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Abstract: To study the coupling mechanism and dynamic response of the end-face movable gear transmission
system under complex excitation, a specific configuration of end-meshing movable gear reduction mechanism
was used to achieve predetermined rigid thrust transmission and mismatched gear meshing functions, which
solved the inherent defects of traditional harmonic gear mechanism thin-wall flexible wheel easy to be
damaged by fatigue. Considering the phenomenon of elastic deformation of live teeth accompanied by
significant changes in meshing characteristics in the transmission process of end-meshing harmonic reducer,
the influence of dynamic meshing parameters, live tooth deformation, time-varying stiffness of tooth meshing,
and time-varying backlash on nonlinear dynamic performance was explored, as well as the mechanism of
multi-parameter coupling on transmission performance. The nonlinear dynamics model of the end-meshing
harmonic reducer is established to solve the chattering prediction problem. Finally, a comprehensive test bed
for the transmission system of harmonic reducer with meshing type with adjustable characteristic end was
built to verify the correctness of the theoretical model and provide the theoretical and technical basis for
exploring the optimal parameter selection of passive vibration suppression problem.

Keywords: end meshing; harmonic gear; time-varying stiffness; nonlinear dynamics

1. Introduction

The utilization of industrial robots and aerospace exploration activities, among other sectors,
necessitates the critical joint systems of their institutions to comply with the significant reliability and
bearing capacity requirements of harmonic gear transmission devices [1]. To mitigate the inherent
shortcomings of flexspline within traditional harmonic reducers, which are susceptible to fatigue
damage, and to guarantee the precise operational state of the transmission system, the end-face
engagement is employed to effectuate predetermined rigid thrust transmission. This solution
effectively reconciles the conflict between deformation and load.

The dynamic characteristics of harmonic gears are inherently complex due to the periodic
changes in meshing parameters such as tooth deformation, meshing stiffness, and tooth backlash
during the meshing process. Such changes cause obvious nonlinear coupling effects and mechanical
jitter, causing continuous vibration in the transmission, which can have a detrimental effect on
transmission performance. Therefore, the study of the nonlinear dynamics of harmonic gear
transmission systems can provide valuable engineering insights and a theoretical foundation for
enhancing its performance.

Zhang Youlin et al. first postulated the concept of the end-face harmonic gear drive of oscillating
teeth, elucidated its transmission principle, and subjected its kinematics law to comprehensive
analysis. Subsequently, utilizing a virtual prototype model, they engineered and optimized the tooth
profile to augment the transmission efficiency. The structural parameters pertinent to this drive
system were calculated and optimized, however, the dynamic meshing behavior was not thoroughly
explored.

Recognizing the influence of time-varying meshing stiffness, gear backlash, and other variables,
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various researchers have constructed a nonlinear dynamic model of planetary gear sets to depict the
impact of internal and external excitations on vibration and shock responses. Furthermore, they
offered strategies to mitigate vibration and shock. Zhu[9] et al. further extended the application of
the harmonic balance method to the nonlinear dynamic modeling of compound planetary gear sets.
Through their research, they were able to study the nonlinear dynamic characteristics of gear sets
and identify the influence of multiple factors, including dimensionless backlash, meshing stiffness,
and error excitation amplitude, on frequency response characteristics. Cui et al. [10-12] developed a
coupled nonlinear dynamic model for compound planetary gears. This model was utilized to extract
the natural frequency of the system and to evaluate the influence of moment of inertia, meshing
stiffness, and other pertinent factors on the vibration response. Zheng[13] et al. proposed a
translational-torsional coupled dynamics model of the RV reducer. This model was used to analyze
the system's nonlinear time-varying behavior, yielding displacement responses of the various
components under various conditions. Furthermore, the model was used to examine the sensitivity
of the dynamic characteristics to both internal and external excitation factors. Tung[14] et al.
developed a reduced-order time-variant numerical model for the compound reducer that enabled the
prediction of the robot's dynamic stiffness with enhanced accuracy. Hu et al. [15] developed a
dynamic analysis model of the three-stage planetary transmission within the wind turbine reducer.
This model involved the utilization of the stiffness factor method to examine the mechanical
properties of the interacting components. Subsequently, experimental validation was conducted to
verify the reliability of the dynamic model. Yang [16] and colleagues established a dynamic model of
planetary gear trains utilizing the lumped parameter approach and conducted in-depth research on
the vibration responses of planetary gear trains when subjected to both deterministic and random
loads. In consideration of the effects of backlash and time-varying stiffness, Saeed [17] et al. have
refined the conventional spur gear dynamics model by incorporating Gaussian white noise into the
loading terms. Liu Hui, Yang Wenguang[18, 19] et al. developed a non-linear dynamic model of
planetary gear transmission systems, accounting for the effects of dynamic mesh parameters and
stiffness. This model was subsequently subjected to experimental verification and analysis.

