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Abstract: With continued scaling of semiconductor devices , the value of predictive analysis through
accurate quantum transport modeling is exponentially increasing. Quantum transmitting Boundary
method (QTBM) has been a well-known method of choice to model quantum transport in simple 1-D
devices. Here, we present an extension of the QTBM to the 2-D domain and apply it for more realistic
devices for accurate performance analysis.
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1. Introduction

With continued scaling of semiconductor devices to meet the aggressive goals set forth by the
International Technology Roadmap for Semiconductors (ITRS) [1], cost of fabrication are exponentially
increasing, adding equivalent value to the power of predictive analysis through accurate modeling.
Moreover, due to aggressive scaling of device dimensions, quantum transport is gradually becoming
the dominant transport mechanism for carriers. The current generation of transistors [2-9] have active
regions of length comparable to the wavelength of an electron. At such small dimensions, the basic
assumption of the semi-classical transport physics [10,11], that electrons are point-like objects with
defined position and momentum, falls short. A full quantum study of electron transport is needed to
simulate and understand the behavior of these devices, including explicit quantum mechanical effects
like tunneling, quantization and resonance [12-15].

The three well-known methods to study quantum transport are the Wigner function method
[16-18], the Non-equilibrium Green'’s function method [19-23] and the self-consistent solution of the
Schrodinger, Pauli master [24-26] and Poisson equations. In our research we will be using the latter
to model ballistic and dissipative electron transport. The model we employ uses the single-electron
envelope approximation and the conduction bands are approximated with parabolic ellipsoidal
or spherical valleys (six ellipsoidal valleys in the case of silicon). In particular, we are extending
the popular Quantum Transmitting Boundary method (QTBM) for solving the two-dimensional
Schrodinger equation and therefore validate its application towards behavior analysis of more realistic
devices.

2. Simulation Methodology

Our main objective is to solve a system that can communicate with its environment through
its contacts, namely an open system [27]. This requires discretizing the continuum of energies in the
contacts. The optimal discretization is obtained by sampling the density-of-states using the solution of
the system in equilibrium, namely a closed system [28,29]. Section 2.1 details our theoretical scheme of
obtaining these solutions of the closed system. We solve the Schrodinger equation with closed boundary
conditions self-consistently [30,31] with the Poisson equation in the two-dimensional (2-D) plane
of the device to achieve this. The device is assumed wide enough so that a 3-D simulation is not
required. In Section 2.3, our simulation methodology is extended to model an open system driven far
from equilibrium under the influence of a drain-to-source bias. The Quantum Transmitting Boundary
method (QTBM) [32,33] is used to enforce open boundary conditions to model particle exchange,
through current-carrying leads, between the device and environment. Furthermore, ways to derive
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various device characteristics of practical importance are highlighted here. Finally we provide an
application for our ballistic simulation tool.

We start with the equilibrium condition of the system. This is obtained by solving the
two-dimensional (2-D) Schrodinger and Poisson equations self consistently [30] for different gate
biases and at different temperatures, with no drain-to-source voltage applied. For very wide devices,
we can assume translational invariance of the device profile along the out-of-plane y direction and
therefore our 2-D approach is a good approximation. We define this closed state of the system as one
in which the system does not exchange particles (and energy, thermodynamically) with the rest of
the ‘universe’ through its contacts. Therefore, in its quantum description, either the wavefunctions
must vanish outside the system or there should be zero net probability current entering or exiting
the system. In order to obtain the correct closed system solution, it is better to solve the Schrodinger
equation with both Dirichlet and Neumann boundary conditions, so that one gets the right density
near the contacts and, so, the correct potential. The Dirichlet and Neumann solutions behave ‘sine-like’
and ‘cosine-like’ at the device-contact interface, respectively, as Figure 1 shows.
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Figure 1. A simplified diagram showing how Dirichlet and Neumann boundary conditions behave at
the device-contact interface.

Thereby, a combined set of these two forms a complete set of physical solutions and any other
solution to the closed system can be represented as a linear combination of the two. In all the cases,
zero-value Dirichlet boundary conditions will be applied at the oxide-semiconductor interface as well
as at the substrate of the device to account for the idealized yet physically consistent situation of
having zero charges beyond the said interfaces.

