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Abstract: Swarm intelligence (SI) methods are nature-inspired metaheuristics for global optimization

that exploit a coordinated stochastic search strategy by a group of agents. Particle Swarm

Optimization (PSO) is an established SI method that has been applied successfully to the optimization

of rugged high-dimensional likelihood functions, a problem that presents the main bottleneck across

a variety of gravitational wave (GW) data analysis challenges. We present results from a first

application of PSO to one of the most difficult of these challenges, namely, the search for Extreme

Mass Ratio Inspiral (EMRI) in data from future spaceborne GW detectors such as LISA, Taiji, or

Tianqin. We use the standard Generalized Likelihood Ratio Test formalism, with minimal use of

restrictive approximations, to search 6 months of simulated LISA data and quantify the search depth,

in signal-to-noise ratio (SNR), and breadth, in the ranges of the EMRI parameters, that PSO can

handle. Our results demonstrate that a PSO-based EMRI search is successful over a search region

that is in the ballpark of the one that current hierarchical schemes can identify. Directions for future

improvements, including computational bottlenecks to be overcome, are identified.

Keywords: LISA; Gravitational Waves; EMRI; PSO; Likelihood Ratio

1. Introduction

Spaceborne gravitational wave (GW) detectors, namely LISA [1] and the planned Taiji [2,3]

and Tianqin [4], are expected to observe long-lived signals from a variety of sources in the mHz

regime. Among these would be the large population of compact object binaries [5–7] in the Milky Way,

binaries of massive black holes [8–10], and Extreme Mass Ratio Inspirals (EMRI) [50–54] consisting

of a massive black hole orbited by a much smaller one. Extracting individual GW signals from this

crowded superposition poses a huge data analysis challenge that has mostly been addressed only

for specific types of sources. For example, much work has been done to address the extraction of

individual signals from the Galactic Binary population, where both the global fit [11,12] and iterative

subtraction approaches [13–16] have been developed to a mature level. On the other hand, progress

on the detection and estimation of even single EMRI signals has been much more modest given the

extreme challenges that it involves: it is estimated that a deterministic matched filter based search for a

single EMRI signal would require ∼ 1040 distinct template waveform [50]. Given that the correlation

of ∼ 2 years of data with an equally long template involves ∼ 106 floating point operations, the

computational cost of the straightforward approach is insurmountable even with projected advances

in computing hardware.
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The sheer complexity of the data analysis challenge confronting space-based GW detection

necessitates the exploration and development of diverse methods. To provide a common baseline for

the comparison of these methods, a series of public data analysis challenges have been provided by the

community. Among these, the Mock LISA Data Challenges (MLDCs) [22,23], now called the LISA Data

Challenges (LDCs) [26], and the recent Taiji Data Challenge [34] have fostered the development of a

number of new data analysis methods. These include a number of different lines of attack on the EMRI

problem that may be roughly divided into parametric and nonparametric approaches, with some

overlap between the two. Parametric methods use parametrized waveform models, either physical

or empirical, while nonparametric methods [68] avoid their use. It is important to note here that the

calculation of the exact EMRI waveform is itself an open problem that is being actively addressed

by several groups. Hence, all parametric approaches use surrogate models that are assumed to be

sufficiently realistic while being computationally cheap to calculate. Among the main surrogate

waveform used in the literature, and also the one used in the mock data challenges, is the Analytical

Kludge (AK) developed in [55] that is based on the quadrupolar waveform for an eccentric orbit [57,58]

with post-Newtonian corrections to the procession of the pericenter and orbital plane as well as the

GW radiation reaction driven inspirals. The AK waveform can be expressed as a sum over sinusoidal

signals with harmonically separated frequencies that change over time following orbital evolution.

The end goal for all parametric methods is to find the global maximum of a fitness function defined

over the high-dimensional space of EMRI signal parameters, with the fitness function in most cases

being the log-likelihood ratio (LLR) [20] or the closely related Bayesian posterior probability [21]. The

LLR at a given point in signal parameter space for the case of Gaussian noise is simply the projection

(modulo terms that take care of signal normalization) of the given data on the signal waveform,

called the template, corresponding to that point. As mentioned earlier, the global maximization task

is computationally infeasible if addressed using a brute force deterministic strategy, which leaves a

stochastic global optimization method or a hierarchical search strategy (or their combination) as the

only viable way forward. The trade off here is between computational feasibility and lack of certainty

in locating the global optimum since stochastic or hierarchical methods are not provably convergent in

a time-limited search (but may be asymptotically convergent).

The most popular class of stochastic global optimization methods for the EMRI problem

so far has been those based on modifications of the Markov Chain Monte Carlo (MCMC)

sampler [59,61–64,66,67]. Hierarchical searches [59,61,63,64,66,67] use several levels of progressively

higher fidelity approximations to the fitness function to find, with manageable computational cost,

promising search regions in the parameter space that can be handed off to a computationally expensive

stochastic or deterministic global optimizer. The fitness approximations are often implemented through

waveform restrictions such as limiting the number of harmonics or duration. Most methods proposed

so far need to combine elements of both the stochastic and hierarchical approaches to work well. Due

to the various possibilities in how the fitness function approximations can be implemented, as well

as the large number of tunable parameters they create, the methods proposed so far tend to be quite

complex in nature and involve many ad hoc design choices.

In addition to reducing the computational cost of the fitness evaluation, one of the objectives of the

approximations is to mitigate the problem of secondary maxima in the exact fitness function [59,64,65]

arising from complex degeneracies between EMRI parameters and the overlap of multiple harmonics.

These secondary maxima are numerous and widely dispersed in parameter space with values that

are comparable to the global maximum. While their presence makes the problem of detection fairly

easy, since locating any strong peak is an indication that the data is not pure noise, they have the

adverse effect of creating large errors in the estimated signal parameters. In a multiple signal resolution

problem, such as the one that all space-based detectors will face, the parameter estimation problem is

equally important to that of detection because individual sources must be fitted out from the data in

order to reveal weaker sources.
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It is commonly assumed, although by no means proven, that a hierarchical search should narrow

down the search range to ≈ 100σ in each signal parameter [64], where σ is the Cramer-Rao lower

bound (CRLB) on estimation error [20] obtained from the Fisher information matrix (FIM) at a certain

signal-to-noise ratio (SNR). While serving well as a rule of thumb, we note that the search ranges

suggested in the Mock LISA Data Challenge (MLDC) [22–24] do not obey this rule (when scaled to

the same data duration) and deviate significantly from 100σ in all directions, ranging from ∼ 20σ to

∼ 500σ for some of the signal parameters at an SNR = 50 over 0.5 year data.

