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Abstract: With the proliferation of electric vehicles (EVs) and the consequential increase in EV battery
circulation, the need for accurate assessment of battery health and remaining useful life (RUL) is
paramount, driven by environmentally friendly and sustainable options. This study addresses this
pressing concern by employing data-driven methods, specifically harnessing deep learning techniques
to enhance RUL estimation for lithium-ion batteries (LIB). Leveraging the Toyota Research Institute
Dataset, consisting of 124 lithium-ion batteries cycled to failure and encompassing key metrics such
as capacity, temperature, resistance, and discharge time, our analysis substantially improves RUL
prediction accuracy. Notably, the Convolutional-LSTM-Deep Neural Network (CLDNN) model and
the Transformer-LSTM (Temporal-Transformer) model have emerged as standout Remaining Useful
Life (RUL) predictors. The CLDNN model, in particular, achieved a remarkable Mean Absolute
Error (MAE) of 84.012 and a Mean Absolute Percentage Error (MAPE) of 25.676. Similarly, the
Temporal-Transformer model exhibited notable performance with an MAE of 85.134 and a MAPE of
28.7932. These impressive results were achieved through the application of Bayesian hyperparameter
optimization, further enhancing the accuracy of predictive methods. These models were benchmarked
against existing approaches, demonstrating superior results with an improvement in MAPE ranging
from 4.01% to 7.12%.

Keywords: deep learning; remaining useful life; lithium-ion batteries; battery management systems;
recycling and reuse; battery degradation

1. Introduction

The prediction of Remaining Useful Life (RUL) for lithium-ion batteries is a critical task for
ensuring the safe and optimal operation of battery packs, especially in applications like electric vehicles
(EVs) [1]. This literature delves into two primary approaches for RUL prediction: Physics-based Models
(PBM) and Data-driven Models (DDM). PBMs leverage the fundamental principles of electrochemistry
and battery physics to simulate battery behaviour over time [2]. These models consider factors
such as ion diffusion, electrode reactions [3], discharge capacity [4,5], cycles, capacity fade [6], and
thermal effects [7]. While PBMs provide valuable insights into degradation mechanisms, they are
computationally intensive, require detailed knowledge of electrochemical processes [2,8], and may
struggle to capture real-world complexities. DDMs, on the other hand, use machine learning algorithms
to learn patterns and relationships directly from available data [9,10]. They have gained prominence
due to their ability to capture complex and nonlinear relationships that exist in the data, making them
more adaptable and flexible compared to PBMs.

DDMs can be further categorised into statistical machine learning and deep learning methods,
which provide valuable insights into their respective strengths and applications. Shallow learning, a
subset of statistical machine learning, employs neural networks with a single layer, as exemplified by
Support Vector Machines (SVMs). On the other hand, deep learning methods utilize neural networks
with multiple hidden layers.
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Statistical learning methods, including SVMs [10], Gaussian Process Regression (GPR) [11–13],
Random Forest [14,15], and Bayesian approaches [16–18], are well-suited for modeling small datasets
with prior knowledge of the generative process. However, they may face challenges in capturing
complex battery characteristics and long-term dependencies in the data [2,19].

In contrast, deep learning methods, represented by Recurrent Neural Networks (RNNs) [20,21],
Convolutional Neural Networks (CNNs) [22,23], and hybrid models [24,25], excel in handling extensive
datasets with limited knowledge about the underlying process or suitable features. They demonstrate
remarkable capabilities in capturing intricate patterns from raw battery data, particularly in dealing
with multi-variate time-series information.

Recent advancements in sequence-to-sequence learning in the domain of further contribute
to the discourse on multi-horizon time series forecasting (MTSF). Sutskever et al. introduced a
powerful end-to-end approach employing multilayered Long Short-Term Memory (LSTM) networks
for sequence learning, showcasing impressive results in translation tasks [26]. Similarly Yang et al.
explored incorporating cross-entity attention mechanism in MTFS in [27]. These method minimizes
assumptions on sequence structures and proves effective, particularly in tasks where large labeled
training sets are available.

However in the context of RUL prediction, improvements in robustness, generalizability, and
addressing challenges like variable sampling rates and incomplete data remain areas of focus [28].
Hence, despite the progress in RUL prediction, current research has several knowledge gaps and
limitations. These include the 1) need for more robust and accurate models, enhanced generalizability,
2) exploration of various deep learning architectures, 3) utilisation of complete datasets with varying
sampling rates, and consideration of factors like battery ageing and non-stationary signals.

Considering the limitations of previous research and methods, our study takes a comprehensive
approach to address data-driven methods for RUL prediction of LIB. We recognise that the key to
successful prediction lies in harnessing the potential of a diverse dataset. Our dataset comprises 124
commercial lithium-ion batteries [29], each subjected to extensive cycling until failure under specific
operational conditions (an overview can be seen in Figure 1). It encompasses crucial parameters such
as discharge capacity, temperature, internal resistance, and discharge time.
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Figure 1. Overview of the project

To effectively address the heterogeneity within our dataset, we adopted a hybrid approach
known as CLDNN proposed by Sainath et. al. [30], which stands for Convolutional, Long Short-Term
Memory, and Dense Neural Networks. CLDNN harnesses the collective power of these neural network
architectures, providing a solution to the multifaceted nature of LIB RUL prediction. In addition, we
repurposed the hybrid model called the Temporal Transformer (TT) proposed by Chadha et. al. [31]
to enhance prediction accuracy and robustness in LIB RUL. The TT model combines the strengths of
Transformer self-attention layers and LSTM architectures, presenting a unique approach to sequential
modelling that effectively addresses the challenge of capturing long-term dependencies [32]. While
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the Temporal Transformer shares a name with the Temporal Fusion Transformer (TFT) introduced by
Lim et al. [33], it is important to note their architectural differences. The TFT is designed for handling
multi-modal data, allowing it to incorporate various relevant features for forecasting tasks. In contrast,
our dataset did not require such multi-modal capabilities, leading to divergent architectural choices in
our models.

