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Article 
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Simple Summary: In the intricate field of genomic research, scientists often investigate the 
enrichment of genes that share common functions. Traditionally, these genes have been analyzed 
under the assumption that they function independently. However, this assumption might not be 
accurate in large genomic regions, where genes with similar functions often exist in close proximity 
and may influence each other. Our study introduces an innovative method to determine whether 
observed patterns in gene groups are a result of their spatial proximity or arise from other biological 
factors. This approach is especially critical when studying large genomic loci, as conventional 
methods might miss the subtle interactions among functionally similar genes. By applying our 
technique, we significantly enhance the accuracy of genomic analysis in these extensive regions. 
This advancement is crucial because it deepens our understanding of gene interactions within large 
genomic areas. 

Abstract: Traditional gene set enrichment analysis falters when applied to large genomic domains, 
where neighboring genes often share functions. This spatial dependency creates misleading 
enrichments, mistaking mere physical proximity for genuine biological connections. Here we 
present Spatial Adjusted Gene Ontology (SAGO), a novel cyclic permutation-based approach, to 
tackle this challenge. SAGO separates enrichments due to spatial proximity from genuine biological 
links by incorporating the genes' spatial arrangement into the analysis. We applied SAGO to various 
datasets in which the identified genomic intervals are large, including replication timing domains, 
H3K9me3 and H3K27me3 large domains, HiC compartments and lamina associated domains 
(LADs). Intriguingly, applying SAGO to prostate cancer samples with large copy number alteration 
(CNAs) domains eliminated most of the enriched GO terms, thus helping to accurately identify 
biologically relevant gene sets linked to oncogenic processes, free from spatial bias. 

Keywords: gene set enrichment analysis (GSEA); GO annotations; spatial dependencies; cyclic 
permutation; replication timing; copy number alterations (CNA) 
 

Introduction 

An essential practice in the analysis of high-throughput biological data involves identifying 
enriched genes within pre-defined gene sets, such as those defined by the Gene Ontology (GO) 
project [1]. Various tools have been developed to perform such enrichment analysis [2, 3]. Enrichment 
analysis allows for the inference of functions of co-expressed genes. For instance, when GO terms are 
enriched in a set of over-expressed genes, it suggests potential functional pathways activated under 
those conditions. The statistical significance of enrichment is usually determined using the 
hypergeometric test (Fisher exact test), Chi-Square, or binomial distribution tests [4, 5]. The 
underlying assumption in all these tests is the independence between the identified genes. This 
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means that each gene has an equal probability of being a member of a selected list of genes, and 
choosing one gene from a gene set does not affect the likelihood of choosing another gene from the 
same set. This is a crucial assumption for assessing whether the observed enrichment could have 
occurred spuriously. 

While such an assumption is reasonable for expression profiling results, where each gene is 
measured separately, it becomes less obvious in cases involving larger genomic regions that contain 
many genes. For example, replication domains are large (median size of 0.4-0.8 Mb [6]) yet it is 
common practice to determine the function of genes within early or late replicating domains using 
gene set enrichment analyses [7, 8]. In such cases, all the genes within the replication domain are 
included in the analysis, even though they may no longer be independent. Were the distribution of 
genes in the genome random, the proximity between genes would not violate the gene independence 
assumption. However, this is not the case, as there are clear functional dependencies between 
adjacent genes [9-12]. In many species, it has been shown that co-expressed genes tend to cluster in 
the genome [13, 14]. For instance, in the human genome, housekeeping genes have been found in 
clusters [15]. Additionally, functionally related genes also tend to be clustered. Analysis of KEGG 
pathways in five eukaryotes revealed a high proportion of gene clustering for those sharing the same 
pathways [16]. Similarly, analysis of clustering of GO terms revealed that clusters of functionally 
related genes are common, not only in bacterial operons but also in H. sapiens, Mus musculus, S. 
cerevisiae, C. elegans, D. melanogaster, and Arabidopsis thaliana [17]. 

