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Self-Consistent Solution of Schrödinger-Poisson
Equations For Modeling Realistic Silicon Transistors

Srinjoy Sen

Department of Electrical Engineering, University of North Carolina, Chapel Hill; srinjoysen23@gmail.com

Abstract: With continued scaling of semiconductor devices , the value of predictive analysis through

accurate quantum transport modeling is exponentially increasing. Quantum transmitting Boundary

method (QTBM) has been a well-known method of choice to model quantum transport in simple 1-D

devices. Here, we present an extension of the QTBM to the 2-D domain and apply it for more realistic

devices for accurate performance analysis.

Keywords: quantum transport; QTBM; Schrodinger equation; Poisson equation; Device Physics;

Solid State Physics

1. Introduction

With continued scaling of semiconductor devices to meet the aggressive goals set forth by the

International Technology Roadmap for Semiconductors (ITRS) [1], cost of fabrication are exponentially

increasing, adding equivalent value to the power of predictive analysis through accurate modeling.

Moreover, due to aggressive scaling of device dimensions, quantum transport is gradually becoming

the dominant transport mechanism for carriers. The current generation of transistors [2–9] have active

regions of length comparable to the wavelength of an electron. At such small dimensions, the basic

assumption of the semi-classical transport physics [10,11], that electrons are point-like objects with

defined position and momentum, falls short. A full quantum study of electron transport is needed to

simulate and understand the behavior of these devices, including explicit quantum mechanical effects

like tunneling, quantization and resonance [12–15].

The three well-known methods to study quantum transport are the Wigner function method

[16–18], the Non-equilibrium Green’s function method [19–23] and the self-consistent solution of the

Schrödinger, Pauli master [24–26] and Poisson equations. In our research we will be using the latter

to model ballistic and dissipative electron transport. The model we employ uses the single-electron

envelope approximation and the conduction bands are approximated with parabolic ellipsoidal

or spherical valleys (six ellipsoidal valleys in the case of silicon). In particular, we are extending

the popular Quantum Transmitting Boundary method (QTBM) for solving the two-dimensional

Schrödinger equation and therefore validate its application towards behavior analysis of more realistic

devices.

2. Simulation Methodology

Our main objective is to solve a system that can communicate with its environment through

its contacts, namely an open system [27]. This requires discretizing the continuum of energies in the

contacts. The optimal discretization is obtained by sampling the density-of-states using the solution of

the system in equilibrium, namely a closed system [28,29]. Section 2.1 details our theoretical scheme of

obtaining these solutions of the closed system. We solve the Schrödinger equation with closed boundary

conditions self-consistently [30,31] with the Poisson equation in the two-dimensional (2-D) plane

of the device to achieve this. The device is assumed wide enough so that a 3-D simulation is not

required. In Section 2.3, our simulation methodology is extended to model an open system driven far

from equilibrium under the influence of a drain-to-source bias. The Quantum Transmitting Boundary

method (QTBM) [32,33] is used to enforce open boundary conditions to model particle exchange,

through current-carrying leads, between the device and environment. Furthermore, ways to derive
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various device characteristics of practical importance are highlighted here. Finally we provide an

application for our ballistic simulation tool.

We start with the equilibrium condition of the system. This is obtained by solving the

two-dimensional (2-D) Schrödinger and Poisson equations self consistently [30] for different gate

biases and at different temperatures, with no drain-to-source voltage applied. For very wide devices,

we can assume translational invariance of the device profile along the out-of-plane y direction and

therefore our 2-D approach is a good approximation. We define this closed state of the system as one

in which the system does not exchange particles (and energy, thermodynamically) with the rest of

the ‘universe’ through its contacts. Therefore, in its quantum description, either the wavefunctions

must vanish outside the system or there should be zero net probability current entering or exiting

the system. In order to obtain the correct closed system solution, it is better to solve the Schrödinger

equation with both Dirichlet and Neumann boundary conditions, so that one gets the right density

near the contacts and, so, the correct potential. The Dirichlet and Neumann solutions behave ‘sine-like’

and ‘cosine-like’ at the device-contact interface, respectively, as Figure 1 shows.

0

Dirichlet

Neumann

Figure 1. A simplified diagram showing how Dirichlet and Neumann boundary conditions behave at

the device-contact interface.

Thereby, a combined set of these two forms a complete set of physical solutions and any other

solution to the closed system can be represented as a linear combination of the two. In all the cases,

zero-value Dirichlet boundary conditions will be applied at the oxide-semiconductor interface as well

as at the substrate of the device to account for the idealized yet physically consistent situation of

having zero charges beyond the said interfaces.