Next, we describe how to obtain a self-consistent 2-D solution of the Schrodinger equation,
considering both Dirichlet (Sec. 2.1) and QTBM boundary conditions (Sec. 2.3), and Poisson equations.
When solving the Poisson equation, in order to account for electrostatic control through gates using
externally applied bias, Dirichlet boundary conditions are applied at the gate-dielectric interfaces,
while Neumann conditions are imposed elsewhere to ensure confinement of the electric field to the
simulation domain.

2.1. Two-Dimensional Schrodinger Equation Solution for Quasi-static Charge Distribution

The time-independent single electron ‘effective mass’ Luttinger-Kohn (Schrédinger) equation
[34] is solved using the parabolic-band approximation to account for the Silicon band structure. The
numerical method of choice is the finite differences method. The Luttinger-Kohn equation can be
written as:

[Em(=iV) +V(x,y,2)[9(x,y,2) = Ep(x,y,2) , ©)

where, using the effective mass approximation, E, (k) = ’32‘5 and m* is the effective mass of band m.
For Silicon channels oriented along the < 100 > direction, the two-dimensional Schrédinger equation

can be written as [30,35]:
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where the envelope wavefunction is ¢(x,y,z) = eikyyz;"(x, z) and my, my and m, are the transport mass
(along transport x direction), the out-of-plane mass (along the y-direction into the plane of the device),
and the quantization mass (along z, perpendicular to the carrier transport). V is the potential energy
on the (x, z) plane, Ey; is the energy of the two-dimensional wavefunction §(x, z) and ky represents
the wavevector in the y direction. The superscript v is used to represent the different values taken by
the annonated quantities for the six ellipsoidal valleys of the Si Brillouin zone All computations are
repeated once for each pair of inequivalent valley-orientations.

The expression EY, + hzkg,/ 2my denotes the total energy of an electron state described by the
wavefunction ¢ (x, y, z). Numerically, Eq. (2) can be recast as:

v . . v . . v . . v . .
a g (x1+;/zz) + & (xi—1,2i) +ap ¢ (x1/zzz+1) + &%(xi,zi-1) o L12+ a
Axi AxiAx;_q AZZ. AziAz;_q Axi AxiAx;_4q
a2 a2 v v xv
24 "2 L V(xz o) =E oz,
bt e V)| (%) = B ()
)
where a; = —h*/2m¥, ay = —h*/2mZ and, i is the index for the N discretized mesh points. We deploy

a 2-D mesh obtained by the tensor product of two 1-D meshes consisting of Ny and N, points, so that
N = Ny x N,. The N x N Hamiltonian matrix (HP) is created using the terms on the left-hand-side
of Eq. 3. Since we are modeling a closed system, the wavefunctions should vanish outside the device
and therefore Dirichlet boundary conditions are assumed at the simulation boundaries. With these
assumptions, Eq. (3) takes the form of an eigenvalue problem of rank N:

[HP V|-, = Eudy, 4)

where ¢, and E, are the uh eigenfunction and eigenvalue, respectively, and, i ranges from 1 to N.
Incorporating non uniformity of the mesh, the Hamiltonian matrix (HP) is given by:

D D D
H-"=H; +H,, (5)
where HY =
- 11 11 }
—2A7] Aly e 0 0
21 A 23
A1 22 AR 0 0
2,1
0 0
. . . ’
i1 —AG Lit1
A= ii L1
0 e AN i Al 0 e 0
i,i—1
NN-1 _5aNN
0 e e AUN-1 —2ANN
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NN-Nx pNN
L 0 e BN,N—NX BN,N_
k,l _ a1 k,l _ a . . D .
Ai,j = By, and B}’ i = Axhz are the matrix elements in row k and column /. H" actually gives

wavefunctions that vanish just outside the device domain. All elements, except those on the diagonal,
of the rows representing the left and right edges of the device, i.e., rows having indexes jNy or jNy (j
being an integer within range (0, Ny)), are set to zero. This ensures application of zero-value Dirichlet
boundary condition exactly at the left and right edge of the device. V is a diagonal matrix containing
the potential distribution, as shown below,

Vi
V)

where the index i represents each mesh point.