A similar problem exists in the interpretation of genome-wide association studies (GWAS) 
results due to the linkage disequilibrium structure of SNPs, and to the clustering of functionally 
related elements in the genome.  Cabrera et al. [18] developed a method using cyclic permutations 
to address dependencies between SNPs and adjacent genes. However, their method was developed 
specifically for GWAS studies, and does not address a more general issue of gene enrichment 
analysis. 

Here, we expand the cyclic permutation approach to address the spatial dependency problem 
in the context of gene set enrichment analyses. We compared the list of enriched genes to random 
gene lists generated through cyclic permutations, thereby preserving the spatial dependencies 
between genes. To accommodate this change, we replaced the commonly used statistics with a 
sampling method that covers all possible cyclic permutations. We applied our novel approach to 
various examples of genomic experiments that were designed to identify important large genomic 
domains including replication timing (RT), lamin associated domains, H3K27me3 and H3K9me3 
large domains, HiC compartments and copy number regional alterations in cancer. Our approach 
allows cleaning of the list of enriched GO terms, removing terms that were enriched solely due to 
genomic co-location of the genes in the term. Overall, our approach overcomes the dependency 
problem and distinguishes between enrichments that are due only to GO term clustering and those 
that are more likely due to the biology of the analyzed domains. 

Methods: 

All analyses  and the SAGO pipeline were conducted using R (version 4.3.2), a language and 
environment for statistical computing, utilizing the ggplot2 package (version 3.3.6) for figure 
generation. Figures 2a and 2b were created with BioRender.com. 

SAGO Pipeline 

The SAGO pipeline employs a distinctive cyclic permutation strategy to statistically assess gene 
associations within specified genomic intervals at the gene level. This process begins by identifying 
transcription start sites (TSS) of genes within input intervals using the GenomicFeatures package 
(version 1.44.2) and the Bioconductor TxDb object for organism and genomic build. Counts for the 
corresponding Gene Ontology (GO) terms for each gene were determined using the AnnotationDbi 
package (version 1.54.1) and the Bioconductor orgDb database. For each GO Term, all its ancestral 
parents were identified and included in the analysis using the GOfuncR package (version 1.12.0). 
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Hypergeometric Test for GO Terms Enrichment: 

To estimate the enrichment of GO terms, the hypergeometric test was utilized to assess whether 
the observed frequency of specific GO terms in our gene subset significantly exceeds chance 
expectations. This test was performed using the phyper function in R, calculating a hypergeometric 
p-value for each GO term to gauge enrichment significance. The Benjamini-Hochberg correction was 
applied to adjust for multiple hypothesis testing. 

Cyclic and Random Permutations: 

Significant GO terms (FDR adjusted p-value < 0.1) from the hypergeometric test were further 
analyzed using both cyclic and random permutations. Cyclic permutation approach maintains the 
genome's spatial integrity by treating it as circular and systematically ordering genes by chromosome 
and location. We iteratively performed n-1 cyclic permutations, where n is the total number of genes 
in the genome. In each permutation, gene positions were incrementally shifted while preserving their 
order. 

Concurrently, random permutations were also executed, where the intervals were randomly 
populated with genes. In these random permutations, the spatial ordering of genes is not preserved, 
providing a contrast to the cyclic approach. 

For both permutation methods, gene counts associated with significant GO terms were 
recounted, and experimental p-values were calculated based on the frequency of permutations 
showing at least as equal enrichment of a GO term as in the actual data. These p-values were then 
corrected for multiple hypotheses using the Bonferroni correction. 

Linear Regression Analysis: 

We performed a linear regression between the results of cyclic and random permutations for 
each GO term. The residuals from this model were calculated using the lm function.  