It is worth emphasising that our experimentation phase encompassed the exploration of multiple
temporal hybrid models, however, we only detail the most effective models. The remainder of
this article is structured as follows: In Section 2, we delve into the related works within the field
of Lithium-Ion Battery RUL prediction focusing on Deep-learning approaches. Section 3 provides
a comprehensive overview of our proposed methodology, followed by a detailed account of the
experimental procedure. Section 4 is dedicated to discussions regarding the outcomes of our
experiments. Lastly, Section 5 concludes this article with our conclusion and future work.

2. Related Works

Physics-based models face challenges in predicting lithium-ion batteries RUL [2]. Performing
well only in narrow domains, they require a detailed understanding of battery electrochemical
processes, which is time-consuming and computationally intensive [3,8,34]. Simplified assumptions
limit their ability to capture real-world complexities, resulting in lower RUL prediction accuracy.
Parameterisation is challenging due to manufacturing variations and difficulty in obtaining precise
model parameters [35,36]. The models exhibit limited adaptability to dynamic environments and high
computational complexity, hampering real-time applicability. Calibration and validation procedures
demand extensive data and resources [37]. Sensitivity to uncertainties affects accuracy, as minor
errors propagate in measurements and assumptions. Consequently, data-driven methods like machine
learning have gained prominence for their ability to learn complex nonlinear relationships from
data, overcoming uncertainties, providing a promising alternative for RUL prediction in lithium-ion
batteries [38–41].

2.1. Statistical Machine Learning

As previously noted, statistical machine learning methods, including Support Vector Machines
(SVM) [10], Support vector regression with Kalman filters [42], Gaussian Process Regression
(GPR) [11–13], Random Forest [14,15], and Bayesian approaches [16–18], have been employed
for predicting battery remaining useful life (RUL). Tong et al. [43] introduced ADLSTM-MC, a
deep-learning-based algorithm combining adaptive dropout long short-term memory (ADLSTM)
and Monte Carlo (MC) simulation, achieving high precision with only 25% of degradation data.
Similarly, Kwon et al. [44] integrated a Multi-linear regression approach with a recurrent neural
network to model LIB degradation.

2.2. Temporal Models

Temporal models like Recurrent Neural Networks (RNNs) and more advanced variants such
as LSTM cells and Gated Recurrent Units (GRUs) are employed to capture the sequential nature
of battery data. CNNs are used to extract salient features from sparse time series data. Lipu et
al. [20] introduced, a Nonlinear Auto-regressive with Exogenous Input (NARX)-based Neural Network
(NARXNN) is introduced for State of Charge (SOC) estimation, utilizing a Lighting Search Algorithm
(LSA) to optimise hyperparameters. Signal decomposition techniques like Discrete Wavelet Transform
(DWT), Empirical Mode Decomposition (EMD), and Variational Mode Decomposition (VMD) are
combined with the NARX model in [45] to predict capacity trajectories. In [46] Zheng et al. employed
a deep-LSTM network followed by multiple fully connected (FC) layers. Whereas Wang et al. in [47]
introduced a bidirectional-LSTM architecture with additional FC layers. Chemali et al. [21] proposes an
RNN architecture with LSTM for RUL estimation, achieving low Mean Absolute Error (MAE) values
and demonstrating generalisation across different conditions. [26,27]
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2.3. Convolutional Models

Shen et al. [22] presented a Deep Convolutional Neural Network (DCNN) that achieved higher
accuracy than traditional methods, such as filter-based models [48–51]. However, limitations include
the fixed-size input matrix and a limited understanding of the method’s interpretability. Following
a similar approach, Li et al. [52] proposed another DCNN employing a time window approach for
sample preparation and feature extraction. In this work [53], Babu et al. proposed a novel deep
CNN-based regression method for RUL estimation. Similarly, Shen et al. in [14] proposed a DCNN
with transfer learning (DCNN-TL) model which is then integrated with ensemble learning to form
DCNN-ETL. The effectiveness of the DCNN-ETL model is then bench-marked against five other
data-driven methods including random forest regression, Gaussian process regression and DCNN.
In another study, a Temporal Convolutional Network (TCN) model was used along with causal and
dilated convolutions to capture local capacity degradation, but limitations include applicability to
other battery types and real-time implementation challenges [24].

