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Abstract: Artistic image completion is fundamental for the preservation and restoration of invaluable

art paintings and it has experienced significant progress through the implementation of deep

learning methodologies. Despite these advancements, challenges persist, even with sophisticated

approaches like Generative Adversarial Networks (GANs), particularly in achieving optimal results

for high-resolution paintings. Small-scale texture synthesis and the inference of missing information

from distant contexts present persistent issues, leading to distortions in lines and unnatural colors,

especially in art paintings with complicated structures and textures. Concurrently, patch-based

image synthesis has evolved by incorporating global optimization on the image pyramid to enhance

structural coherence and details. However, methods relying on gradient-based synthesis encounter

obstacles related to directionality, inconsistency, and the heavy computational burdens associated

with solving the Poisson equation in non-integrable gradient fields. This paper introduces a

groundbreaking approach, integrating Weighted Similarity-Confidence Laplacian Synthesis, to

comprehensively address these challenges and advance the field of artistic image completion.

This proposal addresses challenges not only in high-resolution artistic image completion but also

makes a significant contribution to the broader field of patch-based synthesis by utilizing the

Laplacian pyramid for enhanced edge-aware correspondence search. Experimental result confirms

the effectiveness of our approach, offering promising outcomes for the preservation and restoration

of art paintings with complicated details and irregular missing regions.

Keywords: image completion; image inpainting; high-resolution art painting completion; weighted

similarity-confidence Laplacian synthesis

1. Introduction

The integration of image completion in the realm of art painting restoration is a central focus in

contemporary academic exploration within computer vision and image processing. Image completion,

or inpainting, a method aimed at restoring missing or damaged segments in an image, serves

as a fundamental element in mitigating the impacts of physical deterioration experienced by art

paintings in museums, encompassing issues like scratches, tears, and various forms of degradation. In

situations where manual completion methods encounter limitations, the digitization of art paintings

into high-resolution images has emerged as a viable alternative. When applied to digital images

or paintings, high resolution implies an increased number of pixels per unit of area, resulting in

a more refined and detailed representation of artistic elements. In the proposed algorithm for art

painting completion, achieving high resolution means ensuring that the completed art painting

conserves and reproduces complicated details, nuanced textures, and subtle artistic expressions with

remarkable fidelity to the original. Moreover, the shift from physical to digital preservation introduces

unique challenges, often compounded by the constraints inherent in established completion methods.

Standard approaches, reliant on manual techniques and color matching, encounter difficulties in

capturing the complicated details of artistic compositions. This challenge becomes evident in potential

distortions, unnatural colorations, and a diminished preservation of the original aesthetic essence

when compared to the capabilities offered by advanced inpainting techniques. Furthermore, when

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 January 2024                   doi:10.20944/preprints202401.1309.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202401.1309.v1
http://creativecommons.org/licenses/by/4.0/


2 of 15

dealing with high-resolution images, a common necessity in the completion of art paintings, the

intricacies of small-scale texture synthesis and the precise inference of missing information from

distant contexts become particularly pronounced. The demand for increased precision and fidelity in

the inpainting process for high-resolution art paintings adds an additional layer of complexity to the

completion endeavor. Consequently, the ongoing exploration of effective inpainting methodologies

for high-resolution art paintings underscores the critical necessity for advancements in computer

vision and image processing. This is imperative for addressing the distinctive challenges posed

by the elaborate textures and structures inherent in artistic masterpieces. Such research endeavors

are essential for ensuring the comprehensive digital completion and preservation of art paintings,

surpassing the limitations of physical completion within museum contexts.

In the field of art painting completion, traditional image inpainting methods have significantly

contributed to the completion of damaged or missing regions. Patch-based methods, exemplified

by Criminisi et al. [1] and Efros et al. [2], have proven effective but face challenges in faithfully

replicating complicated artistic structures, such as brush strokes and fine textures. The drawbacks

include potential distortions and a loss of aesthetic fidelity when applied to varied textures in art

paintings. Bertalmio et al. [3] used diffusion-based techniques, while aiming for smooth transitions,

encounter difficulties with abrupt changes and irregular textures, particularly evident when inpainting

detailed landscapes in art paintings. Moreover, Darabi et al. [4] faced challenges in merging art

paintings with diverse styles or complex compositions. Recognizing these drawbacks underscored the

imperative for tailored advancements in inpainting methods to address the unique intricacies of art

painting completion.