As per the findings from the literature review, current research on end-face harmonic gear drives
predominantly involves kinematic analysis, with a limited focus on dynamic behavior. While
numerous studies have been conducted on the system dynamics modeling of traditional harmonic
and planetary gear reducers, it is evident that both internal and external excitations play a significant
role in influencing the system's performance. Given the unique features of the end-face harmonic
gear drive, the internal axial excitation has a significant effect on the dynamic behavior of the system,
leading to significant buffeting phenomena that should not be overlooked. In contrast, traditional
gear system dynamics modeling typically fails to analyze the axial meshing parameters based on the
radial meshing form.

In light of this, this research aims to build a prototype of the specific end-face harmonic gear
drive of oscillating teeth reducer. After a thorough examination of the dynamic meshing behavior
law of the oscillating teeth, the influence of various dynamic meshing parameters, oscillating teeth
deformation, time-varying stiffness, time-varying backlash, and other coupling factors on the
nonlinear dynamic performance will be explored. Utilizing the lumped-mass method, a nonlinear
dynamic model of the multi-tooth meshing system will be developed. Afterward, the theoretical
model will be confirmed through experimental analysis to offer a theoretical basis for vibration
suppression analysis of the end-face harmonic gear transmission mechanism.

2. System dynamic incentive analysis

In the process of gear transmission, the end-face harmonic gear drive of the oscillating teeth
reducer is subjected to a combined effect of internal and external excitations. Specifically, internal
excitation primarily involves the elastic deformation of gear teeth under load, deformation of the
support system derived from the assembly relationship, and the combined influence of time-varying
meshing stiffness as a result of the intermittent engagement of teeth. External excitation, on the other
hand, is primarily affected by the combined effect of power sources at the input end and the
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fluctuation of load and torque at the output end. As a result, the gear transmission system experiences
vibration and noise due to the combined action of internal and external excitations.

2.1 Multi-tooth Parameter Analysis of End-face Gear Drive

The principle of end-face harmonic gear drive of oscillating teeth [20] is shown in Figure 1-1. The
specific configuration of the end-face harmonic reducer is shown in Figure 1-2.

rigid gear

geneva wheel

oscillating tooth

cam

Ve—

Figure 1-1

Figure 1-2 1-output pedestal 2-output shaft 3-bearing 4-circular spline 5-oscillating teeth 6-grooved pulley
7-shell 8-spring 9- spring collar 10- Universal ball bearing bushings 11- Universal ball bearing
12-cam 13-shaft end ring 14-input pedestal 15-input shaft 16-shaft coupling

Figure 1. Figure 1-1 The principle of end-face harmonic gear drive of oscillating teeth. Figure 1-2 End-
face gear of oscillating teeth reducer structure.

The end-face cam rotates to push the oscillating teeth to move axially. The oscillating teeth
always keep contact with the end face of the cam under the action of the spring, rise along the cam
profile of the lift, and gradually engage with the gear teeth of the circular spline, which are forced to
complete the rotation by the reaction force of the circular spline, and the power is output through the
grooved pulley. This structure has both wheelbase and backlash adjustment functions.

To optimally ensure effective meshing between the oscillating teeth and the circular spline teeth,
the tooth tops are appropriately shaped and trimmed to prevent potential interference during the
meshing process. Due to the large number of oscillating teeth, the tooth extraction method is chosen,
with each oscillating tooth being assigned three teeth to ensure optimal meshing strength and
minimal motion vibration. The theoretical total number of oscillating teeth can be calculated by Eq.1:

Zo=N(Z,+Z,) (1)

In the equation, N is the number of oscillating tooth blocks; Z, is the actual number of
oscillating teeth; Z;, is the number of teeth removed from the oscillating gear.
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The difference between the number of circular spline teeth Z; and the theoretical total number
of oscillating teeth Z, represents the number of dislocated teeth required for each rotation of the
cam, while the number of cam waves represents the number of reciprocating movements of the
oscillating teeth in a cycle. To ensure the correct meshing of the gear teeth, the two values must be
guaranteed to be equal. In this design, it is a single-stage harmonic drive, and the transmission ratio
can be expressed as Eq.2.

T -

0, Z.-Z, @)

The cam profile surfaces, which consist of two symmetrical helical surfaces, are integral to the
determination of axial displacement of the oscillating teeth. In each cycle, the displacement of the
oscillating teeth situated on the right-hand and left-hand helical surfaces of the cam can be expressed

as Eq.3.
M (0sts®)
30 n 3)
h — m (@ <t< @j
30 n n

Where h is the cam lift, n is the cam revolution speed, t is the cam running time.

2.2 Analysis of Meshing Stiffness between Circular Spline and Oscillating Teeth

The oscillating tooth's force condition following its entry into the meshing phase is given. As

depicted in Figure 2.
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Figure 2. Force analysis of oscillating teeth.

The meshing area and load point of the oscillating teeth are directly influenced by the
displacement of the oscillating teeth. Given that the reaction force of the circular spline on the
oscillating teeth is assumed to be an even load, the force generated by multiple teeth is equivalent to
the concentrated load F of the center gear tooth. Based on the principles of force and torque
equilibrium and input torque, the force equation of the oscillating teeth can be determined as Eq.4.