Typically the <110> channel orientation is preferred for current-generation MOSFET devices due
to added advantage/favorability towards hole mobility, while having relatively small negative impact
on electron mobility [36]. In this case, the effective mass tensor becomes a 3 x 3 matrix, instead of a
relatively simpler diagonal matrix, resulting in the presence of mixed second-order derivatives in the
Schrodinger equation.

Let (x,y/,2') and (x,y, z) be the co-ordinate systems based on the [110] and [100] orientations,
respectively. Based on simple geometry, we can write

/_L /:L . r_
X—ﬁ(Hy) y ﬁ(x y) z =z. 7)
Re-writin x*i(x’—l— " *L(x’— N oz=2
8 -2 y) ¥y= 5 y =z.
Now, a—g—a—gax,—l—a—gay/ -2 (ag +8£) 8)

“9x  ox' 9x 9y’ ax /2 ox' ' 9y

Rotating the co-ordinate system from (x,y,z) to (x/,y/,2') by incorporating the above relations in
Eq. (1) we obtain

I EY RN R N R BN
2 12 |mg my| [ox oy my 9z'2

1 17 02 Vi )ty 2) = EPw (X . 2) . (9
—|—|: :|ax/ay/+ (x/]/)}lp(x/ylz)_ l)b(x’]/’z)' ()

my My
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We can express the solution as ¢¥(x’,y/,2') = eiky/ (ax’ 4+1y")E%(x’,2) to remove the mixed 2nd
order derivatives. Note here that we take into account the translational invariance of the potential in
the i’ direction by assuming a free electron solution in that direction. Substituting the guess solution
in Eq. (9) we obtain,

1,1 1 _ar(x,Z)  RE(x, )
_ ?[E(TITQ + @)(—azkilg(x’,z’) + lexkyl o 5o _ k;,)
1 azérv(x’,z’) 1 1 5 xos ot _ agv(xllzl)
T ez T (@ B @)(_“ky’g (', 2) + iky =)

+V(,2)eE (K, Z)]) = E¢(x',Z) . (10)

Equating the coefficients of the first order derivatives w.r.t. x to 0,

1 1 1 1
ok (— +—) +iky,(— ——)=0, (11)
Yimg o omy Yimg o omy
giving & = f%, with ng = %(m% + #) and mlg = mig - m% Removing the ‘prime’ from the

co-ordinate axes for convenience, the updated Schrodinger equation for representing transport in the
[110] direction then takes the form

h? 1 9%¢%(x,2) n 1 9°8°(x,2)

+V(x,2)¢%(x,z)

2 [m%  ox? mg 922
h?k> 1 m?
C EE(x,z) — — Y | L M a0 12
07 = | g ) (2
where the full (envelope) wavefunction ¢”(x, y, z) is given as
v ik 7i2mL§kyx v
Pl (x,y,z) =e"e ™7 %x,z). (13)

The electron wavefunctions ¢, (x, z) (labeled by the index y) and the corresponding eigenvalues EL,
are determined by solving this eigenvalue problem.

The Schrodinger equation for <110> direction, Eq. (12), must be utilized to treat only four of the
six conduction band Si valleys, since the in-plane rotation from the < 100 > to the < 110 > direction
does not affect the other two valleys with m, = mp. Here mp = 0.91my is the longitudinal effective
mass and mt = 0.19m (used later) represents the transverse effective mass (m(O) is the electron mass).
These valleys can be treated using the relatively simpler expression given by Eq. (3). Note that the
calculations, shown here for Si, can be extended for any other material with similar orientations of their
conduction band minima (provided their band structure can considerably approximated by effective
masses).

