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Abstract: In recent years, the viability of employing multi-agent reinforcement learning technology for 

adaptive traffic signal control has been extensively validated. However, owing to restricted communication 

among agents and the partial observability of the traffic environment, the process of mapping road network 

states to actions encounters numerous challenges. To address this problem, this paper proposes a multi-agent 

deep reinforcement learning model with an emphasis on communication content (CMARL). The model 

decouples the complex relationships between multi-signal agents through centralized training and 

decentralized execution. Specifically, we first pass the traffic state through an improved deep neural network 

to achieve the extraction of high-dimensional semantic information and the learning of the communication 

matrix. Then the agents selectively interact with each other based on the learned communication matrix and 

generate the final state features. Finally, the features are inputted to the QMIX network to achieve the final 

action selection. We compare the CMARL model with 6 other baseline algorithms in real traffic networks. The 

results show that CMARL can significantly reduce vehicle congestion, and run stably in various scenarios. 

Keywords: adaptive traffic signal control; deep reinforcement learning; multi-agent reinforcement 

learning; communication; traffic congestion) 

 

1. Introduction 

With the rapid development of urban motorization, there has been a serious imbalance between 

the traffic demand and supply. Traffic congestion has become a major traffic problem faced by most 

cities, and its environmental, social, and economic consequences are well documented [1–3]. 

Adaptive traffic signal control (ATSC) is one of the effective means to solve traffic congestion. It 

balances the traffic flow in the road network by coordinating the timing scheme of traffic lights in the 

control area, so as to reduce the number of stops, delay time, and energy consumption. Promoting 

the development of traffic control systems is of great significance for giving full play to the traffic 

benefits of the road system, mitigating environmental pollution, and assisting the sustainable 

development of the traffic system.  

In recent years, machine learning methods have been widely used in various fields as a new 

artificial intelligence technology [4–7]. In the reinforcement learning (RL) based control framework, 

the traffic signal control system no longer relies on heuristic assumptions and equations but learns to 

optimize the signal control strategy through continuous trial and error through real-time interaction 

with the road network. Therefore, compared with traditional traffic control methods, RL signal 

control methods can usually achieve better control effects [8–10]. Early RL-based models solve traffic 

signal control problems by querying q-tables that record traffic state, actions, and rewards [11,12]. 

This is easy to implement in environments with relatively simple traffic conditions, but the processing 

method will occupy a large amount of storage space in a relatively complex traffic environment. In 
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this regard, some scholars choose to use q-network to fit q-table, apply deep learning (DL) to enhance 

the ability of RL-based algorithms to cope with complex environments, and propose the deep 

reinforcement learning (DRL) algorithm [13]. Since then, a large number of studies have used DRL 

algorithms to solve TSC problems, and have achieved good results in practice [14–17].  

However, for signal control of multiple intersections within a certain area (the collaborative 

control task under a multi-agent system), the partial observability of the traffic environment makes 

the mapping from road network state to actions face many challenges [18]. Communication 

collaboration between intersections has become an important link that cannot be ignored in effective 

regional signal control, and the multi-agent reinforcement learning (MARL) algorithm has gradually 

become one of the most promising methods in large-scale traffic signal control (TSC) [19–21]. 

According to the collaborative method, MARL-based control methods can be divided into two types: 

centralized control methods and distributed control methods.   

In the centralized control method, all signal lights (agents) in the road network are controlled by 

a unified central controller. Each agent passes the observed local traffic state to the central controller, 

and the central controller uses a deep network (DNN) to fit the joint action function value performs 

action sampling from the corresponding policy network, and then sends it to each agent for 

execution. The centralized method combines the information of all agents and implies a 

communication and coordination mechanism between agents, so it is easier to obtain the global 

optimal solution. However, action decisions also need to be made after the traffic state statistics of all 

agents are completed, and the strategy formulation speed is relatively slow. In addition, as the 

number of agents increases, the action space and state space of the algorithm will grow exponentially 

[11]. Therefore, in large-scale TSC, the centralized learning paradigm is generally not used to avoid 

the "curse of dimensionality" problem. The distributed control method assumes that the agent is in a 

stable environmental state and regards other agents as part of the environment. Each agent optimizes 

its own strategy in the direction of maximizing global reward based on its own observations, so the 

scalability of distributed control methods is relatively good. However, the independent learning 

method also makes the distributed control method more likely to fall into local optimality [22]. 