In this paper, we present a novel approach to the challenge of EMRI data analysis using the

Particle Swarm Optimization (PSO) [17–19] algorithm for the global optimization of the LLR. While

PSO is a well-known stochastic optimization method that has been highly successful in a wide variety

of GW data analysis problems [38–47], as well as related problems in high-dimensional statistical

regression [35–37], it has not been applied to the EMRI problem yet. (The application of PSO to the

EMRI problem has been proposed in [63] but not actually implemented.) The key features of PSO that

sets it apart from MCMC-based searches and makes its application to the EMRI problem attractive is

its small set of tunable parameters (only two in most cases) and the significantly smaller number of

LLR evaluations that it typically needs for successful convergence to the global optimum. For example,

in the search for binary inspiral signals using a network of ground-based detectors, PSO has been

demonstrated to need ≈ 10 times fewer LLR evaluations [39–41] than MCMC searches.

Our main objective in this paper is to conduct an ab initio investigation that removes as many

ad hoc choices from the search method as possible and focus on the end stage of any hierarchical

search in which the global optimization is over the approximation-free LLR. In particular, we want to

empirically establish the baseline that a hierarchical search should target when narrowing down the

search space range. We lift as many restrictions on the fitness function as computationally feasible,

such as using template waveform that include the 10 loudest harmonics instead of 3 [59]. Similarly,

we do not use approximations that attempt to subdivide the set of signal parameters into analytically

maximized extrinsic and numerically maximized intrinsic since, strictly speaking, such a division does

not exist for the EMRI waveform except for the overall distance to the source. Instead, we numerically

maximize over all the parameters (except the distance), albeit using different maximization algorithms

for the different subsets. Thus, our study provides a good foundation on which to build a PSO-based

hierarchical search method in the future that could provide another competitive and promising

approach to address the EMRI data analysis challenge.

Within the present computational resource constraints on our analysis, we find that the PSO-based

search can successfully handle the global optimization problem for EMRI signals in ≳ 0.5 years of

data over search ranges of ≳ 10σ for the majority of parameters and up to ≳ 200σ for one parameter.

This is demonstrated over progressively weaker signal-to-noise ratios (SNRs) ranging from 50 to 30,

with σ dependent on the SNR. We also report on the parameter estimation accuracy achieved in each

case. We note that all our results establish lower bounds on the search ranges since our code is not yet

fully optimized to take advantage of Graphics Processing Units (GPUs) and we have not been able

to extend the number of PSO iterations or runs to the levels that may be needed at the lowest SNR.

Nonetheless, our results show that the plain vanilla PSO is already able to handle search ranges that

are in the ballpark of rules-of-thumb values without requiring overly restrictive approximations.

The rest of the paper is organized as follows. Section 2 sets the stage for the EMRI data analysis

problem with a review of the TDI combinations, noise, and signal models used in this paper. Section 3

describes the search method along with implementation and computational details. We provide a brief

review of the PSO algorithm in Section 4 that is not comprehensive, but suffices for the purposes of

this paper. We present our results in Section 5 followed by a discussion in Section 6.

2. Data Description

The design of all space-based GW detectors consists of a constellation of spacecrafts on

near-Keplerian orbits, with continuous measurement of the inter-spacecraft distances through the
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exchange of laser light signals. The technique of time-delay interferometry (TDI) [56] is used to

reduce the dominant noise source, namely laser frequency noise, to a level where the distance

fluctuations caused by incident GW signals become detectable. In TDI, the measured time-dependent

inter-spacecraft distances along each arm and direction of laser light propagation are combined after

being shifted by known time delays relative to each other. The combinations of delays and single arm

measurements must take a number of physical effects into account, with an increasing number of

effects incorporated in successively better generations of TDI. We discuss below the TDI combinations

used in this paper followed by the description of the noise and signal models. Throughout the paper,

we follow the coordinate conventions defined in [27].

2.1. TDI Combinations

In this paper, we will use first generation TDI and the combinations called A, E, and T that have

mutually independent noise. They are constructed out of the Michelson TDI combinations X, Y, and

Z using

A =
Z − X√

2
,

E =
X − 2Y + Z√

6
,

T =
X + Y + Z√

3
,

(1)

where the combinations X, Y, and Z are obtained from the single arm length measurements,

yslr, following

X =y1−32,32−2 + y231,2−2 + y123,−2 + y3−21 − y123,−2−33 − y3−21,−33 − y1−32,3 − y231 ,

Y =y2−13,13−3 + y312,3−3 + y231,−3 + y1−32 − y231,−3−11 − y1−32,−22 − y2−13,1 − y312 ,

Z =y3−21,21−1 + y123,1−1 + y312,−1 + y2−13 − y311,−1−22 − y2−13,−11 − y3−21,2 − y123 .

(2)

with s and r labeling the sender and receiver spacecrafts, respectively, and l labeling the direction of

laser light propagation. The expression for the single-arm response to GW, yGW
slr (t), is given by

yGW
slr (t) =

Φl(t − k̂ · R̂s − Ll)− Φl(t − k̂ · R̂r)

2(1 − k̂ · n̂l)
, (3)

where the vectors R̂i, n̂l , k̂ denote the position of the i−th spacecraft, the unit vector along l-th arm

and the direction of GW propagation, respectively. The length, Li, of the i-th arm is approximated as

constant in the first generation TDI. The quantity Φl , given by

Φl = F+
l h+ + F×

l h× , (4)

is the strain response of arm l in the long-wavelength approximation with F+,×
l being antenna

pattern functions and h+,× being the two GW polarization waveforms of a plane wave in the

Transverse-Traceless gauge. The antenna patters are defined by

[
F+

l

F×
l

]
=

[
cos(2ψ) − sin(2ψ)

sin(2ψ) cos(2ψ)

] [
U+

l

U×
l

]
. (5)

with ψ being the polarization angle and the U+,×
l defined by

U+
l =(n̂l ⊗ n̂l) : ϵ+ , (6)
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U×
l =(n̂l ⊗ n̂l) : ϵ+ , (7)

where ϵ+,× are the polarization tensors in the fiducial wave frame (as defined in [27]) that depend

on the sky location of the GW source. Here, the symbol U : V = ∑i,j UijVij denotes the contraction

operation on arbitrary tensors U and V and, for arbitrary vectors a and b, (a ⊗ b)ij = aibj. Of the three

TDI combinations A, E, and T, the first two carry a significantly larger GW strain response from a given

source than the last. Therefore, the combination T is generally left out of GW search considerations.

