
Article Not peer-reviewed version

Study on Dynamic Coupling Behavior of

End-Meshing Harmonic Reducer

Tongliang Liu and Jianmin Wen *

Posted Date: 24 January 2024

doi: 10.20944/preprints202401.1735.v1

Keywords: end meshing; harmonic gear; time-varying stiffness; nonlinear dynamics

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.



 

Article 

Study on Dynamic Coupling Behavior of  
End-Meshing Harmonic Reducer 

Tongliang Liu 1 and Jianmin Wen 2,* 

1 Rongcheng College, Harbin University of Science and Technology, Rongcheng 264300, Shandong, China; 

TLL@hebust.edu.cn (T.L.) 
2 School of Ocean Engineering, Harbin Institute of Technology, Weihai 264209, People's Republic of China; 

wenjm@hit.edu.cn 

* Correspondence: wenjm@hit.edu.cn (J. W.) 

Abstract: To study the coupling mechanism and dynamic response of the end-face movable gear transmission 

system under complex excitation, a specific configuration of end-meshing movable gear reduction mechanism 

was used to achieve predetermined rigid thrust transmission and mismatched gear meshing functions, which 

solved the inherent defects of traditional harmonic gear mechanism thin-wall flexible wheel easy to be 

damaged by fatigue. Considering the phenomenon of elastic deformation of live teeth accompanied by 

significant changes in meshing characteristics in the transmission process of end-meshing harmonic reducer, 

the influence of dynamic meshing parameters, live tooth deformation, time-varying stiffness of tooth meshing, 

and time-varying backlash on nonlinear dynamic performance was explored, as well as the mechanism of 

multi-parameter coupling on transmission performance. The nonlinear dynamics model of the end-meshing 

harmonic reducer is established to solve the chattering prediction problem. Finally, a comprehensive test bed 

for the transmission system of harmonic reducer with meshing type with adjustable characteristic end was 

built to verify the correctness of the theoretical model and provide the theoretical and technical basis for 

exploring the optimal parameter selection of passive vibration suppression problem. 
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1. Introduction 

The utilization of industrial robots and aerospace exploration activities, among other sectors, 

necessitates the critical joint systems of their institutions to comply with the significant reliability and 

bearing capacity requirements of harmonic gear transmission devices [1]. To mitigate the inherent 

shortcomings of flexspline within traditional harmonic reducers, which are susceptible to fatigue 

damage, and to guarantee the precise operational state of the transmission system, the end-face 

engagement is employed to effectuate predetermined rigid thrust transmission. This solution 

effectively reconciles the conflict between deformation and load. 

The dynamic characteristics of harmonic gears are inherently complex due to the periodic 

changes in meshing parameters such as tooth deformation, meshing stiffness, and tooth backlash 

during the meshing process. Such changes cause obvious nonlinear coupling effects and mechanical 

jitter, causing continuous vibration in the transmission, which can have a detrimental effect on 

transmission performance. Therefore, the study of the nonlinear dynamics of harmonic gear 

transmission systems can provide valuable engineering insights and a theoretical foundation for 

enhancing its performance. 

Zhang Youlin et al. first postulated the concept of the end-face harmonic gear drive of oscillating 

teeth, elucidated its transmission principle, and subjected its kinematics law to comprehensive 

analysis. Subsequently, utilizing a virtual prototype model, they engineered and optimized the tooth 

profile to augment the transmission efficiency. The structural parameters pertinent to this drive 

system were calculated and optimized, however, the dynamic meshing behavior was not thoroughly 

explored. 

Recognizing the influence of time-varying meshing stiffness, gear backlash, and other variables, 
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various researchers have constructed a nonlinear dynamic model of planetary gear sets to depict the 

impact of internal and external excitations on vibration and shock responses. Furthermore, they 

offered strategies to mitigate vibration and shock. Zhu[9] et al. further extended the application of 

the harmonic balance method to the nonlinear dynamic modeling of compound planetary gear sets. 

Through their research, they were able to study the nonlinear dynamic characteristics of gear sets 

and identify the influence of multiple factors, including dimensionless backlash, meshing stiffness, 

and error excitation amplitude, on frequency response characteristics. Cui et al. [10-12] developed a 

coupled nonlinear dynamic model for compound planetary gears. This model was utilized to extract 

the natural frequency of the system and to evaluate the influence of moment of inertia, meshing 

stiffness, and other pertinent factors on the vibration response. Zheng[13] et al. proposed a 

translational-torsional coupled dynamics model of the RV reducer. This model was used to analyze 

the system's nonlinear time-varying behavior, yielding displacement responses of the various 

components under various conditions. Furthermore, the model was used to examine the sensitivity 

of the dynamic characteristics to both internal and external excitation factors. Tung[14] et al. 

developed a reduced-order time-variant numerical model for the compound reducer that enabled the 

prediction of the robot's dynamic stiffness with enhanced accuracy. Hu et al. [15] developed a 

dynamic analysis model of the three-stage planetary transmission within the wind turbine reducer. 