2.2. Determination of Carrier Concentration And Use in Poisson Equation

The electron wavefunctions obtained as eigen-solutions to the closed-system Hamiltonian are
used to compute the electron charge distribution in the device. The information regarding the DoS
along the x and z directions is already contained in these quantized 2-D wavefunctions. We have only
to use the 1-D DoS representing the continuous energy spectrum along the "Thomogenous’ out-of-plane
y direction given by the expression

v 1 my
Dip(Ey) = 2E, (14)
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The expression for the electron charge distribution is
n(xz) = DL [, dEyDin(Ey)f(Ey, E)IEh (x,2) (15)
v ‘H XZ

where ¢;, and E, represent the wavefunction and energy of the electronic state y, respectively. Using
Eq. (14), the above expression becomes

vou

1 [mbkgT Ep — EYY
n(xz) =3} —\—5 F§<FkBT"Z Z(x2)?, (16)

Here F_% is the Fermi-Dirac integral of order -1/2, computed numerically using the Gauss-Legendre
quadrature method [37].

The hole charge distribution, p(x, y, z), is calculated semiclassically using the following expression
based on 3-D density-of-states,

1 2mpkgT 2 V(x,z) — (Ep + Eg)
p(x,y,z) = NG ( s ) F ( kaT ) , (17)

where my, = 0.8my is the hole effective mass, the Eg is the band gap energy of silicon, and, F 1 is the
Fermi-Dirac integral of order 1/2 [37].

Note that the inclusion of temperature as an input parameter in the device simulation is achieved
through the temperature dependence of Egs. (16) and (17).

Here we briefly describe the numerical solution of Poisson equation which constitutes an
important part of most transport simulations. We solve the Poisson equation in the 2-D plane (x, z)
of the device. To incorporate correctly the electrostatic effects caused by transitions in the electric
permittivity along the semiconductor-dielectric interface, we solve the generalized Poisson equation:

V.[e(x,z2)VV(x,z)] = e*[p(x,z) — n(x,z) + Na(x,z) — Np(x,z)] , (18)

where e is the electron charge and €g;(x, z) is the permittivity of the material present at (x,z). The
centered finite-differences method is used to solve this linear system problem :

P.V =D, (19)

where P is an N x N matrix representing the differential operators on the left hand side of Eq. (19), V
and D are N x 1 matrices expressing the potential energy distribution and the charge terms on the
right hand side of Eq. (18), respectively, for each of the N mesh points. Neumann boundary conditions
are employed along all the domain boundaries. Here, the gate potential V5 is applied by setting
Dirichlet boundary conditions. Mathematically this is done by assigning zeros to all the elements of
the rows representing the said portion of the oxide-metal interface, except for the diagonal elements
where unity is assigned. The gate potential in electron volts is added to the corresponding rows of
the charge matrix D. This assignment might lead to singularity issues while solving the linear system
Eq. (19) computationally. The solution consists in multiplying the unity diagonal terms on P and the
corresponding gate potential terms on D by a factor that has the same order of magnitude as the other
non-zero terms on P. The Schrodinger and Poisson equations are solved selfconsistently following the
flow highlighted in Figure 2.
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Figure 2. Representative flow for computing the self-consistent (stead-state solution) of the Schrodinger
and Poisson equations.

2.3. 2-D Schrodinger Equation with Quantum Transmitting Boundary Method: Device Under Bias

Our main scenario of interest is the ‘open” system in which electrons can flow into and out of the
active region of the semiconductor device. This essentially describes the behavior of a device in the
presence of an applied drain-to-source bias Vpg. The method we follow is the QTBM. [32]. The source
and drain contacts are hypothesized as infinitely long leads culminating into the device, as shown
schematically in Figure 3.

Ky
T . r,:
K, : Device 2 Lead 2 T—>

Lead1 | T, ; ®

%
<
v

Figure 3. Schematic illustration showing the implementation of the Quantum Transmitting Boundary
Method.

A distinct coordinate system (ws, ks) is defined for each lead s, as shown in the figure. This is
just a matter of convenience as the same derivations/expressions become applicable for all the leads.
The potential is assumed to be constant along the direction ws while the potential profile along «s, is
set equal to that along the lead-device interface. The wavefunction outside the system of leads and
device is considered zero. Keeping these assumptions in mind, the wavefunctions within the leads can
be broken into two independent components - traveling waves along w; and wavefunctions with a
discretized energy spectrum along «s due to the quantum confinement in that direction. The latter part
is computed by solving the 1-D Schrodinger equation along s,

_ n? P (xs)
2my  ok?