Random intervals analysis 

Random regions for Figures 1 and 2 were sampled using the regioneR package (version 1.22.0, 
[19]). For Figure 2e for each term that was enriched at least in one random dataset we calculated the 
fraction of random runs in which it was enriched (Bonferroni p-adjust value < 0.05). Each term was 
assigned to a bin according to the average residual value over the 100 random runs.  The average 
number and the standard error were calculated for each bin. For Figure S1 the bins were calculated 
in the same way as in Figure 2e, and the fraction of correction is the fraction of the enriched GO terms 
in each bin that after applying SAGO got Bonferroni adjust P value>0.05.  

Data Sources and Processing 

H3K27me3 and H3K9me3 datasets were downloaded from the ENCODE portal 
(https://www.encodeproject.org/) using the following identifiers: ENCFF803QFK, ENCFF277EYC. 
Broad genomic domains were identified using the RECOGNICER pipeline [20]. 

Liver LAD data is available under accession GSM5669232. 
Hi-C data for ESC and NPC can be accessed in the GEO database under accession code 

GSE96107. Differential B compartments were identified using the dcHiC pipeline [21]. 
Replication timing for primordial germ cells and mouse embryonic fibroblasts can be found 

under the accession GSE109804. Determination of differential regions was done following the 
methods described in [22].  

All other datasets used in this paper are provided as supplementary data in the corresponding 
manuscripts. 

Results  

Spatial dependencies affect enrichment analyses. 
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By definition, a list of randomly selected genes should not show enrichment of any GO category. 
Similarly, analyzing randomly chosen genomic intervals for gene enrichment should not reveal any 
GO terms, unless genes within the term share spatial dependencies. 

To investigate the presence of spatial dependencies and the need to correct for them, we focused 
on the "sensory perception of smell" GO term (GO:0007608), containing 894  genes mostly clustered 
in a few genomic loci [23]. We conducted a series of experiments to assess how often we could observe 
enrichment of genes belonging to this category by chance. We sampled 400 random genomic intervals 
of various lengths and assessed the enrichment of the GO term using the hypergeometric test (see 
Methods). We repeated this 100 times, recording the instances of significant enrichment (P < 0.0005, 
equivalent to P < 0.05 after Bonferroni correction for 100 hypotheses) for each interval size (Figure 
1a). Surprisingly, even in relatively small windows (40Kb), the GO term showed enrichment multiple 
times (Figure 1a), and the minimum P-value (among the 100 repeats) reached very low values (Figure 
1b). 

To further explore this phenomenon, we extended the analysis to include all GO terms within 
400 windows, each 500Kb. Many GO terms surpassed the enrichment threshold (Figure 1c; 
significance threshold Bonferroni corrected P-value <0.05). Interestingly, enriched GO terms have 
various sizes (number of genes), implying that genomic dispersion, not term size, contributes to these 
spurious enrichments. This observation underscores the critical role of spatial gene dependencies 
within regions in generating misleading enrichments, emphasizing the need to address spatial 
correlations in enrichment analyses. Furthermore, repeating the procedure of choosing random 
regions 100 times allows us to identify GO terms that are repeatedly enriched in random regions 
(Figure 1d), suggesting that these terms are not randomly distributed in the genome.  

 

Figure 1. Impact of spatial dependencies on enrichment analysis. 
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a. Enrichment of the GO term “detection of stimulus involved in sensory perception of smell” 
(GO:0007608) in 400 randomly chosen genomic intervals of varying lengths. The y-axis shows the 
percentage of times the GO term was found to be enriched at a significance level of P < 0.0005 
(equivalent to P < 0.05 with Bonferroni correction for 100 hypotheses) out of 100 repetitions. The x-
axis shows the length of the genomic intervals in kilobases (Kb). 

b. Minimum P-value for enrichment of the GO term “detection of stimulus involved in sensory 
perception of smell” (GO:0007608) in 400 randomly chosen genomic intervals of varying lengths. The 
y-axis shows the minimum adjusted P-value observed out of 100 repetitions. The x-axis shows the 
length of the genomic intervals in kilobases (Kb). The red line is at a significance level of adjusted P 
< 0.0005. 

c. Enrichment results for one set of 400 randomly chosen genomic intervals of 500Kb each. For 
each term, the -log FDR corrected P value is plotted as a function of the size (number of genes) of the 
term. The red line is drawn at FDR=0.05.  

d. Heatmap showing the frequency of enrichment of GO terms in 400 randomly chosen genomic 
intervals of 500Kb each. The y-axis shows the GO terms. The x-axis shows the percentages of 
enrichment on 100 repetitions (The full list is shown in Table S1).    