This model involved the utilization of the stiffness factor method to examine the mechanical 

properties of the interacting components. Subsequently, experimental validation was conducted to 

verify the reliability of the dynamic model. Yang [16] and colleagues established a dynamic model of 

planetary gear trains utilizing the lumped parameter approach and conducted in-depth research on 

the vibration responses of planetary gear trains when subjected to both deterministic and random 

loads. In consideration of the effects of backlash and time-varying stiffness, Saeed [17] et al. have 

refined the conventional spur gear dynamics model by incorporating Gaussian white noise into the 

loading terms. Liu Hui, Yang Wenguang[18, 19] et al. developed a non-linear dynamic model of 

planetary gear transmission systems, accounting for the effects of dynamic mesh parameters and 

stiffness. This model was subsequently subjected to experimental verification and analysis.   

As per the findings from the literature review, current research on end-face harmonic gear drives 

predominantly involves kinematic analysis, with a limited focus on dynamic behavior. While 

numerous studies have been conducted on the system dynamics modeling of traditional harmonic 

and planetary gear reducers, it is evident that both internal and external excitations play a significant 

role in influencing the system's performance. Given the unique features of the end-face harmonic 

gear drive, the internal axial excitation has a significant effect on the dynamic behavior of the system, 

leading to significant buffeting phenomena that should not be overlooked. In contrast, traditional 

gear system dynamics modeling typically fails to analyze the axial meshing parameters based on the 

radial meshing form. 

In light of this, this research aims to build a prototype of the specific end-face harmonic gear 

drive of oscillating teeth reducer. After a thorough examination of the dynamic meshing behavior 

law of the oscillating teeth, the influence of various dynamic meshing parameters, oscillating teeth 

deformation, time-varying stiffness, time-varying backlash, and other coupling factors on the 

nonlinear dynamic performance will be explored. Utilizing the lumped-mass method, a nonlinear 

dynamic model of the multi-tooth meshing system will be developed. Afterward, the theoretical 

model will be confirmed through experimental analysis to offer a theoretical basis for vibration 

suppression analysis of the end-face harmonic gear transmission mechanism. 

2. System dynamic incentive analysis 

In the process of gear transmission, the end-face harmonic gear drive of the oscillating teeth 

reducer is subjected to a combined effect of internal and external excitations. Specifically, internal 

excitation primarily involves the elastic deformation of gear teeth under load, deformation of the 

support system derived from the assembly relationship, and the combined influence of time-varying 

meshing stiffness as a result of the intermittent engagement of teeth. External excitation, on the other 

hand, is primarily affected by the combined effect of power sources at the input end and the 
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fluctuation of load and torque at the output end. As a result, the gear transmission system experiences 

vibration and noise due to the combined action of internal and external excitations. 

2.1 Multi-tooth Parameter Analysis of End-face Gear Drive 

The principle of end-face harmonic gear drive of oscillating teeth [20] is shown in Figure 1-1. The 

specific configuration of the end-face harmonic reducer is shown in Figure 1-2. 

 

Figure 1-1 

 

Figure 1-2 1-output pedestal 2-output shaft 3-bearing 4-circular spline 5-oscillating teeth 6-grooved pulley 

7-shell 8-spring 9- spring collar 10- Universal ball bearing bushings 11- Universal ball bearing 

12-cam 13-shaft end ring 14-input pedestal 15-input shaft 16‐shaft coupling 

Figure 1. Figure 1-1 The principle of end-face harmonic gear drive of oscillating teeth. Figure 1-2 End-

face gear of oscillating teeth reducer structure. 

The end-face cam rotates to push the oscillating teeth to move axially. The oscillating teeth 

always keep contact with the end face of the cam under the action of the spring, rise along the cam 

profile of the lift, and gradually engage with the gear teeth of the circular spline, which are forced to 

complete the rotation by the reaction force of the circular spline, and the power is output through the 

grooved pulley. This structure has both wheelbase and backlash adjustment functions. 

To optimally ensure effective meshing between the oscillating teeth and the circular spline teeth, 

the tooth tops are appropriately shaped and trimmed to prevent potential interference during the 

meshing process. Due to the large number of oscillating teeth, the tooth extraction method is chosen, 

with each oscillating tooth being assigned three teeth to ensure optimal meshing strength and 

minimal motion vibration. The theoretical total number of oscillating teeth can be calculated by Eq.1: 

( )O A VZ N Z Z= +  (1) 

In the equation, 𝑁  is the number of oscillating tooth blocks; 𝑍𝐴  is the actual number of 

oscillating teeth; 𝑍𝑉 is the number of teeth removed from the oscillating gear. 
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The difference between the number of circular spline teeth 𝑍𝐸 and the theoretical total number 

of oscillating teeth 𝑍𝑂 represents the number of dislocated teeth required for each rotation of the 

cam, while the number of cam waves represents the number of reciprocating movements of the 

oscillating teeth in a cycle. To ensure the correct meshing of the gear teeth, the two values must be 

guaranteed to be equal. In this design, it is a single-stage harmonic drive, and the transmission ratio 

can be expressed as Eq.2. 