+ Vs(is) @i’ () = E3i @i’ (5) (20)

where V; (k) is the electron potential energy along «; in lead s and m; is the quantization mass. Eq. (20)
becomes an eigenvalue problem as a consequence of the zero-value Dirichlet boundary conditions
imposed by the lead edges. ¢;, and E;, represent the my, eigenstate and eigen-energy, respectively, in
lead s of the one-dimensional (1-D) eigenvalue problem which can be written as,

Hip @5 = Ee% (21)
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where the 1-D Hamiltonian matrix Hyp is a Nx X Ny tridiagonal matrix, built as follows:
—2A, B 0 - .- . 0
B2 _2A2 B2 0 e e 0
Hip = 0 0 ) (22)
0 R e . anl —ZAn71 anl
0 0 B, —2A, 1

The computed eigenstates are normalized along the x; direction and the total wavefunction inside lead
s is then given by:

N¢
ik —ik, ws
Yho(ws,ts) = Y [ ail @i (s)e mb ™ byt g (ies e

m=1

Y B ) e (23)
m=NZ+1

Here, the expression inside the first summation represent N{ traveling waves with energy (along the x
and z directions) Ez > Ej’, going into and reflecting out of the device, respectively, through the lead
s. The index 8 denotes the wavefunctions ‘I’g and the corresponding energies Eg in the conduction
band valley v. The expression within the second summation represents the gradually decaying modes
with energy Eg < E};’. The coefficients ajy; ’s are chosen as inputs for the different waves traveling into
the device, whlle the coefficients bfnz,]ﬁ need to be determined. For all other leads j # s, the injection

amplitudes aj; = 0. The wavevectors k. 5 for the traveling modes are given by: [2m}(E§ — Ej;’)] 2 /n

and, for the evanescent modes, by: [2m%(E;;" — Eg)]l/ 2/h. The energy Ej will be referred to as the
‘injection energy’. Note that ws; = —x or x depending on the left or right contact, respectively.

The boundary conditions at the interface I's between the device and lead s dictate the continuity
of both the wavefunction at the interface, gb/g,s‘rs = ‘I’g/s(ws = 0,%;), and, the normal derivative,
V(ps 7K. |r V¥g, s(ws = 0,x5) . for all m < Ny. Here cpg,s(x,z) denotes the wavefunction inside the
dev1ce Usmg Eq. (23) and combining the aforementioned boundary conditions together, we obtain:

Ny 8<elk;"/3 )
Vol = ¥ oo () =g

m=1 aws ws=0
. a (e ) S a (<)
+ by Ks) ———F + b Ks) —s— 24
) g ) X ) e @
Using finite-differences to discretize the right hand side of the above equation, we obtain
5,0 NE ikf’fﬁ(wszo) ikir’:”ﬁAws _
a(Pﬁ | — 2 invq)sv( )e (e 1)
ox lws=0 = Aws
efikffﬁ(wszo) (e*ikirf/sAwS _ 1)
S0 s,
bm,ﬁ (Piflv (Ks) Aws
o oK (@s=0) ( knphws 1)
Y B A 25)

m=NZ+1
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S‘U*(

Now, multiplying both sides of Eq. (23) by ¢/" (xs) and integrating over s in the range (0, ds),
where d; is the vertical height of lead s, we obtain for w; = 0,

ds NS
s () ¥ (s = 0,1) = Y [a5? + 037 /dvsfj;f,* V()

0 m=1

+ Z b /d”sv* YSY(S) . (26)

m=NZ+1

The wavefunctions ¢ are eigenstates of a Hermitian operator (H;p) and so are mutually orthogonal,

S m’/
the wavefunctlon at the interface, Eq. (26) gives us

Jo a5 (%) (s) = ffip. Using this relation and replacing ¥ g with ¢g, observing continuity of

b;j’ﬂf/ A5 (O (1 = 0,%) —a%y 27)

