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Abstract: In recent years, the viability of employing multi-agent reinforcement learning technology for
adaptive traffic signal control has been extensively validated. However, owing to restricted communication
among agents and the partial observability of the traffic environment, the process of mapping road network
states to actions encounters numerous challenges. To address this problem, this paper proposes a multi-agent
deep reinforcement learning model with an emphasis on communication content (CMARL). The model
decouples the complex relationships between multi-signal agents through centralized training and
decentralized execution. Specifically, we first pass the traffic state through an improved deep neural network
to achieve the extraction of high-dimensional semantic information and the learning of the communication
matrix. Then the agents selectively interact with each other based on the learned communication matrix and
generate the final state features. Finally, the features are inputted to the QMIX network to achieve the final
action selection. We compare the CMARL model with 6 other baseline algorithms in real traffic networks. The
results show that CMARL can significantly reduce vehicle congestion, and run stably in various scenarios.

Keywords: adaptive traffic signal control; deep reinforcement learning; multi-agent reinforcement
learning; communication; traffic congestion)

1. Introduction

With the rapid development of urban motorization, there has been a serious imbalance between
the traffic demand and supply. Traffic congestion has become a major traffic problem faced by most
cities, and its environmental, social, and economic consequences are well documented [1-3].
Adaptive traffic signal control (ATSC) is one of the effective means to solve traffic congestion. It
balances the traffic flow in the road network by coordinating the timing scheme of traffic lights in the
control area, so as to reduce the number of stops, delay time, and energy consumption. Promoting
the development of traffic control systems is of great significance for giving full play to the traffic
benefits of the road system, mitigating environmental pollution, and assisting the sustainable
development of the traffic system.

In recent years, machine learning methods have been widely used in various fields as a new
artificial intelligence technology [4-7]. In the reinforcement learning (RL) based control framework,
the traffic signal control system no longer relies on heuristic assumptions and equations but learns to
optimize the signal control strategy through continuous trial and error through real-time interaction
with the road network. Therefore, compared with traditional traffic control methods, RL signal
control methods can usually achieve better control effects [8-10]. Early RL-based models solve traffic
signal control problems by querying g-tables that record traffic state, actions, and rewards [11,12].
This is easy to implement in environments with relatively simple traffic conditions, but the processing
method will occupy a large amount of storage space in a relatively complex traffic environment. In
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this regard, some scholars choose to use g-network to fit g-table, apply deep learning (DL) to enhance
the ability of RL-based algorithms to cope with complex environments, and propose the deep
reinforcement learning (DRL) algorithm [13]. Since then, a large number of studies have used DRL
algorithms to solve TSC problems, and have achieved good results in practice [14-17].

However, for signal control of multiple intersections within a certain area (the collaborative
control task under a multi-agent system), the partial observability of the traffic environment makes
the mapping from road network state to actions face many challenges [18]. Communication
collaboration between intersections has become an important link that cannot be ignored in effective
regional signal control, and the multi-agent reinforcement learning (MARL) algorithm has gradually
become one of the most promising methods in large-scale traffic signal control (TSC) [19-21].
According to the collaborative method, MARL-based control methods can be divided into two types:
centralized control methods and distributed control methods.

In the centralized control method, all signal lights (agents) in the road network are controlled by
a unified central controller. Each agent passes the observed local traffic state to the central controller,
and the central controller uses a deep network (DNN) to fit the joint action function value performs
action sampling from the corresponding policy network, and then sends it to each agent for
execution. The centralized method combines the information of all agents and implies a
communication and coordination mechanism between agents, so it is easier to obtain the global
optimal solution. However, action decisions also need to be made after the traffic state statistics of all
agents are completed, and the strategy formulation speed is relatively slow. In addition, as the
number of agents increases, the action space and state space of the algorithm will grow exponentially
[11]. Therefore, in large-scale TSC, the centralized learning paradigm is generally not used to avoid
the "curse of dimensionality" problem. The distributed control method assumes that the agent is in a
stable environmental state and regards other agents as part of the environment. Each agent optimizes
its own strategy in the direction of maximizing global reward based on its own observations, so the
scalability of distributed control methods is relatively good. However, the independent learning
method also makes the distributed control method more likely to fall into local optimality [22].