Next, we describe how to obtain a self-consistent 2-D solution of the Schrödinger equation,

considering both Dirichlet (Sec. 2.1) and QTBM boundary conditions (Sec. 2.3), and Poisson equations.

When solving the Poisson equation, in order to account for electrostatic control through gates using

externally applied bias, Dirichlet boundary conditions are applied at the gate-dielectric interfaces,

while Neumann conditions are imposed elsewhere to ensure confinement of the electric field to the

simulation domain.

2.1. Two-Dimensional Schrödinger Equation Solution for Quasi-static Charge Distribution

The time-independent single electron ‘effective mass’ Luttinger-Kohn (Schrödinger) equation

[34] is solved using the parabolic-band approximation to account for the Silicon band structure. The

numerical method of choice is the finite differences method. The Luttinger-Kohn equation can be

written as:

[Em(−i∇) + V(x, y, z)]ψ(x, y, z) = Eψ(x, y, z) , (1)

where, using the effective mass approximation, Em(k) =
h̄2k2

2m∗ and m∗ is the effective mass of band m.

For Silicon channels oriented along the < 100 > direction, the two-dimensional Schrödinger equation

can be written as [30,35]:
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− h̄2

2

[

1

mv
x

∂2ξv(x, z)

∂x2
+

1

mv
z

∂2ξv(x, z)

∂z2

]

+ V(x, z)ξv(x, z) = Ev
xzξv(x, z) , (2)

where the envelope wavefunction is ψ(x, y, z) = eikyyξ(x, z) and mx, my and mz are the transport mass

(along transport x direction), the out-of-plane mass (along the y-direction into the plane of the device),

and the quantization mass (along z, perpendicular to the carrier transport). V is the potential energy

on the (x, z) plane, Exz is the energy of the two-dimensional wavefunction ξ(x, z) and ky represents

the wavevector in the y direction. The superscript v is used to represent the different values taken by

the annonated quantities for the six ellipsoidal valleys of the Si Brillouin zone All computations are

repeated once for each pair of inequivalent valley-orientations.

The expression Ev
xz + h̄2k2

y/2mv
y denotes the total energy of an electron state described by the

wavefunction ψ(x, y, z). Numerically, Eq. (2) can be recast as:

a1

[

ξv(xi+1, zi)

∆x2
i

+
ξv(xi−1, zi)

∆xi∆xi−1

]

+ a2

[

ξv(xi, zi+1)

∆z2
i

+
ξv(xi, zi−1)

∆zi∆zi−1

]

−
[

a1

∆x2
i

+
a1

∆xi∆xi−1

+
a2

∆z2
i

+
a2

∆zi∆zi−1
+ V(xi, zi)

]

ξv(xi, zi) = Ev
xzξv(xi, zi) ,

(3)

where a1 = −h̄2/2mv
x, a2 = −h̄2/2mv

z and, i is the index for the N discretized mesh points. We deploy

a 2-D mesh obtained by the tensor product of two 1-D meshes consisting of Nx and Nz points, so that

N = Nx × Nz. The N × N Hamiltonian matrix (HD) is created using the terms on the left-hand-side

of Eq. 3. Since we are modeling a closed system, the wavefunctions should vanish outside the device

and therefore Dirichlet boundary conditions are assumed at the simulation boundaries. With these

assumptions, Eq. (3) takes the form of an eigenvalue problem of rank N:

[

HD + V
]

· ξµ = Eµξµ , (4)

where ξµ and Eµ are the µth eigenfunction and eigenvalue, respectively, and, µ ranges from 1 to N.

Incorporating non uniformity of the mesh, the Hamiltonian matrix (HD) is given by:

HD = HD
x + HD

z , (5)

where HD
x =





































−2A1,1
1,1 A1,1

1,2 · · · 0 · · · · · · · · · 0

A2,1
2,1

−A2,2
2,2

−A2,2
2,1

A2,3
2,2 0 · · · · · · 0

0
. . .

. . .
. . . · · · 0

...
. . .

. . .
. . . · · ·

...

0 · · · Ai,i−1
i,i−1

−Ai,i
i,i

−Ai,i
i,i−1

Ai,i+1
i,i 0 · · · 0

0 · · · · · · . . .
. . .

