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Abstract: The Ca Mau Peninsula situated in the Mekong Delta of Vietnam, features a low-lying terrain. Over
recent years, the region has encountered the adverse impacts of climate change, leading to both land subsidence
and rising sea levels. In this study, we assessed the land subsidence susceptibility in the Ca Mau peninsula
utilizing three Boosting machine learning models: AdaBoost, Gradient Boosting, and Extremely Gradient
Boosting (XGB). Eight key factors were identified as the most influential in land subsidence within Ca Mau:
land cover (LULC), groundwater levels, distance to roads, Digital Terrain Model (DTM), normalized vegetation
index (NDVI), geology, soil composition, and proximity to rivers and streams. A dataset comprising 1950
subsidence sample points was employed for model training, with 1910 points obtained from the PSINSAR
Radar method, and the remaining points derived from leveling measurements. The sample points were split,
with 70% allocated to the training set and 30% to the testing set. Following computation and execution, the
three models underwent evaluation for accuracy using statistical metrics such as the ROC curve, Area under
the curve (AUC), Specificity, Sensitivity, and Overall Accuracy. The research findings revealed that the XGB
model exhibited the highest accuracy, achieving an AUC above 0.9 for both the training and test sets.
Consequently, XGB was chosen to construct a land subsidence susceptibility map for the Ca Mau peninsula.

Keywords: AdaBoost; Gradient Boosting; XGBoost; Ca Mau; Subsidence susceptibility

1. Introduction

Land subsidence is a common phenomenon in many regions around the world, often resulting
from factors such as groundwater extraction, mineral exploitation, oil and gas extraction, and more.
As land subsidence can lead to geological, hydrogeological, environmental, and/or economic
impacts, it garners significant attention from governments, communities, and scientists. While it may
not be entirely avoidable in industries like mining, sustainable control of land subsidence can be
achieved through government regulations, industrial exploitation monitoring, and rational planning
with the aid of predictive subsidence hazard maps [1]. Hence, the role of subsidence hazard maps is
immensely crucial, enabling managers to develop mineral extraction, groundwater usage, urban
development planning, and land-use conversion efficiently.

In recent times, paralleling the advancements of Industry 4.0, the utilization of artificial
intelligence and machine learning has become increasingly ingrained in the field of cartography.
Many applications involving machine learning has emerged for constructing predictive models
aimed at assessing land subsidence susceptibility.

The first study we would like to present is a research conducted by Rahmati, which utilized two
machine learning algorithms, namely MaxEnt (maximum entropy) and GARP (genetic algorithm
rule-set production), to construct a subsidence assessment model in Kashmar, Iran [2]. The model

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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incorporated data related to land use, geology, distances to groundwater extraction sites, distances
to reforestation projects, distances to fault lines, and groundwater level reduction. The research
results indicated that the GARP algorithm outperformed the MaxEnt algorithm in terms of
performance and accuracy. Both algorithms yielded reliable subsidence prediction outcomes.

Another study by Abdollahi published the results of utilizing a support vector machine (SVM)
model to create a subsidence susceptibility map for the Kerman province, Iran [3]. Data including
slope, aspect, elevation, cross-sectional curvature, plan curvature, topographic wetness index (TWI),
distance to rivers, groundwater level, geology, pressure variation, land use, and normalized
difference vegetation index (NDVI) were incorporated into the model construction. The model
yielded results with good accuracy, exhibiting (Area Under the Curve -AUC) values ranging from
0.894 to 0.857.

In the study [4], the authors established a subsidence susceptibility map in Jakarta Indonesia,
the accuracy of subsidence prediction in Jakarta was assessed using machine learning models,
including logistic regression, multilayer perceptron, meta-ensemble AdaBoost, and LogitBoost. They
utilized Sentinel-1 (SAR) data from 2017 to 2020 to generate a subsidence-sensitive map. ROC
analysis results demonstrated that the AdaBoost algorithm exhibited higher predictive accuracy
(81.1%) compared to Multilayer Perceptron (80%), Logistic regression (79.4%), and LogitBoost
(79.1%).

The XGBoost machine learning method was employed by Liyuan Shi and colleagues to develop
a subsidence predicting model for the North China Plain region [5]. Factors incorporated into the
model included groundwater level variations, the thickness of the Quaternary sediments, and an
index-based accumulation index (IBI), in combination with Sentinel-1 image-derived subsidence and
Persistent Scatterer Interferometry (PSI) measurements. The research results highlighted the excellent
accuracy of this method (0.9431).