F, +F, +Fcosg—-Nsing, =0
Fp +Fs, —Fsing+Ncosg, =0
Fe Ls —Fg, L, —FL, —0.5NL, cos@, =0 (4)

F, L, — Fuls — FLg +0.5NL, cosd, =0

Ay g

0.5F, L, cos6, —F,, (L, + Ly )—FyL, —05F, L, cosd, —FL, =0

In the formula, L is the length of the groove; Ly, is the distance between the force point at the
bottom of the oscillating tooth and the bottom of the groove; L), is the distance between the bottom
of the oscillating tooth and the top of the tooth.
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At the same time, the number of meshing teeth changes alternately with the cam angle. When
the input torque is constant, the load on the oscillating teeth changes accordingly. The displacement
of each oscillating tooth is denoted as z;~ z;, respectively. The meshing relationship between it and
the gear teeth of the circular spline is shown in Figure 3.

Meslung
point

@, /rad

Figure 3. The meshing relationship between oscillating teeth and the circular spline gear teeth.

The horizontal line in the figure represents the displacement required for the oscillating teeth to
enter the meshing state. When the displacement of the oscillating teeth is higher than the horizontal
line, the oscillating teeth enter the meshing. On the contrary, oscillating teeth are disengaged. That is
the number of meshing teeth at the intersection of the horizontal line and the fold line changes.

The oscillating gear teeth can be simplified as a tapered beam on the flexible body of the
oscillating teeth, and the load F is equivalent to the right end of the microelement, which is
decomposed into force F, along the x-axis direction, force F, along the y-axis direction, and the
equivalent bending M generated by F. As shown in Figure 4.
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Figure 4. The force model of the oscillating teeth.

The effective length of the tapered beam is h, i.e. the distance between the base point N of the
oscillating tooth and the top of the tooth; The gear tooth is divided into a series of rectangle micro-
elements along the x-axis direction from the bottom of the tooth to the load point. Each microelement
is represented by the symbol i, and its width is represented by the symbol T;; F is the normal load on
the oscillating tooth, £ is the angle between the load and the y-axis direction, L; is the distance
between the microelement along the x-axis direction and the load point, L; is the distance between
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the load point along the x-axis direction and the tooth top, Y is the distance between the load point
and the x-axis, Yy is the half-tooth width of the tooth root.

The calculation of deformation can be divided into three parts: bending deformation, shear
deformation, and axial compression deformation of the oscillating tooth body; additional
deformation caused by the elasticity of the oscillating tooth; and local contact deformation of the
tooth at the meshing point of the oscillating tooth.

(1) Calculation of Deformation of Oscillating Tooth Body

Under load, the oscillating gear teeth produce axial compression deformation, shear
deformation, and bending deformation along the equivalent deformation of the load direction. The
deformation of a single microelement can be calculated and superimposed. It is assumed that the left
end of each microelement i is fixed, and the portion connected to the right end of the microelement
is regarded as a rigid body. The amount of compression deformation, shear deformation, and
bending deformation of the microelement can be obtained as Eq.5.

n FT,
(sa:;aai—;m DR

kF 12F(L+v)
S, = Z_l: .1GA ;—5EEA T cos (5)
5, Z&b, _Z @ +6) +w,+6,),)

In Eq.5, &, Js, 6p are the meshing point deformation caused by the compression, shear, and
bending of the oscillating tooth body, and d,;, &5; and &,; are the deformation caused by the
compression, shear, and bending of the microelement, respectively; v is the Poisson's ratio of the
material; E, is the equivalent elastic modulus of the tooth. According to Cornell's analysis, the ratio
of the tooth width b; to the tooth thickness s,, b;/s, <5, so it is a narrow tooth. At this time, the
value of E, is the elastic modulus of the material; 4; is the cross-sectional area of the gear teeth; w,
is the deflection under the action of F,, 6, is the angle under the action of F,, w, is the deflection
under the action of M, 6, is the angle under the action of M, respectively. As shown in Eq.6.

BT’ FTlcosp

w = =
3EI,  3E|
o FT® FTlcosp
YU2El, 2E,l
MT?  FT? ©)
@, =——=—1—(L cos f-Y sin
2 2E 2Eeli( cosp A)
_MT? FT,

), = EEII el —L (L cos B—Y sin )

In Eq.6, I; is the moment of inertia of the micro-element.
Substituting Eq.6 into Eq.5, results can be obtained as Eq.7.

2 3 3 2 H 2

5, = F T sin2ﬁ+12F(1+V)Ti cos? B+ Fcos® g T +3T°L +3T Ly | Fsingcos B T°Y +2T,YL )
E.A 5E.A E, 3l E, 21

(2) Calculation of Oscillating Tooth Body Deformation

For narrow teeth, deal with the problem of plane stress as Eq.8.

2
2 L L 2
S :M 16.67| Lo +2(1-v)| —— |+1.534 1+M (8)
Eb 7 | H, H, 2.4(1+V)
In Eq.8, E is the elastic modulus of the material; Hy is the tooth thickness at the tooth root N; L

is the equivalent arm of force.
(3) Calculation of Local Contact Deformation of Oscillating Teeth
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The contact deformation of the meshing point of the oscillating tooth surface is caused by the
contact and compression deformation of the gear meshing line. According to research by H. H. Lin
and G. Lundberg, it can be expressed by Eq.9

1.275F°°

% = ~gor ®)

The total deformation of the meshing points of the movable teeth can be obtained by adding up
each deformation as Eq.10.