When generating the TDI combinations for a given source, we compute the 24 time-delayed single arm

responses, yslr, before linearly combining them, following Equation (2), to get X, Y, Z.

In data analysis, one works with a finite length uniformly sampled time series represented as a

row matrix d = (d0, d1, . . . , dN−1), where dk = d(tk) and tk = k∆ with ∆ being the sampling interval.

Typically, mock LISA data is generated with ∆ = 15 sec, which corresponds to a maximum frequency

bandwidth of 1/30 ≈ 33 mHz following the Nyquist sampling theorem. In searches for specific types

of signals, computational savings may be obtained by resampling the data to have a higher ∆ if the

maximum frequency bandwidth of the signals involved is lower. However, directly undersampling a

TDI combination by computing the samples of the single arm responses, yGW
slr , with a larger ∆ causes

significant numerical error when introducing the time shifts required in Equation (3) since they are

smaller than even the sampling interval of 15 sec. Therefore, in this paper, we keep the original LDC

sampling interval when generating the GW strain responses and the TDI combinations, although

the implementation of downsampling is clearly a low hanging fruit for speeding up our codes in

the future.

Each TDI combination can be described by the data model,

d
I
= h

I
+ nI , (8)

where d
I

denotes the TDI combination I, with I ∈ {A, E, T}, h
I

denotes the GW strain signal, and nI

the noise realization. Note that in the case of multiple overlapping GW signals, h
I

can be split into a

sum of resolvable signals and unresolved signals. The latter contribute to the noise realization along

with sources of instrumental noise. In this paper, in line with most other studies of the EMRI problem,

we consider the simplified problem where nI is purely instrumental noise and h
I

is the signal from a

single GW source.

2.2. Noise Model and Signal to Noise Ratio

Due to the lack of real data, the noise realization in most studies of LISA data analysis is assumed

to be from a stationary Gaussian noise process. The LDC manual [27] provides theoretically derived

analytical expressions for the power spectral densities (PSDs) of the noise processes in the TDI

combinations. For the PSDs of the A and E combinations, the expressions are

SA
n ( f ) = SE

n ( f ) = 8 sin2 ωL
[
4(1 + cos ωL + cos2 ωL)SAcc + (2 + cos ωL)SIMS

]
. (9)

where f is the Fourier frequency, w = 2π f is the corresponding angular frequency, and L is the

(assumed constant) arm length. Under the specific noise model called SciRDv1, the acceleration noise

SAcc and the Instrumental/Optical Metrology System noise SIMS are given by [32]

SAcc( f ) =9.0 × 10−30
[
1 +

(0.4mHz

f

)2][
1 +

( f

8mHz

)4]
,

SIMS( f ) =2.25 × 10−22
[
1 + (

2mHz

f
)4
]

.

(10)
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Given a PSD Sn( f ) and the assumption of Gaussianity, a natural inner product can be defined on the

vector space of equal length finite time series as

(a|b) = 1

T

N−1

∑
k=0

ãk b̃∗k
Sn( fk)

, (11)

where x̃ denotes the DFT of a time series x = (x0, x1, . . . , xN−1),

x̃ = FxT , (12)

Flm = e−2πilm/N , (13)

and fk = k/T, k = 0, 1, . . . , N − 1, with T being the data duration in seconds. We note that, logically,

the inner product notation above should also carry the TDI index I ∈ {A, E, T} due to the dependence

on the respective PSD. However, we only deal with the combinations A and E in this paper and the

two have identical PSDs. Therefore, for simplicity of notation, we have dropped the index on the inner

product symbol. In terms of the inner product, one can define the SNR of a signal as,

SNR2 = (h
A|hA

) + (h
E|hE

) . (14)

It should be noted that, due to the presence of noise, the SNR of an estimated signal will differ by a

random amount from that of the true signal in the data. It is also useful to define the overlap between

two signals, h
I
1, h

I
2 as,

ffAE =
(h

A
1 |h

A
2 ) + (h

E
1 |h

E
2 )√

(h
A
1 |h

A
1 ) + (h

E
1 |h

E
1 )

√
(h

A
2 |h

A
2 ) + (h

E
2 |h

E
2 )

. (15)

The overlap plays a key role [22] in the context of resolving multiple sources for deciding if an

estimated signal matches any of a set of true signals. In the case of a single EMRI signal, the overlap

between the estimated and true signals (in simulated data) can serve to diagnose the presence of

degeneracies in the parameter space that show up as a large overlap despite large parameter estimation

errors. In addition to using both TDI combinations for overlap, one can also define overlap between

individual combinations by setting the other combination to zero. These will be designated as fA and

fE, corresponding to setting hE
1,2 = 0 and hA

1,2 = 0, respectively, in Equation (15).

2.3. Signal Model: EMRI Waveform

As mentioned earlier, the current standard EMRI waveform used in studies of data analysis

methods as well as the LDCs is the AK waveform. In total, the AK waveform is characterized by

14 parameters: { µ, M, λ, S/M2, e0, ν0, θs, ϕs, θk, ϕk, ϕ0, γ̃0, α0, D }. Here, µ and M represent the

masses of the compact objects (COs) and the massive black hole (MBH), respectively. The parameter λ

corresponds to the inclination angle between the angular momentum of the COs and the spin direction

of MBH. S/M2 denotes the magnitude of the MBH’s spin. The parameters e0, ν0, ϕ0, γ̃0, and α0 refer

to the initial eccentricity, the initial orbital frequency, and the initial angles associated with the orbit

rotation, the pericenter procession, and the Lense-Thirring precession, respectively. The angles θs and

ϕs represent the ecliptic colatitude and longitude, respectively, of the sky location of the source in the

SSB frame and θk, ϕk represent the polar and azimuthal angles, respectively, of the MBH spin in the

SSB frame. Finally, D represents the distance between the source and the SSB center. The polarization

angle ψ depends on θs, ϕs, θk, and ϕk and stays constant in a static source frame [59].