Developing Spatial Adjusted Gene Ontology (SAGO) analysis tool 

The conventional approach for calculating enrichment for a given list of genomic loci involves 
finding the genes within each interval, assigning their corresponding GO terms, and statistically 
comparing the number of genes in each GO term to a background set, typically containing all the 
measured genes. This method, however, disregards the spatial dependency between genes, assuming 
the probability of a gene being associated with a particular GO term solely depends on the total 
number of genes in the genome belonging to that specific GO term. 

To address the spatial dependencies problem in GO enrichment analyses, we adopted the cyclic 
permutation approach [18],  which preserved the spatial dependency between genes in the 
background set. Instead of comparing the number of identified genes within each GO term to its 
frequency across the entire genome, we compared it to the number of genes in each term in all 
possible permutations that preserved the genomic spatial dependency. This means that we counted 
the number of genes of each GO term falling within the genomic intervals of interest and compared 
it to the number of genes from the same term falling within these intervals in all possible 
permutations. The permutations were done using a cyclic permutation scheme, where the order of 
genes in the genome is maintained but a different set of genes populates the intervals in each 
permutation. These permuted genomes serve as the background against which we assess enrichment. 
The experimental p values are computed by calculating the fraction of permutations in which the 
number of genes from a certain GO category falling within the intervals was at least equal to the 
number observed in the actual experiment (Figure 2a-b).   

While the cyclic permutation approach preserves gene order, it has a finite number of distinct 
permutations.  For a genome with n genes, only n-1 unique permutations exist. Therefore, for each 
experiment, we conducted all possible distinct permutations and calculated the fraction of 
permutations that resulted in at least as many genes as the observed number of genes from each GO 
term intersecting the interval of interest. This proportion becomes the bootstrapped p-value, 
representing the probability of randomly obtaining at least the observed number of genes from a 
specific GO category within the actual gene order of the analyzed genome (Figure 2b). This approach 
effectively addresses spatial dependencies and offers a robust method for assessing spatial 
enrichment in gene set analysis.  

To validate the effectiveness of SAGO, we revisited the experiment presented in Figure 1c, this 
time calculating the P-values using both cyclic and random permutations. This analysis revealed that 
p-values obtained through permutation-based methodology closely resemble those of the 
hypergeometric test, with low p-values plateauing due to the finite number of random permutations. 
This finding confirms the accuracy of our p-value calculations in SAGO, supporting its validity as a 
robust method for assessing spatial enrichment compared to conventional approaches. (Figure 2c).  
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Comparing p values from cyclic and random permutations revealed striking differences. While 
most terms yielded similar values with both methods, some exhibited significantly lower p-values in 
random permutations. We suspected that the degree of deviation from the regression line captures 
the spatial dependency between the genes in each GO term. Thus, we calculated the distance from 
the regression line (double-headed arrow in Figure 2d) and compared it to the chance for each term 
to be enriched in random intervals. To this end, we used the 100 repeats of random intervals to 
generate a chance score for each term. As expected, terms with high average residual values appeared 
enriched in many random permutations (Figure 2e), suggesting the residual value as a reliable 
indicator for spatial dependency within a GO term.  