2.4. Hybrid Models

An Auto-CNN-LSTM model for RUL estimation is proposed by Ren et al. [25], incorporating an
auto-encoder to enhance feature vectors by dimensionality reduction and feature learning, achieving
accurate predictions. Knowledge gaps include the need for robust generalizability, exploration of
various temporal networks, and better utilisation of datasets with varying feature sampling rates.
Additionally, consideration should be given to ageing effects, non-stationary signals, relevant feature
incorporation, and spatial information capture. The work by Li et al. [54] introduced a directed acyclic
graph network which coupled the LSTM with the CNN. In [55], Tan et al. introduced a Multi-variate
Time-series focused approach for a light-weight CNN with attention mechanisms. Hybrid models
like the one in [56] combine GRU and CNN for SoH estimation, while [57] uses an Attention-Assisted
Temporal Convolutional Memory-Augmented Network (ATCMN) for RUL prediction from limited
data. These approaches demonstrate promise but need further exploration and rigorous testing on
more diverse datasets.

In the following section, we aim to address critical knowledge gaps identified in the literature
regarding predicting the RUL of LIBs. These gaps encompass issues of robustness, accuracy, and
generalizability in data-driven models for Battery Management Systems (BMS). To overcome these
limitations, we developed end-to-end hybrid models capable of utilizing complete datasets [58],
including features with varying sampling rates. By doing so, we intend to enhance the performance
metrics for RUL estimation in LIBs and move closer to enabling real-time implementation of these
models within BMS for practical applications. Additionally, we explored various deep learning
approaches, such as convolutional neural networks (CNNs) [59], Long Short term Memory cells
(LSTMs) [32], the Transformer network [60], Autoencoder [61], Neural Turing machines [62],
Differentiable neural computer [63] and hybrid models, while considering the impact of ageing,
non-stationary signals, relevant feature incorporation, spatial information capture, and variable
ambient temperature conditions.

3. Methodology

This section presents the framework (Figure 2) of the proposed LIB RUL prediction method.
An important part of this research was the optimisation of model hyperparameters using Bayesian
optimization techniques aimed at maximising the models’ predictive accuracy. The primary objective
was to develop a robust predictive model for estimating the RULs of LIB, accounting for intricate
temporal dynamics and feature variations across different battery batches.
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Figure 2. The study pipeline begins with a dataset comprising 124 commercial LIBs that have undergone
extensive cycling until failure. Next, we implement feature selection to extract crucial features that
enhance the accuracy of RUL predictions. Following this, a series of data preprocessing techniques
are employed to clean and compress the dataset. Subsequently, stratified random sampling is utilized
to create a representative sample. Finally, we develop a variety of hybrid deep network architectures,
apply hyperparameter optimization, and evaluate these models using a testing set to determine the
best-performing model.

3.1. Dataset Description

This project employed a dataset comprising 124 lithium-ion batteries of the lithium iron phosphate
(LFP)/graphite type, each with a nominal capacity of 1.1 Ah and a nominal voltage of 3.3 V.
These batteries underwent cycling until failure under fast-charging conditions within a convection
temperature chamber set to 30°C. The dataset, sourced from the Toyota Research Institution [64],
included information on various parameters, such as voltage, capacity, and current, continuously
measured during cycling, spanning from a single cycle to the End Of Life. Charging involved an
initial phase with current C1 until a state-of-charge (SOC) of S1 was reached, followed by charging
with current C2 until reaching SOC S2, consistently set at 80% for all cells. Subsequently, the cells
underwent an 80% to 100% SOC transition using a 1 C-rate constant current-constant voltage (CC-CV)
charging approach, up to a 3.6 V cut-off voltage [65]. The batteries’ lifetimes were determined based on
the cycle number at which their capacity declined to 80% of the original value, with observed lifetimes
ranging from 1350 to 2300 cycles.

3.2. Stratified Random Sampling

Stratified random sampling was employed to create a representative dataset for the model’s
training and testing. This approach ensured that cells from different battery batches, characterised
by varying quality control protocols, were proportionally included in the dataset. By preventing
models from overfitting to specific batch attributes, this method improved model robustness and
generalisation across different LIB batches.

3.3. Feature Selection

The dataset, divided into three batches of approximately 48 cells each, was prepared for analysis.
Essential features for RUL prediction were identified, including linearly interpolated Discharge
Capacity (Qdlin), Linearly Interpolated Temperature (Tdlin), Internal Resistance (IR), discharge data,
discharge time, and remaining cycles. Qdlin and Tdlin were interpolated to maintain a consistent
sampling rate for all cells.
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3.4. Data Preprocessing

To prepare the data for deep neural networks, we implemented a comprehensive preprocessing
pipeline. Outliers in internal resistance, discharge time, and discharge quantity were removed using the
fill outliers function with the cubic spline method and a moving average window of 100 (Figure 3a–c,
respectively). These figures show the features before and after preprocessing (Note: these plots depict
the first cell in the first batch). Smoothing techniques, such as moving average filters with a window
size of 15, were applied to discharge data. To capture temporal dynamics in Qdlin and Tdlin, the
sampling rate was standardized to 1000 entries per cycle. Finally, PCA was employed to reduce the
dimensionality of Qdlin and Tdlin while preserving their essential features.

(a)Internal resistance

(b)Discharge time

Figure 3. Cont.
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(c)Discharge Quantity

Figure 3. Comparison of Data Features Before and After Preprocessing.