5=08,+40,+8,+0; +0, =D (5, + 04 +6,)+3, +6, (10)
i=1

When the normal load F is constant, when the oscillating tooth displacement z > h, — h, the
oscillating tooth and the circular spline tooth are meshing. As Eq.11.
L, =(z-h+h)/2
L=h-L,-Ti (11)
Y =[L; +h —h]tan §

(4) Comprehensive Meshing Stiffness Calculation of Oscillating teeth
For a pair of intermeshing gear teeth, it can be regarded as a pair of springs in series. The
compressive stiffness, shear stiffness, bending stiffness, deformation stiffness, and Hertz contact
stiffness of oscillating gear teeth are expressed as Eq.12- Eq.16.
F & E

K = —=
©s, SHTsing (12)
F o 5E
T s (13)
o, T12(1+V)T, cosp
A -1
« _F_3 Tisin2ﬂ+12(1+v)Ticoszﬁ+(Ti3+3Ti3H +3TL7Joos” B (TY +2TYL, )sin fcos 3 ”
TS, & EA 5E,A 3E,I, 2E, |,
2 , -1
L L
K, =+ o ED 18671 2 | o vy = |+1534] 14 VA (15)
o cos"p| & | H; H, 2.4(1+v)
F EO.9b0.8
K :_:E—
"5, 1.275F™ (16)

In summary, the meshing stiffness of a single pair of gears at the load point can be obtained as
Eq.17.

KK, . (1 1 1 1 1 1 1 1 1
 w (17)

K= =l/|—F——+—F—+—+—+—+—+
Kl + KZ K Ksl Kbl Kfl Kh Ka2 KsZ Kb2 Kf2

al

In the formula, the meshing stiffness of the driving gear and the driven gear, namely the
oscillating gear teeth and the circular spline teeth, at the load point, is a function of the position of the
meshing point.

In the equation, K; and K, represent the mesh stiffness of the driving and driven gears,
respectively. They are functions of the meshing point position, specifically the contact point between
the oscillating teeth and the circular spline teeth.

Through the self-compiled software for example analysis and drawing curves, the stiffness of
each part of the first oscillating tooth can be obtained as shown in Figures 5-9.

do0i:10.20944/preprints202401.1735.v1
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Figure 5. Compressive stiffness of oscillating teeth.
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Figure 6. Bending stiffness of oscillating teeth.
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Figure 7. Shear stiffness of oscillating teeth.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 January 2024 d0i:10.20944/preprints202401.1735.v1

9
8
g O . ; . . :
————— o~
7k beta=20 N i
= = beta=30 /' .
6F |- —bew=t0 \ 1
/ \
= 5F 7/ \ 1
E / /N \
= 41 . 7 \ ]
Z, /
= . V] N AN
M3t 4 s N \ .
oo N o N
2+ [ ~ i
. ~
k! ]
0 1 2 3 4 5 6
¢, /rad

Figure 8. Base stiffness of oscillating teeth.
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Figure 9. Contact stiffness of oscillating teeth.

The comprehensive stiffness is shown in Figure 10.
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Figure 10. Comprehensive stiffness of the oscillating tooth.

The remaining oscillating teeth have the same laws and only differ in phase differences. It can
be obtained from the curve that the stiffness increases gradually with the oscillating tooth gradually
entering the meshing, and decreases gradually with the oscillating tooth gradually withdrawing from
the meshing; The bending stiffness, shear stiffness, and base stiffness are positively correlated with
load angle, while compression stiffness is vice versa. The comprehensive stiffness of the oscillating
tooth mesh can be improved by increasing f.
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2.3 Contact Stiffness Analysis

The universal ball bearing is used between the oscillating teeth and the cam, and its contact point
expands into a contact surface under the action of load N. The contact surface is projected onto the
vertical surface of the contact normal, as shown in Figure 11-1. In the contact area between the
universal ball and the circular spline, the contact stress is distributed in the semi-ellipsoid, as shown
in Figure 11-2.

Figure 11-2

Figure 11. Figure 11-1 Contact between oscillating teeth and circular spline. Figure 11-2 Contact stress
between oscillating teeth and circular spline.

The contact between the cam and the universal ball is deformed as Eq.18.

_2KE 3/1 3\
8 = py S(E,] N*Y p (18)

In Eq.18, N is the normal pressure at the contact point between the cam and the universal ball,
and its direction is perpendicular to the cam profile; E' is the sum of the equivalent elastic modulus;
Zp is the main curvature; ma is the long half-axis coefficient of the contact ellipse; K(e) is the first
type of complete elliptic integral related to the eccentricity of the ellipse e. The contact stiffness
between the cam and the oscillating tooth can be obtained as Eq.19:

kiz=N/6, (19)

For the contact problem between the grooved pulley and the oscillating teeth, since the mass of
the grooved pulley is significantly larger than the mass of the oscillating teeth, the grooved pulley
can be regarded as a rigid body. The oscillating tooth is squeezed by the groove pulley during the
meshing process, and the expression of the compressive stiffness between the groove pulley and the
oscillating tooth can be obtained as Eq.20:

Ky = EsA 1D, (20)
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In Eq.20, bs is the width of the oscillating tooth rod; E; is the elastic modulus of the oscillating
tooth material; A; is the contact area between the oscillating tooth rod and the groove pulley.