In order to solve this problem, most scholars have incorporated the communication mechanism
into the TSC model framework to achieve better control effects. Specifically, communication
mechanisms can be mainly divided into two types: "explicit" communication and "implicit"
communication [23,24]. The core of explicit communication is to explore how intelligent agents
communicate. Among them, the selection of communication objects can be achieved through
heuristic frameworks [25,26] and gating mechanisms [27]; the adjustment of communication content
and time is based on DL methods such as attention mechanisms [18,28], recurrent neural networks
[29], and graph neural networks [30-32]. Implicit communication mainly affects the behavioral
strategy formulation of the signal agent through value function decomposition and centralized value
function [20,23,33-35]. Most implicit communication MARL frameworks use the centralized-training
decentralized-execution (CTDE) learning paradigm, which allows agents to use global (road
network) information for centralized learning during the training phase. After the training is
completed, each agent can complete the selection of action execution only through its own
observation and local information interaction, which greatly reduces communication overhead while
ensuring agent communication cooperation.

In this article, we use the adjustment plan of signal timing as optimization variables, with the
goal of minimizing the average vehicle delay in the road network, and design a multi-agent deep
reinforcement learning model considering communication content based on QMIX [33], namely
CMARL. This model combines two communication mechanisms and belongs to the distributed
control method under the CTDE paradigm. The contributions of the present study lie in:

1. A MARL model that considers communication content is proposed to solve the regional TSC
problem. This model decouples the complex relationships among multi-signal agents through the
CTDE paradigm and uses a modified DNN network to realize the mining and selective transmission
of traffic flow features. It enriches the information content while reducing the communication
overhead caused by the increase in information.
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2. We design several comparison experiments using traffic data sets from the real world, and
prove the advantages of CMARL in regional traffic signal control tasks by comparing with six
baseline methods including the fixed signal control model and other five advanced DRL control
models.

The remainder of the article is organized as follows. Section 2 reviews related research on traffic
signal control based on DRL. Section 3 introduces the definition of the problem and the CMARL
algorithm framework proposed in this paper. Experiments and performance evaluation are
presented in Section 4. Finally, we conclude our work and future prospects in Section 5.

2. Literature Review

2.1. Single-agent Deep Reinforcement Learning in Traffic Signal Control

The setting of single-agent reinforcement learning mainly consists of two parts: the agent and
the environment. The essence of the model is a Markov decision process, called MDP, which is
represented by a 5-tuple containing environmental state, action, state transition function, reward, and
reward discount coefficient, that is, G = (S LA, P,r, 7/). DRL algorithms based on single agents are

mostly applied to traffic control problems at isolated intersections. Researchers usually conduct
specific research around the two directions of intersection environment feature extraction and model
structure improvement. Ma et al. [29] used historical traffic state as a time series image sequence,
mining the spatiotemporal feature information in traffic flow data based on the combined structure
of convolutional neural layers and LSTM, and achieved final signal control through the actor-critic
framework. Li et al. [36] constructed an adaptive control method for isolated intersection signal
control using signal phase and duration as actions and minimizing the average waiting time of
vehicles as the goal. Yazdani et al. [37] considered pedestrian travel needs and established a traffic
signal adaptive control method based on DRL to minimize delays for total intersection users (vehicle
flow and pedestrian flow). Bouktif et al. [38] considered both discrete and continuous decision-
making, and used the intersection phase and duration as optimization variables to propose a
parameterized deep g-network architecture. Similarly, Ducrocq et al. [39] proposed a new DQN
model for signal control in a traffic environment where intelligent connected vehicles and ordinary
vehicles mix, and adjusted the model architecture and hyperparameters through partial discrete
traffic state coding and delay-based reward functions.

2.2. Multi-agent Deep Reinforcement Learning in Traffic Signal Control

There are at least two agents in a multi-agent system, and there is usually a certain relationship
between the agents, such as cooperation, competition, or both competition and cooperation. The
collaborative control problem of multi-signalized intersections is generally a multi-agent control
problem under a cooperative relationship, and the traffic lights in the road network are regarded as
intelligent agents. Since the sensors carried by each agent only cover a small part of the overall
environment in actual situations, the signal control model based on multi-agent is usually described
as a decentralized partially observable Markov decision process (DEC-POMDP). This process can be
represented by the seven-tuple of G = <S A, P,r,Z,0, 7/) . Among them, o€ O represents the local

observation received by the agent, and Z is the observation function. During the training process
of the network, each agent learns the control strategy of traffic signals through continuous interaction
with the environment to achieve the purpose of alleviating traffic congestion. However, from the
perspective of each agent, the environment is unstable, which is not conducive to convergence. In
order to increase the stability of training, the communication interaction between agents has
gradually become a key issue that researchers pay attention to.