In enhancing art painting completion through deep learning, several approaches have been

explored, each with distinctive advantages and inherent challenges. Yu et al. [5] effectively captured

complicated textures and structures, yet faced difficulties when inpainting areas with highly

complicated artistic details, potentially resulting in less accurate replication. Xiao et al. [6] originally

designed for image colorization and adapted for art painting completion, demonstrated proficiency

in capturing nuanced color palettes and complex compositions. However, its application might be

limited when faced with irregular structures or unconventional color schemes in diverse art paintings.

Yue et al. [7] integrated style transfer techniques, aligning inpainting results more closely with the

artistic characteristics of the original painting. Nevertheless, challenges might arise in transferring

highly specific or abstract artistic styles, demanding careful consideration for optimal performance.

These approaches collectively highlight the evolving landscape of deep learning methods in art

painting completion, emphasizing the need for ongoing refinement to address the nuanced intricacies

of diverse artistic compositions.

Building upon previous persistent challenges, our innovative methodology addresses these

drawbacks by presenting a comprehensive solution to repair damages in high-resolution art painting

completion, focusing specifically on torn, worn-out areas with holes. Additionally, the introduction of

the Weighted Similarity-Confidence Laplacian Synthesis algorithm ensures the generation of consistent

structure and texture while reconstructing missing regions. This forward-looking approach not

only delivers satisfying results with a single input image but also guarantees comprehensive digital

completion and preservation of art paintings in high resolution, effectively surpassing the limitations

of physical completion within museum contexts.

The subsequent sections of this paper are structured as follows. We commence with a discussion

on related works in Section 2. Following that, we introduce our proposed method in Section 3.

The experimental results are showcased in Section 4, and we delve into the implementation details

in Section 5. Finally, we provide a comprehensive conclusion and outline potential future works

in Section 6.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 January 2024                   doi:10.20944/preprints202401.1309.v1

https://doi.org/10.20944/preprints202401.1309.v1


3 of 15

2. Related Work

Over the past few years, the field of image completion has witnessed a growing dependence on

advanced techniques encompassing both deep learning and traditional methods. Despite their distinct

approaches, both methods encountered similar challenges, requiring robust generalization capabilities

for effective image completion. Researchers have explored image repair utilizing a spectrum of

techniques, ranging from deep neural networks [8–15] to traditional methods [16–28].

Deep learning methods discerned important semantic context and significant hidden information

within an end-to-end model. Liu et al. [15] utilized partial convolutions to compose masks and

re-normalized them through a mask-update process for valid pixels. However, this method was the

tendency to produce blurriness when repairing large missing regions and its limited effectiveness for

images with simple structures. Pathak et al. [36] revolved around the use of context encoder-decoder

networks that operated independently. During the encoding process, the model recovered nearest

neighbor patches, incorporating segmentation and object detection. Subsequently, the decoder filled in

realistic pixel contexts using up-convolutions and nonlinearities based on the information obtained

from the encoder. Nevertheless, a limitation of this approach was the potential occurrence of color

discrepancies and blurriness, particularly in the receptive fields, due to congestion in fully connected

layers. A contemporary learning approach, known as Generative Adversarial Networks (GAN), has

gained popularity and demonstrated substantial advancements in producing credible completions

for complex images. Masaoka et al. [29] introduced a method that incorporated vanishing points to

enhance edges in the inpainting process using GAN. Nazeri et al. [30] focused on generating realistic

and coherent completions for missing regions in images by emphasizing the importance of adversarial

training in capturing structural edges during the inpainting process. Liu et al. [31] attempted on

utilizing probabilistic modeling to enhance diversity in generating plausible and varied completions

for missing regions in images during the inpainting process. However, those methods center on

the potential challenge of extended running times. Whether incorporating vanishing points for edge

enhancement, emphasizing adversarial training for structural edges, or utilizing probabilistic modeling

for diversity enhancement, all these approaches may encounter increased computational demands.

This collective concern highlights the imperative for further optimization to address the drawback

associated with prolonged running times in these deep learning-based inpainting methodologies.

Moreover, beyond the specific challenges outlined in these methods, image inpainting in general

faces a common weakness related to striking a delicate balance between computational efficiency and

the generation of realistic and coherent completions. Optimizing algorithms to produce high-quality

inpainted results within acceptable timeframes remains a universal challenge, emphasizing the ongoing

need for advancements in the field to achieve an optimal balance between computational resources

and the quality of inpainted outcomes.