2.4 Stiffness Analysis of Support System

Assuming the radial stiffness of the bearing is isotropic since the input shaft is supported by a
single bearing, the radial support stiffness of the cam is the radial support stiffness of the bearing at
the input end, and its value can be calculated by Eq.21.

Kie = Fyy / (Spry + Oz + p1a) (21)

In Eq.21, Fp, is the radial load on the bearing at the input end; &4, is the radial elastic
displacement of the bearing at the input end; 6, is the contact deformation between the outer ring
of the bearing at the input end and the box hole; 6,3 is the contact deformation between the inner
ring of the bearing at the input end and the shaft diameter. The three expressions are respectively
expressed by Eq.22, Eq.23, and Eq.24.

01 = PinOu (22)

O = Houhy (23)
0.204F H

Sops = b1 ' 'b12 (24)
7, dyy

Where, f8; is the elastic displacement coefficient of the bearing at the input end, which is found
from the standard according to the relative clearance g,;/801; 801 is the radial elastic displacement
when the clearance in the bearing at the input end is zero; g, is the clearance or preload in the
bearing at the input end; 4, is the fit clearance in the diameter direction between the outer ring of
the bearing at the input end and the inner hole of the frame at the input end; H,,; is the elastic
coefficient of the bearing at the input end; Fj,; is the radialload; H,;, is the deformation coefficient;
by, is the width of the bearing ring at the input end; d,; is the inner diameter of the bearing at the
input end.

Similarly, the radial stiffness of the bearing at the output end can be obtained by Eq.25.

K, =R, /(801 + G2 +043) (25)

Since a pair of bearings are installed on the output shaft, the comprehensive radial support
stiffness of the output terminal can be obtained by the method of spring parallel connection as Eq.26.
Ky, = Ky, 12 (26)

The two shaft structures are both stepped shafts, and the torque provided by the motor or the

load is received during the movement. The segmentation and torque are shown in Figure 12-1 and
Figure 12-2.

Tl —
| Y 4
A
< i[ < -cm < Um
Y
\ Y v
e L, =

Figure 12-1
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Figure 12. Figure 12-1 Segmentation of the input. Figure 12-2 Segmentation of the output.

For the input shaft, the convex is simplified to a cylinder of equal width, ignoring the thin-walled
support part between its inner diameter and the hub, and being processed in parallel with the
matching shaft section, the total torsion angle of the input shaft can be obtained by Eq.27.

Lo 32T, 32T1I12 32T,
Z @i = 4 4 + 4 4 4
i=L Gzdy G”d12 7G(dy; +dis(1-(dy, /dis)"))

In Eq.27, ¢4; is the torsion angle of the i-th shaft section of the input shaft; T; is the input
torque; G is the shear modulus of the input shaft material, l;;, l;,, l;3 are the lengths of each shaft

(27)

section of the input shaft; dy,, di,, dy3 are the shaft diameters of each shaft section of the input
shaft; d,, and d;5 are the inner and outer diameters of the cam, respectively.

For the output shaft, the sheave is simplified into a cylinder of equal width, and its matching
shaft section is regarded as a solid shaft as a whole, and the total torsion angle of the output shaft can
be obtained by Eq.28.

32T,1,

Z%. - Z Gr d;] (28)

i=1 i=1

In Eq.28, T, is the load torque; G is the shear modulus of the output shaft material; I,; is the
length of the i-th shaft section of the output shaft; d,; is the shaft diameter of the i-th shaft section of
the output shaft.

2.5 Other Excitation Parameters

The mass and moment of inertia of each component are shown in Table 1.

Table 1 The mass and moment of inertia of each component

Part name Mass m(Kg) Moment of inertia | (Kgxmm?)
Cam 0.12 41
Grooved pulley 0.22 54
Oscillating teeth 0.02 -
Input shaft 0.08 2.6
Output shaft 0.26 145

3. System Dynamics Analysis

3.1 System Dynamics Model

The following assumptions are made in the analysis:
(1) During the motion process of the transmission system, all transmission components remain
on the same axis.
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(2) Components such as the box are considered rigid bodies, and the contact between oscillating
teeth and end-face cams, as well as that between the rigid circular spline and grooved pulley, is
modeled as a spring-damping system.

(3) Additional vibration phenomena arising from factors such as assembly and transmission
errors among components are not considered.

(4) The mass properties of each oscillating tooth are the same.

The relevant dynamic parameters are set in Table 2.