Wang et al. [12] extracted the state representation of the road network environment through the
k-nearest neighbor algorithm and stabilized the model based on spatial discount rewards. Zhu et al.
[17] designed a dynamic interaction mechanism based on the attention mechanism to promote
information interaction between agents. On this basis, they used a generalized network to process
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joint information and used ridge regression to update network parameters. Li et al. [40] proposed a
knowledge-sharing deep deterministic policy gradient (DDPG) model, in which each agent has
access to the state set collected by all agents. Yang et al. [41] constructed an RL framework that
considers multi-agent mutual information. They measured the correlation between input states and
output information through mutual information and optimized the overall model based on mutual
information. Wu et al. [22] and Chen et al. [42] both used LSTM to alleviate the instability of local
observable states in the environment. On this basis, Wu used a DDPG framework of centralized
training and distributed execution to share environmental parameters, and Chen realized
communication and collaboration between agents based on the value decomposition-based QMIX
network.

However, to apply these methods to actual engineering, communication limitations such as
bandwidth availability are still unavoidable and important issues [43]. The communication network
not only brings more useful feature information, but also increases the overall communication
overhead of the model to a certain extent. Therefore, how to limit additional communication
overhead while maintaining cooperation is still a major challenge facing the road network TSC
problem.

3. Methodology

3.1. Problem Definition

In CMARL, the traffic light in the road network is regarded as independent agent

n(n eN= {1,...,N }) , and each agent obtains state that characterize the current environment based on

sensor observations within the respective intersection range. The detailed definitions are as follows:

L)l
State: For each agent, the traffic state of the intersection consists of the number of vehicles {v,} -

Ln

in each lane, the number of queuing vehicles {g, }1:1

in each lane, and the current phase number p

of the traffic light. Among them, L, € L represents the number of entrance lanes at the intersection

n,and L isthe set of lanes at all intersections in the road network. The global state is the set obtained
by splicing the traffic states of each agent.

Action: The phase sequence of the signalized intersection is fixed. Action a is set to the
adjustment of the current green light phase, that is, whether to switch the current phase to the next
phase: a=1 indicates a switch to the next phase, and a =0 indicates that the current phase is
maintained. In addition, we set the maximum and minimum green light time and the constraint rules
of the yellow phase that must be implemented to convert the phase to ensure the reasonable passage
of traffic flow.

Reward: Select the distance delay d;, as the parameter to construct the reward function:

r=Y Y, (1)

n=1 I=1

3.2. Model Structure

Figure 1 shows the network framework of the CMARL model. As shown in the figure, the model
consists of three modules: information processing, feature mining, and action value function fitting.
Among them, the information processing module simulates the traffic flow in the actual road
network through the simulation of urban mobility (SUMO) and obtains the state parameters for
subsequent network training. The feature mining module is mainly composed of an improved DNN
R Vxini_dim

network. The input information of the network is the initial state s. € of each agent at time

t and the action @' € R" of the previous moment (the action in the initial state defaults to 0). The

RNxs_dim

. . . . . . NxN
output is the corresponding feature matrix s' € and the communication matrix m’' € R™

. Based on communication signals, each agent can selectively communicate with other agents in the
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road network to obtain the final state characteristic matrix §' € RY™™ The action value function

fitting network is consistent with the QMIX network. The overall network is mainly composed of the
local action value function network (red box network) and the joint action value function network
(green box network). The local action value function network belongs to the recurrent neural network
(RNN). The input and output of the network are the final feature matrix §' of each agent and the
action value function value Q'€ R™® of each action respectively. Based on Q! , each agent uses a
greedy strategy to select the optimal action a' € R" suitable for the current environment to act on
the environment. The environment then moves to the next state and returns the reward value
under the group of joint actions a'.