Note that since evanescent waves are not injected, the above relation will not contain the a3’ term for
m > NZ. Eq. (25) can be re-written as:

s,0 v 18,0 S0 )
agbﬂ _ NZS 257 oS v( ) elkm’ﬁAws -1 e lkm'ﬁAwb -1
dx ws=0 L= i Pm Aws Awy

ds e i ” -
N ( [ o = oxs>) pellS Ea—

s (e eom e =0 ) e S

m=NZ+1
N¢ [Zla,s,f @i (is) sin (kfrf’ﬁAws)

o Aws

m=1

+ (/Od A () B (s =0, )) ?Z&U(Ks)e'i_

(/ ds"m" ( CEEV(IS =0, S)> G"?nv(KS); (28)

m= Nv+1

In practice the wavefunctions ¢ are calculated separately for each injected traveling wave and
thus they depend on m as well (a superscript m will be used to denote this dependence henceforth).
In our problem it has been seen that the extent of numerical errors is reduced with the introduction
of more discretization into the system. For this reason, we also use a discretized version of the wave
vectors k;’f’ﬁ. The deduction of the same is given below in brief. Our starting point is the Schrodinger

equation for the forward traveling wave enk"'ﬁ

hZ 82 (eik;’:’]ﬁwr>
C2m? dx?

ik

= (Ej — Ey")e et

Using centered differences method, the second order derivative can be written as:

B2 eik;’:ﬁAws 7ikf"l"’ﬁAws 9

2my Aw?

,Or, COS (kf,fﬁAws> —1= —mﬁAwsz(Eg — ES0) /12

= E§—E
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Using basic trigonometric identities, the discretized wave vector can be retrieved as,
2 . 2
k;fﬁ = Ay, Aresin (\/mgAwg(Eg —E")/(2h )) . (29)
Similarly for the evanescent waves (m > N¢), the wave vector can be written as:
K, = 2 arcsinh (\/mUAwZ(ES'v — E”)/(th)) (30)
m, /5 A Ws X S m ‘3 .

The QTBM Hamiltonian used to calculate the wavefunctions (]bfr’lv}8 is built using the closed system

Hamiltonian HP, described in Sec. 2.1. The matrix elements corresponding to drain and source ends of
the device are modified to capture the QTBM boundary conditions. Let 12, ., INvand #t, #2, ..., ¥R
be mesh indices of the Ni, (N < Nx) and Ng (Nr < Ny) points in the range (1, Ny x Ny), representing
the left and right contacts, respectively. Two N x N matrices Xy, and Xy are built which include the
reflected and transmitted (both traveling and evanescent) waves traveling into and out of the device,

respectively, shown below,

Xy =
0 --- 0]
0 ... ANyt e . i 0
0
LA AN S o LAY ol (31
0 . e e ) e 0
0 --- _pun . _pPe co AV i 0
0
TR =
[0 e . 0]
0 Arlzrl + L'r‘l,l’l Lrler Lrl,rl 0
0
er,rl . AVZ,T’Z + er,rz . erzri 0 (32)
0 . .. 0
il 2,2 i pigl
0 err err A/ +Lr 0
0

where the A’s are defined in the same way as for Eq. (4) and

NZJ
a 5 *
L = 25 | L o Ok = )0 (s = 0, = ) Beongi! (s = p)
m=1
—ik5? s s *
< (e ik pdws 1) + Z @5 (ks = q)‘Pifﬁ(wS =0, = q)Aws
m=NZ+1

x g5 (s = p) (™ —1)| . (33)
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Here, p and g represent the mesh indices I' (or 1), i (or j) being an integer in the range (1, Np) (or
(1, NR), respectively). We also define a N x 1 matrix B™, expressing the component of the wave
(traveling) injected into the device:

0

.ll

G

B" = , (34)

where G’ = —a; {Ziaf,'f o5 (ks = U) sin (ki’fﬁ Aws)} / Ax?*. The resulting linear system can be written
as:
[HD +X +Er+ V] P =B (35)

Here tpfnv isa N x 1 vector expressing the value of electron wavefunction ¢y, g s at the N th mesh point.
Eq. (35) is solved to obtain ¢y, g s separately for the leads s, the injection energies Eg and the traveling
modes m ( and valley v). Based on the computed wavefunctions, the transmission coefficient, local
density-of-states (LDOS) and, most importantly, the current can be determined [26,38].