O

W E

g E

Z
I

Z Z




= =

−  
(2) 

The cam profile surfaces, which consist of two symmetrical helical surfaces, are integral to the 

determination of axial displacement of the oscillating teeth. In each cycle, the displacement of the 

oscillating teeth situated on the right-hand and left-hand helical surfaces of the cam can be expressed 

as Eq.3. 
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(3) 

Where ℎ is the cam lift, 𝑛 is the cam revolution speed, 𝑡 is the cam running time. 

2.2 Analysis of Meshing Stiffness between Circular Spline and Oscillating Teeth 

The oscillating tooth's force condition following its entry into the meshing phase is given. As 

depicted in Figure 2. 

 

Figure 2. Force analysis of oscillating teeth. 

The meshing area and load point of the oscillating teeth are directly influenced by the 

displacement of the oscillating teeth. Given that the reaction force of the circular spline on the 

oscillating teeth is assumed to be an even load, the force generated by multiple teeth is equivalent to 

the concentrated load F of the center gear tooth. Based on the principles of force and torque 

equilibrium and input torque, the force equation of the oscillating teeth can be determined as Eq.4. 
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(4) 

In the formula, 𝐿𝑆 is the length of the groove; 𝐿𝑊 is the distance between the force point at the 

bottom of the oscillating tooth and the bottom of the groove; 𝐿𝑀 is the distance between the bottom 

of the oscillating tooth and the top of the tooth. 
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At the same time, the number of meshing teeth changes alternately with the cam angle. When 

the input torque is constant, the load on the oscillating teeth changes accordingly. The displacement 

of each oscillating tooth is denoted as 𝑧1~ 𝑧7, respectively. The meshing relationship between it and 

the gear teeth of the circular spline is shown in Figure 3.  

 

Figure 3. The meshing relationship between oscillating teeth and the circular spline gear teeth. 

The horizontal line in the figure represents the displacement required for the oscillating teeth to 

enter the meshing state. When the displacement of the oscillating teeth is higher than the horizontal 

line, the oscillating teeth enter the meshing. On the contrary, oscillating teeth are disengaged. That is 

the number of meshing teeth at the intersection of the horizontal line and the fold line changes. 

The oscillating gear teeth can be simplified as a tapered beam on the flexible body of the 

oscillating teeth, and the load F is equivalent to the right end of the microelement, which is 

decomposed into force 𝐹𝑥 along the x-axis direction, force 𝐹𝑦 along the y-axis direction, and the 

equivalent bending M generated by F. As shown in Figure 4. 

 

Figure 4. The force model of the oscillating teeth. 

The effective length of the tapered beam is h, i.e. the distance between the base point N of the 

oscillating tooth and the top of the tooth; The gear tooth is divided into a series of rectangle micro-

elements along the x-axis direction from the bottom of the tooth to the load point. Each microelement 

is represented by the symbol i, and its width is represented by the symbol 𝑇𝑖 ; F is the normal load on 

the oscillating tooth, 𝛽 is the angle between the load and the y-axis direction, 𝐿𝑖  is the distance 

between the microelement along the x-axis direction and the load point, 𝐿𝑗 is the distance between 
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the load point along the x-axis direction and the tooth top, Y is the distance between the load point 

and the x-axis, 𝑌𝑁 is the half-tooth width of the tooth root. 

The calculation of deformation can be divided into three parts: bending deformation, shear 

deformation, and axial compression deformation of the oscillating tooth body; additional 

deformation caused by the elasticity of the oscillating tooth; and local contact deformation of the 

tooth at the meshing point of the oscillating tooth. 

(1) Calculation of Deformation of Oscillating Tooth Body 

Under load, the oscillating gear teeth produce axial compression deformation, shear 

deformation, and bending deformation along the equivalent deformation of the load direction. The 

deformation of a single microelement can be calculated and superimposed. It is assumed that the left 

end of each microelement i is fixed, and the portion connected to the right end of the microelement 

is regarded as a rigid body. The amount of compression deformation, shear deformation, and 

bending deformation of the microelement can be obtained as Eq.5. 
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(5) 

In Eq.5, 𝛿𝑎, 𝛿𝑠, 𝛿𝑏 are the meshing point deformation caused by the compression, shear, and 

bending of the oscillating tooth body, and 𝛿𝑎𝑖 , 𝛿𝑠𝑖  and 𝛿𝑏𝑖  are the deformation caused by the 

compression, shear, and bending of the microelement, respectively; 𝜈 is the Poisson's ratio of the 

material; 𝐸𝑒 is the equivalent elastic modulus of the tooth. According to Cornell's analysis, the ratio 

of the tooth width 𝑏𝑖 to the tooth thickness 𝑠𝑝, 𝑏𝑖/𝑠𝑝 < 5, so it is a narrow tooth. At this time, the 

value of 𝐸𝑒 is the elastic modulus of the material; 𝐴𝑖 is the cross-sectional area of the gear teeth; 𝜔1 

is the deflection under the action of 𝐹𝑦, 𝜃1 is the angle under the action of 𝐹𝑦, 𝜔2 is the deflection 

under the action of M, 𝜃2 is the angle under the action of M, respectively. As shown in Eq.6. 
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In Eq.6, 𝐼𝑖  is the moment of inertia of the micro-element. 