 

Figure 2. SAGO correct successfully spatial dependencies. a. Schematic representation of SAGO. b. 
Schematic representation of the cyclic permutations approach. This figure depicts the relationship 
between genes and their association with a specific Gene Ontology (GO) term, using two 
complementary panels. The top panel presents a genomic landscape, where green rectangles 
represent genes linked to the GO term of interest, and gray rectangles represent the remaining genes. 
Below this landscape, white bars highlight specific genomic intervals measured in an experiment. A 
hypergeometric p-value, calculated based on the observed enrichment of GO-associated genes within 
the measured intervals, is shown beneath the panels. The bottom panel showcases cyclic permutations 
of the genes involved in the experiment. Each subsequent row represents a different permutation, 
with the genes re-ordered in a circular fashion. The p-value shown below the last permutation row 
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highlights the overall probability of observing at least 4 GO-associated genes in any of the n-1 possible 
cyclic permutations. c. Scatter plot of one of the random intervals set, showing the P value of each 
term calculated either by the hypergeometric test (X axis) or by performing 21633 permutations 
(cyclic- green; random- brown). d. scatter plot showing the association between P values (-log) 
obtained by cyclic and regular permutations. A linear regression line and the distance of one dot from 
it (residual value) are shown. e. For each term the fraction of runs that it was enriched (out of 100 
random runs) is shown. All the terms were separated into 8 bins according to their residual value ± 
0.25 (X axis) and the mean and standard error of each bin are shown. f. Hypergeometric versus cyclic 
adjusted P values are shown for all terms enriched in one set of random intervals (shown in Figure 
1c). . 

Multiple hypothesis corrections 

Our experimental p values are constrained by the number of possible permutations. For a typical 
mammalian genome with ~20,000 genes, lowest achievable p value is 1/20,000=5*10-5. Such p values 
are usually not sufficiently small to sustain multiple hypothesis correction of thousands of 
hypotheses (the typical range of GO terms or other sets tested in each experiment). To overcome this 
limitation and ensure robust enrichment assessment SAGO employs a two-step sequential multiple 
hypothesis correction [24]. First, we apply an FDR correction on the hypergeometric p values from 
the standard enrichment analysis. Only terms exceeding this initial FDR threshold of 0.1 are then 
subjected to the more stringent cyclic permutation test. We note that for random data we will have 
no results exceeding the FDR=0.1 threshold. Hypotheses reaching this threshold due to genomic 
proximity will be filtered out as potential false positives in the second step. This approach reduces 
the number of hypotheses by up to two orders of magnitudes, further reinforced by correcting for 
multiple hypothesis using the Bonferroni approach.  

Applying SAGO on the random dataset described in Figure 1c successfully eliminated all 
enrichments (Figure 2f), strongly suggesting that the enrichments observed in the random dataset 
were attributable to spatial proximity among genes sharing the same GO term. Furthermore, 
applying SAGO on all 100 random datasets revealed that SAGO effectively eliminated all GO terms 
with residual values exceeding 1 (Figure S1).  

Applying SAGO to replication timing data 

Next, we applied SAGO to actual experimental data, particularly focusing on 
replication timing (RT) data. Replication timing domains are characterized by large intervals 
(median size 400-800 Kb; [6])  Given the large size of RT domains, enrichment analysis 
is prone to the biases SAGO aims to address. 

In our recent work, we identified approximately 400 genomic intervals that replicate 
asynchronously in the mouse genome, covering 226 Mb. Regular gene set enrichment analysis of 
these intervals revealed 42 enriched terms including sensory perception of taste and sensory 
perception of smell (also present in random datasets, Figure 1d). Reanalyzing with SAGO eliminated 
26 out of the 42 enriched terms (Figure 3a), including all terms associated with cellular perception of 
taste and smell and response to pheromones. Intriguingly, terms associated with ion homeostasis and 
regulation of cellular pH, remained significance, suggesting that the latter categories are enriched 
independently of their genomic distribution (Figure 3a and Table S2).  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 January 2024                   doi:10.20944/preprints202401.1711.v1

https://doi.org/10.20944/preprints202401.1711.v1


 8 

 