3.5. RUL estimation

Traditional supervised learning approaches rely on the existence of labelled training data, where
each data point is associated with a known target value. However, in the context of prognostics,
this assumption often does not hold. The remaining useful life (RUL) of individual components
is typically not known a priori, making it challenging to train predictive models using standard
regression techniques. To overcome this hurdle, researchers have explored alternative approaches,
such as employing physics-based models or utilizing machine learning algorithms to estimate the
RUL of training data. While assigning a constant RUL value to all training points may seem like a
straightforward solution, this can lead to inaccurate representations of the actual degradation patterns
and hinder the model’s ability to generalize effectively. A more sophisticated approach involves
estimating the RUL based on a suitable model, as demonstrated by the use of a Deep Convolution
Neural Network [66]. This approach offers a more realistic representation of the degradation process
and can potentially enhance the model’s predictive performance.

3.6. Metrics

A variety of metrics were used in this study. The success of the model was calculated based
on the deviation (ei) of the predicted number (model prediction ŷi : RULpredicted) of cycles from the
actual number (ground truth yi : RULtruth) of cycles remaining after every 100 cycle count as shown
in Equation (1). The choice of loss function significantly impacts the outcome of RUL prediction.
Along with Mean Absolute Error (MAE) shown in Equation (3) and Mean Absolute Percentage Error
(MAPE) shown in Equation (4), which simply average the absolute errors, and calculate the percentage
respectively, we also tracked the Root Mean Squared Error (RMSE) shown in Equation (2) which
squares the errors before averaging, placing greater emphasis on larger deviations. This sensitivity to
larger errors makes RMSE a more suitable metric for prognostics, where accurately predicting RUL
is crucial and substantial errors can lead to poor performance. Additionally, the rationale behind
tracking these specific metrics is that they allow for meaningful comparisons against state-of-the-art
approaches.

ei = ŷi − yi (1)
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|yi|

)

× 100 (4)

3.7. Proposed Architectures

The most successful architectures in our study were the Convolutional Long Short-Term Memory
Deep Neural Network (CLDNN), originally proposed by Sainath et al. [30] for Natural Language
Processing specifically used for Large Vocabulary Continuous Speech Recognition (LVCSR) tasks [30].
In their work, CLDNN outperformed Gaussian Mixture Model (GMM) and Hidden Markov Model
(HMM) systems [67]. We repurposed the CLDNN architecture for the specific task of Remaining Useful
Life (RUL) estimation.

Another noteworthy model in our investigation was the Temporal-Transformer (TT), initially
introduced by Chadha et al.[31] for RUL estimation using the Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) dataset. The TT model demonstrated effectiveness in predicting the
Remaining Useful Life of aircraft engines. Ma et al. [68] presented a similar use case where their
model utilized multi-head attention to capture global features from various representation sub-spaces.
Although originally designed for predicting the Remaining Useful Life of aerospace engines, we
adapted these models for estimating the Remaining Useful Life of Lithium-Ion Batteries (LIB). This
adaptation involved specific architectural deviations and adjustments to hyperparameters.

3.7.1. CLDNN

Adapting a Convolutional Long Short-Term Memory Deep Neural Network (CLDNN), initially
developed for Natural Language Processing (NLP) tasks with tokenized sentences, to predict
Remaining Useful Life (RUL) in Lithium-Ion Batteries (LIB) necessitates several architectural and
algorithmic modifications.

• Input Representation: In NLP tasks, CLDNN takes tokenized sentences as input. For RUL
prediction, the input representation needs to be tailored to the characteristics of battery data.
Time-series data from sensors measuring various parameters (voltage, current, temperature, etc.)
were used as input. The input data was reshaped into a format suitable for time series analysis.

• Sequence Length and Padding: LIB data has variable lengths of sequences as the cycle count for
each battery differs, unlike fixed-length sentences in NLP. Padding or trimming sequences to a
uniform length was not necessary. The network architecture was able to handle variable-length
input sequences.

• Temporal Features: LIB data is inherently temporal, reflecting the degradation of the battery
over time. The CLDNN architecture incorporates mechanisms to capture temporal dependencies
effectively. Long-Short-Term Memory (LSTM) layers allow us to model temporal patterns.

• Feature Extraction: The features relevant to RUL prediction in LIB differ from those important
for NLP tasks. Modifications to the convolutional layers had to be made to extract features that
are indicative of the battery’s health and degradation.

• Hyperparameter Tuning: The hyperparameters, such as learning rate (lr), filter size (n f ), kernel
parameters (ks), activation functions (a), and dropout rates (dr) needed adjustment for the new
task. Bayesian hyperparameter tuning was used to optimize the model for RUL prediction.

• Fine-tuning: The model is fine-tuned with different optimizer choices to minimize loss functions.
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The final optimized CLDNN architecture excelled at predicting the remaining useful cycles (RUL)
for lithium-ion batteries. It comprises a total of 1,518,665 trainable parameters and integrates
Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Dense Neural
Networks (DNN) to leverage the unique strengths of each component. The CNN layers capture
intricate spatial patterns within features, while the LSTM layers facilitate the capture of temporal
dependencies. Dropout layers and dense layers contribute to the model’s regularization and refined
prediction capabilities. The CLDNN Architecture for our task is shown in Algorithm 1 and Figure 4a
this model demonstrates a strong efficiency in handling the heterogeneity of the dataset.