In order to solve this problem, most scholars have incorporated the communication mechanism 

into the TSC model framework to achieve better control effects. Specifically, communication 

mechanisms can be mainly divided into two types: "explicit" communication and "implicit" 

communication [23,24]. The core of explicit communication is to explore how intelligent agents 

communicate. Among them, the selection of communication objects can be achieved through 

heuristic frameworks [25,26] and gating mechanisms [27]; the adjustment of communication content 

and time is based on DL methods such as attention mechanisms [18,28], recurrent neural networks 

[29], and graph neural networks [30–32]. Implicit communication mainly affects the behavioral 

strategy formulation of the signal agent through value function decomposition and centralized value 

function [20,23,33–35]. Most implicit communication MARL frameworks use the centralized-training 

decentralized-execution (CTDE) learning paradigm, which allows agents to use global (road 

network) information for centralized learning during the training phase. After the training is 

completed, each agent can complete the selection of action execution only through its own 

observation and local information interaction, which greatly reduces communication overhead while 

ensuring agent communication cooperation.  

In this article, we use the adjustment plan of signal timing as optimization variables, with the 

goal of minimizing the average vehicle delay in the road network, and design a multi-agent deep 

reinforcement learning model considering communication content based on QMIX [33], namely 

CMARL. This model combines two communication mechanisms and belongs to the distributed 

control method under the CTDE paradigm. The contributions of the present study lie in:  

1. A MARL model that considers communication content is proposed to solve the regional TSC 

problem. This model decouples the complex relationships among multi-signal agents through the 

CTDE paradigm and uses a modified DNN network to realize the mining and selective transmission 

of traffic flow features. It enriches the information content while reducing the communication 

overhead caused by the increase in information.  
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2. We design several comparison experiments using traffic data sets from the real world, and 

prove the advantages of CMARL in regional traffic signal control tasks by comparing with six 

baseline methods including the fixed signal control model and other five advanced DRL control 

models.  

The remainder of the article is organized as follows. Section 2 reviews related research on traffic 

signal control based on DRL. Section 3 introduces the definition of the problem and the CMARL 

algorithm framework proposed in this paper. Experiments and performance evaluation are 

presented in Section 4. Finally, we conclude our work and future prospects in Section 5. 

2. Literature Review 

2.1. Single-agent Deep Reinforcement Learning in Traffic Signal Control 

The setting of single-agent reinforcement learning mainly consists of two parts: the agent and 

the environment. The essence of the model is a Markov decision process, called MDP, which is 

represented by a 5-tuple containing environmental state, action, state transition function, reward, and 

reward discount coefficient, that is, , , , ,G S A P r γ= . DRL algorithms based on single agents are 

mostly applied to traffic control problems at isolated intersections. Researchers usually conduct 

specific research around the two directions of intersection environment feature extraction and model 

structure improvement. Ma et al. [29] used historical traffic state as a time series image sequence, 

mining the spatiotemporal feature information in traffic flow data based on the combined structure 

of convolutional neural layers and LSTM, and achieved final signal control through the actor-critic 

framework. Li et al. [36] constructed an adaptive control method for isolated intersection signal 

control using signal phase and duration as actions and minimizing the average waiting time of 

vehicles as the goal. Yazdani et al. [37] considered pedestrian travel needs and established a traffic 

signal adaptive control method based on DRL to minimize delays for total intersection users (vehicle 

flow and pedestrian flow). Bouktif et al. [38] considered both discrete and continuous decision-

making, and used the intersection phase and duration as optimization variables to propose a 

parameterized deep q-network architecture. Similarly, Ducrocq et al. [39] proposed a new DQN 

model for signal control in a traffic environment where intelligent connected vehicles and ordinary 

vehicles mix, and adjusted the model architecture and hyperparameters through partial discrete 

traffic state coding and delay-based reward functions. 