A study conducted by Elham Rafiei Sardooi which was published, compared four machine
learning and statistical models: the evidential belief function (EBF), Index of Entropy (IoE), Support
Vector Machine (SVM), and random forest (RF) for subsidence prediction in the Rafsanjan plain
region of Iran [6]. The model training data included 11 factors such as slope percent, aspect,
topographic wetness index (TWI), plan and profile curvatures, normalized difference vegetation
index (NDVI), land use, lithology, distance to rivers, groundwater drawdown, and elevation. The
study utilized the Boruta algorithm to determine the significance of the causal factors. The research
findings revealed that the SVM model achieved the highest predictive accuracy (AUC = 0.967, TSS =
0.91), followed by RF (AUC = 0.936, (True Skill Statistic -TSS = 0.87), EBF (AUC = 0.907, TSS = 0.83),
and IoE (AUC =0.88, TSS =0.8). A comprehensive study conducted by Bui involved the comparison
of machine learning techniques, including Bayesian Logistic Regression, Support Vector Machine
(SVM), Logistic Model Tree, and alternative decision tree models, to construct a land subsidence risk
prediction model in South Korea [7]. Nevertheless, as far as our understanding goes, the study might
be subject to significant bias due to a limited number of sample points used for training and
validation.

Wang and colleagues have published a study on the application of land subsidence prediction
using the Artificial Neural Network BPNN and the Random Forest (RF) method in the Shandong
region of China [8]. The data used for subsidence prediction consisted of groundwater level
variations and subsidence data from the period 2017 to 2020, identified through SBAS-InSAR
technique. The research results indicated that the BPNN model exhibited higher accuracy than the
RF model.

Mohammadifar applied Stacking- and voting-based ensemble deep learning models (SEDL and
VEDL) along with active learning (AL) to establish subsidence susceptibility maps in the Minab and
Shamil-Nian plains of Hormozgan province, southern Iran [9]. According to the study, groundwater
level decline had a significant impact on the models' output results. Based on Taylor diagrams and
R2 values, the predictive outcomes of the SEDL-AL model (R2 > 95%) demonstrated higher
performance and accuracy compared to the SEDL model.
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With a diverse range of machine learning algorithms mentioned above applied in many different
countries, each region has distinct geographical and geological features. Models are not completely
effective for every area, they need to be tailored to the specific geographical features of the study
area. In this paper, we aim to explore several Boosting machine learning algorithms— Adaboost,
Gradient Boosting and XGBoost to predict land subsidence susceptibility in Ca Mau Peninsula,
Vietnam. Located in the southernmost part of Vietnam, Ca Mau is facing the risks of land subsidence,
sea level rise, flooding and saline intrusion. Research by Erban demonstrated subsidence in the Ca
Mau Peninsula and across the entire Mekong Delta in excess of several centimeters per year,
surpassing the present absolute sea level rise [10].

The reason for choosing the Boosting method is due to the flat terrain and low topography in
this delta where the main cause of land subsidence is still unknown. Therefore, Boosting models,
based on decision trees, merge weak models to form a strong model; The weights of the next layers
are updated from the previous weights, which can help improve the accuracy of the prediction. The
sample data input includes land subsidence points determined by the PSINSAR method and levelling
survey. Moreover, the Ca Mau area lacks any prior study utilizing Boosting models for land
subsidence prediction. Hence, our experiment can be considered pioneering, aiding in effective and
sustainable land use planning in this region.

2. Study area
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Figure 1. Ca Mau research area on the map of Vietnam.

Ca Mau Province is located in the southernmost part of the Mekong Delta, Vietnam
encompassing both mainland and several islands, with a total area of 5,329 square kilometers,
equivalent to about 13.10% of the Mekong Delta's area and 1.57% of the country's total area. It shares
its northern border with Kién Giang Province, its eastern border with Bac Lieu Province, its western
border with the West Sea (Gulf of Thailand), and its southern and eastern borders with the East Sea.

2.1. Topographical and soil characteristics

Ca Mau is situated in a region bordering both the East Sea and the West Sea (Gulf of Thailand),
with land that originates from sedimentary processes, featuring relatively low and fairly flat terrain.
The average ground elevation is approximately 0.6 meters. Low-lying areas have elevations around
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0.2 meters, while higher ground reaches elevations of about 0.8 - 1.5 meters. Most of the land lies
below the high tide water level, making it susceptible to flooding, particularly during high tides.

Ca Mau is a newly formed land area created by sedimentation, comprising marine sediments,
river sediments. These types of land generally have a detrimental impact on both surface water
quality and the province's groundwater source.

2.2. Hydrological Characteristics

The rivers, streams, and channels in Ca Mau Province form an intricate network, covering
nearly 3% of the natural area. There are 8 main rivers and 3 primary canals with river mouths ranging
in width from 45m (Cai Tau River) to 1800m (Cua Lon River) and depths varying from 3m (Bai Hap
estuary) to 19m (Bo De estuary of Cua Lon River).