(a)The CLDNN model.

Figure 4. Cont.
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(b)The Temporal Transformer model.

Figure 4. Comparison of the CLDNN and Temporal Transformer architecture

Algorithm 1 CLDNN

1: procedure DEFINESPATIALLAYER(Qdlin, Tdlin, IR, DT, QD, hp)
Input: Qdlin, Tdlin ∈ R

B×T×D, IR, DT, QD and Hyperparameters hp ▷ Qdlin, Tdlin: Input data

tensors, hp: Hyperparameters
Concatenate: (Qdlin and Tdlin) ▷ Merge input features
Apply Convolutional Layers and Dropout:
h1 ← Conv1D([Qdlin, Tdlin], n f , ks, s, a, padding = same)
h2 ← MaxPooling1D(h1)
h3 ← Conv1D(h2, 2n f , ks, s, a, padding = same)
h4 ← MaxPooling1D(h3)
h5 ← Conv1D(h4, 4n f , ks, s, a, padding = same)
h6 ← MaxPooling1D(h5)
h7 ← Flatten(h6)
h8 ← Dropout(h7, dr) ▷ Output of the CNN is a set of high-level features, h8
Features Concatenation: ▷ Concatenation of detailed features with additional inputs
h9 ← Concatenate(h8, IR, DT, QD) ▷ Feature transformation and regularization
Return h9 ▷ Prepare for the LSTM layers

2: end procedure
3: procedure DEFINELSTMLAYER(h9, nu, au)

Input: h9, nu, au

h10 ← LSTM(h9, nu, au) ▷ Producing a set of hidden states, h10, capturing the temporal evolution

of the system
Return h10 ▷ Prepare for the Dense layers

4: end procedure
5: procedure DEFINEDENSELAYERS(h10, nd, ad) ▷ Learn complex non-linear relationships between

the hidden states and the RU
h11 ← Dense(h10, nd, ad)
RUL← Dense(h11, 1, relu_cut)
Return: RUL ∈ R

B×1
▷ Final model output

6: end procedure
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3.7.2. Temporal-Transformer

Adapting the Temporal-Transformer (TT) model, originally designed for the Remaining Useful
Life (RUL) estimation of aircraft engines, for the estimation of RUL in Lithium-Ion Batteries (LIB),
involves several architectural differences and adjustments. Here are some modifications that might be
considered.

• Input Representation: Adjustment to the input representation to accommodate the characteristics
of LIB data. The original model took input sequences related to engine parameters. LIB data
consists of time series measurements of capacity, temperature, resistance, and discharge time.

• Attention Mechanisms: Multi-head attention mechanisms were used in the original model by Ma
et al. [68] needed adjustments for LIB data. Tailoring attention mechanisms to focus on features
relevant to battery degradation patterns about the linearly interpolated feature.

• Model Size and Complexity: The overall size and complexity of the LIB dataset required an
increase in the size and complexity of the TT model. This involved adding layers, adjusting
attention mechanisms, and increasing the model depth, which led to 3,936,281 trainable
parameters.

• Hyperparameter Tuning: Fine-tune hyperparameters using Bayesian optimization specific to LIB
data. This includes learning rates, the number of attention heads, embedding dimensions, layer
sizes, and dropout rates.

The temporal Transformer (TT) architecture, combines two potent neural network paradigms: the
Transformer and Long Short-Term Memory (LSTM). The Transformer’s multi-head self-attention
mechanism empowers the model to decipher complex temporal dependencies within the dataset. By
parallel processing different parts of the input sequence, it extracts a rich contextual understanding of
each data point. Meanwhile, LSTM units adeptly capture long-term relationships between features,
enhancing the model’s predictive capabilities. The architecture employs feed-forward neural networks
(FFN) for further refinement, facilitating the modelling of non-linear data relationships. Regularisation
techniques namely dropout and layer normalisation are employed to ensure training stability and
generalisation. The TT algorithm is outlined in the provided Algorithm 2 and Figure 4b (Note:
x ∈ R

B×T×D: Input data with dimensions B× T×D, where B is the batch size, T is the time dimension,
and D is the feature dimension).

The SelfAttention function in Algorithm 2, computes weighted representations of input data by
considering inter-dependencies across multiple dimensions, employing a scaled dot-product attention
mechanism. The TransformerBlock further refines these representations through layer normalization
and feed-forward networks, enhancing their expressiveness while retaining sequential relationships.
This modular and hierarchical structure allows the LSTM-Transformer to capture patterns in sequential
data, making it versatile for offering a robust solution for accurate RUL predictions in lithium-ion
batteries.
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Algorithm 2 Temporal-Transformer

1: procedure DEFINETIMEDISTRIBUTEDLAYER(Qdlin, Tdlin, hp)
Input: Qdlin, Tdlin ∈ R

B×T×D and Hyperparameters hp ▷ Qdlin, Tdlin: Input data tensors, hp:

Hyperparameters
Concatenate: (Qdlin and Tdlin) ▷ Merge input features
Apply TimeDistributed Dense Layer and Dropout: ▷ Feature transformation and regularization
h← TimeDistributedDense([Qdlin, Tdlin], hp)
Flatten h ▷ Prepare for Transformer input
Return [Qdlin, Tdlin] ▷ Linearly interpolated features will have the same dimension as the other

features
2: end procedure
3: procedure DEFINESTRUCTURING(hp, IR, DT, QD)