To obtain the AK waveform for a given set of signal parameters, the ordinary differential equations

(ODEs) given below need to be solved for the mean anomaly ϕ, the orbital frequency ν, the azimuthal
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angle of the pericenter precession γ̃, the eccentricity of the orbit e, and the azimuthal angle of the

Lense-Thirring precession α.

dϕ

dt
= 2πν , (16)

dν

dt
=

96

10π
(µ/M3)(2πMν)11/3(1 − e2)−9/2

{[
1 + (73/24)e2 + (37/96)e4

]
(1 − e2)

+(2πMν)2/3
[
(1273/336)− (2561/224)e2 − (3885/128)e4 − (13147/5376)e6

]

−(2πMν)(S/M2) cos λ(1 − e2)−1/2
[
(73/12) + (1211/24)e2

+(3143/96)e4 + (65/64)e6
]}

, (17)

dγ̃

dt
= 6πν(2πνM)2/3(1 − e2)−1

[
1 +

1

4
(2πνM)2/3(1 − e2)−1(26 − 15e2)

]

−12πν cos λ(S/M2)(2πMν)(1 − e2)−3/2 , (18)

de

dt
= − e

15
(µ/M2)(1 − e2)−7/2(2πMν)8/3

[
(304 + 121e2)(1 − e2)

(
1 + 12(2πMν)2/3

)

− 1

56
(2πMν)2/3

(
(8)(16705) + (12)(9082)e2 − 25211e4

)]

+e(µ/M2)(S/M2) cos λ (2πMν)11/3(1 − e2)−4
[
(1364/5) + (5032/15)e2

+(263/10)e4
]

, (19)

dα

dt
= 4πν(S/M2)(2πMν)(1 − e2)−3/2 . (20)

Since the ODEs generally evolve slowly, we follow the solution described in [27] of using a fifth-order

Cash-Karp Runge-Kutta ODE solver [28] with a cadence of 15360 seconds, corresponding to a timescale

of a few hours, followed by interpolating the solution to a cadence of 15 seconds. Having acquired

the solutions to the ODEs, one proceeds to compute the GW polarization waveforms as described

schematically below.

Denoting the combined initial phase of the i-th harmonic as Φi
0 = nϕ0 + 2γ̃0 + mα0, i = 1, 2, ...,

(the map from n and m to i being unimportant here) and absorbing amplitude factors such as 1/D that

are common to all harmonics in an overall parameter A, we get

h
i
+,×(Θ) = Asi

+,×(θ
′) = A Re(eiΦi

0 xi
+,×(θ)) , (21)

where Θ is the set of 14 EMRI parameters, θ
′

denotes the 13 parameters other than A, and θ denotes the

10 parameters excluding A, ϕ0, γ̃0, and α0. Thus, Θ = θ
′ ∪ {A} and θ′ = θ ∪ {ϕ0, γ̃0, α0}. In agreement

with the number of parameters they depend on, we call h
i
+,×(Θ), si

+,×(θ′) and xi
+,×(θ)) the 14, 13, and

10-dimensional polarization waveforms, respectively. (The expression for xi
+,×(θ)) is provided in [55]).

As with the calculation of single arm responses, the calculation of the harmonics is parallelized in our

code (using OpenMP [30]) before they are summed, which speeds up the calculation of the polarization

waveforms substantially.

3. Generalized Likelihood Ratio Test

3.1. LLR

Under the assumption of Gaussian stationary noise, the log-likelihood (LLR) of the data, d
I
,

I ∈ {A, E}, described in Section 2 is given by

Λ(Θ) = ∑
I∈{A,E}

[
−(h

I
(Θ)|hI

(Θ)) + 2(d
I |hI

(Θ))
]

, (22)
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To distinguish the true but unknown signal present in the data from h
I
(Θ), which is used in the

evaluation of the LLR at a given point in parameter space, the latter is called a template.

In both the Generalized Likelihood Ratio Test (GLRT) and Maximum Likelihood Estimation

(MLE), the LLR is maximized over Θ,

LG = Λ(Θ̂) , (23)

Θ̂ = argmax
Θ

Λ(Θ) , (24)

with the value, LG, of the global maximum serving as the detection statistic and its location, Θ̂,

providing the estimated values of the parameters. The parameter A can always be maximized over

analytically by solving for ∂Λ(θ′, A)/∂A = 0, which gives

LG = max
θ′

ρ(θ′) , (25)

ρ(θ
′
) = max

A
Λ(Θ) =

[
∑I∈{A,E}(d

I |sI(θ
′
))
]2

[
∑I∈{A,E}(s

I(θ′)|sI(θ′))
] , (26)

with the maximizer being

Â = argmax
A

Λ(Θ) =

[
∑I∈{A,E}(d

I |sI(θ
′
))
]

[
∑I∈{A,E}(s

I(θ′)|sI(θ′))
] . (27)

In the following, we call ρ(θ′) the 13-dimensional log-likelihood, with further layers of maximization

producing functions that will be referred to by the corresponding number of parameters that are

not maximized over. The search for the global maximum of ρ(θ′) over the 13 parameters, θ′, in

Equation (25) is the main challenge in EMRI data analysis since the number of evaluation points

required in a grid-based search is incredibly large.

A dimensionality reduction method was proposed in [59] that attempts to split the maximization

of ρ(θ′) into a nested analytical inner maximization over the three initial angles, ϕ0, γ̃0, α0, and an

outer numerical maximization over the remaining parameters θ. Briefly, this method is based on the

fact that by combining the antenna patterns F+,×
l of a given arm l with the 13-dimensional polarization

waveform (c.f., Equation (21)), the corresponding 13-dimensional single-arm strain response si
l(θ

′
)

arising from the i-th harmonic is expressed as

si
l(θ

′
) =F+

l si
+(θ

′
) + F×

l si
×(θ

′
) ,

= cos(Φi
0)

[
F+

l Re(xi
+(θ)) + F×

l Re(xi
×(θ))

]

− sin(Φi
0)

[
F+

l Im(xi
+(θ)) + F×

l Im(xi
×(θ))

]
,

= cos(Φi
0)xi

l,1(θ)− sin(Φi
0)xi

l,2(θ),

=
2

∑
p=1

ai
pxi

l,p(θ) .

(28)

Due to linearity, it follows that the TDI signal generated by the i-th harmonic for combination I is

given by

sI,i(θ
′
) = cos(Φi

0)xI,i
1 (θ)− sin(Φi

0)xI,i
2 (θ),

=
2

∑
p=1

ai
pxI,i

p (θ) , (29)

(ai
1)

2 + (ai
2)

2 = 1 , (30)
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where the time delays involved in the generation of TDI combinations appear only in the

time-dependent xI,i
p (θ) above. Thus, the initial angles are absorbed in the set of linear coefficients

ai
p, much like the set of 4 linear coefficients that appear in the consideration of a single continuous

wave source [60]. In the latter, these linear parameters are mutually independent and can easily be

maximized analytically, which considerably simplifies the subsequent maximization of the resultant

function, called the F-statistic, over the remaining parameters.