Substituting Eq.6 into Eq.5, results can be obtained as Eq.7. 
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(2) Calculation of Oscillating Tooth Body Deformation 

For narrow teeth, deal with the problem of plane stress as Eq.8. 
2

2 2cos 16.67 tan
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(8) 

In Eq.8, E is the elastic modulus of the material; 𝐻𝑓 is the tooth thickness at the tooth root N; 𝐿𝑓 

is the equivalent arm of force. 

(3) Calculation of Local Contact Deformation of Oscillating Teeth 
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The contact deformation of the meshing point of the oscillating tooth surface is caused by the 

contact and compression deformation of the gear meshing line. According to research by H. H. Lin 

and G. Lundberg, it can be expressed by Eq.9 
0.9

0.9 0.8

1.275
h

e

F

E b
 =

 
(9) 

The total deformation of the meshing points of the movable teeth can be obtained by adding up 

each deformation as Eq.10. 
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(10) 

When the normal load F is constant, when the oscillating tooth displacement 𝑧 > ℎ𝑡 − ℎ, the 

oscillating tooth and the circular spline tooth are meshing. As Eq.11. 
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(4) Comprehensive Meshing Stiffness Calculation of Oscillating teeth 

For a pair of intermeshing gear teeth, it can be regarded as a pair of springs in series. The 

compressive stiffness, shear stiffness, bending stiffness, deformation stiffness, and Hertz contact 

stiffness of oscillating gear teeth are expressed as Eq.12- Eq.16. 
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In summary, the meshing stiffness of a single pair of gears at the load point can be obtained as 

Eq.17. 
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(17) 

In the formula, the meshing stiffness of the driving gear and the driven gear, namely the 

oscillating gear teeth and the circular spline teeth, at the load point, is a function of the position of the 

meshing point. 

In the equation, 𝐾1  and 𝐾2  represent the mesh stiffness of the driving and driven gears, 

respectively. They are functions of the meshing point position, specifically the contact point between 

the oscillating teeth and the circular spline teeth. 

Through the self-compiled software for example analysis and drawing curves, the stiffness of 

each part of the first oscillating tooth can be obtained as shown in Figures 5–9. 
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Figure 5. Compressive stiffness of oscillating teeth. 

 

Figure 6. Bending stiffness of oscillating teeth. 

 

Figure 7. Shear stiffness of oscillating teeth. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 January 2024                   doi:10.20944/preprints202401.1735.v1



 9 

 

 

Figure 8. Base stiffness of oscillating teeth. 

 

Figure 9. Contact stiffness of oscillating teeth. 

The comprehensive stiffness is shown in Figure 10.  

 

Figure 10. Comprehensive stiffness of the oscillating tooth. 

The remaining oscillating teeth have the same laws and only differ in phase differences. It can 

be obtained from the curve that the stiffness increases gradually with the oscillating tooth gradually 

entering the meshing, and decreases gradually with the oscillating tooth gradually withdrawing from 

the meshing; The bending stiffness, shear stiffness, and base stiffness are positively correlated with 

load angle, while compression stiffness is vice versa. The comprehensive stiffness of the oscillating 

tooth mesh can be improved by increasing 𝛽. 
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2.3 Contact Stiffness Analysis 

The universal ball bearing is used between the oscillating teeth and the cam, and its contact point 

expands into a contact surface under the action of load N. The contact surface is projected onto the 

vertical surface of the contact normal, as shown in Figure 11-1. In the contact area between the 

universal ball and the circular spline, the contact stress is distributed in the semi-ellipsoid, as shown 

in Figure 11-2. 

 

Figure 11-1 

 

Figure 11-2 

Figure 11. Figure 11-1 Contact between oscillating teeth and circular spline. Figure 11-2 Contact stress 

between oscillating teeth and circular spline. 

The contact between the cam and the universal ball is deformed as Eq.18. 
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(18) 

In Eq.18, N is the normal pressure at the contact point between the cam and the universal ball, 

and its direction is perpendicular to the cam profile; 𝐸′ is the sum of the equivalent elastic modulus; 

𝛴𝜌 is the main curvature; ma is the long half-axis coefficient of the contact ellipse; 𝐾(𝑒) is the first 

type of complete elliptic integral related to the eccentricity of the ellipse e. The contact stiffness 

between the cam and the oscillating tooth can be obtained as Eq.19: 

13 13/k N =
 (19) 

For the contact problem between the grooved pulley and the oscillating teeth, since the mass of 

the grooved pulley is significantly larger than the mass of the oscillating teeth, the grooved pulley 

can be regarded as a rigid body. The oscillating tooth is squeezed by the groove pulley during the 

meshing process, and the expression of the compressive stiffness between the groove pulley and the 

oscillating tooth can be obtained as Eq.20: 
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In Eq.20, 𝑏3 is the width of the oscillating tooth rod; 𝐸3 is the elastic modulus of the oscillating 

tooth material; 𝐴3 is the contact area between the oscillating tooth rod and the groove pulley. 