. . . · · · 0

0 · · · · · · AN,N−1
N,N−1 −2AN,N

N,N





































,
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and, HD
z =

































−2B1,1
1,1 0 · · · B1,1+Nx

1,1 0 · · ·
0 −2B2,2

2,2 0 · · · B2,2+Nx
2,2 0 · · ·

0 · · · . . . · · ·
... · · · . . . · · ·

Bi,i−Nx
i,i−Nx

· · · −Bi,i
i,i

−Bi,i−Nx

0 · · · Bi,i+Nx
i,i · · ·

... · · · . . . · · ·
0 · · · BN,N−Nx

N,N−Nx
BN,N

N,N

































.

Ak,l
i,j = a1

∆xi∆xj
and Bk,l

i,j = a2
∆zi∆zj

are the matrix elements in row k and column l. HD actually gives

wavefunctions that vanish just outside the device domain. All elements, except those on the diagonal,

of the rows representing the left and right edges of the device, i.e., rows having indexes jNx or jNx (j

being an integer within range (0, Ny)), are set to zero. This ensures application of zero-value Dirichlet

boundary condition exactly at the left and right edge of the device. V is a diagonal matrix containing

the potential distribution, as shown below,

V =























V1

V2

. . .

. . .

VN−1

VN























, (6)

where the index i represents each mesh point.

Typically the <110> channel orientation is preferred for current-generation MOSFET devices due

to added advantage/favorability towards hole mobility, while having relatively small negative impact

on electron mobility [36]. In this case, the effective mass tensor becomes a 3 × 3 matrix, instead of a

relatively simpler diagonal matrix, resulting in the presence of mixed second-order derivatives in the

Schrödinger equation.

Let (x′, y′, z′) and (x, y, z) be the co-ordinate systems based on the [110] and [100] orientations,

respectively. Based on simple geometry, we can write

x′ =
1√
2
(x + y) y′ =

1√
2
(x − y) z′ = z . (7)

Re-writing, x =
1√
2
(x′ + y′) y =

1√
2
(x′ − y′) z = z′ .

Now,
∂ξ

∂x
=

∂ξ

∂x′
∂x′

∂x
+

∂ξ

∂y′
∂y′

∂x
=

1√
2
(

∂ξ

∂x′
+

∂ξ

∂y′
) . (8)

Rotating the co-ordinate system from (x, y, z) to (x′, y′, z′) by incorporating the above relations in

Eq. (1) we obtain

− h̄2

2

{

1

2

[

1

mv
x
+

1

mv
y

]

[

∂2

∂x′2
+

∂2

∂y′2

]

+
1

mv
z

∂2

∂z′2

+

[

1

mx
− 1

my

]

∂2

∂x′∂y′
+ V(x′, y′)

}

ψv(x′, y′, z) = Evψv(x′, y′, z′) . (9)
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We can express the solution as ψv(x′, y′, z′) = eiky′(αx′ + y′)ξv(x′, z′) to remove the mixed 2nd

order derivatives. Note here that we take into account the translational invariance of the potential in

the y′ direction by assuming a free electron solution in that direction. Substituting the guess solution

in Eq. (9) we obtain,

− h̄2

2
[
1

2
(

1

mv
x
+

1

mv
y
)(−α2k2

y′ξ(x′, z′) + 2iαky′
∂ξv(x′, z′)

∂x′
+

∂2ξv(x′, z′)
∂x′2

− k2
y′)

+
1

mv
z

∂2ξv(x′, z′)
∂z′2

+ (
1

mv
x
− 1

mv
y
)(−αk2

y′ξ
v(x′, z′) + iky′

∂ξv(x′, z′)
∂x′

)

+ V(x′, z′)ξv(x′, z′)] = Evξv(x′, z′) . (10)

Equating the coefficients of the first order derivatives w.r.t. x to 0,

iαky′(
1

mv
x
+

1

mv
y
) + iky′(

1

mv
x
− 1

mv
y
) = 0 , (11)

giving α = − mv
c

2mv
xy

, with 1
mv

c
= 1

2 (
1

mv
x
+ 1

mv
y
) and 1

mv
xy

= 1
mv

x
− 1

mv
y
. Removing the ‘prime’ from the

co-ordinate axes for convenience, the updated Schrödinger equation for representing transport in the

[110] direction then takes the form

− h̄2

2

[

1

mv
c

∂2ξv(x, z)

∂x2
+

1

mv
z

∂2ξv(x, z)

∂z2

]

+ V(x, z)ξv(x, z)

= Evξv(x, z)−
h̄2k2

y

2

[

1

mv
c
− mv

c

4(mv
xy)

2

]

ξv(x, z) , (12)

where the full (envelope) wavefunction ψv(x, y, z) is given as

ψv(x, y, z) = eikyy e
−i

mv
c

2mv
xy

kyx
ξv(x, z) . (13)

The electron wavefunctions ξµ(x, z) (labeled by the index µ) and the corresponding eigenvalues E
µ
xz

are determined by solving this eigenvalue problem.