2.2. Multi-agent Deep Reinforcement Learning in Traffic Signal Control 

There are at least two agents in a multi-agent system, and there is usually a certain relationship 

between the agents, such as cooperation, competition, or both competition and cooperation. The 

collaborative control problem of multi-signalized intersections is generally a multi-agent control 

problem under a cooperative relationship, and the traffic lights in the road network are regarded as 

intelligent agents. Since the sensors carried by each agent only cover a small part of the overall 

environment in actual situations, the signal control model based on multi-agent is usually described 

as a decentralized partially observable Markov decision process (DEC-POMDP). This process can be 

represented by the seven-tuple of , , , , , ,G S A P r Z O γ= . Among them, o O∈  represents the local 

observation received by the agent, and Z  is the observation function. During the training process 

of the network, each agent learns the control strategy of traffic signals through continuous interaction 

with the environment to achieve the purpose of alleviating traffic congestion. However, from the 

perspective of each agent, the environment is unstable, which is not conducive to convergence. In 

order to increase the stability of training, the communication interaction between agents has 

gradually become a key issue that researchers pay attention to. 

Wang et al. [12] extracted the state representation of the road network environment through the 

k-nearest neighbor algorithm and stabilized the model based on spatial discount rewards. Zhu et al. 

[17] designed a dynamic interaction mechanism based on the attention mechanism to promote 

information interaction between agents. On this basis, they used a generalized network to process 
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joint information and used ridge regression to update network parameters. Li et al. [40] proposed a 

knowledge-sharing deep deterministic policy gradient (DDPG) model, in which each agent has 

access to the state set collected by all agents. Yang et al. [41] constructed an RL framework that 

considers multi-agent mutual information. They measured the correlation between input states and 

output information through mutual information and optimized the overall model based on mutual 

information. Wu et al. [22] and Chen et al. [42] both used LSTM to alleviate the instability of local 

observable states in the environment. On this basis, Wu used a DDPG framework of centralized 

training and distributed execution to share environmental parameters, and Chen realized 

communication and collaboration between agents based on the value decomposition-based QMIX 

network. 

However, to apply these methods to actual engineering, communication limitations such as 

bandwidth availability are still unavoidable and important issues [43]. The communication network 

not only brings more useful feature information, but also increases the overall communication 

overhead of the model to a certain extent. Therefore, how to limit additional communication 

overhead while maintaining cooperation is still a major challenge facing the road network TSC 

problem. 

3. Methodology 

3.1. Problem Definition 

In CMARL, the traffic light in the road network is regarded as independent agent 

{ }( )1,...,n n N∈ ≡N , and each agent obtains state that characterize the current environment based on 

sensor observations within the respective intersection range. The detailed definitions are as follows: 

State: For each agent, the traffic state of the intersection consists of the number of vehicles { }
1

nL

l l
v

=
 

in each lane, the number of queuing vehicles { }
1

nL

l l
q

=
 in each lane, and the current phase number ρ  

of the traffic light. Among them, nL ∈ L  represents the number of entrance lanes at the intersection 

n, and L  is the set of lanes at all intersections in the road network. The global state is the set obtained 

by splicing the traffic states of each agent. 

Action: The phase sequence of the signalized intersection is fixed. Action a  is set to the 

adjustment of the current green light phase, that is, whether to switch the current phase to the next 

phase: 1a =  indicates a switch to the next phase, and 0a =  indicates that the current phase is 

maintained. In addition, we set the maximum and minimum green light time and the constraint rules 

of the yellow phase that must be implemented to convert the phase to ensure the reasonable passage 

of traffic flow. 

Reward: Select the distance delay 
,

t

l nd  as the parameter to construct the reward function: 

,

1 1

 
nLN

t t

l n

n l

r d
= =

=  (1) 

3.2. Model Structure 

Figure 1 shows the network framework of the CMARL model. As shown in the figure, the model 

consists of three modules: information processing, feature mining, and action value function fitting. 