2.4 Stiffness Analysis of Support System 

Assuming the radial stiffness of the bearing is isotropic since the input shaft is supported by a 

single bearing, the radial support stiffness of the cam is the radial support stiffness of the bearing at 

the input end, and its value can be calculated by Eq.21. 

1 1 11 12 13/ ( )r b b b bk F   = + +  (21) 

In Eq.21, 𝐹𝑏1  is the radial load on the bearing at the input end; 𝛿𝑏11  is the radial elastic 

displacement of the bearing at the input end; 𝛿𝑏12 is the contact deformation between the outer ring 

of the bearing at the input end and the box hole; 𝛿𝑏13 is the contact deformation between the inner 

ring of the bearing at the input end and the shaft diameter. The three expressions are respectively 

expressed by Eq.22, Eq.23, and Eq.24. 

11 1 01b b  =  (22) 

12 11 1b bH =   (23) 

1 12

13

1 1

0.204 b b

b

b b

F H

b d



=

 
(24) 

Where, 𝛽𝑏1 is the elastic displacement coefficient of the bearing at the input end, which is found 

from the standard according to the relative clearance 𝑔𝑏1/𝛿01; 𝛿01 is the radial elastic displacement 

when the clearance in the bearing at the input end is zero; 𝑔𝑏1 is the clearance or preload in the 

bearing at the input end; 𝛥1 is the fit clearance in the diameter direction between the outer ring of 

the bearing at the input end and the inner hole of the frame at the input end; 𝐻𝑏11 is the elastic 

coefficient of the bearing at the input end; 𝐹𝑏1 is the radial load; 𝐻𝑏12 is the deformation coefficient; 

𝑏𝑏1 is the width of the bearing ring at the input end; 𝑑𝑏1 is the inner diameter of the bearing at the 

input end. 

Similarly, the radial stiffness of the bearing at the output end can be obtained by Eq.25. 

2 2 21 22 23/ ( )r b b b bK F   = + +  (25) 

Since a pair of bearings are installed on the output shaft, the comprehensive radial support 

stiffness of the output terminal can be obtained by the method of spring parallel connection as Eq.26. 

2 2 / 2r rk K=  (26) 

The two shaft structures are both stepped shafts, and the torque provided by the motor or the 

load is received during the movement. The segmentation and torque are shown in Figure 12-1 and 

Figure 12-2. 

 

Figure 12-1 
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Figure 12-2 

Figure 12. Figure 12-1 Segmentation of the input. Figure 12-2 Segmentation of the output. 

For the input shaft, the convex is simplified to a cylinder of equal width, ignoring the thin-walled 

support part between its inner diameter and the hub, and being processed in parallel with the 

matching shaft section, the total torsion angle of the input shaft can be obtained by Eq.27. 

1 131 11 1 12

1 1 4 4 4 4 4
1 11 12 13 15 14 15

3232 32

( (1 ( / ) ))

n

i

i

T lT l T l

G d G d G d d d d
 

  =

= = + +
+ −


 

(27) 

In Eq.27, 𝜑1𝑖  is the torsion angle of the i-th shaft section of the input shaft; 𝑇1  is the input 

torque; G is the shear modulus of the input shaft material, 𝑙11, 𝑙12, 𝑙13 are the lengths of each shaft 

section of the input shaft; 𝑑11, 𝑑12, 𝑑13 are the shaft diameters of each shaft section of the input 

shaft; 𝑑14 and 𝑑15 are the inner and outer diameters of the cam, respectively. 

For the output shaft, the sheave is simplified into a cylinder of equal width, and its matching 

shaft section is regarded as a solid shaft as a whole, and the total torsion angle of the output shaft can 

be obtained by Eq.28. 

2 2

2 2 4
1 1 2

32n n
i

i

i i i

T l

G d
 

= =

= = 
 

(28) 

In Eq.28, 𝑇2 is the load torque; G is the shear modulus of the output shaft material; 𝑙2𝑖 is the 

length of the i-th shaft section of the output shaft; 𝑑2𝑖 is the shaft diameter of the i-th shaft section of 

the output shaft. 

2.5 Other Excitation Parameters 

The mass and moment of inertia of each component are shown in Table 1. 

Table 1 The mass and moment of inertia of each component 

Part name Mass m(Kg) Moment of inertia J (Kg×mm2) 

Cam 0.12 41 

Grooved pulley 0.22 54 

Oscillating teeth 0.02 ‐ 

Input shaft 0.08 2.6 

Output shaft 0.26 145 

3. System Dynamics Analysis 

3.1 System Dynamics Model 

The following assumptions are made in the analysis: 

(1) During the motion process of the transmission system, all transmission components remain 

on the same axis. 

21l22l23l
24l
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(2) Components such as the box are considered rigid bodies, and the contact between oscillating 

teeth and end-face cams, as well as that between the rigid circular spline and grooved pulley, is 

modeled as a spring-damping system. 

(3) Additional vibration phenomena arising from factors such as assembly and transmission 

errors among components are not considered. 

(4) The mass properties of each oscillating tooth are the same. 

The relevant dynamic parameters are set in Table 2. 

Table 2 The relevant dynamic parameters setting 

symbol explanation 

𝑘13 the meshing stiffness between the oscillating teeth and the cam. 