In the pursuit of overcoming the drawbacks of deep learning, traditional methods emerged

as efficient alternatives for restoring single damaged images. Criminisi et al. [32] introduced an

exemplar-based image inpainting technique, employing a three-step process involving a data structure

for patch matching, confidence-based prioritization, and texture synthesis. While presenting a viable

solution, the method faced challenges in handling complex structures and textures, demonstrating

sensitivity to patch size, and revealing a vulnerability to variations in illumination. Sun et al. [33],

relying on structure propagation, completed missing portions by propagating existing structures,

utilizing texture synthesis to ensure visual coherence. However, its effectiveness diminished in scenes

with complicated details, struggling with large missing regions, and introducing potential artifacts,

particularly in textured areas with varying contrast. Irawati et al. [21] and Horikawa et al. [22] presented

distinct image inpainting techniques. Irawati et al. [21] employed orthogonal viewpoints and structure

consistency, whereas Horikawa et al. [22] utilized clustered planar structures. While both methods faced

common challenges in handling detailed scenes and fine elements, limiting inpainting effectiveness,

they also exhibited unique weaknesses. Irawati et al.’s method struggled with large-scale inpainting

due to computational constraints, and Horikawa et al.’s approach showed susceptibility to distortions
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in perspective when dealing with non-planar structures. Urano et al. [25] emphasized automatic

structure propagation with auxiliary line construction, while Masaoka et al. [27] introduced vanishing

point detection through line segments of a Gaussian sphere. Irawati et al. [23] developed an interactive

inpainting method for large-scale missing regions, showcasing the additional weakness of potential

inconsistencies in user-guided inpainting. Despite unique approaches, all encountered difficulties with

detailed scenes and fine elements, displaying limitations in addressing sizable missing regions and

potential artifacts in textured areas.

Several researchers have explored the synergy between deep learning and traditional approaches

in the domain of art painting completion. For instance, Chen et al. [34] employed a combination

of deep learning and manual sliding windows to identify matching patches in damaged paintings.

However, this method faced challenges when dealing with the detailed textures and unique artistic

expressions inherent in each stroke and style, leading to the inability to create a robust convolution

network model and resulting in blurred restored regions. Taking a different approach, inspired

by the physical completion of damaged holes in paintings, Wang et al. [35] introduced user line

drawings, such as sketches, to guide the inpainting algorithm during pre-processing. Despite achieving

visually satisfactory results, this technique proved time-consuming and excelled primarily in simpler

paintings rather than abstract or landscape art paintings with complex structures and brushstroke

patterns. Building upon these insights, this paper proposes Weighted Similarity-Confidence Laplacian

Synthesis algorithm adept at consistently capturing both structural and textural completion in high

resolution. This algorithm accommodates various paintings with distinct structures and textures, even

in irregularly missing areas caused by the challenges frequently encountered in the painting process.

3. Methodology

As previously discussed regarding recent image completion algorithms, the challenge lies in

addressing blurriness and artifacts when restoring missing regions. Despite extensive efforts to train

deep learning models on various datasets, which are known for their reliability, achieving optimal

outcomes remains an ongoing challenge. There is a need for more effective methods to overcome

existing limitations, particularly in reducing color discrepancies and speeding up the completion

process. In this context, traditional inpainting methods, often overlooked by some researchers,

emerge as potential enhancements to completion techniques. They offer a quick and straightforward

approach, aligning with the proposed method in this paper. Our method is designed to restore arbitrary

missing regions in damaged art paintings. The Weighted Similarity-Confidence Laplacian Synthesis

systematically addresses missing regions by considering important components of art paintings in

high resolution. The Multi-Region Completion combines the Weighted Laplacian synthesis and

patch-based propagation into a unified framework, creating authentic paintings that align with the

artist’s original intent. This section explains the key aspects of our approach, focusing on Weighted

Similarity-Confidence Laplacian Synthesis.

3.1. Weighted Similarity-Confidence Laplacian Synthesis

Addressing a missing region characterized by complicated structures and textures, as commonly

encountered in damaged art paintings, presents a formidable challenge in the realm of image

completion. Numerous recent research endeavors have endeavored to tackle this complicated

issue [37,38]. However, the persistent issues of blurriness and color discrepancies have proven to

be substantial impediments. Moreover, when the missing region lies arbitrarily within the boundary

of objects, it intensifies the challenge, leading to the generation of unsatisfactory results marked

by significant color divergences, especially in the context of complex structures and textures at

high resolutions. In response to these challenges, our proposed approach advocates a proficient

problem-solving strategy, involving a consistent collaboration on multi-regions of weighted Laplacian

synthesis and patch-based completion.
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The detailed explanation of our approach is depicted in Figure 1. Commencing the process, we

utilize a high-resolution painting with a size of around 1600×2136 pixels, denoted as Iin in Figure 1a,

featuring damaged holes. Subsequently, we perform segmentation on Iin and its corresponding mask

images, Min, dividing them into 16 multi-regions through the separation of pixels into distinct patches

(Figure 1b). Each region encompasses approximately 400×400 pixels, resembling the standard size

of compressed images but exhibiting more homogeneity in pixels. This approach facilitates a more

specific and precise completion of the missing regions within the local area.