3. Application Towards Realistic Device Modeling

We simulate the electrical behavior of a Si ultra-thin body double-gate (DG) nMOS with channel
length of 10 nm (Figure 4). The active region (simulation region) is 4 nm thick (tg;) and 50 nm long
with 1 nm (EOT ~ 0.3 nm) oxide at each top and bottom gate. The significance of this study lies in the
fact that our modeled device is essentially a cross-section of the current generation of nanosheet-based
gate-all-around transistors [2,7,39]. In other words, our 2-D simulation based approach can help
analyze the electrical behavior of 3-D devices of industrial relevance. The channel is intrinsically doped
with highly doped n-type source and drain regions. The doping profile within the source/drain is
assumed as a dual Gaussian profile with peaks located at the oxide-semiconductor interfaces. The
Schrodinger and Poisson equations are solved self-consistently in the 2-D simulation space with our

QTBM-based platform.
I 8
| }% ;
|| —8

I I 1
0 10 20 30 40 50

x (nm)

z (nm)
1018 cm—3

Figure 4. Active doping profile of the ultra-thin body double-gate nMOS that we investigated. The
gate oxide (0.3 nm EOT) and gate terminals are highlighted by the white zones and grey patches,
respectively, at the top and bottom.

Figure 5 shows the simulated Ipg-V(gg characteristics of the double-gate nMOS at 10 K and 300 K
with equal Vg applied at both gates. Characteristic CMOS behavior is observed with fast switching
action represented by a low subthreshold slope (SS) of 64 mV /dec at 300 K, while at 10K the SS drops
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below this mark as expected. For device operation deep inside saturation, the charge-distribution plot
in Figure 6(a) shows the phenomenon of channel inversion (effective reduction of the inversion-layer
depth), whereas volume inversion is observed in the linear region of operation (Figure 6(b)). Due to
this, the current density takes the shape of a single centered beam close to injection at the source and
splits into two beams when flowing through the dual inverted channels at high gate bias, before it
finally merges at the drain.

103 .
~ 102 1
£
~
< 10t A
n
£ 100 -
L0-1 - —e— 300 K
—— 10 K
10—2 T T T T
0.0 0.3 0.6 0.9

Vas (V)

Figure 5. Simulated transfer characteristics of the 10 nm DG nMOS at 10 K and 300 K. V(55 is measured
with respect to the flat band voltage of the device. Vpg =10 mV. The Ip — V(5 trend shows realistic
transistor behavior with just over 60 mV /V subthreshold slope at 300K and going below that mark at 10K.

6
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Figure 6. Electron charge distribution in the simulated double-gate nMOS at 300 K. (a) The darker
red regions highlight the presence of two separate inversion channels (surface inversion) close to
the gate-semiconductor interfaces deep inside saturation, whereas (b) the linear region of operation
exhibits volume inversion. V5g=0.6 V, Vpg =10 mV.
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Thus, we show that our QTBM-based quantum transport modeling platform can model 2-D
cross-sections of realistic-sized devices and allow in-depth understanding of their electrical behavior
by taking into account explicit quantum transport.

4. Summary

In summary, we have built a novel simulation methodology by solving the Schrodinger and
Poission equations self-consistently with QTBM boundary conditions on a 2-D device plane. This
quantum-transport based methodology can allow more accurate electrical and predictive analyses of
realistic semiconductor devices (like FInFET, Gate-all-around and CFET architectures) by taking into
account explicit quantum transport while still having manageable computational cost requirement.
As an application, we demonstrate the capability of our tool by modeling the electrical behavior of
a double-gate MOSFET which essentially acts as a simple investigative study into the behavior of
nanosheet-based transistors of current-generation technology nodes.
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