𝑐13 the damping between the oscillating teeth and the cam. 

𝑘34 the meshing stiffness between the oscillating teeth and the rigid circular spline. 

𝑐34 the damping between the oscillating teeth and the rigid circular spline. 

𝑘23 the meshing stiffness between the oscillating teeth and the grooved pulley. 

𝑐23 the damping between the oscillating teeth and the grooved pulley. 

𝑘1𝑟  the radial support stiffness of the cam support systems. 

𝑘1𝑎 the axial support stiffness of the cam support systems. 

𝑘1𝑡 the torsional stiffness of the cam support systems. 

𝑐1𝑟  the radial damping of the cam support systems. 

𝑐1𝑎 the axial damping of the cam support systems. 

𝑐1𝑡 the torsional damping of the cam support systems. 

𝑘2𝑟 the radial support stiffness of the grooved pulley support systems. 

𝑘2𝑎 the axial support stiffness of the grooved pulley support systems. 

𝑘2𝑡 the torsional stiffness of the grooved pulley support systems. 

𝑐2𝑟  the radial damping of the grooved pulley support systems. 

𝑐2𝑎 the axial damping of the grooved pulley support systems. 

𝑐2𝑡 the torsional damping of the grooved pulley support systems. 

Due to the dynamic behavior of each oscillating tooth being entirely identical, there is a phase 

difference in kinematics. Therefore, only the case of a single oscillating tooth needs to be considered. 

The relevant space coordinate systems are established as follows: 𝑂 − 𝑥𝑦𝑧 is the fixed space 

coordinate system built on the rigid circular spline. 𝑂 − 𝑥1𝑦1𝑧1  is the following space coordinate 

system rotating with the cam. 𝑂 − 𝑥2𝑦2𝑧2 is the following space coordinate system rotating with the 

grooved pulley. 𝑂 − 𝑥3𝑦3𝑧3 the following space coordinate system rotating with the (i)-th oscillating 

tooth. 

The dynamic model of the transmission system is illustrated in Figure 13. 
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Figure 13. The diagram of the transmission system dynamic model. 

Where the relevant parameters are listed in Table 3. 

Table 3. The relevant parameters in the Figure 13. 

symbol explanation 

𝑥1 the transverse displacement of the cam on the 𝑂 − 𝑥𝑦𝑧 due to vibration. 

𝑦1 the longitudinal displacement of the cam on the 𝑂 − 𝑥𝑦𝑧 due to vibration. 

𝑧1 the axial displacement of the cam on the 𝑂 − 𝑥𝑦𝑧 due to vibration. 

𝜑1 the torsion angle of the cam on the 𝑂 − 𝑥𝑦𝑧 due to vibration. 
𝑥2 the transverse displacement of the grooved pulley on the 𝑂 − 𝑥1𝑦1𝑧1 due to vibration. 

𝑦2 the longitudinal displacement of the grooved pulley on the 𝑂 − 𝑥1𝑦1𝑧1 due to vibration. 

𝑧2 the axial displacement of the grooved pulley on the 𝑂 − 𝑥1𝑦1𝑧1 due to vibration. 

𝜑2 the torsion angle of the grooved pulley on the 𝑂 − 𝑥1𝑦1𝑧1 due to vibration. 

𝑥3𝑖 
the transverse displacement of the (i)-th oscillating tooth on the 𝑂 − 𝑥3𝑦3𝑧3  due to 

vibration. 

𝑦3𝑖 
the longitudinal displacement of the (i)-th oscillating tooth on the 𝑂 − 𝑥3𝑦3𝑧3 due to 

vibration. 

𝑧3𝑖 the axial displacement of the (i)-th oscillating tooth on the 𝑂 − 𝑥3𝑦3𝑧3 due to vibration. 

𝜃𝑊 the spiral rise angle of the cam profile 
𝜃𝐸 the central angle corresponding to the rigid circular spline half-tooth. 

𝑟1 the turning radius of the cam. 

𝑟2 the turning radius of the grooved pulley. 

𝜑𝑊 the cam rotation angle. 

𝜑𝐺  the grooved pulley rotation angle. 
𝜏𝑖 the relative rotation angle between 𝑂 − 𝑥3𝑦3𝑧3 and 𝑂 − 𝑥1𝑦1𝑧1. 

Taking the direction of the meshing point between the cam and the oscillating tooth toward the 

oscillating tooth as the positive direction, the projection of the cam displacement relative to the 

oscillating tooth along the direction of the mesh line can be obtained as Eq.29. 
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1 1 3 1 1 3 1
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



      




− + − + − +  


= 
 + − + − +   
  

(29) 

Taking the direction of the meshing point between the grooved pulley and the oscillating tooth 

toward the oscillating tooth as the positive direction, the projection of the grooved pulley 

displacement relative to the oscillating tooth along the direction of the mesh line can be obtained as 
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Eq.30. 
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(30) 

Taking the direction of the meshing point between the rigid circular spline and the oscillating 

tooth toward the oscillating tooth as the positive direction, the projection of the rigid circular spline 

displacement relative to the oscillating tooth along the direction of the mesh line can be obtained as 

Eq.31. 
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3.2 System Dynamics Differential Equations 

According to the system dynamics model, dynamics differential equations of transmission 

components can be obtained as Eq.32, Eq.34, and Eq.36. 