Among them, the information processing module simulates the traffic flow in the actual road 

network through the simulation of urban mobility (SUMO) and obtains the state parameters for 

subsequent network training. The feature mining module is mainly composed of an improved DNN 

network. The input information of the network is the initial state ini_dim

s

t Ns ×∈  of each agent at time 

t and the action 1t Na − ∈  of the previous moment (the action in the initial state defaults to 0). The 

output is the corresponding feature matrix 
s_dimt Ns ×∈  and the communication matrix 

t N Nm ×∈
. Based on communication signals, each agent can selectively communicate with other agents in the 
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road network to obtain the final state characteristic matrix 
f_dimt Ns ×∈

  . The action value function 

fitting network is consistent with the QMIX network. The overall network is mainly composed of the 

local action value function network (red box network) and the joint action value function network 

(green box network). The local action value function network belongs to the recurrent neural network 

(RNN). The input and output of the network are the final feature matrix 
ts


 of each agent and the 

action value function value 2t NQ ×∈  of each action respectively. Based on t

nQ , each agent uses a 

greedy strategy to select the optimal action t Na ∈  suitable for the current environment to act on 

the environment. The environment then moves to the next state and returns the reward value tr  

under the group of joint actions t
a . 

The joint action value function network also uses a neural network structure, consisting of a 

yellow parameter generation network and a purple inference network. The difference is that the 

weights and biases of the inference network are generated by the parameter generation neural 

network. At time t, the parameter generation network accepts the global state 
tS  and generates 

weights and biases. On this basis, the inference network receives the action function values tQ  of 

all agents, and assigns the weights and biases generated by the generation network to its own 

network, thereby inferring the joint action function value tot

tQ . During the training process of the 

network, based on the joint action value function and reward function of the extracted data, we can 

calculate the loss function and update the parameters of the network. 

 

Figure 1. Network framework of the CMARL. 
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3.3. Feature Extraction Module 

The main framework of the feature extraction module is a modified DNN. Specifically, we use 

GRU to replace a hidden layer in the DNN network to better extract features. As shown in Eqs. (2)-

(5), the features carrying traffic flow information and the historical action are first mapped to a 

higher-dimensional vector space to obtain richer semantic information. Then based on the GRU 

network, we mine the temporal features in the historical data, and obtain the final feature matrix 
ts

and communication matrix 
tm  through two multi-layer perceptron structures with a single hidden 

layer. 
1

1 f1 s f1,t t tf W s a b− = +   (2) 

( )1

1GRU ,t t th f h −=  (3) 

( )( )2 f 22 f 21 f 21 22ReLUt tf W W h b b= + +  (4) 

( )f 32 f 31 2 f 31 32

t ts W W f b b= + +  (5) 

( )( )( )f 42 f 41 f 41 42roundt tm W W h b bσ= + +  (6) 

where the parameters with W and b as variables are the trainable weights and biases in the network 

respectively; th and 1th −  are the hidden states at t time and t-1 time respectively, h_dim,t t 1 Nh h − × ∈  

; ( )ReLU ⋅  and ( )σ ⋅  are nonlinear activation functions, which can enhance the representation 

ability and learning ability of the network; ( )round ⋅  is a rounding function that can return the 

operation result rounded according to the specified number of decimal places. 

On this basis, each agent realizes communication and interaction with each other based on the 

communication matrix. Taking the signal agent n as an example, the communication information 

corresponding to agent n is located in the n row of the communication matrix 
tm , that is, t

nm . This 

is an n -dimension bull vector, which is a binary vector composed of 0 and 1. If 
,

1t

n n
m ′ =  (the n′  

bit in t

nm ), agent n will refer to the environmental information of the n′  agent to select an action; 

otherwise, the environment information of agent number n′  will be ignored. The above process can 

be expressed by Eqs. (7)-(8): 

,1 ,1 1

,2 ,2 2

, ,

,

,

,

t t t

n n

t t t

n n

t t t

n N n N N

s m s

s m s

s m s

=

=

=


 (7) 

( ),1 ,2 ,concatenate , ,t t t t

n n n n Ns s s s=
   (8) 

where t

ns


 is the feature matrix that contains information about other agents, _dimt N s

ns
×∈

  . 