2.3. Current Water Usage Situation

At present, the primary source of water for both domestic and industrial purposes in Ca Mau
Province is groundwater. Groundwater resources meet the current water demands of the province,
extracted from various types of wells and boreholes with different depths, diameters, and layers.
Among these, the boreholes catering to industrial and semi-industrial needs, networked boreholes,
and small UNICEF-style boreholes predominantly draw water from the Pleistocene-intermediate to
upper (qp2-3) and intermediate Pliocene (n22) layers, constituting around 75% of the total number of
boreholes for water extraction.

In addition to centralized water supply systems provided by water treatment plants and
distribution stations, various institutions, enterprises, and individuals also independently drill wells
for their own water needs in both domestic and production contexts.

3. Research Methodology

Boosting is a machine learning technique utilized to enhance the predictive ability of a machine
learning algorithm by focusing on learning from more challenging cases. It operates by generating
iterations of the original machine learning model and concentrating on addressing misclassified
instances from the previous model, until a desired level of accuracy is achieved. Common boosting
algorithms employed with decision trees include AdaBoost, Gradient Boosting, and Extreme
Gradient Boosting (XGBoost). Below, we sequentially investigate these three algorithms with the aim
of constructing three models for the research area and selecting the optimal model.

3.1. AdaBoost

AdaBoost (Adaptive Boosting) is a popular machine learning ensemble technique used for
classification and regression tasks and was invented by Freund and Schapire [11]. It aims to improve
the performance of weak learners (often referred to as "base classifiers" or "base models") by
combining their predictions into a strong overall prediction. The core idea behind AdaBoost is to give
more weight to instances that are misclassified by the previous base models, thereby focusing on the
difficult cases.

Let's assume a binary classification problem with a target variable consisting of two labels: y €
{-1, 1}. Following the boosting method, the predictive function for an input variable xi is denoted
as f(x;)) €{—1,1} and the target variable y takes one of two values: {~1, 1}. In this case, the training
error can be defined as:

N
1 A
r=g)., 10, * fea) M)
Where:

N is the number of training samples.

a_i represents the weight associated with the i-th training samples.

y_i is the actual target value for the i-th samples.


https://doi.org/10.20944/preprints202401.1854.v1

Preprints.org (Www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2024 doi:10.20944/preprints202401.1854.v1

Training sample

(o, F1(%)) (0, f2(x)) (0, FP(x))

Figure 2. Diagram of the AdaBoosting model. Each individual sub-model is trained on a dataset
weighted according to calculations from the pre-model.

According to figure 1, the weak models are combined by assigning weights to each based on
their performance. Stronger models are given higher weights in making the final predictions f(x;).
f(x) = sign[Z}_; ai f1(x)] (2)
In the equation above, the sign(x) function is a function that takes the value 1 if the sign of x is
positive and takes the value -1 if otherwise.

3.2. Gradient Boosting

The Gradient Boosting algorithm (GB) was invented and introduced by Jerome H. Friedman in
2001, which involves training weak models sequentially. However, instead of using the model error
to weight the training data like ADaboost, residuals are used [12]

Starting from the current model, GB tries to build a decision tree to match the residuals from the
previous model. The special feature of this model is that instead of it trying to match the target
variable value of y, it will try to match the error value of the previous model. It then adds the training
model to the prediction function to gradually update the residuals. Each decision tree in the model
chain is very small in size with only a few decision nodes determined by the depth parameter d in
the model. The figure below illustrates this process in more detail:
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Figure 3. Training method using GB. Decision tree models are arranged in a sequence. Each decision
tree is constructed based on the predictions of the preceding decision tree. At each decision tree, the
model will attempt to fit the residuals from the previous decision tree.
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3.3. XGBoost (Extreme Gradient Boosting)

XGBoost is an extremely powerful and popular machine learning model in both the machine
learning and data science communities. XGBoost, mainly developed by Tiangi Chen and first
announced in 2015. It falls under the category of Gradient Boosting algorithms, designed to optimize
the performance of prediction models, especially in regression and classification tasks.

XGBoost uses Gradient Descent [13] to optimize the model by continuously improving the
decision trees. XGBoost is efficiently implemented and supports parallel computation, which speeds
up training on multi-core computers. The steps in building the XGBoost model are:

- XGBoost starts by constructing a weak decision tree, possibly a very small one.

- Computing the Gradient of the Loss Function: After having a weak tree, XGBoost calculates the
gradient of the loss function (typically mean squared error in regression or log loss in
classification) with respect to the data points. This gradient reflects the discrepancy between the
current predictions and the actual values.

- Building the Next Tree to Reduce Gradient: XGBoost proceeds to construct another decision tree
with the aim of optimizing the reduction in gradient (the difference between predictions and
actual values). This yields a new model with improved predictive performance compared to the
previous one.