For the cam: 
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(32) 

Where 𝑇1 is the input torque; 𝑥13𝑖, 𝑦13𝑖, 𝑧13𝑖 are the projections of 𝛿13𝑖 in the cam following 

coordinate system 𝑂 − 𝑥1𝑦1𝑧1  along the 𝑥1 , 𝑦1 , 𝑧1  directions, respectively, and which can be 

expressed as Eq.33. 
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(33) 

For the grooved pulley: 
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(34) 

Where 𝑇2  is the output torque; 𝑥23𝑖 , 𝑦23𝑖 , 𝑧23𝑖  are the projections of 𝛿23𝑖  in the grooved 

pulley following coordinate system 𝑂 − 𝑥2𝑦2𝑧2 along the 𝑥2 , 𝑦2 , 𝑧2 directions, respectively, and 

which can be expressed as Eq.35. 
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(35) 

For the (i)-th oscillating tooth: 
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(36) 
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Where 𝑥31𝑖 , 𝑦31𝑖 , 𝑧31𝑖  are the projections of 𝛿31𝑖  in the (i)-th oscillating tooth following 

coordinate system 𝑂 − 𝑥3𝑦3𝑧3 along the coordinate axis, 𝑥32𝑖, 𝑦32𝑖 , 𝑧32𝑖 are the projections of 𝛿32𝑖 

in the (i)-th oscillating tooth following coordinate system 𝑂 − 𝑥3𝑦3𝑧3 along the coordinate axis, 𝑥34𝑖, 

𝑦34𝑖 , 𝑧34𝑖 are the projections of 𝛿34𝑖 in the (i)-th oscillating tooth following coordinate system 𝑂 −

𝑥3𝑦3𝑧3 along the coordinate axis, respectively. These above can be expressed as Eq.37. 
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(37) 

𝑓(𝑥34𝑖), 𝑓(𝑦34𝑖) and 𝑓(𝑧34𝑖) are the nonlinear functions of tooth side clearance along the x-axis, 

y-axis, and z-axis directions, respectively. Assuming that the tooth side clearance is 2b, the 

displacement of the oscillating tooth along the tooth surface in the normal direction is 𝑥𝑛 . These 

above can be expressed as (Eq.38, Eq.39, Eq40.), respectively. 
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(40) 

From the above, the dynamics differential equations of the end cam input mechanism, oscillating 

teeth, and grooved pulley output mechanism have been obtained. Organizing and sequencing the 

equations of each component and the overall dynamic differential equations of the system in matrix 

form is obtained as Eq.41. 

MX CX KX T+ + =  (41) 

Where 𝑀 is the system generalized quality matrix; 𝑋 is the system generalized displacement 

matrix; 𝐶 is the system generalized damping matrix; 𝐾 is the system generalized rigidity matrix; 𝑇 

is the system externally excited array matrix. 

3.3 System Vibration Response Analysis 

The nonlinear dynamics differential equations can be solved by using the Runger-Kutta method. 

Setting speed and load of the cam in three different states, and setting damping as Rayleigh damping. 

The transient vibration displacement response of the cam along each independent coordinate is 

obtained as shown in Figures 14–17, respectively. 
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Figure 14. Simulation values of 𝑥1 

.  

Figure 15. Simulation values of 𝑦1 

.  

Figure 16. Simulation values of 𝑧1 

.  

Figure 17. Simulation values of 𝜑1 

.From Figures 14–17, the results show that the cam transverse displacement response is slightly 

larger than the radial displacement response. The reason is that the cam profile surface lift angle and 

return angle are along the transverse direction, there is a fixed angle of contact between the cam and 

the oscillating teeth, and most of the vibration is transmitted to the transverse direction of the cam. 

The transient vibration displacement response of the grooved pulley along each independent 

coordinate is shown in Figures 18–21, respectively. 
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Figure 18. Simulation values of 𝑥2 

.  

Figure 19. Simulation values of 𝑦2 

.  

Figure 20. Simulation values of 𝑧2 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 January 2024                   doi:10.20944/preprints202401.1735.v1



 19 

 

.  

Figure 21. Simulation values of 𝜑2 

.From Figures 18–21, the results show that the grooved pulley transverse displacement response 

is slightly less than the radial displacement response and axial displacement response. The reason is 

that during the oscillating teeth meshing with the teeth of the rigid circular spline, there exists a 

central angle on the tooth side pointing to the center of rotation and a tooth angle on the tooth surface 

along the direction of the axis, which makes the vibration of the oscillating gear more generated in 

the radial direction of the grooved pulley and transmitted to the grooved pulley. 

The vibration patterns between pairs of dissimilar oscillating teeth are the same and there is only 

a phase difference. Taking the first pair of oscillating teeth as an example, their transient vibration 

displacement responses along each independent coordinate are shown in Figure 22, Figure 23, and 

Figure 24, respectively. 