The joint action value function network also uses a neural network structure, consisting of a
yellow parameter generation network and a purple inference network. The difference is that the
weights and biases of the inference network are generated by the parameter generation neural
network. At time t, the parameter generation network accepts the global state S' and generates
weights and biases. On this basis, the inference network receives the action function values O of
all agents, and assigns the weights and biases generated by the generation network to its own
network, thereby inferring the joint action function value (., . During the training process of the

network, based on the joint action value function and reward function of the extracted data, we can
calculate the loss function and update the parameters of the network.
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Figure 1. Network framework of the CMARL.
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3.3. Feature Extraction Module

The main framework of the feature extraction module is a modified DNN. Specifically, we use
GRU to replace a hidden layer in the DNN network to better extract features. As shown in Egs. (2)-
(5), the features carrying traffic flow information and the historical action are first mapped to a
higher-dimensional vector space to obtain richer semantic information. Then based on the GRU
network, we mine the temporal features in the historical data, and obtain the final feature matrix s

and communication matrix 77 through two multi-layer perceptron structures with a single hidden

layer.
fi=Wy[sta™ ] +by, @)
h' =GRU(f,h"") ®)
£ =ReLU(Wp, (Wyyh' +byyy )+, ) )
§' =Wy (Wesi fi + by, ) + by (5)
m' = round (0 (Wyy, (Weah' +bey )+ 4, ) 6)

where the parameters with W and b as variables are the trainable weights and biases in the network

respectively; h'and /'™ are the hidden states at t time and -1 time respectively, [h’,hH ] e R4
; ReLU(-) and O'() are nonlinear activation functions, which can enhance the representation
ability and learning ability of the network; round(-) is a rounding function that can return the

operation result rounded according to the specified number of decimal places.

On this basis, each agent realizes communication and interaction with each other based on the
communication matrix. Taking the signal agent n as an example, the communication information
corresponding to agent 7 is located in the 1 row of the communication matrix 77, that is, n . This

is an 7 -dimension bull vector, which is a binary vector composed of 0 and 1. If m, , =1 (the »’

bit in m,), agent n will refer to the environmental information of the »’ agent to select an action;

otherwise, the environment information of agent number »” will be ignored. The above process can
be expressed by Egs. (7)-(8):

t

ot
Sn,l - mn,lsl ’
t t t
S, =M ,S
n,2 n,272°
» » (7)
t ot t
Sn,N - mn,N § N>
-t _ t t t
5 = concatenate(sm1 S s Sy ) (8)
where §! is the feature matrix that contains information about other agents, §'e RY*" .

To facilitate subsequent calculations, we use a fully connected layer to change the dimension of
5§ and add it to the state vector s, to generate the final state feature 5. Egs. (9)-(11) also take agent

n as an example to illustrate the flow of information during the generation of final state features.

5= ﬂatten(Ej) 9)
5. =0 +b) (10)
5= concatenate(sf,,fj) (11)

3.4. Action_value Function Fitting Module

The composition of the action value function fitting network has been introduced in Section 3.1
, so this section mainly shows the specific equations corresponding to the module, as well as the
detailed meaning of the parameters in it. Egs. (12)-(14) show the RNN network, that is, the local value
function fitting network. The input of the network is the feature matrix §° of all signal agents, and
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the output is the action function value ( corresponding to each action in the action set of the signal

light agent.
q, =ReLU(wq12(qu§’ +bq11)+bq12) (12)
H'=GRU(q,H"") (13)
0 =w,y, (qulH’ +b,,, ) +b,, (14)

where the parameters with w and b as variables are the trainable weights and biases in the network;
the definitionof H#'. H''. ReLU(-) are also consistent with the above, [H "t H" } e RVH-dim

The calculation of the joint action function value requires the optimal local action function value
as input. In order to implement distributed control under global optimal conditions, the joint action
value function and the local value function need to have the same monotonicity, which means the
action that can maximize the joint action value function should be equivalent to the local optimal
action set:

arg Inaxal Qtot (Zl 24 )
argmax, O, (xa)= : (15)

argmax, 0, (ZN Ay )
where the argmax, () is used to take parameters (set) of the function and return the action label
corresponding to the maximum value of the action value function; O (xa) . O (%.4;) -
O, (¥v-ay) are the action value function of road network and signal intersection respectively; x
« X, --- Xy are the historical actions of road network and signal intersection respectively.