- Combining the New Tree with Previous Trees: XGBoost integrates this new tree into the overall
model in addition to the previously built trees, creating a stronger model.

- Iterating the Process: This process is repeated until a predefined number of trees (or tree layers)
is reached or when the loss function no longer decreases significantly.

- The outstanding capabilities of XGBoost
XGBoost has the advantage of avoiding overfitting by using techniques such as sub-sampling

rows, columns, column per split levels, and applying regularized L1 and L2.

Resource Utilization Capability: Parallel computation on CPU/GPU, distributed computation
across multiple servers, computation under resource constraints, cache optimization to speed up
training.

And finally, the ability to handle missing data values, continue training using a previously built
model to save time.

4. Data

4.1. the inventory points of land subsidence

The land subsidence inventory plays a crucial role in constructing land subsidence susceptibility
models, providing essential information about the status and extent of land subsidence in specific
areas. This data, along with several influencing factors, forms the basis for training supervised
subsidence susceptibility models. As previously mentioned, the Ca Mau Peninsula is a vast and
relatively flat region, leading to infrequent data collection points and limited coverage of subsidence
points. The total subsidence points collected by the Department of Survey and Mapping of Vietnam
amount to 40 points. However, the subsidence observation times are uneven, with the closest
measurement taken in 2020. For this reason, we chose to collect additional land subsidence points
using the multi-temporal radar image processing method.

The measuring ground deformations from stacks of archive Sentinel-1 SAR imagery acquired in
reference period November 2014 — January 2019 was utilized to detect displacements caused by
ground subsidence and to estimate the subsidence average velocity over the reference period [14,15].
Land subsidence points made using the PSI method have been proven to have satisfactory accuracy
[16]. After selecting prominent subsidence points, 1910 subsidence points were selected to be
included in the inventory set. The distribution of land subsidence points is shown in Figure 1
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4.2. Influence Factors on the subsidence susceptibility Model

When constructing a machine learning model for predicting land subsidence, several influential
factors need to be considered to ensure the accuracy and effectiveness of the model.

Topography: The topography has a significant impact on land subsidence and related
phenomena. It can affect subsidence in various ways, such as influencing water flow and the
accumulation of organic and mineral waste in the soil. Sloping terrain can lead to inclined subsidence,
making the top layer of soil prone to sliding. However, as mentioned in the research area section, Ca
Mau has low topography with an average elevation of less than 1 meter, so there are almost no slopes.
Therefore, in this study, we only consider an elevation layer as a representative of the topography.
The terrain layer is taken from the SRTM 30m digital terrain model.

Geology: The geological structure can affect the strength of the soil and its load-bearing capacity.
Soil with layered structures, cracks, or weaknesses may be more susceptible to subsidence. Thus,
geological data is an important input layer influencing land subsidence. The geological map of Ca
Mau is a 1:100,000 scale map provided by the Vietnam Institute of Geology and Mineral Resources.

Soil Type: The type of soil can influence subsidence through its physical and chemical properties,
including permeability, water retention, swelling and shrinking, hardness, and flexibility, as well as
its interaction with groundwater. The permeability of the soil affects the rate of water infiltration
through the soil. Soil with good permeability can lead to rapid water loss, contributing to the
subsidence process. The properties of soil particles, such as clay, sand, and gravel, can affect changes
in soil volume. Clay can absorb water and swell when water permeates, while sand is often
impermeable and may compress more under high pressure. In addition, the stiffness, flexibility, and
thickness of the soil layer are factors that contribute to subsidence effects. The Soil map of Ca Mau is
a 1:100,000 scale map provided by the Vietnam Institute of Geology and Mineral Resources.

LULC (Land Use and Land Cover): This refers to how humans use the land, such as planting
crops, building houses, constructing roads, urbanization, agricultural production, afforestation, etc.
Land use can change over time due to human activities. Changes in surface cover can impact the
water balance in the soil. Constructing urban areas, roads, or impermeable surfaces can cause changes
in underground water flow, affecting water balance and causing land subsidence. The LULC map of
Ca Mau is a 1:50,000 scale map provided by the Vietnam Department Of Survey, Mapping and
Geographic Information.

NDVI (Normalized Difference Vegetation Index): NDVI is a commonly used index for
measuring and analyzing the vegetation status on the ground based on satellite imagery. NDVI is
widely used in areas such as land resource management, agriculture, environmental monitoring, and
climate change observation. The NDVI index is calculated from two wavelengths of light reflected
from the ground that is Near Infrared (NIR) and Red. The formula for calculating the NDVI index is
shown in (3)

e ©

The NDVI (Normalized Difference Vegetation Index) typically ranges from -1 to +1. Negative
values (often close to -1) usually appear over areas of water, rocks, snow, urban areas, or regions
devoid of vegetation. Values close to 0 indicate areas with sparse or no vegetation, while positive
values (often close to +1) signify the presence of abundant and well-developed vegetation.