Table 2 The relevant dynamic parameters setting

symbol explanation
ki3 the meshing stiffness between the oscillating teeth and the cam.
C13 the damping between the oscillating teeth and the cam.
K3y the meshing stiffness between the oscillating teeth and the rigid circular spline.
C34 the damping between the oscillating teeth and the rigid circular spline.
ka3 the meshing stiffness between the oscillating teeth and the grooved pulley.
Ca3 the damping between the oscillating teeth and the grooved pulley.
ki the radial support stiffness of the cam support systems.
kia the axial support stiffness of the cam support systems.
ki the torsional stiffness of the cam support systems.
Cir the radial damping of the cam support systems.
C1a the axial damping of the cam support systems.
Ci¢ the torsional damping of the cam support systems.
ko the radial support stiffness of the grooved pulley support systems.
kaq the axial support stiffness of the grooved pulley support systems.
kot the torsional stiffness of the grooved pulley support systems.
Car the radial damping of the grooved pulley support systems.
C2q the axial damping of the grooved pulley support systems.
Cat the torsional damping of the grooved pulley support systems.

Due to the dynamic behavior of each oscillating tooth being entirely identical, there is a phase
difference in kinematics. Therefore, only the case of a single oscillating tooth needs to be considered.

The relevant space coordinate systems are established as follows: 0 — xyz is the fixed space
coordinate system built on the rigid circular spline. O — x;y,z; is the following space coordinate
system rotating with the cam. 0 — x,y,z, is the following space coordinate system rotating with the
grooved pulley. O — x3y32z3 the following space coordinate system rotating with the (i)-th oscillating
tooth.

The dynamic model of the transmission system is illustrated in Figure 13.
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Figure 13. The diagram of the transmission system dynamic model.
Where the relevant parameters are listed in Table 3.

Table 3. The relevant parameters in the Figure 13.

symbol explanation
X the transverse displacement of the cam on the 0 — xyz due to vibration.
Y1 the longitudinal displacement of the cam on the 0 — xyz due to vibration.
z; the axial displacement of the cam on the 0 — xyz due to vibration.
¥1 the torsion angle of the cam on the O — xyz due to vibration.
Xz the transverse displacement of the grooved pulley on the O — x;y,z; due to vibration.
V2 the longitudinal displacement of the grooved pulley on the O — x;y,z; due to vibration.
Z, the axial displacement of the grooved pulley on the O — x;y,z; due to vibration.
@, the torsion angle of the grooved pulley on the 0 — x;y;z; due to vibration.
o the transverse displacement of the (i)-th oscillating tooth on the 0 — x3y3z; due to
3t vibration.
the longitudinal displacement of the (i)-th oscillating tooth on the 0 — x3y3z; due to
Yai vibration.
Z3; the axial displacement of the (i)-th oscillating tooth on the O — x3y5;2; due to vibration.
Ow the spiral rise angle of the cam profile
Og the central angle corresponding to the rigid circular spline half-tooth.
T the turning radius of the cam.
7 the turning radius of the grooved pulley.
Ow the cam rotation angle.
Pe the grooved pulley rotation angle.
T; the relative rotation angle between 0 — x3y3z; and 0 — x;y,z;.

Taking the direction of the meshing point between the cam and the oscillating tooth toward the
oscillating tooth as the positive direction, the projection of the cam displacement relative to the
oscillating tooth along the direction of the mesh line can be obtained as Eq.29.

hcos .
- % [xsinz, +y, €087, — X + oyt |- (2 +2,)c0s8, (0<7, <7)
r,
S = ' (29)
' h .
L&;a'“[xi Sinz, +Y, €087, — Xy + oyt | — (25 +2,)C086, (7 <7, <27)
T 1

Taking the direction of the meshing point between the grooved pulley and the oscillating tooth
toward the oscillating tooth as the positive direction, the projection of the grooved pulley
displacement relative to the oscillating tooth along the direction of the mesh line can be obtained as
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Eq.30.
X, SiN(7; + @y — 5 )= ¥, €08(7 + @y — 95 )+ X +p,1, (0<7,<7)
i = . 30
2 XZSIn(ri-i-q)W—¢G)—yzcos(ri+%\,—(/)G)+X3i+g02r2 (ﬂ'S‘L'i <27r) (30)
Taking the direction of the meshing point between the rigid circular spline and the oscillating
tooth toward the oscillating tooth as the positive direction, the projection of the rigid circular spline

displacement relative to the oscillating tooth along the direction of the mesh line can be obtained as
Eq.31.

@31

_{—x3i C0SO COS B+ Yy sing. cos f—z,sinf (O<r7, <)
34i

- Xg; COS G, COS 3+ Y,, Sin 6 €os B —z,, sin S (r <1, <21

3.2 System Dynamics Differential Equations

According to the system dynamics model, dynamics differential equations of transmission
components can be obtained as Eq.32, Eq.34, and Eq.36.
For the cam:

mlj(.l +Cer1 +ZC13X13i + ker:l +Zk13X13i =0
i=1 i=1

mlyl +Cy yl +ch3yl3i + k1r Y, + Zk13y13i =0
i=1 i=1

: . (32)

mz +C,2 + 2013213i + k1a21 + Zkl3zl3i =0

i=1 i=1

. . T,
I +ep I +kep 11 = Tl

1

Where T; is the input torque; xi3;, Y13, Z13; are the projections of §;3; in the cam following
coordinate system O — x;y;z; along the x;, y;, z; directions, respectively, and which can be

expressed as Eq.33.
X5 = £0,5 Sing,, sint,
Vi3 = 0,5 SiN G, COST, (33)
23 = Oy COS 6,
For the grooved pulley:

z z
mzxz +Cer2 +ZCZBX23i + kzrxz +Zk23X23i =0
i=1 i=1

m2 y2 + ch yZ +ZCZSy23i + I(2r y2 + Zk23y23i = O
i=1 i=1 (34)