To facilitate subsequent calculations, we use a fully connected layer to change the dimension of 
t

ns


 and add it to the state vector t

ns  to generate the final state feature t

ns


. Eqs. (9)-(11) also take agent 

n as an example to illustrate the flow of information during the generation of final state features. 

( )flattent t

n ns s=
 

 (9) 

( )t t

n ns ws bσ= +
  (10) 

( )concatenate ,t t t

n n ns s s=
 

 (11) 

3.4. Action_value Function Fitting Module 

The composition of the action value function fitting network has been introduced in Section 3.1 

, so this section mainly shows the specific equations corresponding to the module, as well as the 

detailed meaning of the parameters in it. Eqs. (12)-(14) show the RNN network, that is, the local value 

function fitting network. The input of the network is the feature matrix ts


 of all signal agents, and 
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the output is the action function value tQ  corresponding to each action in the action set of the signal 

light agent. 

( )( )1 q12 q11 q11 q12ReLUt tq w w s b b= + +


 (12) 

( )1

1GRU ,t t tH q H −=  (13) 

( )q22 q21 q21 q22

t tQ w w H b b= + +  (14) 

where the parameters with w and b as variables are the trainable weights and biases in the network; 

the definition of tH 、 1tH − 、 ( )ReLU ⋅  are also consistent with the above, 1 H_dim,t t NH H − × ∈   . 

The calculation of the joint action function value requires the optimal local action function value 

as input. In order to implement distributed control under global optimal conditions, the joint action 

value function and the local value function need to have the same monotonicity, which means the 

action that can maximize the joint action value function should be equivalent to the local optimal 

action set: 

( )

( )

( )

1 tot 1 1

tot

tot

arg max ,

arg max

arg max ,
N

a

a N N

Q a

Q

Q a

χ

χ

 
 

=  
 
 

a
χ,a   (15) 

where the ( )arg maxa ⋅  is used to take parameters (set) of the function and return the action label 

corresponding to the maximum value of the action value function; ( )totQ χ,a 、 ( )tot ,1 1Q aχ …

( )tot ,N NQ aχ  are the action value function of road network and signal intersection respectively; χ
、 1χ … Nχ  are the historical actions of road network and signal intersection respectively. 

The QMIX network converts the above equation into the constraint condition shown in Eq. (16)

, and satisfies the constraint by restricting the weights M1

tw  and M2

tw  in the joint action value 

function network (making their values positive). 

This section may be divided by subheadings. It should provide a concise and precise description of 

the experimental results, their interpretation, as well as the experimental conclusions that can be 

drawn.  

( )
( )

tot
0,

,n n n

Q
n

Q aχ

∂
> ∀

∂

χ,a
 (16) 

( )( )M1 m12 11 m11 m12ReLUt t

mw w w s b b= + +  (17) 

M1 m2 m2

t tb w s b= +  (18) 

( )( )M 2 m32 m31 m31 m32ReLUt tw w w s b b= + +  (19) 

( )( )M2 m42 m41 m41 m42ReLUt tb w w s b b= + +  (20) 

In summary, the joint action function value tot

tQ  of the road network can be calculated by the 

following equation: 

( )tot M2 M1 M1 M2ReLUt t t t t tQ w w Q b b= + +  (21) 

where selected

tQ  is the action function value under greedy strategy selection. 

3.5. Model Update 

The update method of CMARL is similar to that of traditional DQN. Both use TD error to 

calculate the loss function and use the backpropagation algorithm to update network parameters. 

This process involves two networks: the evaluation network and the target network. The two network 

structures are identical, as shown in Figure 1, but the input and output information of the two 

networks are different. The evaluation network takes the features and historical actions in state s as 

input and outputs the actual joint action function value evalutate

totQ


. The target network takes the 

features and historical actions of the road network in state s′  as input and calculates the target 
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(expected) action function value target

totQ . The difference between the output contents of the two 

networks constitutes the TD error in state s: 

( )target evalutate

tot totTDerror= R Q Qγ+ −
  (22) 

( )target target

tot totmaxaQ Q′=  (23) 

where R is the reward value in state s; target

totQ  is the action function value corresponding to all actions 

of the target network, target 2

tot

NQ ×∈ . 

