soil characteristics 

Ca Mau is situated in a region bordering both the East Sea and the West Sea (Gulf of Thailand), 

with land that originates from sedimentary processes, featuring relatively low and fairly flat terrain. 

The average ground elevation is approximately 0.6 meters. Low-lying areas have elevations around 
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0.2 meters, while higher ground reaches elevations of about 0.8 - 1.5 meters. Most of the land lies 

below the high tide water level, making it susceptible to flooding, particularly during high tides. 

Ca Mau is a newly formed land area created by sedimentation, comprising marine sediments, 

river sediments. These types of land generally have a detrimental impact on both surface water 

quality and the province's groundwater source. 

2.2. Hydrological Characteristics 

 The rivers, streams, and channels in Ca Mau Province form an intricate network, covering 

nearly 3% of the natural area. There are 8 main rivers and 3 primary canals with river mouths ranging 

in width from 45m (Cai Tau River) to 1800m (Cua Lon River) and depths varying from 3m (Bai Hap 

estuary) to 19m (Bo De estuary of Cua Lon River). 

2.3. Current Water Usage Situation 

At present, the primary source of water for both domestic and industrial purposes in Ca Mau 

Province is groundwater. Groundwater resources meet the current water demands of the province, 

extracted from various types of wells and boreholes with different depths, diameters, and layers. 

Among these, the boreholes catering to industrial and semi-industrial needs, networked boreholes, 

and small UNICEF-style boreholes predominantly draw water from the Pleistocene-intermediate to 

upper (qp2-3) and intermediate Pliocene (n22) layers, constituting around 75% of the total number of 

boreholes for water extraction. 

In addition to centralized water supply systems provided by water treatment plants and 

distribution stations, various institutions, enterprises, and individuals also independently drill wells 

for their own water needs in both domestic and production contexts. 

3. Research Methodology 

Boosting is a machine learning technique utilized to enhance the predictive ability of a machine 

learning algorithm by focusing on learning from more challenging cases. It operates by generating 

iterations of the original machine learning model and concentrating on addressing misclassified 

instances from the previous model, until a desired level of accuracy is achieved. Common boosting 

algorithms employed with decision trees include AdaBoost, Gradient Boosting, and Extreme 

Gradient Boosting (XGBoost). Below, we sequentially investigate these three algorithms with the aim 

of constructing three models for the research area and selecting the optimal model. 

3.1. AdaBoost 

AdaBoost (Adaptive Boosting) is a popular machine learning ensemble technique used for 

classification and regression tasks and was invented by Freund and Schapire [11]. It aims to improve 

the performance of weak learners (often referred to as "base classifiers" or "base models") by 

combining their predictions into a strong overall prediction. The core idea behind AdaBoost is to give 

more weight to instances that are misclassified by the previous base models, thereby focusing on the 

difficult cases. 

Let's assume a binary classification problem with a target variable consisting of two labels: y ∈ 

{−1, 1}. Following the boosting method, the predictive function  for an input variable xi is denoted 

as 𝑓(𝑥𝑖) ∈ {−1,1}  and the target variable y takes one of two values: {−1, 1}. In this case, the training 
error can be defined as: 𝑟 = 1𝑁 ∑ 1(y𝑖𝑁𝑖=1

 ≠  𝑓(𝑥𝑖))                          (1) 

Where: 

N is the number of training samples. 

α_i represents the weight associated with the i-th training samples. 

y_i is the actual target value for the i-th samples. 
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Figure 2. Diagram of the AdaBoosting model. Each individual sub-model is trained on a dataset 

weighted according to calculations from the pre-model. 

According to figure 1, the weak models are combined by assigning weights to each based on 

their performance. Stronger models are given higher weights in making the final predictions 𝑓(𝑥𝑖). 𝑓(x) = sign[∑ αi 𝑓𝑖(x)𝑝𝑖=1 ]                    (2) 

In the equation above, the sign(x) function is a function that takes the value 1 if the sign of x is 

positive and takes the value -1 if otherwise. 