The Schrödinger equation for <110> direction, Eq. (12), must be utilized to treat only four of the

six conduction band Si valleys, since the in-plane rotation from the < 100 > to the < 110 > direction

does not affect the other two valleys with mz = mL. Here mL = 0.91m0 is the longitudinal effective

mass and mT = 0.19m0 (used later) represents the transverse effective mass (m(0) is the electron mass).

These valleys can be treated using the relatively simpler expression given by Eq. (3). Note that the

calculations, shown here for Si, can be extended for any other material with similar orientations of their

conduction band minima (provided their band structure can considerably approximated by effective

masses).

2.2. Determination of Carrier Concentration And Use in Poisson Equation

The electron wavefunctions obtained as eigen-solutions to the closed-system Hamiltonian are

used to compute the electron charge distribution in the device. The information regarding the DoS

along the x and z directions is already contained in these quantized 2-D wavefunctions. We have only

to use the 1-D DoS representing the continuous energy spectrum along the ’homogenous’ out-of-plane

y direction given by the expression

Dv
1D(Ey) =

1

πh̄

√

mv
y

2Ey
. (14)
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The expression for the electron charge distribution is

n(x, z) = ∑
v

∑
µ

∫ ∞

E
µ,v
xz

dEyDv
1D(Ey) f (Ey, EF)|ξv

µ(x, z)|2 , (15)

where ξµ and Eµ represent the wavefunction and energy of the electronic state µ, respectively. Using

Eq. (14), the above expression becomes

n(x, z) = ∑
v

∑
µ

1

πh̄

√

mv
ykBT

2
F− 1

2

(

EF − E
µ,v
xz

kBT

)

|ξv
µ(x, z)|2 , (16)

Here F− 1
2

is the Fermi-Dirac integral of order -1/2, computed numerically using the Gauss-Legendre

quadrature method [37].

The hole charge distribution, p(x, y, z), is calculated semiclassically using the following expression

based on 3-D density-of-states,

p(x, y, z) =
1

2
√

π

(

2mhkBT

πh̄2

)
3
2

F1
2

(

V(x, z)− (EF + Eg)

kBT

)

, (17)

where mh = 0.8m0 is the hole effective mass, the Eg is the band gap energy of silicon, and, F1
2

is the

Fermi-Dirac integral of order 1/2 [37].

Note that the inclusion of temperature as an input parameter in the device simulation is achieved

through the temperature dependence of Eqs. (16) and (17).

Here we briefly describe the numerical solution of Poisson equation which constitutes an

important part of most transport simulations. We solve the Poisson equation in the 2-D plane (x, z)

of the device. To incorporate correctly the electrostatic effects caused by transitions in the electric

permittivity along the semiconductor-dielectric interface, we solve the generalized Poisson equation:

∇. [ϵ(x, z)∇V(x, z)] = e2
[

p(x, z)− n(x, z) + NA(x, z)− ND(x, z)
]

, (18)

where e is the electron charge and ϵSi(x, z) is the permittivity of the material present at (x, z). The

centered finite-differences method is used to solve this linear system problem :

P · V = D , (19)

where P is an N × N matrix representing the differential operators on the left hand side of Eq. (19), V

and D are N × 1 matrices expressing the potential energy distribution and the charge terms on the

right hand side of Eq. (18), respectively, for each of the N mesh points. Neumann boundary conditions

are employed along all the domain boundaries. Here, the gate potential VGS is applied by setting

Dirichlet boundary conditions. Mathematically this is done by assigning zeros to all the elements of

the rows representing the said portion of the oxide-metal interface, except for the diagonal elements

where unity is assigned. The gate potential in electron volts is added to the corresponding rows of

the charge matrix D. This assignment might lead to singularity issues while solving the linear system

Eq. (19) computationally. The solution consists in multiplying the unity diagonal terms on P and the

corresponding gate potential terms on D by a factor that has the same order of magnitude as the other

non-zero terms on P. The Schrodinger and Poisson equations are solved selfconsistently following the

flow highlighted in Figure 2.
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Figure 2. Representative flow for computing the self-consistent (stead-state solution) of the Schrödinger

and Poisson equations.