It is apparent from simply counting degrees of freedom that implementing the same trick for

EMRI requires the number of harmonics to be restricted to 3 in order to treat the 6 linear coefficients

ai
j, i = 1, 2, 3, subject to the 3 equality constraints (c.f., Equation (30)), as mutually independent and

to invert the 3 initial angles from them. In [59], this restriction is used to perform the maximization

over the ai
j, i = 1, 2, 3 analytically, producing a 10 dimensional fitness function that is then maximized

numerically. To fix the three harmonics, a physically motivated assumption about the dominance

of their contribution to the total SNR of the signal is used. However, as illustrated in Table 1, the

restriction to 3 harmonics has the shortcoming that (a) the dominant harmonics depend on the true

parameters of a signal, (b) the SNR contribution of the top three harmonics can fluctuate significantly,

and (c) the estimated Â, hence the estimated D, depends on the choice of the three harmonics and

different choices of harmonics may get inconsistent estimates of D. Hence, it is not safe to assume that

the same reduced set of 3 harmonics will work the best for every EMRI source.

Table 1. Illustration of variation in the order of contributions of harmonics to the total SNR of an EMRI

signal as a function of its parameters. The harmonics are labeled by a single index i, varying from 1 to 25

in LDC, with the mapping of i to n and m given by n = floor((i − 1)/5) + 1 and m = mod(i − 1, 5) + 1).

Each column, besides the leftmost, corresponds to one set of EMRI signal parameters and lists the

indices of harmonics in descending order of their contribution to the total signal SNR (comprised of

25 harmonics). Each entry in the table is of the form C/F, where C is the index based on the SNR

defined in Equation (14) and F is the index based on a computationally cheaper surrogate defined as

the SNR of the strain signal [55], Φ1 − Φ2, in the long-wavelength approximation where Φl is defined

in Equation (4). (The noise PSD used in the latter is given in [33].) The two ways of computing the SNR

order of the harmonics agree well with each other, especially for the moderately eccentric (∼ 0.228)

systems in column 2, 3, 4. The column labeled by LDC parameters corresponds to the EMRI parameters

given as non-blind injection in LDC-1.4 [27] and also listed in Table 2. For each of the other columns,

only one parameter was changed and this is noted in the heading of the column. We also provide the

total SNR contributed by the top 3 and the top 10 harmonics, as fractions of the total SNR contributed

by 25 harmonics, in the rows labeled as SNR fraction.

SNR order
(descending)

LDC
parameters

µ = 10M⊗ µ = 100M⊗ e0 = 0.5 e0 = 0.6

1 7/7 7/7 7/7 7/7 17/12
2 8/8 8/8 8/8 12/12 22/17
3 12/12 12/12 12/12 8/8 18/22

SNR fraction 0.849/0.887 0.826/0.876 0.906/0.904 0.702/0.736 0.673/0.746

4 13/13 13/13 6/6 13/13 23/7
5 6/6 17/6 9/9 17/17 12/2
6 9/9 6/9 13/13 18/2 13/12
7 17/17 9/17 10/17 22/18 7/18
8 18/11 18/11 17/10 23/22 16/23
9 11/14 11/14 11/14 6/6 21/8

10 14/2 14/18 14/11 11/3 8/3
SNR fraction 0.985/0.987 0.981/0.985 0.992/0.991 0.945/0.943 0.945/0.943
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Figure 1. Cumulative SNR fractions over harmonics in descending order for the 5 signal parameters

in Table 1.

3.2. The 10-Dimensional Search

In our method, we avoid the above issues associated with restricting the number of harmonics to

3 by keeping a larger number of harmonics in the templates and carrying out the inner maximization

over the initial angles numerically. Switching to numerical maximization over the initial angles not

only obviates the need for restricting harmonics but also confers some benefits. This is illustrated

in Table 1 and Figure 1, where we have compared the effect of retaining the top 10 harmonics with

the top 3 on the SNR. First, retaining the top 10 harmonics in the templates considerably stabilizes

their fractional SNR contribution compared to 3 harmonics. Secondly, considering the case of high

eccentricity, the set of top 10 harmonics, unlike the top 3, remains almost the same across a wider

range of signal parameters despite variations in the order of their SNR contributions. For a given

location in the 13-dimensional parameter space, the 10 loudest harmonics are obtained in our method

using the computationally cheap SNR calculation as outlined in the caption of Table 1. We see that this

agrees quite well with the exact SNR calculation (c.f., Equation (14)) as far as identifying the dominant

harmonics is concerned.

The nested inner maximization over the initial angles, ϕ0, γ̃0, α0, is carried out using the Simplex

algorithm of Nelder and Mead [29], which has guaranteed convergence to a local maximum. This

turns out to be quite effective because the 13-dimensional LLR varies much more slowly over the initial

angles compared to, for example, the six parameters related to the ODEs. Consequently, as illustrated

in Figure 2, the 13-dimensional LLR usually contains only a few peaks over the 3-dimensional space of

the initial angles that are, moreover, equal or comparable in magnitude to the highest peak. Thus, to

find the maximum value over the initial angles, it is sufficient to use a local maximizer to converge

to any one of these local peaks. To ensure that we get the value of the global maximum within the

3-dimensional space, we use a grid of 32 different starting points for the local maximization (e.g.,

([0, 0.5π, 1.0π, 1.5π] for ϕ0, α0 and [0, 0.25π] for γ̃0) and select the best solution.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 January 2024                   doi:10.20944/preprints202401.1586.v1

https://doi.org/10.20944/preprints202401.1586.v1


11 of 21

Figure 2. Illustrations of the peak structure of the function ρ(θ′) using two 2-dimensional planar

cross-sections of the 3-dimensional space formed by the three initial angles. The plane on the left is

2ϕ0 + 2γ̃0 − α0 = 5.1051 and the plane on the right is 2ϕ0 + 2γ̃0 = 1.9635. The X and Y axes lie in these

planes and the range along both is [−π, π]. Other planes exhibit similar patterns as above. The figure

is produced using the noise realization in LDC-1.4 [27] data and an arbitrary injected signal.