The QMIX network converts the above equation into the constraint condition shown in Eq. (16)
, and satisfies the constraint by restricting the weights w;,, and w{,, in the joint action value

function network (making their values positive).
This section may be divided by subheadings. It should provide a concise and precise description of
the experimental results, their interpretation, as well as the experimental conclusions that can be

drawn.
—aaQQn‘?}(ti’:,)) >0, Vn (16)
Wiy = [Wois (RELU (w8 + by ) )+ B (17)
bl =w s +b_, (18)
Wiy = [Woss (ReLU(wm31s’ +bm31))+bm32 (19)
Blys = Wy (RELU (Wyi08” + By ) ) + Brvss (20)

In summary, the joint action function value @, of the road network can be calculated by the
following equation:
Ot = WiReLU (Wlt\/Ith +by, ) +by, (21)

where Q... is the action function value under greedy strategy selection.

electe

3.5. Model Update

The update method of CMARL is similar to that of traditional DQN. Both use TD error to
calculate the loss function and use the backpropagation algorithm to update network parameters.
This process involves two networks: the evaluation network and the target network. The two network
structures are identical, as shown in Figure 1, but the input and output information of the two
networks are different. The evaluation network takes the features and historical actions in state s as

~evalutate

input and outputs the actual joint action function value Q.

. The target network takes the

features and historical actions of the road network in state s” as input and calculates the target
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(expected) action function value Qp**

o . The difference between the output contents of the two

networks constitutes the TD error in state s:
TDerror= (R + ;/Q‘ﬂfget ) __ Aevalutate )

tot tot

Ot = max, (0 @

target

where R is the reward value in state s; O,

is the action function value corresponding to all actions
of the target network, Q\* e RY?,

It can be seen from the above that the calculation of TD error requires knowing the road network
state s at the current moment, the actual joint action taken a, the road network state after taking the
action, the reward R returned by reaching the state s’, and the actual joint actions & in history
proceed below. Therefore, the calculation of TD error is not real-time, but is performed after a certain

amount of experience has been accumulated. On this basis, the loss function is expressed as follows:
B
2
loss =" (TDerror e, )) (24)
b=1
where e, represents the b-th experience in a batch of extracted experiences; B represents the number

of extracted experiences.
In summary, the update process of the CMARL framework has the following expression:

1. Initialize the evaluation network, copy its network parameters to the target
network, and initialize the experience pool.

2. Parameters: The capacity of the experience pool M, the total number of iterations
K, the step size of each iteration T, and the evaluation-target network update
frequency p.

3. fork=1toKdo

4. Initialize the environment, obtain the global state S, of the initial road network,

the local observation state s, of each agent, and set the historical action @' of

each agent to 0.

5. fort=1to T do

6 S, s',d" - S, s, d

7. Taking the local observation state s and action @' as input, the feature

matrix §' is obtained based on the evaluation feature extraction network.

8. Using §' as input, the action function value ¢ in this state is obtained

based on the evaluation local value function fitting network.
9. Based on the greedy strategy, the action a' corresponding to the maximum
action value is selected with the probability of 1- £ , and randomly selected
with the probability of £ .

10. Execute the action, obtain the updated global state S'*', local observation s"*'
and the reward 7.

11. Taking the selected action function value @, ., and the global state S’ as
input, the joint action function value (), is calculated based on the
evaluation joint action value function network.

12. Store (S’,s’,a"1 ,a', 8™ st r’) as an experience in the experience pool E.

13. if len(E) >= M:

14. Extract B pieces of experience and update network parameters.

15 St St at—l - Sl+1 St+l at

16. te—t+1

17.  end for

18.  ifk%p==0:
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19. Copy the parameters of the evaluation network to the target network.
20. end for

4. Experiments
4.1. Experimental Setup

4.1.1. Simulation Setting

Based on the real data sets collected from the actual road network in Fushun City, China, we use
SUMO to build a simulation platform and implement model optimization and information
interaction through application program interfaces. The road network simulation environment is
shown in Figure 2. The range of the detectors we arrange in each entrance road is 100 meters, and the
range of the detectors in the exit road is 80 meters. For four-way intersections, we use a four-phase
signal control scheme of east-west straight, east-west left, south-north straight, and south-north left.
For three-way intersections, such as intersections 1, 2, and 7, the signal phase sequence is east-west
straight, east/west left, and south/north straight. The duration of the yellow light phase is set to 2
seconds.