3.2. Gradient Boosting 

The Gradient Boosting algorithm (GB) was invented and introduced by Jerome H. Friedman in 

2001, which involves training weak models sequentially. However, instead of using the model error 

to weight the training data like ADaboost, residuals are used [12] 

Starting from the current model, GB tries to build a decision tree to match the residuals from the 

previous model. The special feature of this model is that instead of it trying to match the target 

variable value of y, it will try to match the error value of the previous model. It then adds the training 

model to the prediction function to gradually update the residuals. Each decision tree in the model 

chain is very small in size with only a few decision nodes determined by the depth parameter d in 

the model. The figure below illustrates this process in more detail: 

 

Figure 3. Training method using GB. Decision tree models are arranged in a sequence. Each decision 

tree is constructed based on the predictions of the preceding decision tree. At each decision tree, the 

model will attempt to fit the residuals from the previous decision tree. 
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3.3. XGBoost (Extreme Gradient Boosting) 

 XGBoost is an extremely powerful and popular machine learning model in both the machine 

learning and data science communities. XGBoost, mainly developed by Tianqi Chen and first 

announced in 2015. It falls under the category of Gradient Boosting algorithms, designed to optimize 

the performance of prediction models, especially in regression and classification tasks. 

XGBoost uses Gradient Descent [13] to optimize the model by continuously improving the 

decision trees. XGBoost is efficiently implemented and supports parallel computation, which speeds 

up training on multi-core computers. The steps in building the XGBoost model are:  

- XGBoost starts by constructing a weak decision tree, possibly a very small one. 

- Computing the Gradient of the Loss Function: After having a weak tree, XGBoost calculates the 

gradient of the loss function (typically mean squared error in regression or log loss in 

classification) with respect to the data points. This gradient reflects the discrepancy between the 

current predictions and the actual values. 

- Building the Next Tree to Reduce Gradient: XGBoost proceeds to construct another decision tree 

with the aim of optimizing the reduction in gradient (the difference between predictions and 

actual values). This yields a new model with improved predictive performance compared to the 

previous one. 

- Combining the New Tree with Previous Trees: XGBoost integrates this new tree into the overall 

model in addition to the previously built trees, creating a stronger model. 

- Iterating the Process: This process is repeated until a predefined number of trees (or tree layers) 

is reached or when the loss function no longer decreases significantly. 

- The outstanding capabilities of XGBoost 

XGBoost has the advantage of avoiding overfitting by using techniques such as sub-sampling 

rows, columns, column per split levels, and applying regularized L1 and L2. 

Resource Utilization Capability: Parallel computation on CPU/GPU, distributed computation 

across multiple servers, computation under resource constraints, cache optimization to speed up 

training. 

And finally, the ability to handle missing data values, continue training using a previously built 

model to save time. 

4. Data 

4.1. the inventory points of land subsidence 

The land subsidence inventory plays a crucial role in constructing land subsidence susceptibility 

models, providing essential information about the status and extent of land subsidence in specific 

areas. This data, along with several influencing factors, forms the basis for training supervised 

subsidence susceptibility models. As previously mentioned, the Ca Mau Peninsula is a vast and 

relatively flat region, leading to infrequent data collection points and limited coverage of subsidence 

points. The total subsidence points collected by the Department of Survey and Mapping of Vietnam 

amount to 40 points. However, the subsidence observation times are uneven, with the closest 

measurement taken in 2020. For this reason, we chose to collect additional land subsidence points 

using the multi-temporal radar image processing method.  

The measuring ground deformations from stacks of archive Sentinel-1 SAR imagery acquired in 

reference period November 2014 – January 2019 was utilized to detect displacements caused by 

ground subsidence and to estimate the subsidence average velocity over the reference period [14,15]. 

Land subsidence points made using the PSI method have been proven to have satisfactory accuracy 

[16]. After selecting prominent subsidence points, 1910 subsidence points were selected to be 

included in the inventory set. The distribution of land subsidence points is shown in Figure 1 
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4.2. Influence Factors on the subsidence susceptibility Model 

When constructing a machine learning model for predicting land subsidence, several influential 

factors need to be considered to ensure the accuracy and effectiveness of the model. 

Topography: The topography has a significant impact on land subsidence and related 

phenomena. It can affect subsidence in various ways, such as influencing water flow and the 

accumulation of organic and mineral waste in the soil. Sloping terrain can lead to inclined subsidence, 

making the top layer of soil prone to sliding. However, as mentioned in the research area section, Ca 

Mau has low topography with an average elevation of less than 1 meter, so there are almost no slopes. 

Therefore, in this study, we only consider an elevation layer as a representative of the topography. 

The terrain layer is taken from the SRTM 30m digital terrain model. 

Geology: The geological structure can affect the strength of the soil and its load-bearing capacity. 