Z Z
m, Zz + Czazz + Zczg 223i + kZaZZ + Z k23223i =0
i=1 i=1

.. . T
3o, +Cu @, 11, + Ko, [T, = _r_2
2

Where T, is the output torque; x;3;, ¥.3;, Zz3; are the projections of §,3; in the grooved
pulley following coordinate system O — x,y,z, along the x,, y,, z, directions, respectively, and
which can be expressed as Eq.35.
X3 = Oy Sin(fi + @y _(DG)
Yasi = Ons COS(Ti + Py _‘PG) (35)
Z, =0

23
For the (i)-th oscillating tooth:
MyXy; + CiaXays + CoaXapi + CagXagy + KygXayi + KogXapi + Ky F(Xg) =0
My s + CiaYazi + CoaYani + Cas Yaai + Kig Vari + KogVani + Kagi f(Yay1) =0 (36)
MyZy; + Cialyyy + CayZygy + KigZyy +Kayy F(254) =0
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Where x31;, ¥31;, Z31; are the projections of &3y; in the (i)-th oscillating tooth following
coordinate system O — x3y3z3 along the coordinate axis, x33;, ¥32i, Z32; are the projections of d3y;
in the (i)-th oscillating tooth following coordinate system O — x3y3z3; along the coordinate axis, X34,
Yaai, Z34; are the projections of 83,; in the (i)-th oscillating tooth following coordinate system O —
X3y3z3 along the coordinate axis, respectively. These above can be expressed as Eq.37.

Xy = Oy SINGy , Yoy = 0,25y = 65 COS G,
Xgpi = Opir Yapi = 0,235 =0 (37)
Xa4i = £044; COS O COS B, Yayi = Ogyi SIN G COS B, 25, = —3,y; COS G SIN S

f(x34:), f(¥34;) and f(zs4;) are the nonlinear functions of tooth side clearance along the x-axis,
y-axis, and z-axis directions, respectively. Assuming that the tooth side clearance is 2b, the
displacement of the oscillating tooth along the tooth surface in the normal direction is x,. These
above can be expressed as (Eq.38, Eq.39, Eq40.), respectively.
Xg,; —D COS G, cOs S (x, >b)
f (Xy1,0) = 0 (-b<x, <b) (38)
Xy +DCOSO: COS B (X, <-b)
Yaii —bsin g, cos g (x, >Db)
f(Yai,0) = 0 (-b<x, <Db) (39)
Yo +0sinG.cos B (x, <-h)
z,,; —bcos . sin g (x, >b)
f(z,b) = 0 (-b<x, <b) (40)
Z,; +bcos@.sin g (x, <-Db)

From the above, the dynamics differential equations of the end cam input mechanism, oscillating
teeth, and grooved pulley output mechanism have been obtained. Organizing and sequencing the
equations of each component and the overall dynamic differential equations of the system in matrix
form is obtained as Eq.41.

MX +CX +KX =T (41)

Where M is the system generalized quality matrix; X is the system generalized displacement
matrix; C is the system generalized damping matrix; K is the system generalized rigidity matrix; T
is the system externally excited array matrix.

3.3 System Vibration Response Analysis

The nonlinear dynamics differential equations can be solved by using the Runger-Kutta method.
Setting speed and load of the cam in three different states, and setting damping as Rayleigh damping.
The transient vibration displacement response of the cam along each independent coordinate is
obtained as shown in Figures 14-17, respectively.

x107°
94t

=~ 8Brmin,0.65N-m — 88r/min,0.98N m - 220r/min,0. 65N |

time/s
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Figure 14. Simulation values of x;
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Figure 16. Simulation values of z;
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Figure 17. Simulation values of ¢,

.From Figures 14-17, the results show that the cam transverse displacement response is slightly
larger than the radial displacement response. The reason is that the cam profile surface lift angle and
return angle are along the transverse direction, there is a fixed angle of contact between the cam and
the oscillating teeth, and most of the vibration is transmitted to the transverse direction of the cam.

The transient vibration displacement response of the grooved pulley along each independent
coordinate is shown in Figures 18-21, respectively.
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Figure 21. Simulation values of ¢,

.From Figures 18-21, the results show that the grooved pulley transverse displacement response
is slightly less than the radial displacement response and axial displacement response. The reason is
that during the oscillating teeth meshing with the teeth of the rigid circular spline, there exists a
central angle on the tooth side pointing to the center of rotation and a tooth angle on the tooth surface
along the direction of the axis, which makes the vibration of the oscillating gear more generated in
the radial direction of the grooved pulley and transmitted to the grooved pulley.