The NDVI index helps monitor changes in vegetation and soil conditions. When vegetation is
dense, such as in dense forests or areas with full tree coverage, various interacting factors can

NDVI =

contribute to stabilizing the soil and reducing subsidence. This is because plants with strong and
dense root systems can create a useful network to firmly hold the soil. Roots help establish cohesion
between soil particles, making the soil stronger and less susceptible to being eroded by water flow.
NDVI map of Ca Mau area is made from Sentinel-2 satellite images in 2019.

Distance to Roads:

Subsidence often occurs near roads due to changes in the natural drainage system of the area
during road construction. The construction of drainage ditches or alterations in the landscape can
reduce the natural drainage ability of the environment, leading to flooding and an increased risk of
subsidence. Additionally, traffic activities on the road can exert additional load on the ground.


https://doi.org/10.20944/preprints202401.1854.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 January 2024 doi:10.20944/preprints202401.1854.v1

Vehicles moving on the road generate impacts and pressure on the soil surface, making the soil more
compressible and prone to subsidence. The road map is taken from the 1:50,000 scale topographic
map provided by the Vietham Department Of Survey, Mapping and Geographic Information. Roads
will be buffered according to distance at different levels: 50m, 100m, 200m and 500m.

Distance to the river:

The presence of water bodies can increase moisture in the surrounding environment. Moist soil
is more susceptible to compression and may lead to subsidence. Human activities creating
infrastructure around water bodies, such as building drainage systems, bridges, or urban areas, can
also affect soil characteristics and contribute to the subsidence process. The river map is also derived
from the 1:50,000 scale topographic map issued by the Vietnam Department of Survey, Mapping, and
Geographic Information. Rivers will be buffered at various distances, including 50m, 100m, 200m,
and 500m.

Groundwater Depth:

Groundwater is a factor that can be considered one of the most crucial in influencing land
subsidence. Numerous studies, such as the research conducted by [10,17,18] have demonstrated the
relationship between groundwater and land subsidence. Therefore, the groundwater depth dataset
is a significant layer included in this research. We collected this data from groundwater extraction
wells in the years 2020, 2021, and 2022. This data was provided by the National Center for Water
Resources Planning and Investigation-Vietnam [19].

4.3. Data standardization

When constructing a model for predicting land subsidence, it is essential to standardize the input
data by converting it to a consistent parameter system (referred to as data standardization).
Variations in measurement units or a wide range of values in the data can potentially impact the
model. Data standardization mitigates this effect by bringing all features to a uniform scale. In this
study, the data normalization is achieved through the utilization of the Frequency Ratio method that
relies on the spatial correlation between previous instances of land subsidence and the factors
contributing to the formation of land subsidence. A higher FR value signifies a more robust
correlation between subsidence occurrences and the influencing factors. The FR value is computed
using the formula [20]. Using ArcGIS 10.8 software, the data for the 1950 selected subsidence points
mentioned above were calculated and standardized according to Table 1.

FR = pr'x(l)/NpixFZ)
X Npix(3)/ X Npix(4)

4)
Where: N pix (1) is the number of land subsidence pixels of the factor class; N pix (2) is the total
number of pixels of the sub-class over the entire study area; N pix (3) is the total number of land

subsidence pixels of the study area; N pix (4) is the total number of pixels of the study area.

Table 1. Land subsidence conditioning factors and their classification.

LS % Land Class % Class

Factor Sub-factor points subsidence pixels pixel FR
(1)<[-7.431] 3 0.29 28948 0.496 0.586
(2) [-7.431m-(-0.568)m] 23 2.23 532631 9.135 0.244
Elevation (m) (3) [0.568m- 1.490m] 152 14.73 1908970 32.739 0.450
(4) [1.490m-5.608m] 738 71.51 2946996 50.541 1.415
(5) [5.608m-14.529m] 115 11.14 387369 6.643 1.677
(6) [>14.529m] 1 0.10 25941 0.445 0.218
(1) Regosols 0 0.00 4800 0.080 0.000