Although numerical maximization over the initial angles incurs additional computation compared

to the more restrictive analytical approach outlined in Section 3, its cost is reduced considerably by

optimizing the code implementation as follows. The key idea is to apply the TDI linear decomposition

in Equation (29) to separate the parameters ϕ0, γ̃0, α0 from the inner product (d
I |sI(θ

′
)) and

(sI(θ
′
)|sI(θ

′
)). Thus, we have

(d
I
(θ

′
)|sI(θ

′
)) =

N

∑
i=1

2

∑
p=1

ai
p(d

I ∣∣xI,i
p (θ)) ,

(sI(θ
′
)|sI(θ

′
)) =

N

∑
i=1

N

∑
j=1

2

∑
p=1

2

∑
q=1

ai
pa

j
q(xI,i

p (θ)
∣∣xI,j

q (θ)) .

(31)

where N is the number of harmonics involved and the parameters ϕ0, γ̃0, α0 are absorbed in the linear

coefficients ai
p, a

j
q. For a given θ, precomputing the inner products (d

I ∣∣xI,i
p (θ)) and (xI,i

p (θ)
∣∣xI,j

q (θ)) in

the above expressions allows significant savings in computational cost when using a local maximizer

over the three initial angles since they appear only in the set of coefficients {ai
p}. Further savings are

obtained by neglecting the off-diagonal inner products above between different harmonics, which

tend to be very small. In addition, OpenMP is used to parallelize and speed up the evaluation of

the inner products. As a result of the above optimizations, the computational cost of each run of the

local maximization is on the millisecond scale using a 1.6 GHz 8-core processor, which is negligible

compared to the time (on the order of seconds) taken by the other steps in the algorithm.

4. Particle Swarm Optimization

The maximization of the LLR over the 10 parameters left over after (a) analytical maximization

over A, and (b) local maximization over the initial angles, must be carried out numerically. As

discussed earlier, we use PSO for this step. A brief review of the PSO algorithm is provided below.

PSO is a nature-inspired optimization algorithm inspired by the social behavior of birds and fish,

where individuals in a group coordinate their movements to find the best solution to an optimization
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problem. PSO has been successfully applied in various fields, including engineering, finance, and

machine learning.

The PSO algorithm solves the optimization problem

x∗ = argmax
x∈D⊂RM

f (x) , (32)

f (x∗) ≥ f (x) , ∀x ∈ D , (33)

where the function f (x) to be maximized is called the fitness function and the space D is called the

search space. (The fitness function in our case is the 10-dimensional LLR.) This is accomplished in PSO

using a set of particles exploring the search space iteratively, where a particle is simply a location in

R
M. Each particle represents a potential solution to the optimization problem, and its movement is

influenced by both its own experience and the experiences of its neighboring particles.

The dynamics of a particle in PSO is governed by the following equations (with t representing an

iteration). The position of a particle is updated following the rule:

xi(t + 1) = xi(t) + vi(t + 1) , (34)

where xi(t) is the position of particle i at time t, and vi(t + 1) is the displacement (called velocity in

PSO) update at time t + 1. The starting positions and velocities of the particles are commonly picked

randomly from a uniform distribution over D. Using xj to denote the j-th component of a vector

x = (xo, x1, . . . , xM−1), the velocity is updated following the rule:

v
j
i(t + 1) = wv

j
i(t) + c1r1(p

j
i(t)− x

j
i(t)) + c2r2(gj(t)− x

j
i(t)) , (35)

where w is the inertia weight, c1 and c2 are acceleration coefficients, r1 and r2 are uniformly distributed

random variables between 0 and 1, pi(t) is the best position of particle i so far (called its personal

best or pbest), and g(t) is the best position in the entire swarm so far (called the global best or gbest).

Here, a position is better than another if its corresponding fitness value is higher. The inertia weight

determines the influence of the previous velocity on the current velocity. The corresponding term in

the dynamical equation promotes exploration of the search space by a particle. A common choice is

to use a linearly decreasing inertia weight over iterations. The acceleration coefficients control the

attraction strengths of personal best (c1) and global best (c2) on the movement of the particle. A typical

setting is c1 = c2 = 2.0. These terms promote the convergence of the algorithm towards previously

identified good solutions. In addition to these parameters, it is necessary to constrain the velocities of

particles in order to prevent the entire swarm from quickly leaving the search space. The velocity is

commonly constrained by a parameter called the maximum velocity, Vmax, with −Vmax ≤ v
j
i(t) ≤ Vmax

enforced for all iterations.

Before updating the velocity of a particle, the pbest of all particles and the gbest are

updated following

if f (xi(t)) > f (pi(t)), then pi(t + 1) = xi(t + 1) , (36)

and

if f (xi(t)) > f (g(t)), then g(t + 1) = xi(t + 1) . (37)

In addition to the parameters listed above, one must set some hyperparameters in the PSO algorithm.

These include the number of particles Np, and the form of the initial and boundary conditions. We use

the so-called let-them-fly boundary condition in which no changes are made to the position or velocity

of a particle that leaves the search space but its fitness is set to −∞ Gradually, since the pbest and gbest

are always located inside the search space, the particle is drawn back in by their attractive forces. The

number of particles in the swarm influences the algorithm’s exploration and convergence. A small

swarm cannot efficiently explore a high-dimensional space while a larger swarm size may prematurely
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converge to a local maximum before the particles have had time to fully explore the search space.

Empirical evidence suggests that having about 40 particles works well in most cases and this is the

number adopted in this paper for obtaining our main results. Finally, one must set up a termination

criterion and a common one that is also adopted in this paper is reaching a predefined number, Niter,

of iterations.

There are several variations around the basic PSO algorithm described above that seek to achieve

different trade-offs between exploration and exploitation (i.e., convergence) phases of the search.

Delaying the onset of the exploitation phase leads to a higher computational cost for the search but

also improves the chances of finding the global maximum due to a more thorough exploration of the

search space. One such variant of PSO, and the one that is used in this paper, is Local Best PSO, which

introduces the concept of local best (lbest) positions, plocal,i(t), to replace gbest in the velocity update

equation. The lbest position is defined by,

f (plocal,i(t)) = max
j∈Ni

f (pj(t)) , (38)

where Ni is a set of particle indices called the neighborhood of particle i. The scheme used for setting

up Ni is called the swarm topology. Note that if Ni is set to be the entire swarm for each i, one

recovers the gbest PSO described earlier. In this paper, we use the so-called ring topology in which

the particle indices are arranged on a closed circle and the neighborhood of each particle is the set of

adjacent indices on both sides. For example, in our case, we set the neighborhood size to 3, which

means that only the particles immediately adjacent on either side consitute the neighborhood of a

given particle. By using lbest instead of gbest in the velocity update equation, the information about

the latter propagates only indirectly, through neighbors, and more slowly through the swarm. This

extends the exploration phase of the search, generally leading to better performance for more rugged

fitness functions.