 

Figure 22. Simulation values of 𝑥3 

.  

Figure 23. Simulation values of 𝑦3 
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.  

Figure 24. Simulation values of 𝑧3 

.From Figures 22–24, the results show that the transverse displacement of the oscillating teeth is 

the largest. The reason is that the setting of the angle between the oscillating teeth and the teeth of 

the rigid circular spline results in the line of action of the load being more directed in the transverse 

direction of the oscillating teeth. Therefore, the oscillating gear teeth are subjected to greater 

deformation and vibration response along the transverse direction on entering meshing. 

The cam, the grooved pulley, and the oscillating teeth all generate regular periodic vibrations in 

the transverse, radial, and axial directions at their equilibrium positions. When the oscillating teeth 

enter into and disengage from engagement, the vibration response changes abruptly. With the 

increase of the input speed of the single-wave cam and the load borne by the output end, the vibration 

amplitude of the oscillating teeth in all directions increases gradually. 

4. Dynamic behavioral validation 

To validate the results of the nonlinear dynamics study of the end-face harmonic transmission 

system, building the test bench as shown in Figure 25. 220V AC power is stepped down by a 

transformer to supply power to the stepper motor, torque sensor, and magnetic particle brake. The 

inputs control the stepper motors for power input through the driver, and the development board 

used is powered by 5V DC. The torque sensor is mounted on the input side of the end-meshing 

harmonic reducer to measure speed and torque, which is then read by the dynamic torsion triple 

display meter. The encoder is mounted to the output side to measure the real-time rotational speed 

of the output shaft, and the signal conversion is accomplished by the debugger. Magnetic particle 

brakes are mounted to the end to provide load and are adjusted in size by the load controller. The 

resulting sensing signals are transmitted to the PC for data processing. 
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Figure 25. The diagram of the test bench. 

Measured at standard center distance under follows conditions: 88r/min, 0.65N·m; 88r/min, 

0.98N·m and 220r/min, 0.65N·m. Reducing the center distance by 0.5mm and 1mm respectively, the 

date under 88r/min, 0.65N·m was measured. These above were recorded as Working Conditions (1-

5). After data processing, the comparison of results between the output shaft circumferential torsional 

vibration response and the simulation results is shown in Figures 26–30. 

 

Figure 26. Comparison of simulation and experimental results for Case 1. 

 

Figure 27. Comparison of simulation and experimental results for Case 2. 
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Figure 28. Comparison of simulation and experimental results for Case 3. 

 

Figure 29. Comparison of simulation and experimental results for Case 4. 

 

Figure 30. Comparison of simulation and experimental results for Case 5. 

From Figures 26–30, the results show that the theoretical and experimental curves are in general 

agreement in terms of trend and are numerically closer, which verifies the correctness of the 

theoretical model. In addition to the influence of the load at the output end and the rotational speed 

at the input end, the increase of the center distance makes the support position of the rod part of the 

oscillating teeth gear system change, which leads to the reduction of the gear teeth meshing rigidity 

and the vibration increases of the transmission system. According to the analysis of the meshing 
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stiffness above, it can be seen that the increase in pressure angle makes the meshing stiffness increase, 

which can reduce the vibration of the system. 

The main reasons for the error between the experimental and simulation data for the vibration 

response are as follows: 

(1) Errors in the machining of components; 

(2) Clearance between the rod part of the oscillating teeth gear system and the moving part of 

the grooved pulley. 

(3) The box and bench support are not absolutely rigid. 

(4) The sensors are subject to a certain amount of deviation during the measurement process 

with the vibration of the test bench. 

5. Conclusions 

To study the coupling mechanism and dynamic response of the end-face movable gear 

transmission system under complex excitation, a specific configuration of end-meshing movable gear 

reduction mechanism was used to achieve predetermined rigid thrust transmission and mismatched 

gear meshing functions, which solved the inherent defects of traditional harmonic gear mechanism 

thin-wall flexible wheel easy to be damaged by fatigue. The following are the main conclusions: 

1. We have completed the development of a physical prototype of end-meshing harmonic 

reducer. Then, considering the effects of internal and external excitation parameters such as time-

varying meshing stiffness, Hertzian contact stiffness, and gear tooth meshing side gap, we established 

the dynamic model of the end-meshing harmonic reducer, derived the vibration displacement 

response of each transmission member, and analyzed its influencing factors. 

2. We built a comprehensive test bench of adjustable characteristics to realize the real-time 

transmission and acquisition of output shaft circumferential torsional vibration response data. 

Compared with the theoretical data, the correctness of the dynamics model of the end-meshing 

harmonic reducer was verified and the reasons for the errors were analyzed. 

3. The results show that the magnitude of input speed and load torque has a large influence on 

the system vibration response. For the internal excitation characteristics, measures such as increasing 

the support stiffness of transmission components, shortening the center distance, increasing the 

meshing stiffness of the gear teeth, decreasing the length of the rod part of the oscillating teeth gear 

system, and increasing the tooth angle can produce vibration suppression effects. 

6. Patents 

This section is not mandatory but may be added if there are patents resulting from the work 

reported in this manuscript. 
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