Soil with layered structures, cracks, or weaknesses may be more susceptible to subsidence. Thus, 

geological data is an important input layer influencing land subsidence. The geological map of Ca 

Mau is a 1:100,000 scale map provided by the Vietnam Institute of Geology and Mineral Resources. 

Soil Type: The type of soil can influence subsidence through its physical and chemical properties, 

including permeability, water retention, swelling and shrinking, hardness, and flexibility, as well as 

its interaction with groundwater. The permeability of the soil affects the rate of water infiltration 

through the soil. Soil with good permeability can lead to rapid water loss, contributing to the 

subsidence process. The properties of soil particles, such as clay, sand, and gravel, can affect changes 

in soil volume. Clay can absorb water and swell when water permeates, while sand is often 

impermeable and may compress more under high pressure. In addition, the stiffness, flexibility, and 

thickness of the soil layer are factors that contribute to subsidence effects. The Soil map of Ca Mau is 

a 1:100,000 scale map provided by the Vietnam Institute of Geology and Mineral Resources. 

LULC (Land Use and Land Cover): This refers to how humans use the land, such as planting 

crops, building houses, constructing roads, urbanization, agricultural production, afforestation, etc. 

Land use can change over time due to human activities. Changes in surface cover can impact the 

water balance in the soil. Constructing urban areas, roads, or impermeable surfaces can cause changes 

in underground water flow, affecting water balance and causing land subsidence. The LULC map of 

Ca Mau is a 1:50,000 scale map provided by the Vietnam Department Of Survey, Mapping and 

Geographic Information. 

NDVI (Normalized Difference Vegetation Index): NDVI is a commonly used index for 

measuring and analyzing the vegetation status on the ground based on satellite imagery. NDVI is 

widely used in areas such as land resource management, agriculture, environmental monitoring, and 

climate change observation. The NDVI index is calculated from two wavelengths of light reflected 

from the ground that is Near Infrared (NIR) and Red. The formula for calculating the NDVI index is 

shown in (3)  𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅+𝑅𝐸𝐷)(𝑁𝐼𝑅−𝑅𝐸𝐷)      (3) 

The NDVI (Normalized Difference Vegetation Index) typically ranges from -1 to +1. Negative 

values (often close to -1) usually appear over areas of water, rocks, snow, urban areas, or regions 

devoid of vegetation. Values close to 0 indicate areas with sparse or no vegetation, while positive 

values (often close to +1) signify the presence of abundant and well-developed vegetation. 

The NDVI index helps monitor changes in vegetation and soil conditions. When vegetation is 

dense, such as in dense forests or areas with full tree coverage, various interacting factors can 

contribute to stabilizing the soil and reducing subsidence. This is because plants with strong and 

dense root systems can create a useful network to firmly hold the soil. Roots help establish cohesion 

between soil particles, making the soil stronger and less susceptible to being eroded by water flow. 

NDVI map of Ca Mau area is made from Sentinel-2 satellite images in 2019. 

Distance to Roads: 

Subsidence often occurs near roads due to changes in the natural drainage system of the area 

during road construction. The construction of drainage ditches or alterations in the landscape can 

reduce the natural drainage ability of the environment, leading to flooding and an increased risk of 

subsidence. Additionally, traffic activities on the road can exert additional load on the ground. 
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Vehicles moving on the road generate impacts and pressure on the soil surface, making the soil more 

compressible and prone to subsidence. The road map is taken from the 1:50,000 scale topographic 

map provided by the Vietnam Department Of Survey, Mapping and Geographic Information. Roads 

will be buffered according to distance at different levels: 50m, 100m, 200m and 500m. 

Distance to the river: 

The presence of water bodies can increase moisture in the surrounding environment. Moist soil 

is more susceptible to compression and may lead to subsidence. Human activities creating 

infrastructure around water bodies, such as building drainage systems, bridges, or urban areas, can 

also affect soil characteristics and contribute to the subsidence process. The river map is also derived 

from the 1:50,000 scale topographic map issued by the Vietnam Department of Survey, Mapping, and 

Geographic Information. Rivers will be buffered at various distances, including 50m, 100m, 200m, 

and 500m. 

Groundwater Depth: 

Groundwater is a factor that can be considered one of the most crucial in influencing land 

subsidence. Numerous studies, such as the research conducted by [10,17,18] have demonstrated the 

relationship between groundwater and land subsidence. Therefore, the groundwater depth dataset 

is a significant layer included in this research. We collected this data from groundwater extraction 

wells in the years 2020, 2021, and 2022. This data was provided by the National Center for Water 

Resources Planning and Investigation-Vietnam [19]. 