Soil (2) Arenosols 0 0.00 94229 1.579 0.000
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(3) Salic Fluvisols 30 292 1098253 18.407 0.159
(4) Orthi- Thionic fl 508 49.51 2098530 35.171 1.408
(5) Proto- Thionic fl 0 0.00 145226 2.434 0.000
(6) > Histosols 488 47.56 2525584 42.329 1.124
(1) (abQe ) 2 0.20 266 0.498 0.393
(2) (abQer Ho) 1 0.10 531 0.994 0.098
(3) (abTert) 0 0.00 1 0.002 0.000
(4) (amQe) 13 1.27 767 1.436 0.885
Geology (5) (amQert) 0 0.00 168 0.315 0.000
(6) (bQQe) 7 0.68 1399 2.619 0.261
(7) (mQQe) 395 38.61 24504 45.873 0.842
(8) (mQQe t) 593 57.97 22656 42413 1.367
(9) (mbQe) 8 0.78 344 0.644 1.214
(10) (mbQer Ho) 4 0.39 2781 5.206 0.075
(1) [(-18.191m)—(-
15.288m)] 255 2471 561100 9.831 2513
(2) [(-15.288m)—(-
13.930m)] 262 25.39 1202946 21.077 1.205
(3) [(-13.930m)—(-
12.713m)] 478 46.32 2672539 46.826 0.989
@) [(-12.713m)—(-
Ground water 10.933m)] 16 1.55 579125 10.147 0.153
(5) [(-10.933m)—(-
8.591m)] 2 0.19 344049 6.028 0.032
(6) [(-8.591m)—(-6.251m)] 19 1.84 347630 6.091 0.302
(1) [(-0.445)—(-0.055)] 14 1.36 444115 7.617 0.178
(2) [(-0.055)-0.116] 465 45.06 1025564 17.589 2.562
NDVI (3) [0.116-0.271] 282 27.33 1205154 20.669 1.322
(4) [0.271-0.437] 196 18.99 1304528 22373 0.849
(5) [0.437-0.619] 66 6.40 922437 15.820 0.404
(6) [0.619-0.918] 9 0.87 929057 15.933 0.055
(1) Water 22 2.09 9092376 41.576 0.050
(2) Alluvial land 3 0.29 120858 0.553 0.517
(3) Forest 18 1.71 1652162 7.555 0.227
LULC (4) Rice fields 325 30.92 3656870 16.722 1.849
(5) Aquaculture land 116 11.04 6774991 30.980 0.356
20.63
(6) Build up areas 567 53.95 571849 2.615 1
(1) 0-50m 203 19.67 539964 9.291 2.117
Distance to
Road (2) 50-100m 197 19.09 418632 7.203 2.650
(3) 100-200m 264 25.58 758709 13.055 1.959
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(4) 200-500m 188 18.22 1604568 27.610 0.660

(5) >500m 180 17.44 2489723 42.841 0.407

(1) 0-50m 208 20.16 325502 5.601 3.599

(2) 50-100m 116 11.24 283743 4.882 2.302

Distance to
) (3) 100-200m 182 17.64 500150 8.606 2.049
River

(4) 200-500m 220 21.32 1218897 20.974 1.016

(5) >500m 306 29.65 3483304 59.937 0.495

After the data has been normalized, the factor maps are incorporated into the model, comprising
8 layers. The FR data column in Table 1 will be utilized as the data for each layer to be included in
the model. Figure 4 shows the input factors.

Figure 4. Input factor layers for the subsidence prediction model in Ca Mau area.
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Figure 5. Processing flow chart for land subsidence susceptibility mapping.
5. Results and Discussion

5.1. Evaluate the importance of the model’s input variables

Determining the importance of variables helps gain insights into the contribution of each
variable to the predicted outcome. This provides an overall understanding of the influence of these
factors. Besides, assessing variable importance aids in model optimization. If certain variables have
minimal impact on the prediction, consideration can be given to removing them, simplifying the
model while retaining accuracy. Additionally, this work avoiding excessive use of correlated
variables helps mitigate collinearity issues, where multiple explanatory variables are highly
correlated.

Figure 6 presents a plot that summarizes the importance values of the input variables elucidating
their relationships with the predicted outcomes. The vertical axis in the chart represents the intensity
of the impact of each input factor, while the horizontal axis denotes the respective factors. Higher
values on the vertical axis indicate higher efficiency. From Figure 6, it can be understood that LULC
and groundwater depth exhibit a significant level of influence on the prediction results compared to
other results. In which the XGBoost model has a quite high influence while the two models GB and
ADABoost have the lower value. The next influencing factor is the distance to roads and Soil. The
reason can be understood as vehicle traffic and loads from road traffic can create pressure on the soil
layer, especially when the soil is already weakened due to other reasons.

Other factors that affect the model, although not much, cannot be ignored, such as geology,
distance to rivers and streams, and altitude have very little influence, this is easy to explain because
Ca Mau has a quite low topography, many places have altitudes lower than sea level.
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Figure 6. Evaluation of the importance of 8 input variables in three models.

5.2. Evaluate model performance

To evaluate model performance we use Receiver Operating Characteristic curve (ROC), Area
Under the Curve (AUC), Sensitivity, Specificity and accuracy (Acc).