Figure 1. Weighted Similarity-Confidence Laplacian Synthesis. (a) Input: An art painting with

missing regions, (b) Multi-region input and its mask, (c) Weighted Laplacian Synthesis, (d) Patch-based

Propagation, (e) Result of Weighted Laplacian Synthesis, (f) Result of Patch-based Propagation, and

(g) Output: A restored art painting.

Initially, the exploitation of a Laplacian pyramid completion technique proves effective for

high-resolution paintings, utilizing the abundance of pixels to make consistent completion decisions

across various resolutions. Inspired by Lee et al. [39], we integrate Laplacian (Lp) and upsampled

Gaussian (Up) pyramids to progressively enhance completion quality from the coarsest to the finest

layer, as exemplified in Figure 1c. Furthermore, to address the challenge of structure diffusion involving

the segmentation of a non-homogeneous missing region along the object boundary into smaller,

homogeneous regions, we employ texture synthesis. This process aims to generate a high-quality

surface with similar intensities through the estimation of the Laplacian of a Gaussian (LoG). According

to [39], the computation of LoG is costly due to its complicated function. However, the Laplacian of a

Gaussian operates similarly to the Difference of Gaussian (DoG), which is integral for considering edge

structures in the convolution process. Consequently, our choice is to apply the Laplacian of a Gaussian

pyramid at different levels, ensuring consistent performance in edge awareness and base textures with

more manageable computations. In the texture synthesis process, the initial step entails constructing

a Gaussian pyramid (Gs) to extract pixel intensities at each level for analyzing the base structure.

Following this, the construction establishes the Laplacian pyramid to enhance edge awareness:

Gsi−1 = downsample(Gsi)

Upi+2 = upsample(Gsi+1)

Lpi = Gsi − Upi

(1)
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Where i is the current level of pyramid. Gsi+1 represents a downsampled Gaussian of Gsi, while

Upi denotes an upsampled Gaussian of Gsi+1. Lpi is then transformed into a Laplacian image using

Gsi and Upi as a basis, following the approach outlined in [39].

Following the construction of Laplacian and Gaussian pyramids, the next step involves identifying

matching patches at each level. This is accomplished by improving a nearest neighbor search algorithm

that approximates the most similar areas between the source S and target T, denoted as Ei (T, S). The

basis for this approximation relies on the minimum normalized distance. In the subsequent phase,

the algorithm refines the search for the most similar patches between the S and T at different levels.

This process aims to achieve a more accurate matching of areas, ensuring a robust foundation for

subsequent completion efforts:

Ei (T, S) = ∑
q∈T

minp∈S

[

wqD(Upi,p, Upi,q) + wqD(Lpi,p, Lpi,q)
]

(2)

Where Upi,p and Lpi,p represent patches of the Up and Lp pyramids at level i and location S, while

Upi,q and Lpi,q exhibit patches of the Up and Lp pyramids at level i and location T. The variable D

represents a maximum distance metric between two pixels, p and q.

The pursuit of determining the optimal pixel value for completing a missing region was a critical

aspect influencing the overall performance of image completion. The approach proposed by et al. [39]

involved a weighted blending of scales between the upsampled Gaussian Upi and Laplacian image

Lpi, aiming to establish the most effective similarity between the target and source areas. However, this

method introduced a voting system sensitive to detecting similarity, assuming that all pixels located

outside the current target area at the given level would be considered. Unfortunately, this could lead to

challenges, as the current target region might not have been fully propagated from the nearest neighbor

of the most recently restored area, resulting in a color discrepancy that failed to blend seamlessly with

adjacent patches. In response to this challenge, our method innovates the voting similarity function,

enhancing its capabilities by considering the potential overlap of nearest neighbor pixels in color, even

across different levels. This improvement is achieved by incorporating the advanced weighted average

vote cq, which not only provides a measure of similarity but also introduces a confidence weight,

denoted as wq. This combined approach leads to a more refined and accurate estimation of optimal

pixel values:

wq = Ψ(p, q, i)Λ(q), Ψ(p, q, i) = e
−

D(p,q,i)

2σ2 (3)

cq =
∑q̃ϵQ wq̃Ei (T, S)

∑q̃ϵQ max (q̃)
(4)

Where Ψ(p, q, i) and D(p, q, i) are instrumental in characterizing the similarity and distance

between the source pixel p and target pixel q at level i. Ei (T, S) is a nearest neighbor search algorithm

based on Equation (2). Additionally, σ serves as a determinant of the sensitivity for detecting similarity.