4.3. Data standardization 

When constructing a model for predicting land subsidence, it is essential to standardize the input 

data by converting it to a consistent parameter system (referred to as data standardization). 

Variations in measurement units or a wide range of values in the data can potentially impact the 

model. Data standardization mitigates this effect by bringing all features to a uniform scale. In this 

study, the data normalization is achieved through the utilization of the Frequency Ratio method that 

relies on the spatial correlation between previous instances of land subsidence and the factors 

contributing to the formation of land subsidence. A higher FR value signifies a more robust 

correlation between subsidence occurrences and the influencing factors. The FR value is computed 

using the formula [20]. Using ArcGIS 10.8 software, the data for the 1950 selected subsidence points 

mentioned above were calculated and standardized according to Table 1. 𝐹𝑅 = 𝑁𝑝𝑖𝑥(1)/𝑁𝑝𝑖𝑥(2)∑ 𝑁𝑝𝑖𝑥(3)/ ∑ 𝑁𝑝𝑖𝑥(4)                            (4) 

Where: N pix (1) is the number of land subsidence pixels of the factor class; N pix (2) is the total 

number of pixels of the sub-class over the entire study area; N pix (3) is the total number of land 

subsidence pixels of the study area; N pix (4) is the total number of pixels of the study area. 

Table 1. Land subsidence conditioning factors and their classification. 

Factor Sub-factor 

LS 

points 

%Land 

subsidence 

Class 

pixels 

% Class 

pixel FR 

 
(1)<[-7.431] 3 0.29 28948 0.496 0.586 

Elevation (m) 

 

 

 

(2) [-7.431m-(-0.568)m] 23 2.23 532631 9.135 0.244 

(3) [-0.568m- 1.490m] 152 14.73 1908970 32.739 0.450 

(4) [1.490m-5.608m] 738 71.51 2946996 50.541 1.415 

(5) [5.608m-14.529m] 115 11.14 387369 6.643 1.677 

(6) [>14.529m] 1 0.10 25941 0.445 0.218 

 
(1) Regosols 0 0.00 4800 0.080 0.000 

Soil (2) Arenosols 0 0.00 94229 1.579 0.000 
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(3) Salic Fluvisols 30 2.92 1098253 18.407 0.159 

(4) Orthi- Thionic fl 508 49.51 2098530 35.171 1.408 

(5) Proto- Thionic fl 0 0.00 145226 2.434 0.000 

(6) > Histosols 488 47.56 2525584 42.329 1.124 

 
(1) (abQe ) 2 0.20 266 0.498 0.393 

 

 

  Geology 

 

 

 

 

 

(2) (abQer Ho) 1 0.10 531 0.994 0.098 

(3) (abTerţ) 0 0.00 1 0.002 0.000 

(4) (amQe) 13 1.27 767 1.436 0.885 

(5) (amQerţ) 0 0.00 168 0.315 0.000 

(6) (bQQe) 7 0.68 1399 2.619 0.261 

(7) (mQQe) 395 38.61 24504 45.873 0.842 

(8) (mQQe ţ) 593 57.97 22656 42.413 1.367 

(9) (mbQe) 8 0.78 344 0.644 1.214 

(10) (mbQer Ho) 4 0.39 2781 5.206 0.075 

 

(1) [(-18.191m)–(-

15.288m)] 255 24.71 561100 9.831 2.513 

Ground water 

 

 

 

(2) [(-15.288m)–(-

13.930m)] 262 25.39 1202946 21.077 1.205 

(3) [(-13.930m)–(-

12.713m)] 478 46.32 2672539 46.826 0.989 

(4) [(-12.713m)–(-

10.933m)] 16 1.55 579125 10.147 0.153 

(5) [(-10.933m)–(-

8.591m)] 2 0.19 344049 6.028 0.032 

(6) [(-8.591m)–(-6.251m)] 19 1.84 347630 6.091 0.302 

 
(1) [(-0.445)–(-0.055)] 14 1.36 444115 7.617 0.178 

NDVI 

 

 

 