It can be seen from the above that the calculation of TD error requires knowing the road network 

state s at the current moment, the actual joint action taken a, the road network state after taking the 

action, the reward R returned by reaching the state s′ , and the actual joint actions a  in history 

proceed below. Therefore, the calculation of TD error is not real-time, but is performed after a certain 

amount of experience has been accumulated. On this basis, the loss function is expressed as follows: 

( )( )
2

1

TDerror
B

b

b

loss e
=

=  (24) 

where be  represents the b-th experience in a batch of extracted experiences; B represents the number 

of extracted experiences. 

In summary, the update process of the CMARL framework has the following expression: 

1. Initialize the evaluation network, copy its network parameters to the target 

network, and initialize the experience pool. 

2. Parameters: The capacity of the experience pool M, the total number of iterations 

K, the step size of each iteration T, and the evaluation-target network update 

frequency p. 

3. for k=1 to K do  

4. Initialize the environment, obtain the global state iS  of the initial road network, 

the local observation state is   of each agent, and set the historical action h

ia   of 

each agent to 0. 

5.   for t=1 to T do 

6.     tS , ts , 1ta −  ⬅ iS , is , h

ia  

7.     Taking the local observation state ts  and action 1ta −  as input, the feature  

matrix ts


 is obtained based on the evaluation feature extraction network. 

8.     Using ts


 as input, the action function value tQ  in this state is obtained  

based on the evaluation local value function fitting network. 

9.     Based on the greedy strategy, the action ta  corresponding to the maximum  

action value is selected with the probability of 1- ε , and randomly selected  

with the probability of ε . 

10.     Execute the action, obtain the updated global state 1tS + , local observation 1ts +   

and the reward 
tr . 

11.     Taking the selected action function value selected

tQ  and the global state tS  as  

input, the joint action function value tot

tQ   is calculated based on the 

evaluation joint action value function network. 

12.     Store ( )1 1 1, , , , , ,t t t t t t tS s a a S s r− + +  as an experience in the experience pool E. 

13.     if len(E) >= M: 

14.       Extract B pieces of experience and update network parameters. 

15.     tS , ts , 1ta −  ⬅ 1tS + , 1ts + , ta   

16.      t ⬅ t+1 

17.   end for 

18.   if k % p == 0: 
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19.     Copy the parameters of the evaluation network to the target network. 

20. end for 

4. Experiments 

4.1. Experimental Setup 

4.1.1. Simulation Setting 

Based on the real data sets collected from the actual road network in Fushun City, China, we use 

SUMO to build a simulation platform and implement model optimization and information 

interaction through application program interfaces. The road network simulation environment is 

shown in Figure 2. The range of the detectors we arrange in each entrance road is 100 meters, and the 

range of the detectors in the exit road is 80 meters. For four-way intersections, we use a four-phase 

signal control scheme of east-west straight, east-west left, south-north straight, and south-north left. 

For three-way intersections, such as intersections 1, 2, and 7, the signal phase sequence is east-west 

straight, east/west left, and south/north straight. The duration of the yellow light phase is set to 2 

seconds. 

In addition, to determine the optimal parameters of the model, we pre-trained the network with 

the traffic configuration shown in Table 2. For the test phase, we refer to the traffic load of the real 

data set to set the OD matrix of traffic flow distribution during peak hours (6:30-8:30) and off-peak 

hours (14:00-16:00), as shown in Figure 3. 

 

Figure 2. Schematic diagram of road network simulation environment. 

Table 1. Traffic volume statistics of the real-world dataset. 

Stage Duration (s) 
Arrival rate (veh/300s) 

Mean SD Max Min 

Off-peak 

hours  
0-7200 103.55 15.15 139 89 

Peak hours 7200-14400 177.20 48.92 255 132 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 January 2024                   doi:10.20944/preprints202401.1565.v1

https://doi.org/10.20944/preprints202401.1565.v1


 10 

 

 
(a)                          (b) 

Figure 3. Traffic flow distribution during the test phase. (a) Traffic flow distribution of off-peak hours; 

(b) Traffic flow distribution of peak hours. 