To boost the performance of PSO, or any stochastic optimization algorithm for that matter,

a straightforward approach is to carry out Nruns ≥ 1 parallel runs of PSO with independent

pseudorandom number streams, where Nruns depends on the specific computational resources at

hand, and pick the final solution to be the one from the run that finds the best fitness value. If the

probability of any one run succeeding in a specified region around the global maximum is p, the

probability that all independent runs will fail to converge, (1 − p)Nruns , drops exponentially fast with

increasing Nruns. Thus, one can tune PSO to perform moderately well in any one run and simply use

the parallel runs strategy to obtain a significantly better overall performance.

For parametric inference problems, such as the one being considered here, there exists [38] an

objective strategy for tuning PSO. This is carried out using simulated data realizations, each containing

the same true signal. If PSO is successful in locating the global maximum of the fitness function in a

given realization, the fitness value it finds must be higher than the value at the location of the true

signal in the search space. Hence, one can measure the fraction of realizations in which this condition

is satisfied. The higher this fraction, the better tuned PSO is. In most cases, the tuning process involves

searching over combinations of Niter and Nruns alone, keeping all other PSO parameters fixed. We

provide more details about the choice of Niter and Nruns in Section 5.

5. Results

Given the computational resources available to us and the current level of parallelization used in

our code, we have limited our analysis to 0.5 year data in this paper. For similar reasons, the same

duration has been used widely in other studies [64,69,70] for exploring EMRI data analysis methods.

We have used the LDC-1.4 [27] signal as our injected signal but adjust the SNR to have three different

values, SNR ∈ {50, 40, 30} by setting the distance D to 1.535300 Gpc, 1.919125 Gpc, 2.558834 Gpc,

respectively. As a result, our injected signal has the same source parameters, given in Table 2, as used

in LDC-1.4 [27] except distance. The noise realization in the data analyzed here was obtained as the
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difference between the data and the signal provided in LDC-1.4 [27]. Thus, both our injected signal

and the noise realization are identical to the ones used in LDC-1.4 [27] except for (a) distance scaling,

and (b) reduction of data duration from 2 years to 6 months. Figure 3 shows the data and the injected

signal with SNR = 30 in the Fourier domain for TDI A and E combinations. We see that, at this SNR,

the signal is quite weak in the Fourier domain relative to the noise.

Figure 3. Magnitudes of the FFTs of the injected signal with SNR = 30 in blue and the corresponding

data in red where the TDI A combination is illustrated in the left panel and the TDI E combination is

displayed in the right panel. See their definations in Equation (1).

We carry out the 10-dimensional PSO search with the search ranges for the signal parameters set

to the values given in Table 2. The search range for a given parameter is expressed as a multiple of σ,

where σ is the CRLB on the estimation error for that parameter at the specified signal SNR. Thus, it is

important to note that the search range expands with the lowering of SNR since this increases σ. In

effect, since a lower SNR and larger search range makes it harder to locate the global maximum, the

strength of the challenge posed to the data analysis method is controlled in this study using SNR as

a parameter.

Table 2. The injected source parameters and range width used in our search. Currently, the location of

the injected signal is set at the center of the given range. We leave a more general search, with injected

signals placed non-centrally in the search space, to future work.

Parameters Values Search range

µ(M⊙) 2.9490000e+01 10σ
M(M⊙) 1.1349449e+06 10σ
λ(rad) 2.1422000e+00 10σ
S/M2 9.6970000e-01 10σ

e0 2.2865665e-01 10σ
ν0(Hz) 7.3804631e-04 200σ
θs(rad) 4.989445e-01 π
ϕs(rad) 2.232797e+00 2π
θk(rad) 1.522100e+00 π
ϕk(rad) 3.946698e+00 2π

Following the strategy outlined in Section 4, there are two primary tunable hyperparameters for

our PSO-based search, the number Nruns of independent runs of PSO and the number of iterations,
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Niter, per run. However, due to limitations of computational resources, we carried out a very coarse

tuning of these parameters based on a small set of runs and set Niter = 10000 and Nruns = 6. Moreover,

we were unable to run all 6 runs in parallel and had to carry them out serially. In order to save

computational resources, we terminated the sequence of runs once, as explained in Section 4, a

successful one appeared in which the fitness value exceeded that at the true location. As a result, the

actual Nruns was 3, 1, 3 for SNR ∈ {50, 40, 30}, respectively. It is important to note that, since we did

not pick the best of 6 runs, we may not have obtained the best possible fitness values.

The results obtained from the 10-dimensional search applied to the three data realizations

described above are summarized in Table 3. We also report the square root of the fitness values,

which provide the estimated SNRs, at the true signal location for both the 13-dimensional fitness

function, given by Equation (26), and the 10-dimensional one (c.f., Section 3.2) in which the three

initial angles are maximized over numerically using the Nelder-Mead method. Since the global

maximum over the three initial angles always shifts from their true values due to noise in the data, the

10-dimensional search always finds a better estimated SNR as observed. Further details about Table 3

are noted below.

1. As noted above, one expects a successful PSO search to find a 10-dimensional fitness value that

is larger than the one at the true location. We show the corresponding estimated SNR from the

successful run in bold.
2. The parameter estimation errors listed in the table are evaluated based on the best-fit locations of

the successful PSO search. For the parameters µ, M, λ, S/M2, e0, and ν0 we show their estimation

errors, defined as the difference between the true and best-fit values, relative to their respective

CRLB errors (evaluated at the true location), while the error is shown relative to its true value for

D. For the parameters θs, ϕs, θk, and ϕk, we simply show the error itself.
3. Having obtained the 10-dimensional best-fit location of the successful PSO search, which uses

templates restricted to the 10 loudest harmonics, we rerun the 3-dimensional local maximization

at this location using all 25 harmonics to estimate the three initial angles, ϕ0, γ̃0, α0. This is done

to reveal the influence of the weak harmonics beyond the loudest 10 on the initial angles. The

estimated initial angles are then used in the estimation of the distance D using Equation (27).
4. With the 14-dimensional recovered parameters in hand, the estimated TDI A and E signals can

be obtained by rerunning Equations (2) and (1). The overlap between the estimated A and E

signals and the corresponding true signals, computed separately and in combination as defined

in Equation (15), are reported as the quantities ffA, ffE, and ffAE.
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Table 3. Outputs from the PSO searches for different injected signal SNRs. For each of the 6 ODE

related parameters, we show two numbers (with σ denoting the standard deviation): (top) difference

between the estimated and true parameter values relative to the 1σ FIM error for that parameter, and

(bottom) the corresponding 1σ FIM error. Further details about the table are discussed in Section 5.