 

Figure 3. Applying SAGO to replication timing data. Left panels - dot plots showing adjust p values 
of terms enriched in regions showing asynchronous replication (a) or differential replication timing 
between MEFs and primordial germ cells (b). For each term the cyclic permutation (green) and the 
naïve hypergeometric (blue) adjust p values are shown. The red line is drawn at adjust p value = 0.05. 
Right panels -  bar graphs comparing cyclic permutation and hypergeometric adjust p-values for 
selected GO-terms (the full list is shown in Table S2), for asynchronously replication regions (a) and 
differential regions (b). The red line is drawn at adjust p value = 0.05. 

Similarly, analyzing regions with differential replication timing between primordial germ cells 
and mouse embryonic fibroblasts [22] revealed enrichment of 139 GO terms, surprisingly including 
lactation, female pregnancy, and response to chemokine. Applying SAGO eliminated 122 GO terms, 
including the aforementioned terms, while preserving response to cytokine, cell fate determination, 
epithelial cell proliferation and others.  (Figure 3b and Table S2).  

Expanding the use of SAGO to additional types of data 

SAGO's utility extends beyond RT data. Any regional measurements ideally require spatial 
adjustment of the type that SAGO provides. We applied SAGO on selected datasets that capture large 
genomic regions including large (106-107 bp) H3K27me3 and H3K9me3 domains obtained by ChIP-
seq [25-27], regions transitioning from compartment B to A upon ES differentiation to NPC as 
determined by HiC data [28], Lamin associated domains (LADs) in liver [29] and regions with copy 
number alterations observed in cancer patients ]30 [ . In all cases, SAGO eliminated most enriched 
terms, especially those lacking intuitive justifications.  This helped highlight terms whose 
enrichment is not a consequence of the genomic spatial distribution of the genes within the term 
(Figure 4 and Table S2). For example, in the B to A compartments terms associated with lactation 
were eliminated, while terms associated with endothelial and epithelial cell proliferation remained. 
In the liver LADs the “sensory perception of smell” category was eliminated. In the regions deleted 
in patients SP102620 and SP102622 all enriched terms were eliminated. In the regions duplicated in 
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patient SP102622, many categories associated with sensory perception and neuronal development 
were eliminated, yet categories associated with synapse and axon guidance remained. In the ChIP-
seq data all H3K9me3 enriched terms were eliminated, whereas many of the H3K27me3 enriched 
terms were retained.     

 

Figure 4. Applying SAGO to other datasets. Bar graphs comparing cyclic permutation (green) and 
hypergeometric (blue) corrected p-value for selected GO-terms (the full list is shown in Table S2), for 
regions that changed from compartment B to A upon ES differentiation to NPC; regions deleted or 
duplicated in prostate cancer; large H3K27me3 and H3K9me3 ChIP-Seq domains in liver tissue male 
adult and heart tissue embryo cells, respectively; and Liver LAD. The red line is drawn at adjust p 
value = 0.05. 

Discussion 

In genomic data analysis, a common approach involves identifying gene set enrichments within 
a list of genes obtained as a result of a measurement or an experiment. For instance, in RNA-seq 
experiments, researchers often find a list of differentially expressed genes and then employ gene set 
enrichment analysis to determine if this list is enriched with specific types of genes[3, 31, 32]. This 
analysis implicitly assumes gene independence, meaning finding one gene does not influence others, 
unless a shared biological process is at play under studied conditions. 

However, the gene-independence assumption can be shaky, especially when measuring large 
genomic domains. In such cases, assuming all genes within the identified domain are independent 
can be misleading. To address this, we developed a permutation-based method. This method 
compares the observed enrichment to enrichment obtained in controls sets that maintains the 
genomic composition and order, effectively accounting for spatial dependencies between genes. 