(2) [(-0.055)–0.116] 465 45.06 1025564 17.589 2.562 

(3) [0.116-0.271] 282 27.33 1205154 20.669 1.322 

(4) [0.271-0.437] 196 18.99 1304528 22.373 0.849 

(5) [0.437-0.619] 66 6.40 922437 15.820 0.404 

(6) [0.619-0.918] 9 0.87 929057 15.933 0.055 

 
(1) Water 22 2.09 9092376 41.576 0.050 

LULC 

 

 

 

(2) Alluvial land 3 0.29 120858 0.553 0.517 

(3) Forest 18 1.71 1652162 7.555 0.227 

(4) Rice fields 325 30.92 3656870 16.722 1.849 

(5) Aquaculture land 116 11.04 6774991 30.980 0.356 

(6) Build up areas 567 53.95 571849 2.615 

20.63

1 

Distance to 

Road 

(1) 0-50m 203 19.67 539964 9.291 2.117 

(2) 50-100m 197 19.09 418632 7.203 2.650 

(3) 100-200m 264 25.58 758709 13.055 1.959 
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(4) 200-500m 188 18.22 1604568 27.610 0.660 

(5) >500m 180 17.44 2489723 42.841 0.407 

Distance to 

River 

(1) 0-50m 208 20.16 325502 5.601 3.599 

(2) 50-100m 116 11.24 283743 4.882 2.302 

(3) 100-200m 182 17.64 500150 8.606 2.049 

(4) 200-500m 220 21.32 1218897 20.974 1.016 

(5) >500m 306 29.65 3483304 59.937 0.495 

After the data has been normalized, the factor maps are incorporated into the model, comprising 

8 layers. The FR data column in Table 1 will be utilized as the data for each layer to be included in 

the model. Figure 4 shows the input factors. 

 

Figure 4. Input factor layers for the subsidence prediction model in Ca Mau area. 
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Figure 5. Processing flow chart for land subsidence susceptibility mapping. 

5. Results and Discussion 

5.1. Evaluate the importance of the model's input variables 

Determining the importance of variables helps gain insights into the contribution of each 

variable to the predicted outcome. This provides an overall understanding of the influence of these 

factors. Besides, assessing variable importance aids in model optimization. If certain variables have 

minimal impact on the prediction, consideration can be given to removing them, simplifying the 

model while retaining accuracy. Additionally, this work avoiding excessive use of correlated 

variables helps mitigate collinearity issues, where multiple explanatory variables are highly 

correlated. 

Figure 6 presents a plot that summarizes the importance values of the input variables elucidating 

their relationships with the predicted outcomes. The vertical axis in the chart represents the intensity 

of the impact of each input factor, while the horizontal axis denotes the respective factors. Higher 

values on the vertical axis indicate higher efficiency. From Figure 6, it can be understood that LULC 

and groundwater depth exhibit a significant level of influence on the prediction results compared to 

other results. In which the XGBoost model has a quite high influence while the two models GB and 

ADABoost have the lower value. The next influencing factor is the distance to roads and Soil. The 

reason can be understood as vehicle traffic and loads from road traffic can create pressure on the soil 

layer, especially when the soil is already weakened due to other reasons. 

Other factors that affect the model, although not much, cannot be ignored, such as geology, 

distance to rivers and streams, and altitude have very little influence, this is easy to explain because 

Ca Mau has a quite low topography, many places have altitudes lower than sea level. 
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Figure 6. Evaluation of the importance of 8 input variables in three models. 

5.2. Evaluate model performance 

To evaluate model performance we use Receiver Operating Characteristic curve (ROC), Area 

Under the Curve (AUC), Sensitivity, Specificity and accuracy (Acc). 

ROC Curve is a graph that illustrates the relationship between the True Positive Rate (TPR) and 

False Positive Rate (FPR) of a classification model at different decision thresholds. TPR is the ratio of 

correctly predicted positive cases (true positives) to the total number of actual positive cases. FPR is 

the ratio of incorrectly predicted positive cases to the total number of actual negative cases. 

AUC is the area under the ROC curve. AUC measures the ability of a classification model to 

correctly classify positive versus negative instances. AUC typically ranges from 0 to 1, with a higher 

AUC indicating a better model performance. The relationship between model performance and AUC 

can be quantified as follows: excellent (0.9-1), very good (0.8-0.9), good (0.7-0.8), fair (0.6-0.7), and 

poor (0.5-0.6) [21].  

The accuracy assessment method using ROC curve and AUC is a valuable tool for validating 

land subsidence prediction models. The utilization of ROC curve and AUC aids in evaluating result 

reliability, comparing performance among different models, and identifying the best model for land 

subsidence prediction purposes.  