Table 2. Model parameter value. 

Parameter Value Parameter Value 

B 32 greedy probability ε  0.95-0.01 
γ  0.95 initial learning rate lr 0.001 

M 1000 s_ dim  16 

K 200 h_ dim  32 

T 300 f_ dim  32 

p 10 H_ dim  64 

4.1.2. Training Parameters Setting 

The duration of each round of training of the CMARL model is 3600s. The parameter settings 

during the training process are shown in Table 3. The values of these parameters are the results of 

multiple experiments. 

Table 3. Comparison of control performance of baseline methods. 

Model 

Peak hours Off-peak hours 

Queue 

length 

(m) 

Waiting 

time (s) 

Travel 

time (s) 

Queue 

length (m) 

Waiting 

time (s) 

Travel 

time (s) 

FixedTime 23.59  86.35  218.80  10.15  44.35  173.80  

DQN 16.75  66.11  193.13  7.69  36.70  153.90  

IQL 19.98  75.11  208.19  8.07  38.10  161.05  

DDQNPER 18.84  71.11  199.36  8.19  39.06  162.05  

QPLEX 15.62  65.04  195.05  7.09  35.65  156.49  

MN_Light 14.91  66.83  193.88  6.63  35.02  157.05  

CMARL 13.55  61.71  187.47  6.27  34.06  151.05  

4.1.3. Baseline 

(1) FixedTime: A traditional signal control method in which the signal lights run a fixed timing 

scheme. 
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(2) DQN: A centralized control method in which all intersections are controlled by the same 

agent. The agent directly fits the joint action value function based on the global environmental state, 

and then selects the optimal joint action. 

(3) IQL: A distributed control method, each intersection is equipped with independent 

intelligent agents, and there is no additional information interaction between the intelligent agents. 

Each agent optimizes its control strategy in the direction of maximizing global returns based on the 

global environmental state. 

(4) DDQNPER: A communication-free distributed control method that defines state and reward 

functions simply and directly, and fits the action value function through Double DQN with 

experience playback function. 

(5) QPLEX: Each intersection is controlled by an independent agent, and the action value 

function of each agent is decomposed into a state value function and an advantage value function. 

The agent realizes the calculation of joint action values based on the multi-head attention mechanism, 

and ensures the consistency of global and local optimality by constraining the value range of the 

advantage value function. It is a distributed control method with implicit communication. 

(6) MN_Light: This method uses bidirectional LSTM to mine the temporal characteristics of 

historical traffic flow status and action information. It is a distributed control method for explicit 

communication.This section may be divided by subheadings. It should provide a concise and precise 

description of the experimental results, their interpretation, as well as the experimental conclusions 

that can be drawn. 

4.2. Experimental Results 

4.2.1. Comparative Experiment 

This section shows the control effects of each baseline method and the CMARL model and 

further analyzes and discusses the reasons for the above results. As shown in Table 3, we select three 

indicators: queue length, waiting time, and travel time to evaluate the model effect. Among them, the 

queue length and waiting time are respectively equal to the average queue length and queue time of 

each intersection entrance lane during the simulation period, and the travel time is the average time 

required for all vehicles in the road network to complete the scheduled trip. As can be seen from the 

table, various types of DRL algorithms have better control effects than the FixedTime algorithm. In 

order to further compare and demonstrate the control effects of various algorithms, we plot the 

differences in various evaluation indicators between the above six DRL algorithms and the FixedTime 

algorithm into a clustered column chart as shown in Figure 4. It can be seen that compared with basic 

distributed control methods, such as IQL and DDQNPER, the centralized control method based on 

DQN obviously has better control effects. DQN converged at the 82nd generation, while IQN and 

DDQNPER converged at the 127th and 131st generation respectively. This is in line with our 

inference, that is, the centralized method that collects all information implies a communication and 

collaboration mechanism between agents, and can easily obtain the global optimal solution. 