Extract Hyperparameters: embed_dim, num_heads, ff_dim, lstm_units, dense_units ▷

Model configuration parameters
Define Inputs: IR, DT, QD ▷ Additional model inputs
Features Concatenation: [Qdlin, Tdlin, IR, DT, QD] ▷ Combine all input features
Apply TimeDistributed Dense Layer and Dropout: ▷ Further feature transformation

4: h← TimeDistributedDense([Qdlin, Tdlin, IR, DT, QD], hp)
Flatten h ▷ Prepare for Transformer block
Return [Qdlin, Tdlin, IR, DT, QD] ▷ We now proceed to apply the attention mechanism across the

each data point
5: end procedure
6: procedure DEFINEMULTIHEADSELFATTENTION(x, Dh) ▷ Uses three sets of weight matrices

Wq, Wk, Wv to transform the input data into query (Q), key (K), and value (V)
Input: x ∈ R

B×T×D, Dh ▷ Obtained from DefineStructuring()
Parameters: Wq, Wk, Wv ∈ R

D×Dh , Wo ∈ R
Dh×D

▷ Dh is number of attention heads, W is weight

matrices
Q, K, V ← xWq, xWk, xWv

H ← Attention(Q, K, V) ▷ Computing attention scores Q and K representations, obtained by

linear transformations using Wq and Wk.
h← HWo

Return h
7: end procedure
8: procedure DEFINETRANSFORMERENCODERBLOCK(x, Dh, F)

Input: x ∈ R
B×T×D, Dh, F

Parameters: Wq, Wk, Wv ∈ R
D×Dh , Wo ∈ R

Dh×D, W1, W2 ∈ R
D×F, b1, b2 ∈ R

F
▷ F is the

feedforward dimension
h← MultiHeadSelfAttention(x, Dh)
h← LayerNorm(h + x) ▷ Apply layer normalization to h + x
u←W1h + b1 ▷ Perform a linear transformation on h and add bias b1
u← ReLU(u) ▷ Apply the ReLU activation function for non-linearity
v←W2u + b2
z← LayerNorm(v + h) ▷ Perform another linear transformation

9: Return z ∈ R
B×T×D

10: end procedure
11: Dropout Layer
12: LSTM Layers: ▷ LSTM for sequential data processing

h1 ← LSTM(z, lstm_units)
13: Dense Layers: ▷ Dense layer for feature extraction

h2 ← Dense(h1, dense_units, activation) ▷ Output layer for Remaining Useful Life prediction
RUL← Dense(h2, 1, relu_cut)

14: Return: RUL ∈ R
B×1

▷ Final model output
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3.8. Hyperparameter Optimization

The hyperparameter tuning for the proposed LIB RUL prediction models was achieved using
Bayesian Optimization. Hyperparameter tuning is a critical step in the development of machine
learning models, involving the search for optimal configurations to enhance predictive accuracy [69].
In this study, Bayesian Optimization was chosen due to its effectiveness in handling non-linear
and complex search spaces. Unlike traditional grid search or cross-validation methods, Bayesian
Optimization uses probabilistic models to predict the performance of different hyperparameter
configurations, guiding the search toward promising regions [70]. This is particularly beneficial
in high-dimensional spaces, where an exhaustive search becomes computationally expensive. The
implementation of Bayesian Optimization can be seen in Algorithm 3, which was developed using the
Keras Tuner library [71]. The tuning process involved defining a hypermodel class (MyHyperModel)
that inherits from the Keras Tuner HyperModel class. This class encapsulates the structure of the LIB
RUL prediction models (CLDNN or TT), as well as the search space of hyperparameters. Additionally,
a custom Bayesian Optimization tuner class (MyBayesianOptimizationTuner) was defined, extending
the BayesianOptimization class from Keras Tuner. The tuner was configured to minimize, which was
set as the validation mean absolute error (MAE) of the LIB RUL prediction models. The search was
conducted over a specified number of trials (100 in this case) on the training dataset for a given number
of epochs (10 in this case), and the models’ performance was evaluated on the validation dataset.

Algorithm 3 Hyperparameter Optimization with Keras Tuner

1: procedure DEFINEHYPERMODELCLASS
Class MyHyperModel(HyperModel):
Inputs: ▷ Define hyperparameters and model architecture
Define build: ▷ Build and compile models with varying hyperparameters (e.g., CLDNN,

TRANSFORMER-LSTM)
Return model

2: end procedure
3: procedure DEFINECUSTOMBAYESIANOPTIMIZATIONTUNER

Class MyBayesianOptimizationTuner(BayesianOptimization):
Define initialization: ▷ Define custom Bayesian Optimization tuner
Define on_error: ▷ Handle errors during the optimization for increased modularity and robustness

4: end procedure
5: procedure HYPERMODELINSTANCEANDTUNER

Instantiate Hypermodel and Tuner:
hypermodel← MyHyperModel(...)
tuner← MyBayesianOptimizationTuner(hypermodel, objective=val_mae) ▷ Optimize for

the lowest validation MAE
tuner.search(max_trials=100, epochs=10, dataset_train, batch_size=512)

6: end procedure
7: procedure BESTHYPERPARAMETERSANDMODEL ▷ Extract optimized hyperparameters and

associated weights
best_hp← tuner.oracle.get_best_trials(1)
best_model.set_weights(tuner.get_best_trial().get_weights())

8: end procedure

After completing the search, the optimal hyperparameter set was retrieved, and a new model
was built using these parameters. This process ensured that the final CLDNN and TT model was
fine-tuned for optimal performance, leveraging the power of Bayesian Optimization to navigate the
hyperparameter space efficiently.