Our cyclic permutations approach compares a set of enriched genes within genomic domains to 
all possible shifted versions of the set, still fitting within the domains and preserving the original 
genomic organization. This effectively eliminates enrichments that might arise in random sets of 
intervals due to the clustering of certain Gene Ontology (GO) terms in the genome (see Figures 1 and 
2f for comparison). 

Our cyclic permutations-based approach has two main drawbacks worth noting. First, it is 
resource intensive as it involves calculating GO term enrichments for approximately 20,000 
permutations. Secondly, its statistical power is limited due to the restricted number of cyclic 
permutations (n-1, where n is the number of genes in the genome), resulting in a minimal P-value of 
1/n-1, which equals to 5x10-5 for a typical mammalian genome with around 20,000 genes. These 
limited P-values can pose challenges, particularly when performing multiple hypothesis corrections. 
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To address the limited P-value issue, we applied SAGO only on terms that passed an initial 
hypergeometric test (FDR<0.1), thereby reducing the number of hypotheses tested. This two stepped-
test, where only terms that passed an initial test (corrected for multiple hypothesis) are used in the 
second test, has been previously applied in the context of GWAS and SNP analyses [24].  

To quantify the spatial dependency of each term, we calculated a metric based on the deviation 
of its p-values from the linear regression line between random and cyclic permutations (Figure 2d). 
Indeed, terms with high residual values exhibit more frequent enrichment in random data (Figure 
2e). Terms with low residual value (<0.5) typically retain significance after applying SAGO, while 
those with high residual values (>1) are almost always eliminated (Figure S1).  

SAGO's strength has been demonstrated in the context of replication timing data (Figure 3), 
where large genomic regions with similar RT values are present, and in other types of genomic 
datasets that involve large genomic domains (Figure 4).   It is particularly relevant when the 
measured intervals exceed distances between genes, increasing the likelihood of multiple genes being 
contained within the intervals. In such situations,  common in studying large genomic domains, but 
also relevant to CRISPR screens results [33], SAGO is essential because the assumption of 
conventional statistics (independence between genes) does not hold. We have demonstrated this with 
replication timing, compartments, copy number alterations, LADs and large closed chromatin 
domains (Figures 3-4). In cases where the initial measurement is focused on individual genes, e.g. in 
RNA-seq data, the statistical assumptions are not violated. However, potential association between 
adjacent genes, like those within topologically associated domain (TAD), may exist. In such cases, the 
need for SAGO becomes less clear, as individual genes are measured independently, yet their 
underlying biology suggests potential associations through regulatory mechanisms. Both 
conventional statistics and SAGO can be considered valid approaches in these cases, and each may 
provide different insights. Conventional statistics identify enrichments of certain GO terms 
suggesting that genes from a specific category are enriched in the given condition. This enrichment 
might be due to genomic proximity or other regulatory mechanisms. By applying SAGO to such 
cases, we can investigate whether the identified enrichment is primarily driven by location-related 
mechanisms, which would be eliminated by SAGO, or by other regulatory processes, which would 
be retained. Thus, incorporating TAD structure as intervals in RNA-seq data can be beneficial in 
distinguishing between spatial and other regulatory mechanisms. 

In summary, the choice between conventional enrichment statistics and SAGO depends on the 
specific research question and the nature of the data. When dealing with large genomic domains, 
SAGO is necessary to account for spatial dependencies. However, when working with individual 
genes, both approaches are valid, and applying SAGO can help disentangle spatial effects from other 
regulatory mechanisms, providing valuable insights into the underlying biology. 

Overall, SAGO offers a valuable approach to addressing spatial dependencies. SAGO thus 
enhances the accuracy of gene set enrichment analyses applied to various types of genomic data. 

Supplementary Materials: The following supporting information can be downloaded at: Preprints.org, Figure 
S1: SAGO corrects enrichments of terms with large residual values; Table S1: A full list of enriched GO terms in 
400 randomly chosen genomic intervals; Table S2: SAGO results for the various datasets mentioned in the paper 
(each dataset in a different sheet).  
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