2.3. 2-D Schrödinger Equation with Quantum Transmitting Boundary Method: Device Under Bias

Our main scenario of interest is the ‘open’ system in which electrons can flow into and out of the

active region of the semiconductor device. This essentially describes the behavior of a device in the

presence of an applied drain-to-source bias VDS. The method we follow is the QTBM. [32]. The source

and drain contacts are hypothesized as infinitely long leads culminating into the device, as shown

schematically in Figure 3.

Device 

Lead 1 

Lead 2 

ω
1
 

ω
2
 

κ
1
 

κ
2
 

Γ
1
 

Γ
2
 

Figure 3. Schematic illustration showing the implementation of the Quantum Transmitting Boundary

Method.

A distinct coordinate system (ωs, κs) is defined for each lead s, as shown in the figure. This is

just a matter of convenience as the same derivations/expressions become applicable for all the leads.

The potential is assumed to be constant along the direction ωs while the potential profile along κs, is

set equal to that along the lead-device interface. The wavefunction outside the system of leads and

device is considered zero. Keeping these assumptions in mind, the wavefunctions within the leads can

be broken into two independent components - traveling waves along ωs and wavefunctions with a

discretized energy spectrum along κs due to the quantum confinement in that direction. The latter part

is computed by solving the 1-D Schrödinger equation along κs,

− h̄2

2mv
z

∂2 ϕr,v
m (κs)

∂κ2
s

+ Vs(κs)ϕs,v
m (κs) = Es,v

m ϕs,v
m (κs) , (20)

where Vs(κs) is the electron potential energy along κs in lead s and mz is the quantization mass. Eq. (20)

becomes an eigenvalue problem as a consequence of the zero-value Dirichlet boundary conditions

imposed by the lead edges. ϕs
m and Es

m represent the mth eigenstate and eigen-energy, respectively, in

lead s of the one-dimensional (1-D) eigenvalue problem which can be written as,

H1D ·ϕs,v
m = Es,v

m ϕs,v
m , (21)
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where the 1-D Hamiltonian matrix H1D is a Nx × Nx tridiagonal matrix, built as follows:

H1D =















−2A1 B1 0 · · · · · · · · · 0

B2 −2A2 B2 0 · · · · · · 0

0 · · · · · · · · · · · · · · · 0

0 · · · · · · · · · Bn−1 −2An−1 Bn−1

0 · · · · · · · · · 0 Bn −2An−1















. (22)

The computed eigenstates are normalized along the κs direction and the total wavefunction inside lead

s is then given by:

Ψv
β,s(ωs, κs) =

Nv
s

∑
m=1

[

as,v
m ϕs,v

m (κs)e
iks,v

m,βωs + bs,v
m,β ϕs,v

m (κs)e
−iks,v

m,βωs

]

+
∞

∑
m=Nv

s +1

bs,v
m,β ϕs,v

m (κs)e
ks,v

m,βωs . (23)

Here, the expression inside the first summation represent Nv
s traveling waves with energy (along the x

and z directions) Ev
β > Es,v

m , going into and reflecting out of the device, respectively, through the lead

s. The index β denotes the wavefunctions Ψv
β,s and the corresponding energies Ev

β in the conduction

band valley v. The expression within the second summation represents the gradually decaying modes

with energy Ev
β < Es,v

m . The coefficients as,v
m ’s are chosen as inputs for the different waves traveling into

the device, while the coefficients bs,v
m,β need to be determined. For all other leads j ̸= s, the injection

amplitudes a
j,v
m = 0. The wavevectors ks,v

m,β for the traveling modes are given by: [2mv
x(Ev

β − Es,v
m )]1/2/h̄

and, for the evanescent modes, by: [2mv
x(Es,v

m − Ev
β)]

1/2/h̄. The energy Ev
β will be referred to as the

‘injection energy’. Note that ωs = −x or x depending on the left or right contact, respectively.