4. Results and Discussion

This section presents and compares our findings and results to other algorithms, leveraging
the validation data. During model development, it became evident that the most effective models
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necessitated two cardinal attributes. Firstly, they were required to be capable of managing sparse data
by proficiently extracting significant features. Secondly, they were expected to possess the capability to
learn both temporal and spatial relationships between the features, and the remaining cycles of each
Lithium-Ion battery.

After these findings, a comparative analysis was undertaken among an assortment of hybrid
models, which embraced these two critical characteristics. The performance of these models is
visually presented in the following Figure 5a–c, where key performance indicators such as loss, Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Mean Squared Error (MSE) are
prominently depicted. It is noteworthy that each figure includes a comparison of all hybrid neural
network architectures developed, encompassing the baseline CLDNN, the optimized CLDNN, the
Transformers-LSTM, and its optimized counterpart.

(a)MAE- Mean Absolute Error for the best performing models.

(b)MAPE- Mean Absolute Percentage Error for the best performing models.

Figure 5. Cont.
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(c)MSE- Mean Squared Error for the best performing models.

Figure 5. Comparison of different error metrics for the best performing models.

4.1. Comparing all the tested temporal models

When placed in contrast with other models that embody the desired characteristics,
such as Convolution-Neural-Network Differential-Neural-Computer (CNN-DCN),
CNN-LSTM-Neural-Turing-Machine (CNN-LSTM-NTM), CNN-Transformers, and
Transformer-Autoencoder, it becomes evident that these models exhibit higher error metrics,
thereby underscoring their relative inefficacy in accurately predicting the RUL for Lithium-Ion
batteries as can be seen in Table 1.

Table 1. Results of 6 different NN models

Model MSE MAE MAPE RMSE %

CLDNN* 0.6754 84.012 25.676 0.8218

CNN-DCN 1.402 95.6365 46.408 1.1841

CNN-LSTM-NTM 1.333 284.887 - 1.1546

Transformer-LSTM* 0.7136 85.134 28.7932 0.8444

CNN-Transformers 0.6783 92.127 36.981 0.8236

Transformer-Autoencoder 1.524 288.951 - 1.2345

4.2. Best performing Models

In the course of assessing these results, two models, namely the Convolutional, LSTM, Densely
Connected (CLDNN) and the Transformer-LSTM (Temporal-Transformer), emerged as the most
proficient in predicting the RUL, as outlined in Table 1 and Figure 5a–c. The CLDNN model exhibited
an MAE of 84.012, MAPE of 25.676, and MSE of 0.6754. Conversely, the Temporal-Transformer model
recorded a MAE of 85.134, MAPE of 28.7932, and MSE of 0.7136. To view the model’s train duration
refer to Figure 6.
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Figure 6. Training time of the Baseline and Optimized models in Seconds.

4.3. Observations:

Several key observations were drawn from the hyperparameter setups Tables 2 and 3 of the
best-performing hybrid models.

• The optimized Temporal Transformer had fewer embedding dimensions and lower number
of attention heads compared to the original model. This meant that the original model was
over-parameterized.

• Both Transformer-LSTM and CLDNN models have ’optimized’ versions with distinguishable
hyperparameter configurations. For instance, the dense layer in the optimized models contains
an increased number of units, with Transformer-LSTM-optimized having 64 units compared to its
original 40. Additionally, the optimized configurations have a reduced dropout rate and learning
rate.

• With a learning rate of 0.001, the original Transformer-LSTM model is ten times more robust than
its optimized counterpart, which has a learning rate of 0.0001, preventing gradient explosion
and overshooting the minimum in the optimized model.

Table 2. Hyperparameter Comparison for CLDNN

Parameter Original Optimized

Convolution filter 56 44
Convolution kernel 27 12
Dense layer Activation tanh tanh
Dense layer units 40 64
LSTM layer activation tanh tanh
LSTM layer units 132 108
Dropout rate CNN 0.45 0.3
Dropout rate LSTM 0.4 0.3
Output activation relu relu_cut
Learning rate 0.001 0.0001

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2024                   doi:10.20944/preprints202401.1817.v1

https://doi.org/10.20944/preprints202401.1817.v1


17 of 23

Table 3. Hyperparameter Comparison for Transformer-LSTM

Hyperparameter Original Optimized

Embedding Dimension (embed_dim) 64 32
Number of Attention Heads (num_heads) 8 2
Hidden Layer Size (ff_dim) 32 32
Dropout after attention 0.3 0.2
Dense layer activation tanh tanh
Dense layer units 40 64
LSTM layer activation relu tanh
LSTM layer units 132 108
Dropout rate LSTM 0.4 0.3
Output activation relu_cut relu
Learning rate 0.001 0.0001