ROC Curve is a graph that illustrates the relationship between the True Positive Rate (TPR) and
False Positive Rate (FPR) of a classification model at different decision thresholds. TPR is the ratio of
correctly predicted positive cases (true positives) to the total number of actual positive cases. FPR is
the ratio of incorrectly predicted positive cases to the total number of actual negative cases.

AUC is the area under the ROC curve. AUC measures the ability of a classification model to
correctly classify positive versus negative instances. AUC typically ranges from 0 to 1, with a higher
AUC indicating a better model performance. The relationship between model performance and AUC
can be quantified as follows: excellent (0.9-1), very good (0.8-0.9), good (0.7-0.8), fair (0.6-0.7), and
poor (0.5-0.6) [21].

The accuracy assessment method using ROC curve and AUC is a valuable tool for validating
land subsidence prediction models. The utilization of ROC curve and AUC aids in evaluating result
reliability, comparing performance among different models, and identifying the best model for land
subsidence prediction purposes.

In evaluating the performance of a predictive model, combining the ROC curve and AUC with
other metrics such as accuracy, sensitivity, and specificity will provide a more comprehensive
overview of the model's performance [22]. The formula for calculating sensitivity is as follows:

Sensitivity = TP / (TP + FN) (5)

Where TP (True Positive) is the number of true positive instances correctly identified, and FN
(False Negative) is the number of false negative instances incorrectly identified.
The formula for calculating specificity is as follows:

Specificity = TN/ (TN + FP) (6)

TN (True Negative) is the number of true negative instances correctly identified, and FP (False
Positive) is the number of false positive instances incorrectly identified.
Accuracy is calculated according to the formula:

Acc = (TP + TN) / (TP + TN + EN + FP) 7)
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For the Ca Mau research area, with three selected models ADB, GB, XGB, the values are
calculated based on the training set in Table 3 and the validating set in Table 4 below, along with the
ROC curves on the training and testing datasets.

Table 3. Performance evaluation table of models on the training dataset.

TP TN FP FN Sensitivity specificity AUC ACC

Adaboost model 0.845
736 663 92 165 0.817 0.878 0.903
(ADB)
Gradient Boosting 0.858
711 711 117 117 0.858 0.858 0.897
(GB)
XGBoost (XGB) 750 710 118 78 0.906 0.857 0.912 0.881

TP TN FP FN  Sensitivity specificity AUC ACC

Adaboost model 0.78

137 93 54 10 0.932 0.633 0.897

(ADB)

Gradient Boosting 0.870

133 123 24 14 0.905 0.837 0.893

(GB)
XGBoost (XGB) 126 127 20 21 0.857 0.864 0.9 0.860
ROC Curve on Training Dataset ROC Curve on Validation Dataset
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Figure 7. ROC curves and AUC values of models on training and testing data sets.

With three predicting models, the accuracy of all three models is very high when the Area Under
the Curve (AUC) is greater than 0.8. Among them, XGB achieves the highest accuracy when AUC >
0.9 for both the training and testing datasets. When considering sensitivity which measures the
model's ability to accurately identify cases of subsidence within the total number of actual subsidence
cases. Therefore, high sensitivity also implies accurately predicting subsidence points distributed in
the research area. According to Tables 3 and 4, sensitivity is greater than 0.8, indicating that accurately
predicting subsidence points is very high for the three models.

Regarding specificity, it is a metric that measures the ability of a model to accurately identify
non-subsidence cases within the total number of actual non-subsidence cases in the research area.
Also, according to Tables 3 and 4, we can easily observe that on the training set, the accuracy of
predicting non-subsidence points is consistently greater than 0.8. However, on the testing set in Table
4, the specificity value of the ADB model is significantly lower, reaching only 0.633. This indicates a
considerable number of false predictions of non-subsidence positions. Due to the instability of the
ADB model, it is not selected for assessing the land subsidence susceptibility in the Ca Mau
peninsular.
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Both the GB and XGB models exhibit high overall accuracy (Acc) for both the training and testing
datasets, exceeding 0.8, with XGB having slightly higher accuracy. Examining the values under the
curve AUC, XGB achieves the highest values for both the training and testing datasets. This may
indicate that the performance of the XGB model is superior and could be chosen for creating maps
predicting land subsidence susceptibility.

Using the XGB model to create a map predicting the susceptibility to land subsidence, the results
were processed using ArcGIS 10.8 software. Employing a classification method to categorize data
classes manually in ArcGIS 10.8, the subsidence susceptibility map was divided into five levels such
as "Very Low," "Low," "Moderate," "High," and "Very High," corresponding to values "<0.2," "0.2-0.4,"
"0.4-0.6," "0.6-0.8," and "0.8-1," respectively. The distribution of subsidence susceptibilities from the
XGB model is illustrated in Figure 8.
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Figure 8. (a) Land subsidence susceptibility distribution map using the XGB model; (b) Distribution
of land subsidence susceptibility areas by the number of pixels; (¢) Distribution of land subsidence
susceptibility areas by percentage.