The boundary conditions at the interface Γs between the device and lead s dictate the continuity

of both the wavefunction at the interface, ϕv
β,s

∣

∣

Γs
= Ψv

β,s(ωs = 0, κs), and, the normal derivative,

∇ϕs,v
β .κ̂s

∣

∣

Γs
= ∇Ψv

β,s(ωs = 0, κs).κ̂s for all m ≤ Nv
s . Here ϕv

β,s(x, z) denotes the wavefunction inside the

device. Using Eq. (23) and combining the aforementioned boundary conditions together, we obtain:

∇ϕs,v
β .κ̂s

∣

∣

Γs
=

Nv
s

∑
m=1

[

as,v
m ϕs,v

m (κs)
∂
(

e
iks,v

m,βωs
)

∂ωs

∣

∣

ωs=0

+ bs,v
m,β ϕs,v

m (κs)
∂
(

e
−iks,v

m,βωs
)

∂ωs

∣

∣

ωs=0

]

+
∞

∑
m=Nv

s +1

bs,v
m,β ϕs,v

m (κs)
∂
(

e
ks,v

m,β

)

∂ωs

∣

∣

ωs=0
. (24)

Using finite-differences to discretize the right hand side of the above equation, we obtain

∂ϕs,v
β

∂x

∣

∣

ωs=0
=

Nv
s

∑
m=1

[

as,v
m ϕs,v

m (κs)
e

iks,v
m,β(ωs=0)

(

e
iks,v

m,β∆ωs − 1
)

∆ωs

+ bs,v
m,β ϕs,v

m (κs)
e
−iks,v

m,β(ωs=0)
(

e
−iks,v

m,β∆ωs − 1
)

∆ωs

]

+
∞

∑
m=Nv

s +1

bs,v
m,β ϕs,v

m (κs)
e

ks,v
m,β(ωs=0)

(

e
ks,v

m,β∆ωs − 1
)

∆ωs
. (25)
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Now, multiplying both sides of Eq. (23) by ϕs,v∗
m′ (κs) and integrating over κs in the range (0, ds),

where ds is the vertical height of lead s, we obtain for ωs = 0,

∫ ds

0
dκs ϕs,v∗

m′ (κs)Ψ
v
β,s(ωs = 0, κs) =

Nv
s

∑
m=1

[

as,v
m + bs,v

m,β

]

∫ ds

0
dˇs’s,v∗

m′ (ˇs)’
s,v
m (ˇs)

+
∞

∑
m=Nv

s +1

bs,v
m,β

∫ ds

0
dˇs’s,v∗

m′ (ˇs)’
s,v
m (ˇs) . (26)

The wavefunctions ϕ are eigenstates of a Hermitian operator (H1D) and so are mutually orthogonal,
∫ ds

0 dˇs’s,v∗
m′ (ˇs)’

s,v
m (ˇs) = ffimm′ . Using this relation and replacing Ψβ with ϕβ, observing continuity of

the wavefunction at the interface, Eq. (26) gives us

bs,v
m,β =

∫ ds

0
dˇs’s,v∗

m (ˇs)Œ
s,v
fi (!s = 0, ˇs)− as,v

m . (27)

Note that since evanescent waves are not injected, the above relation will not contain the as,v
m term for

m > Nv
s . Eq. (25) can be re-written as:

∂ϕs,v
β

∂x

∣

∣

ωs=0
=

Nv
s

∑
m=1

[

as,v
m ϕs,v

m (κs)

(

e
iks,v

m,β∆ωs − 1

∆ωs
− e

−iks,v
m,β∆ωs − 1

∆ωs

)

+

(

∫ ds

0
dˇs’s,v∗

m (ˇs)Œ
s,v
fi (!s = 0, ˇs)

)

ϕs,v
m (κs)

e
−iks,v

m,β∆ωs − 1

∆ωs

]

+
∞

∑
m=Nv

s +1

(

∫ ds

0
dˇs’s,v∗

m (ˇs)Œ
s,v
fi (!s = 0, ˇs)

)

ϕs,v
m (κs)

e
ks,v

m,β∆ωs − 1

∆ωs

=
Nv

s

∑
m=1

[2ias,v
m ϕs,v

m (κs) sin
(

ks,v
m,β∆ωs

)

∆ωs

+

(

∫ ds

0
dˇs’s,v∗

m (ˇs)Œ
s,v
fi (!s = 0, ˇs)

)

ϕs,v
m (κs)

e
−iks,v

m,β∆ωs − 1

∆ωs

]

+
∞

∑
m=Nv

s +1

(

∫ ds

0
dˇs’s,v∗

m (ˇs)Œ
s,v
fi (!s = 0, ˇs)

)

ϕs,v
m (κs)

e
ks,v

m,β∆ωs − 1

∆ωs
. (28)

In practice the wavefunctions ϕ are calculated separately for each injected traveling wave and

thus they depend on m as well (a superscript m will be used to denote this dependence henceforth).