.

SNR 50 SNR 40 SNR 30

Square root of fitness values

True 13-dimensional
location

48.737520 38.994759 29.251997

True 10-dimensional
location

48.794305 39.02358 29.260434

Best location from
PSO

47.468231
39.266858
48.888190

39.176120
24.556344
29.525760
23.467734

Parameter estimation errors

µ(M⊙)
-1.060

4.872139e-02
1.048

6.090174e-02
0.311

8.120229e-02

M(M⊙)
0.875

3.582834e+03
-1.406

4.478545e+03
-0.376

5.971391e+03

λ(rad)
-0.905

9.471417e-03
1.349

1.183927e-02
0.368

1.578570e-02

S/M2 -0.915
3.153740e-03

1.334
3.942175e-03

0.363
5.256233e-03

e0
1.534

1.842612e-04
0.604

2.303266e-04
-0.057

3.071021e-04

ν0(mHz)
0.117

3.202842e-06
-2.215

4.003554e-06
-0.150

5.338071e-06

D(Gpc) -0.015 -0.008 -0.006
θs(rad) 0.059 0.045 0.065
ϕs(rad) 0.037 0.093 0.137
θk(rad) 0.004 -0.186 0.983
ϕk(rad) 0.044 3.426 -1.482

Overlap between the estimated and true signals

ffA -0.991000 0.983481 -0.982155
ffE -0.981498 0.968413 -0.954917

ffAE -0.987463 0.977902 -0.972034

We see from Table 3 that the estimated errors of the parameters µ, M, λ, S/M2, e0, ν0 are within

∼ 1σ level, parameter D within ∼ %1 level and the angles of sky locations θs, ϕs are within ∼ 10−2

radians level for all three SNRs. The errors in the parameters θk, ϕk for SNR ∈ {40, 30} are larger, which

may result from secondary peaks in the fitness as described in Section 1. As a complementary measure

of performance, we see that the overlaps, both individual and combined, between the estimated and

injected signals are ≳ 97%, which indicates that the signal waveform was estimated well. We observe

that the errors in the parameters related to the ODEs are smaller for the SNR 30 case, despite he higher

difficulty of this search, compared to SNR ∈ {50, 40}. If this is not a random fluctuation specific to the

data realization used, it either indicates the effect of degenerate secondary peaks in the fitness function,

which may be more prominent for higher SNR signals and could have attracted PSO, or indicates that

our current settings for PSO, governed mainly by computational constraints, may need to be changed

to higher Niter or Nruns to stabilize its performance.
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6. Discussion

We have demonstrated the first application of PSO to the EMRI search problem and shown that,

in the context of a limited search space and reduced data length, it performs well at reasonable SNR

levels. Using three different SNRs ({50, 40, 30}) and a search space with coordinate ranges limited to

10σ for all parameters except 200σ for ν0, with σ being the CRLB standard deviation, PSO was able to

successfully find the signal as shown by the small estimation errors for the parameters that affect the

intrinsic phase evolution of the GW signal and the overlaps between the estimated and true signals.

This sets the stage for further exploration of the EMRI search problem using PSO-based strategies.

Our study, which is ongoing, also provides useful guidance for hierarchical strategies in terms of the

coordinate ranges to which they should seek to constrain the main search.

The main innovation in our approach is the lifting of several restrictions and approximations

adopted in other proposed strategies. In particular, we use local numerical maximization over the three

initial angles ϕ0, γ̃0, α0, which obviates the need to severely restrict the number of harmonics used in

the templates and avoids the issues associated with such restrictions. We only make the reasonable

restriction of keeping the 10 loudest harmonics based on their contribution to the total SNR. Allowing

10 harmonics in the templates leads to a more stable SNR contribution as well as the order of the

dominant harmonics across a wider range of parameter values. Implementing certain optimizations in

the implementation of the local maximization makes its computational cost insignificant compared to

the rest of the code.

Besides the high-dimensionality of the search space, the main challenge in the EMRI search

is the high degeneracy of the fitness function, with many comparable secondary peaks due to the

superposition of multiple harmonics in the waveform. As discussed in [65], characterizing this

degeneracy is quite challenging and difficult to exploit in a search. One possible approach is to design

less degenerate fitness functions by employing [64] surrogate phenomenological EMRI waveform [62].

Another approach would be to use the fact that, like the initial angles, the parameters θk and ϕk

only contribute to the time-independent amplitude of the waveform and use local maximization

over them also, following the code optimization discussed in Section 3.2, leaving a potentially easier

8-dimensional search to PSO. Such a lower-dimensional search will be considered in our future work.

A key limitation of our study was the inability to test a much larger number of PSO iterations

or runs due to computational resource constraints. While successful in all the cases tested here, PSO

exhibited potentially unstable performance by showing a better performance at the lowest SNR that

was used. While this could have also been caused by degeneracies in the EMRI fitness function, a

better understanding requires much larger PSO runs. Computational resources also limited us from

studying the case of signals with weaker SNRs. We have conducted preliminary studies for a much

lower SNR of 20 in 0.5 year of data and find that PSO can still detect the signal by obtaining the square

root of the fitness value (e.g., ≈ 17) that are well above the ones obtained for pure noise (e.g., ≈ 10).

However, due to the lack of a sufficient number of iterations and runs, PSO tends to converge to

secondary maxima most of the time and incurs very large parameter estimation errors. In the future,

we will include GPU-based hardware acceleration in our code to alleviate this problem and push the

PSO-based search further using larger runs.
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FIM Fisher Information Matrix

GW Gravitational Wave

GLRT Generalized Likelihood Ratio Test

GPU Graphics Processing Unit

LDC LISA Data Challenge

LLR Log-Likelihood Ratio

LISA Laser Interferometer Space Antenna

MLE Maximum Likelihood Estimation

MCMC Markov Chain Monte Carlo

MLDC Mock LISA Data Challenge

MBH Massive Black Hole

MPI Message Passing Interface

ODE Ordinary Differential Equation
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PSO Particle Swarm Optimization

SNR Signal-to-Noise Ratio

SSB Solar System Barycenter

SI Swarm Intelligence
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