5.3. Discussion

For the selected XGB model, the very high land subsidence susceptibility concentration covers
4% of the total provincial area and is distributed around the city of Ca Mau and the surrounding
areas to the south of the Ca Mau Peninsula. This is also explained by the significant influence of Land
Use and Land Cover (LULC) on the predictive model (Figure 6). High land subsidence susceptibility
is concentrated in the southeast of the Ca Mau Peninsula, adjacent to Bac Lieu province. In this area,
the land is relatively low and primarily used for aquaculture. High subsidence points also concentrate
along transportation routes, which is more easily explained as training points are often measured
along these routes. On the other hand, the subsidence sample points derived from satellite images
using the PSInNSAR method, as mentioned in the data collection section, mainly take points with high
persistent scattering, which are more concentrated around artificial structures such as roads, bridges,
and buildings rather than other locations.

The moderate land subsidence susceptibility accounts for only 5% of the scattered distribution,
not concentrated. Meanwhile, low land subsidence susceptibility covers 30%, mainly located in the
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western part of the Ca Mau Peninsula in Tran Van Thoi district. The very low land subsidence
susceptibility is concentrated in the north of Ca Mau and covers the largest area at 32%. This northern
area includes U Minh district and part of Tran Van Thoi district, where the majority of the U Minh
Ha forest is located. The U Minh Ha forest is a unique ecosystem with alternating saline and
freshwater, creating a distinctive environment for various plant species. In this area, only a few points
have high land subsidence susceptibility, mainly near the groundwater extraction wells.

The soil types have little influence on the land subsidence susceptibility because the
predominant soil types in the Ca Mau region are Orthi-Thionic fluvial soil and Histosols soil. The Ca
Mau City area is a typical example of Orthi-Thionic fluvial, while the southern part of the Ca Mau
Peninsula has Histosols. Both of these soil types have a high to very high risk of land subsidence.

The profile (black line) is taken for the groundwater depth map (Figure 9), revealing that the
groundwater depth has significantly decreased in the Ca Mau city area compared to the U Minh area.
The decline in groundwater levels is a major contributing factor to land subsidence. Therefore, the
possibility of land subsidence in the Ca Mau city area is very high and it has been shown very clearly
on the subsidence susceptibility map made from XGB.
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Figure 9. (a) Map of average groundwater levels over the years and a cross-section depicting the depth
of the groundwater; (b) Location of the land subsidence susceptibility map zoomed in at position A;
(c) Location of the land subsidence susceptibility map zoomed in at position B.

6. Conclusion

The study applied Boosting machine learning models, including AdaBoost (ADB), Gradient
Boosting (GB), and XGBoost (XGB), to construct a subsidence risk prediction map for the Ca Mau
region. Eight influencing factors were considered, including the Digital Terrain Model (DTM), Land
Use/Land Cover (LULC), Groundwater Depth, Normalized Difference Vegetation Index (NDVI),
geology, Soil, Distance to roads, and Distance to rivers/streams. Among these input layers, LULC had
the highest impact on the subsidence susceptibility prediction model, followed by groundwater
depth and distance to roads. Other factors had relatively low influence, such as DTM because the Ca
Mau Peninsula has low terrain dominated by alluvial soil, making their impact less pronounced.

In the three selected models, ADB exhibited overfitting as evidenced by a relatively low
specificity value for the test set compared to the training set. Both GB and XGB showed good
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accuracy, with AUC, sensitivity, specificity, and accuracy values all exceeding 0.8, where XGB
outperformed GB with AUC values greater than 0.9 for both training and test sets. Additionally, the
accuracy of the XGB model was higher than that of GB. Therefore, XGB was chosen as the model for
constructing the subsidence susceptibility prediction map in the Ca Mau Peninsula.

The subsidence susceptibility distribution map indicated that the highest subsidence is in urban
areas, specifically in Ca Mau City and along roads leading to the southern districts of the peninsula.
High-risk areas were also concentrated in peat soil contaminated with sulfide and mudflat soil.

Groundwater depth was identified as a significant factor in building the subsidence
susceptibility map. The highest subsidence occurred in areas with a groundwater depth of -18m at
Ca Mau city, while areas with lower subsidence risk had a groundwater depth of only -6m at U Minh
district.

In conclusion, proper land use planning and groundwater management could help address
issues related to land subsidence in the Ca Mau Peninsula, contributing to sustainable economic
development. Future research could explore new models and algorithms for more accurate
subsidence susceptibility prediction.
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