In our problem it has been seen that the extent of numerical errors is reduced with the introduction

of more discretization into the system. For this reason, we also use a discretized version of the wave

vectors ks,v
m,β. The deduction of the same is given below in brief. Our starting point is the Schrödinger

equation for the forward traveling wave e
iiks,v

m,βωs ,

− h̄2

2mv
x

∂2
(

e
iks,v

m,βωr
)

∂x2
= (Ev

β − Es,v
m )e

iks,v
m,βωs .

Using centered differences method, the second order derivative can be written as:

− h̄2

2mv
x

e
iks,v

m,β∆ωs + e
−iks,v

m,β∆ωs − 2

∆ω2
s

= Ev
β − Es,v

m

, or, cos
(

ks,v
m,β∆ωs

)

− 1 = −mv
x∆ω2

s (Ev
β − Es,v

m )/h̄2 .
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Using basic trigonometric identities, the discretized wave vector can be retrieved as,

ks,v
m,β =

2

∆ωs
arcsin

(√

mv
x∆ω2

s (Ev
β − Es,v

m )/(2h̄2)
)

. (29)

Similarly for the evanescent waves (m > Nv
s ), the wave vector can be written as:

ks,v
m,β =

2

∆ωs
arcsinh

(√

mv
x∆ω2

s (Es,v
m − Ev

β)/(2h̄2)
)

. (30)

The QTBM Hamiltonian used to calculate the wavefunctions ϕs,v
m,β is built using the closed system

Hamiltonian HD, described in Sec. 2.1. The matrix elements corresponding to drain and source ends of

the device are modified to capture the QTBM boundary conditions. Let l1, l2, ..., lNL and r1, r2, ..., rNR

be mesh indices of the NL (NL ≤ Nx) and NR (NR ≤ Nx) points in the range (1, Nx × Ny), representing

the left and right contacts, respectively. Two N × N matrices ΣL and ΣR are built which include the

reflected and transmitted (both traveling and evanescent) waves traveling into and out of the device,

respectively, shown below,

ΣL =
































0 · · · · · · · · · · · · · · · · · · · · · 0

0 · · · Al1,l1 − Ll1,l1 · · · −Ll1,l2 · · · −Ll1,l j · · · 0
... · · · · · · . . . · · · · · · · · · · · · 0
... · · · −Ll2,l1 · · · Al2,l2 − Ll2,l2 · · · −Ll2,l j · · · 0

0 · · · · · · · · · · · · . . . · · · · · · 0

0 · · · −Ll j ,l1 · · · −Ll2,l2 · · · Al j ,l j − Ll j ,l j · · · 0

0 · · · · · · · · · · · · · · · · · · . . .

































(31)

ΣR =
































0 · · · · · · · · · · · · · · · · · · · · · 0

0 · · · Ar1,r1
+ Lr1,r1 · · · Lr1,r2 · · · Lr1,ri · · · 0

... · · · · · · . . . · · · · · · · · · · · · 0

... · · · Lr2,r1 · · · Ar2,r2
+ Lr2,r2 · · · Lr2,ri · · · 0

0 · · · · · · · · · · · · . . . · · · · · · 0

0 · · · Lri ,r1 · · · Lr2,r2 · · · Ari ,ri
+ Lri ,ri · · · 0

0 · · · · · · · · · · · · · · · · · · . . .

































(32)

where the A’s are defined in the same way as for Eq. (4) and

Lp,q =
a1

∆x

[

Nv
s

∑
m=1

ϕs,v∗
m (κs = q)ϕs,v

m,β(ωs = 0, κs = q)∆ωr ϕs,v
m (κs = p)

× (e
−iks,v

m,β∆ωs − 1) +
∞

∑
m=Nv

s +1

ϕs,v∗
m (κs = q)ϕs,v

m,β(ωs = 0, κs = q)∆ωs

× ϕs,v
m (κs = p)(e

ks,v
m,β∆ωs − 1)

]

. (33)
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Here, p and q represent the mesh indices li (or rj), i (or j) being an integer in the range (1, NL) (or

(1, NR), respectively). We also define a N × 1 matrix Bm, expressing the component of the wave

(traveling) injected into the device:

Bm =



































0
...

Gl1

0
...

Gl j

0
...



