In evaluating the performance of a predictive model, combining the ROC curve and AUC with 

other metrics such as accuracy, sensitivity, and specificity will provide a more comprehensive 

overview of the model's performance [22]. The formula for calculating sensitivity is as follows:  

Sensitivity = TP / (TP + FN)                     (5) 

Where TP (True Positive) is the number of true positive instances correctly identified, and FN 

(False Negative) is the number of false negative instances incorrectly identified. 

The formula for calculating specificity is as follows: 

Specificity = TN/ (TN + FP)                     (6) 

TN (True Negative) is the number of true negative instances correctly identified, and FP (False 

Positive) is the number of false positive instances incorrectly identified. 

Accuracy is calculated according to the formula: 

Acc = (TP + TN) / (TP + TN + FN + FP)          (7) 

0
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For the Ca Mau research area, with three selected models ADB, GB, XGB, the values are 

calculated based on the training set in Table 3 and the validating set in Table 4 below, along with the 

ROC curves on the training and testing datasets. 

Table 3. Performance evaluation table of models on the training dataset. 

 TP TN FP FN Sensitivity specificity AUC ACC 

Adaboost model 

(ADB) 
736 663 92 165 0.817 0.878 0.903 

0.845 

Gradient Boosting 

(GB) 
711 711 117 117 0.858 0.858 0.897 

0.858 

XGBoost (XGB) 750 710 118 78 0.906 0.857 0.912 0.881 

 TP TN FP FN Sensitivity specificity AUC ACC 

Adaboost model 

(ADB) 
137 93 54 10 0.932 0.633 0.897 

0.78 

Gradient Boosting 

(GB) 
133 123 24 14 0.905 0.837 0.893 

0.870 

XGBoost (XGB) 126 127 20 21 0.857 0.864 0.9 0.860 

 

  

Figure 7. ROC curves and AUC values of models on training and testing data sets. 

With three predicting models, the accuracy of all three models is very high when the Area Under 

the Curve (AUC) is greater than 0.8. Among them, XGB achieves the highest accuracy when AUC > 

0.9 for both the training and testing datasets. When considering sensitivity which measures the 

model's ability to accurately identify cases of subsidence within the total number of actual subsidence 

cases. Therefore, high sensitivity also implies accurately predicting subsidence points distributed in 

the research area. According to Tables 3 and 4, sensitivity is greater than 0.8, indicating that accurately 

predicting subsidence points is very high for the three models. 

Regarding specificity, it is a metric that measures the ability of a model to accurately identify 

non-subsidence cases within the total number of actual non-subsidence cases in the research area. 

Also, according to Tables 3 and 4, we can easily observe that on the training set, the accuracy of 

predicting non-subsidence points is consistently greater than 0.8. However, on the testing set in Table 

4, the specificity value of the ADB model is significantly lower, reaching only 0.633. This indicates a 

considerable number of false predictions of non-subsidence positions. Due to the instability of the 

ADB model, it is not selected for assessing the land subsidence susceptibility in the Ca Mau 

peninsular. 
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Both the GB and XGB models exhibit high overall accuracy (Acc) for both the training and testing 

datasets, exceeding 0.8, with XGB having slightly higher accuracy. Examining the values under the 

curve AUC, XGB achieves the highest values for both the training and testing datasets. This may 

indicate that the performance of the XGB model is superior and could be chosen for creating maps 

predicting land subsidence susceptibility. 

Using the XGB model to create a map predicting the susceptibility to land subsidence, the results 

were processed using ArcGIS 10.8 software. Employing a classification method to categorize data 

classes manually in ArcGIS 10.8, the subsidence susceptibility map was divided into five levels such 

as "Very Low," "Low," "Moderate," "High," and "Very High," corresponding to values "<0.2," "0.2-0.4," 

"0.4-0.6," "0.6-0.8," and "0.8-1," respectively. The distribution of subsidence susceptibilities from the 

XGB model is illustrated in Figure 8. 

 

Figure 8. (a) Land subsidence susceptibility distribution map using the XGB model; (b) Distribution 

of land subsidence susceptibility areas by the number of pixels; (c) Distribution of land subsidence 

susceptibility areas by percentage. 