In addition, to determine the optimal parameters of the model, we pre-trained the network with
the traffic configuration shown in Table 2. For the test phase, we refer to the traffic load of the real
data set to set the OD matrix of traffic flow distribution during peak hours (6:30-8:30) and off-peak
hours (14:00-16:00), as shown in Figure 3.

[b]

[~]
=]

b B

Figure 2. Schematic diagram of road network simulation environment.

Table 1. Traffic volume statistics of the real-world dataset.

Arrival rate (veh/300s)
Mean SD Max Min

Stage Duration (s)

Off-peak
hours
Peak hours  7200-14400 177.20 48.92 255 132

0-7200 103.55 15.15 139 89



https://doi.org/10.20944/preprints202401.1565.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 January 2024 doi:10.20944/preprints202401.1565.v1

10

Travel probability
0.39

- 0
- 0

0.23

Destination
Destination

0.01 0 0.02[Qeete}(

0.08

(b)

Figure 3. Traffic flow distribution during the test phase. (a) Traffic flow distribution of off-peak hours;
(b) Traffic flow distribution of peak hours.

Table 2. Model parameter value.

Parameter Value Parameter Value
B 32 greedy probability & 0.95-0.01
/4 0.95 initial learning rate Ir 0.001
M 1000 s_dim 16
K 200 h_dim 32
T 300 f dim 32
p 10 H_dim 64

4.1.2. Training Parameters Setting

The duration of each round of training of the CMARL model is 3600s. The parameter settings
during the training process are shown in Table 3. The values of these parameters are the results of
multiple experiments.

Table 3. Comparison of control performance of baseline methods.

Peak hours Off-peak hours
Queue
Model Waiting Travel Queue Waiting Travel

t:)gth time (s) time (s) length (m)  time (s) time (s)
FixedTime 23.59 86.35 218.80 10.15 44.35 173.80
DON 16.75 66.11 193.13 7.69 36.70 153.90
IQL 19.98 75.11 208.19 8.07 38.10 161.05
DDQNPER 18.84 71.11 199.36 8.19 39.06 162.05
QPLEX 15.62 65.04 195.05 7.09 35.65 156.49
MN_Light 14.91 66.83 193.88 6.63 35.02 157.05
CMARL 13.55 61.71 187.47 6.27 34.06 151.05

4.1.3. Baseline

(1) FixedTime: A traditional signal control method in which the signal lights run a fixed timing
scheme.
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(2) DON: A centralized control method in which all intersections are controlled by the same
agent. The agent directly fits the joint action value function based on the global environmental state,
and then selects the optimal joint action.

(3) IQL: A distributed control method, each intersection is equipped with independent
intelligent agents, and there is no additional information interaction between the intelligent agents.
Each agent optimizes its control strategy in the direction of maximizing global returns based on the
global environmental state.

(4) DDQNPER: A communication-free distributed control method that defines state and reward
functions simply and directly, and fits the action value function through Double DQN with
experience playback function.

(5) QPLEX: Each intersection is controlled by an independent agent, and the action value
function of each agent is decomposed into a state value function and an advantage value function.
The agent realizes the calculation of joint action values based on the multi-head attention mechanism,
and ensures the consistency of global and local optimality by constraining the value range of the
advantage value function. It is a distributed control method with implicit communication.

(6) MN_Light: This method uses bidirectional LSTM to mine the temporal characteristics of
historical traffic flow status and action information. It is a distributed control method for explicit
communication.This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental conclusions
that can be drawn.

4.2. Experimental Results

4.2.1. Comparative Experiment

This section shows the control effects of each baseline method and the CMARL model and
further analyzes and discusses the reasons for the above results. As shown in Table 3, we select three
indicators: queue length, waiting time, and travel time to evaluate the model effect. Among them, the
queue length and waiting time are respectively equal to the average queue length and queue time of
each intersection entrance lane during the simulation period, and the travel time is the average time
required for all vehicles in the road network to complete the scheduled trip. As can be seen from the
table, various types of DRL algorithms have better control effects than the FixedTime algorithm. In
order to further compare and demonstrate the control effects of various algorithms, we plot the
differences in various evaluation indicators between the above six DRL algorithms and the FixedTime
algorithm into a clustered column chart as shown in Figure 4. It can be seen that compared with basic
distributed control methods, such as IQL and DDQNPER, the centralized control method based on
DQN obviously has better control effects. DQN converged at the 82nd generation, while IQN and
DDQNPER converged at the 127th and 131st generation respectively. This is in line with our
inference, that is, the centralized method that collects all information implies a communication and
collaboration mechanism between agents, and can easily obtain the global optimal solution.
However, the basic distributed control method is more likely to fall into local optimality due to the
lack of information interaction between agents.