, (34)

where Gl j
= −a1

[

2ias,v
m ϕs,v

m (κs = l j) sin
(

ks,v
m,β∆ωs

)]

/∆x2. The resulting linear system can be written

as:
[

HD + ΣL + ΣR + V
]

φs,v
m,β = Bm . (35)

Here φs,v
m,β is a N × 1 vector expressing the value of electron wavefunction ϕm,β,s at the Nth mesh point.

Eq. (35) is solved to obtain ϕm,β,s separately for the leads s, the injection energies Ev
β and the traveling

modes m ( and valley v). Based on the computed wavefunctions, the transmission coefficient, local

density-of-states (LDOS) and, most importantly, the current can be determined [26,38].

3. Application Towards Realistic Device Modeling

We simulate the electrical behavior of a Si ultra-thin body double-gate (DG) nMOS with channel

length of 10 nm (Figure 4). The active region (simulation region) is 4 nm thick (τSi) and 50 nm long

with 1 nm (EOT ≈ 0.3 nm) oxide at each top and bottom gate. The significance of this study lies in the

fact that our modeled device is essentially a cross-section of the current generation of nanosheet-based

gate-all-around transistors [2,7,39]. In other words, our 2-D simulation based approach can help

analyze the electrical behavior of 3-D devices of industrial relevance. The channel is intrinsically doped

with highly doped n-type source and drain regions. The doping profile within the source/drain is

assumed as a dual Gaussian profile with peaks located at the oxide-semiconductor interfaces. The

Schrodinger and Poisson equations are solved self-consistently in the 2-D simulation space with our

QTBM-based platform.

0 10 20 30 40 50

x (nm)

0

2

4

6

z
(n
m
)

−8

0

8

1
0
1
8
cm

−
3

Figure 4. Active doping profile of the ultra-thin body double-gate nMOS that we investigated. The

gate oxide (0.3 nm EOT) and gate terminals are highlighted by the white zones and grey patches,

respectively, at the top and bottom.

Figure 5 shows the simulated IDS-VGS characteristics of the double-gate nMOS at 10 K and 300 K

with equal VGS applied at both gates. Characteristic CMOS behavior is observed with fast switching

action represented by a low subthreshold slope (SS) of 64 mV/dec at 300 K, while at 10K the SS drops
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below this mark as expected. For device operation deep inside saturation, the charge-distribution plot

in Figure 6(a) shows the phenomenon of channel inversion (effective reduction of the inversion-layer

depth), whereas volume inversion is observed in the linear region of operation (Figure 6(b)). Due to

this, the current density takes the shape of a single centered beam close to injection at the source and

splits into two beams when flowing through the dual inverted channels at high gate bias, before it

finally merges at the drain.

0.0 0.3 0.6 0.9

VGS (V)

10
−2

10−1

100

10
1

102

10
3

I
D
S
(A

/
m
)

300 K

10 K

Figure 5. Simulated transfer characteristics of the 10 nm DG nMOS at 10 K and 300 K. VGS is measured

with respect to the flat band voltage of the device. VDS =10 mV. The ID − VG trend shows realistic

transistor behavior with just over 60 mV/V subthreshold slope at 300K and going below that mark at 10K.

0

2

4

6

z
(n
m
)

−1019

0

1019

cm
−
3

(a)

0 20 30 50

x (nm)

0

2

4

6

z
(n
m
)

−1019

0

1019

cm
−
3

(b)

Figure 6. Electron charge distribution in the simulated double-gate nMOS at 300 K. (a) The darker

red regions highlight the presence of two separate inversion channels (surface inversion) close to

the gate-semiconductor interfaces deep inside saturation, whereas (b) the linear region of operation

exhibits volume inversion. VGS=0.6 V, VDS =10 mV.
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Thus, we show that our QTBM-based quantum transport modeling platform can model 2-D

cross-sections of realistic-sized devices and allow in-depth understanding of their electrical behavior

by taking into account explicit quantum transport.

4. Summary

In summary, we have built a novel simulation methodology by solving the Schrödinger and

Poission equations self-consistently with QTBM boundary conditions on a 2-D device plane. This

quantum-transport based methodology can allow more accurate electrical and predictive analyses of

realistic semiconductor devices (like FinFET, Gate-all-around and CFET architectures) by taking into

account explicit quantum transport while still having manageable computational cost requirement.

As an application, we demonstrate the capability of our tool by modeling the electrical behavior of

a double-gate MOSFET which essentially acts as a simple investigative study into the behavior of

nanosheet-based transistors of current-generation technology nodes.
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