4.4. Comparing CLDNN and TT models to existing approaches

In comparing our results to other approaches in the literature, several standout models, namely
Auto encoder-DNN, Auto-CNN-LSTM, and ATCMN, exhibit relevance and importance to our research.
These models, as presented in Table 1, share a hybrid deep learning architecture similar to ours,
combining different network architectures to enhance prediction. Notably, they distinguish themselves
by predicting the Remaining Useful Life (RUL) of batteries in terms of remaining cycle counts, aligning
with our research objectives and providing a more actionable metric for battery health management
compared to other models that predominantly focus on binary classification tasks (predicting whether
the battery has remaining cycles or has surpassed End Of Life threshold). While these models bear
significance due to their hybrid architecture and cycle count prediction approach, our CLDNN and
Transformer-LSTM models demonstrate superior performance in RUL prediction for Lithium-Ion
Batteries (LIBs), especially when compared to other temporal models like LSTM-RNN, DCNN, and
TCNN (Table 4) [72]. Table 4 also highlights the Avg inference time during the validation of each of
the approaches. The average inference time of the CLDNN and TT is also reasonable, making them
efficient for real-time applications.

The ATCMN [57], a model similar to ours, utilises discharging time, voltage, and capacity for
RUL estimation; however, our models outperform it in predicting remaining cycles for LIBs within a
100-cycle moving window and using a CC-CV charge policy. Notably, the Auto-CNN-LSTM model
by Ren et al. [25] operates on a distinct dataset with less variation and limited diversity in input
parameters, acknowledged by the authors themselves. This dataset disparity, compared to our more
extensive and diverse dataset, underscores the potential for variations in outcomes between the two
models, highlighting the importance of our comprehensive dataset in providing a robust foundation
for modelling and prediction, ultimately enhancing the reliability and applicability of our findings.

Table 4. Caparison of CLDNN and TT against other deep learning algorithms.

Model MAE RMSE MAPE Avg Inference Time

Auto-CNN-LSTM [25] - 5.03 - -

ATCMN [57] 84 - 32.8% 18 ms

Deep-CNN[66] - 1.986 - 12.3 ms

Deep-CNN Transfer-learning[14] - 1.361 - 133.9 s

CLDNN(ours) 84.012 0.8218 25.676 % 15.5 ms

Transformer-LSTM (ours) 85.134 0.8444 28.7923% 16.7 ms

5. Conclusions and Future Work

This study addresses the critical challenge of accurately estimating the RUL of LIBs within the
context of electric vehicles. By leveraging deep learning techniques and utilizing a rich dataset from the
Toyota Research Institute, we have developed and evaluated two hybrid models: CLDNN and TT. Our
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contributions encompass the creation of a pre-processed high-quality dataset through stratified random
sampling, by implementation of a comprehensive data preprocessing pipeline, and the development
of two hybrid models. This pipeline ensures feature consistency and captures temporal dynamics,
thereby laying the foundation for precise RUL predictions.

Both the CLDNN and TT models exhibited commendable performance, surpassing existing
approaches with Mean Absolute Errors (MAEs) of 84.012 and 85.134, respectively. Furthermore, they
demonstrated improvements in Mean Absolute Percentage Error (MAPE) ranging from 4.01% to 7.12%.
These models prove to be well-suited for LIB RUL prediction, making substantial contributions to
battery recycling and sustainability within the electric vehicle industry.

Despite these achievements, several areas for future improvement have been identified.
Real-world implementation and validation on a broader dataset are crucial for bolstering confidence in
the models’ applicability. Exploring complex augmentation methods, alternative ensemble solutions,
and liquid neural networks (LNNs) [73–75] could further refine model performance and introduce
more efficient, adaptable, and robust approaches to battery health estimation. There is also potential
for the use of explaining the LIB RUL using graph neural networks which have also been shown
to significantly reduce parameter count and perform better than their traditional physics-based
model’s counterparts [76,77]. Future research may leverage LNNs or GNNs, known for their dynamic
adaptability, to potentially enhance RUL prediction for LIBs. With reduced computational intensity,
these networks may offer superior generalization and efficiency for large-scale applications like electric
vehicle battery management systems.

Reducing parameter counts to enhance model efficiency, measuring processing times in Online
scenarios, and investigating the alignment between hyperparameter optimization and a comparison
between physics-based models are promising avenues for future research. In conclusion, while this
study represents a significant step forward in battery health estimation, ongoing research should focus
on diversifying data sources, simplifying model complexities, and exploring emerging technologies,
such as LNNs, to further advance this field.
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the Toyota Research Institute.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
AE Auto-Encoder
BMS Battery Management System
CLDNN CNN-LSTM-Deep-Neural-Networks
CNN Convolution Neural Network
DDA Data Driven Approaches
DL Deep Learning
EOL End Of Life
EM Electrochemical Model
GPR Gaussian Process Regression
IR Internal Resistance
LSTM Long Short Term Memory
LIB Lithium ion Batteries
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
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QD Quantity of Discharge
Qdlin Linearly interpolated discharge capacity
DDM Data-Driven Model
RUL Remaining Useful Life
RMSE Root Mean Square Error
RNN Recurrent Neural Network
SOC State of Charge
SOH State of Health
SVM Support Vector Machine
Tdlin Linearly interpolated temperature
TT Temporal Transformer
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