The vibration patterns between pairs of dissimilar oscillating teeth are the same and there is only
a phase difference. Taking the first pair of oscillating teeth as an example, their transient vibration
displacement responses along each independent coordinate are shown in Figure 22, Figure 23, and
Figure 24, respectively.
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Figure 24. Simulation values of z3

.From Figures 22-24, the results show that the transverse displacement of the oscillating teeth is
the largest. The reason is that the setting of the angle between the oscillating teeth and the teeth of
the rigid circular spline results in the line of action of the load being more directed in the transverse
direction of the oscillating teeth. Therefore, the oscillating gear teeth are subjected to greater
deformation and vibration response along the transverse direction on entering meshing.

The cam, the grooved pulley, and the oscillating teeth all generate regular periodic vibrations in
the transverse, radial, and axial directions at their equilibrium positions. When the oscillating teeth
enter into and disengage from engagement, the vibration response changes abruptly. With the
increase of the input speed of the single-wave cam and the load borne by the output end, the vibration
amplitude of the oscillating teeth in all directions increases gradually.

4. Dynamic behavioral validation

To validate the results of the nonlinear dynamics study of the end-face harmonic transmission
system, building the test bench as shown in Figure 25. 220V AC power is stepped down by a
transformer to supply power to the stepper motor, torque sensor, and magnetic particle brake. The
inputs control the stepper motors for power input through the driver, and the development board
used is powered by 5V DC. The torque sensor is mounted on the input side of the end-meshing
harmonic reducer to measure speed and torque, which is then read by the dynamic torsion triple
display meter. The encoder is mounted to the output side to measure the real-time rotational speed
of the output shaft, and the signal conversion is accomplished by the debugger. Magnetic particle
brakes are mounted to the end to provide load and are adjusted in size by the load controller. The
resulting sensing signals are transmitted to the PC for data processing.
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Figure 25. The diagram of the test bench.

Measured at standard center distance under follows conditions: 88r/min, 0.65N-m; 88r/min,
0.98N'm and 220r/min, 0.65N-m. Reducing the center distance by 0.5mm and 1mm respectively, the
date under 88r/min, 0.65N-m was measured. These above were recorded as Working Conditions (1-
5). After data processing, the comparison of results between the output shaft circumferential torsional
vibration response and the simulation results is shown in Figures 26-30.
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Figure 26. Comparison of simulation and experimental results for Case 1.
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Figure 27. Comparison of simulation and experimental results for Case 2.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 January 2024 d0i:10.20944/preprints202401.1735.v1

22
4
X1
g <10 ‘ . .
6 - - - experimental value theoretical value
41 |
o 2 1
<
=, 0r J
=
2 J
4 J
6 J

time/s
Figure 28. Comparison of simulation and experimental results for Case 3.
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Figure 29. Comparison of simulation and experimental results for Case 4.
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Figure 30. Comparison of simulation and experimental results for Case 5.

From Figures 26-30, the results show that the theoretical and experimental curves are in general
agreement in terms of trend and are numerically closer, which verifies the correctness of the
theoretical model. In addition to the influence of the load at the output end and the rotational speed
at the input end, the increase of the center distance makes the support position of the rod part of the
oscillating teeth gear system change, which leads to the reduction of the gear teeth meshing rigidity
and the vibration increases of the transmission system. According to the analysis of the meshing
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stiffness above, it can be seen that the increase in pressure angle makes the meshing stiffness increase,
which can reduce the vibration of the system.

The main reasons for the error between the experimental and simulation data for the vibration
response are as follows:

(1) Errors in the machining of components;

(2) Clearance between the rod part of the oscillating teeth gear system and the moving part of
the grooved pulley.

(3) The box and bench support are not absolutely rigid.

(4) The sensors are subject to a certain amount of deviation during the measurement process
with the vibration of the test bench.

5. Conclusions

To study the coupling mechanism and dynamic response of the end-face movable gear
transmission system under complex excitation, a specific configuration of end-meshing movable gear
reduction mechanism was used to achieve predetermined rigid thrust transmission and mismatched
gear meshing functions, which solved the inherent defects of traditional harmonic gear mechanism
thin-wall flexible wheel easy to be damaged by fatigue. The following are the main conclusions:

1. We have completed the development of a physical prototype of end-meshing harmonic
reducer. Then, considering the effects of internal and external excitation parameters such as time-
varying meshing stiffness, Hertzian contact stiffness, and gear tooth meshing side gap, we established
the dynamic model of the end-meshing harmonic reducer, derived the vibration displacement
response of each transmission member, and analyzed its influencing factors.

2. We built a comprehensive test bench of adjustable characteristics to realize the real-time
transmission and acquisition of output shaft circumferential torsional vibration response data.
Compared with the theoretical data, the correctness of the dynamics model of the end-meshing
harmonic reducer was verified and the reasons for the errors were analyzed.

3. The results show that the magnitude of input speed and load torque has a large influence on
the system vibration response. For the internal excitation characteristics, measures such as increasing
the support stiffness of transmission components, shortening the center distance, increasing the
meshing stiffness of the gear teeth, decreasing the length of the rod part of the oscillating teeth gear
system, and increasing the tooth angle can produce vibration suppression effects.

6. Patents

This section is not mandatory but may be added if there are patents resulting from the work
reported in this manuscript.
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