However, the basic distributed control method is more likely to fall into local optimality due to the 

lack of information interaction between agents. 

QPLEX and MN_Light belong to the distributed control methods of implicit communication and 

explicit communication respectively. The former adds global state information during the training 

process and realizes information interconnection by decomposing the global rewards according to 

their respective contributions. The latter uses bidirectional LSTM to contact context information to 

achieve temporal feature extraction in complex environments and enrich the state information that 

the agent can receive. Compared with the previous two distributed methods, both have improved to 

a certain extent in various evaluation indicators: taking peak hours as an example, compared with 

DDQNPER, the queue length of QPLEX was reduced by 17.09%, and the waiting time was reduced 

by 8.53%, the travel time was reduced by 2.16%. MN_Light's queue length was reduced by 20.86%, 

the waiting time was reduced by 6.01%, and the travel time was reduced by 2.75%. 
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(a) (b) 

Figure 4. Change diagram of various evaluation indicators of the DRL algorithms relative to the 

FixedTime method. (a) Change diagram of peak hours; (b) Change diagram of off-peak hours. 

The CMARL model established in this article combines two communication methods: implicit 

communication and explicit communication. It uses an improved DNN to realize the mining and 

selective transmission of high-dimensional features of traffic flow. While enriching information 

content, it reduces communication overhead and has better control effects. Compared with the 

optimal method MN_Light among the baseline methods, CMARL's queue length during peak hours 

was reduced by 9.12%, the waiting time was reduced by 7.67%, and the travel time was reduced by 

3.31%; the queue length during off-peak hours was reduced 5.43%, the waiting time decreased by 

2.72%, and the travel time decreased by 3.83%. 

4.2.2. Ablation experiment 

To further explore the effectiveness of the proposed feature extraction module, we designed an 

ablation experiment as shown below. Figure 5 shows the degree of improvement in each evaluation 

index of the QMIX and CMARL compared to the MN_Light algorithm. It can be seen that after 

removing the feature extraction module, the model control effect drops significantly. This 

phenomenon is especially obvious during peak hours. During peak hours, CMARL's queue length 

and queuing time were reduced by 9.73% and 5.64% respectively compared to QMIX; while during 

off-peak hours, compared to QMIX, CMARL's queue length and queuing time were reduced by 8.87% 

and 4.47% respectively. This is because there are many vehicles in the road network during peak 

hours, and the spatiotemporal relationship between traffic flows is relatively complex. At this time, 

relying only on the status information directly obtained by the detector, the agent cannot obtain 

enough environmental information to determine the optimal action. 

 

(a) (b) 

Figure 5. Comparison of QMIX and CMARL model effects. QMIX is the network framework of 

CMARL after stripping off the feature extraction module. (a) Comparison of peak hours; (b) 

Comparison of off-peak hours. 
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5. Discussion 

This paper designs a multi-agent deep reinforcement learning model with an emphasis on 

communication content to solve the signal control problem of road networks. In order to alleviate the 

instability of model learning caused by local observable states, we use a modified DNN network to 

excavate and selectively share nonlinear features in traffic flow data, enriching the information 

content and reducing the communication overhead caused by the increase of information. Using real 

data sets, we conduct a comparative analysis between CMARL and six advanced traffic signal control 

methods, and come to the following conclusions: 

(1) CMARL can operate stably in a variety of scenarios and has good control effects. Compared 

with the optimal method MN_Light among the baseline methods, CMARL's queue length during 

peak hours was reduced by 9.12%, the average waiting time was reduced by 7.67%, and the average 

travel time was reduced by 3.31%; the queue length during off-peak hours was reduced 5.43%, the 

average waiting time decreased by 2.72%, and the average travel time decreased by 3.83%. 

(2) In relatively complex traffic environments, further extraction of high-dimensional nonlinear 

features helps the agent select optimal actions. After adding the feature extraction module, the model 

control effect of QMIX was greatly improved, and the queue length and average waiting time during 

peak hours were reduced by 9.73% and 5.64% respectively. 

In future work, we will further expand the scale of the road network and explore the 

applicability of different types of MARL in large-scale road network signal control problems. 
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