5.3. Discussion         

For the selected XGB model, the very high land subsidence susceptibility concentration covers 

4% of the total provincial area and is distributed around the city of Ca Mau and the surrounding 

areas to the south of the Ca Mau Peninsula. This is also explained by the significant influence of Land 

Use and Land Cover (LULC) on the predictive model (Figure 6). High land subsidence susceptibility 

is concentrated in the southeast of the Ca Mau Peninsula, adjacent to Bac Lieu province. In this area, 

the land is relatively low and primarily used for aquaculture. High subsidence points also concentrate 

along transportation routes, which is more easily explained as training points are often measured 

along these routes. On the other hand, the subsidence sample points derived from satellite images 

using the PSInSAR method, as mentioned in the data collection section, mainly take points with high 

persistent scattering, which are more concentrated around artificial structures such as roads, bridges, 

and buildings rather than other locations. 

The moderate land subsidence susceptibility accounts for only 5% of the scattered distribution, 

not concentrated. Meanwhile, low land subsidence susceptibility covers 30%, mainly located in the 
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western part of the Ca Mau Peninsula in Tran Van Thoi district. The very low land subsidence 

susceptibility is concentrated in the north of Ca Mau and covers the largest area at 32%. This northern 

area includes U Minh district and part of Tran Van Thoi district, where the majority of the U Minh 

Ha forest is located. The U Minh Ha forest is a unique ecosystem with alternating saline and 

freshwater, creating a distinctive environment for various plant species. In this area, only a few points 

have high land subsidence susceptibility, mainly near the groundwater extraction wells.  

The soil types have little influence on the land subsidence susceptibility because the 

predominant soil types in the Ca Mau region are Orthi-Thionic fluvial soil and Histosols soil. The Ca 

Mau City area is a typical example of Orthi-Thionic fluvial, while the southern part of the Ca Mau 

Peninsula has Histosols. Both of these soil types have a high to very high risk of land subsidence. 

The profile (black line) is taken for the groundwater depth map (Figure 9), revealing that the 

groundwater depth has significantly decreased in the Ca Mau city area compared to the U Minh area. 

The decline in groundwater levels is a major contributing factor to land subsidence. Therefore, the 

possibility of land subsidence in the Ca Mau city area is very high and it has been shown very clearly 

on the subsidence susceptibility map made from XGB. 

 

Figure 9. (a) Map of average groundwater levels over the years and a cross-section depicting the depth 

of the groundwater; (b) Location of the land subsidence susceptibility map zoomed in at position A; 

(c) Location of the land subsidence susceptibility map zoomed in at position B. 

6. Conclusion 

The study applied Boosting machine learning models, including AdaBoost (ADB), Gradient 

Boosting (GB), and XGBoost (XGB), to construct a subsidence risk prediction map for the Ca Mau 

region. Eight influencing factors were considered, including the Digital Terrain Model (DTM), Land 

Use/Land Cover (LULC), Groundwater Depth, Normalized Difference Vegetation Index (NDVI), 

geology, Soil, Distance to roads, and Distance to rivers/streams. Among these input layers, LULC had 

the highest impact on the subsidence susceptibility prediction model, followed by groundwater 

depth and distance to roads. Other factors had relatively low influence, such as DTM because the Ca 

Mau Peninsula has low terrain dominated by alluvial soil, making their impact less pronounced. 

In the three selected models, ADB exhibited overfitting as evidenced by a relatively low 

specificity value for the test set compared to the training set. Both GB and XGB showed good 
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accuracy, with AUC, sensitivity, specificity, and accuracy values all exceeding 0.8, where XGB 

outperformed GB with AUC values greater than 0.9 for both training and test sets. Additionally, the 

accuracy of the XGB model was higher than that of GB. Therefore, XGB was chosen as the model for 

constructing the subsidence susceptibility prediction map in the Ca Mau Peninsula. 

The subsidence susceptibility distribution map indicated that the highest subsidence is in urban 

areas, specifically in Ca Mau City and along roads leading to the southern districts of the peninsula. 

High-risk areas were also concentrated in peat soil contaminated with sulfide and mudflat soil. 

Groundwater depth was identified as a significant factor in building the subsidence 

susceptibility map. The highest subsidence occurred in areas with a groundwater depth of -18m at 

Ca Mau city, while areas with lower subsidence risk had a groundwater depth of only -6m at U Minh 

district. 

In conclusion, proper land use planning and groundwater management could help address 

issues related to land subsidence in the Ca Mau Peninsula, contributing to sustainable economic 

development. Future research could explore new models and algorithms for more accurate 

subsidence susceptibility prediction. 
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