QPLEX and MN_Light belong to the distributed control methods of implicit communication and
explicit communication respectively. The former adds global state information during the training
process and realizes information interconnection by decomposing the global rewards according to
their respective contributions. The latter uses bidirectional LSTM to contact context information to
achieve temporal feature extraction in complex environments and enrich the state information that
the agent can receive. Compared with the previous two distributed methods, both have improved to
a certain extent in various evaluation indicators: taking peak hours as an example, compared with
DDQONPER, the queue length of QPLEX was reduced by 17.09%, and the waiting time was reduced
by 8.53%, the travel time was reduced by 2.16%. MN_Light's queue length was reduced by 20.86%,
the waiting time was reduced by 6.01%, and the travel time was reduced by 2.75%.
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Figure 4. Change diagram of various evaluation indicators of the DRL algorithms relative to the
FixedTime method. (a) Change diagram of peak hours; (b) Change diagram of off-peak hours.

The CMARL model established in this article combines two communication methods: implicit
communication and explicit communication. It uses an improved DNN to realize the mining and
selective transmission of high-dimensional features of traffic flow. While enriching information
content, it reduces communication overhead and has better control effects. Compared with the
optimal method MN_Light among the baseline methods, CMARL's queue length during peak hours
was reduced by 9.12%, the waiting time was reduced by 7.67%, and the travel time was reduced by
3.31%; the queue length during off-peak hours was reduced 5.43%, the waiting time decreased by
2.72%, and the travel time decreased by 3.83%.

4.2.2. Ablation experiment

To further explore the effectiveness of the proposed feature extraction module, we designed an
ablation experiment as shown below. Figure 5 shows the degree of improvement in each evaluation
index of the QMIX and CMARL compared to the MN_Light algorithm. It can be seen that after
removing the feature extraction module, the model control effect drops significantly. This
phenomenon is especially obvious during peak hours. During peak hours, CMARL's queue length
and queuing time were reduced by 9.73% and 5.64% respectively compared to QMIX; while during
off-peak hours, compared to QMIX, CMARL's queue length and queuing time were reduced by 8.87%
and 4.47% respectively. This is because there are many vehicles in the road network during peak
hours, and the spatiotemporal relationship between traffic flows is relatively complex. At this time,
relying only on the status information directly obtained by the detector, the agent cannot obtain
enough environmental information to determine the optimal action.

Queue Length (m) CMARL Queue Length (m) CMARL
10"(?, QMIX /AN QMIX

Travel Time (s) Waiting Time (s) Travel Time (s) Waiting Time (s)

(a) (b)

Figure 5. Comparison of QMIX and CMARL model effects. QMIX is the network framework of
CMARL after stripping off the feature extraction module. (a) Comparison of peak hours; (b)
Comparison of off-peak hours.
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5. Discussion

This paper designs a multi-agent deep reinforcement learning model with an emphasis on
communication content to solve the signal control problem of road networks. In order to alleviate the
instability of model learning caused by local observable states, we use a modified DNN network to
excavate and selectively share nonlinear features in traffic flow data, enriching the information
content and reducing the communication overhead caused by the increase of information. Using real
data sets, we conduct a comparative analysis between CMARL and six advanced traffic signal control
methods, and come to the following conclusions:

(1) CMARL can operate stably in a variety of scenarios and has good control effects. Compared
with the optimal method MN_Light among the baseline methods, CMARL's queue length during
peak hours was reduced by 9.12%, the average waiting time was reduced by 7.67%, and the average
travel time was reduced by 3.31%; the queue length during off-peak hours was reduced 5.43%, the
average waiting time decreased by 2.72%, and the average travel time decreased by 3.83%.

(2) In relatively complex traffic environments, further extraction of high-dimensional nonlinear
features helps the agent select optimal actions. After adding the feature extraction module, the model
control effect of QMIX was greatly improved, and the queue length and average waiting time during
peak hours were reduced by 9.73% and 5.64% respectively.

In future work, we will further expand the scale of the road network and explore the
applicability of different types of MARL in large-scale road network signal control problems.
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