Further refining the process, Λ(q) introduces a confidence weight at target pixel q, strategically

designed to alleviate boundary errors. This confidence weight assigns a higher value to target points

closer to the completion boundary, ensuring more robust performance. The culmination of these factors

is encapsulated in the weight wq at the target pixel q. Moreover, the variable q̃ denotes the overlapping

colors from its nearest neighbor field, while Q represents the total number of q̃. These components

contribute to a comprehensive assessment of similarity and confidence, laying the foundation for

precise and accurate weighting at the target pixel level.

Completing high-resolution paintings that encompass complicated structures and textures can

introduce errors, particularly in the form of ambiguity within the restored pixels. This ambiguity may

manifest as color discrepancies and blurriness in the final restored image. To address this challenge, we

seamlessly integrate patch-based propagation, employing a locally applied isophote-driven technique

to synthesize the complicated details of art painting elements (Figure 1d). The core principle involves

ensuring that the matched patches Ψs align along the boundary of a hole situated between two distinct
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colored regions. The optimal-matched patch from the source area is then replicated into the target area,

taking into account both the confidence C(s) and data terms D(s). The highest priority is accorded to

the best match P(s) [1].

P(s) = C(s) · D(s) (5)

C(s) =
∑tϵΨs∩(I−T) C(t)

|Ψs|
, D(s) =

| ▽ I⊥s · ns|

γ
(6)

Where Ψs represents the current patch, while |Ψs| delineates the pixel region of Ψs. The unit vector

orthogonal to point s is denoted as ns, with the operator ⊥ signifying the perpendicular operation.

The normalization factor, γ, is set to a value of 255. The propagation unfolds systematically, guided

by the priority P(s) across every pixel along the unknown boundary border, employing a clockwise

filling approach.

In the quest for optimal patches, we employ a fused approach that integrates the outcomes of

Weighted Laplacian Synthesis and Patch-based Propagation through Pyramid blending [40]. Pyramid

blending distinguishes itself among blending methods for its capacity to effectively handle scale

differences between images, operating at multiple scales and considering both coarse and fine details.

This characteristic ensures a comprehensive blending process that results in smoother transitions

between images (Figure 1e,f). The efficacy of pyramid blending extends to its proficiency in managing

abrupt changes or discontinuities within images. The hierarchical structure of pyramids facilitates

a seamless transition across different levels, preventing artifacts or noticeable seams in the blended

result. This proves advantageous, particularly when merging images with diverse content or structures.

Moreover, pyramid blending demonstrates computational efficiency. By operating at various levels

of resolution, the algorithm can focus on essential details without imposing excessive computational

demands, making it suitable for real-time applications or large-scale image blending tasks.

3.2. Our Proposed Algorithm

In addressing the challenging task of completing missing regions in damaged art paintings,

our proposed approach stands out as a proficient problem-solving strategy. The method seamlessly

integrates weighted Laplacian synthesis and patch-based completion, collaborating consistently across

multi-regions. Illustrated in Figure 1a, the process begins with the utilization of a high-resolution

painting, denoted as Iin, featuring damaged holes and sized 1600×2136 pixels. Through segmentation

of Iin and its corresponding mask images, Min, into 16 multi-regions, each approximately 400×400

pixels (Figure 1b), our approach ensures a more precise and specific completion of missing regions

within the local area.

The exploitation of Laplacian pyramid completion proves effective for high-resolution paintings,

employing the abundance of pixels for consistent completion decisions across various resolutions.

Inspired by Lee et al. [39], Laplacian and upsampled Gaussian pyramids are combined, progressively

enhancing completion quality from the coarsest to the finest layer. To address structure diffusion

challenges, texture synthesis is introduced, employing Laplacian of a Gaussian pyramid at different

levels. The process involves constructing a Gaussian pyramid to analyze base structure intensities and

subsequently establishing a Laplacian pyramid for enhanced edge awareness (Figure 1c). Matching

patches at different levels is achieved through an improved nearest neighbor search algorithm, ensuring

a more accurate matching of areas for robust completion. The pursuit of determining the optimal pixel

value for completing a missing region involves innovating the voting similarity function. Our method

enhances this function by considering potential overlap of nearest neighbor pixels in color, even across

different levels, resulting in a refined and accurate estimation of optimal pixel values.

To address errors introduced by ambiguity in restored pixels, patch-based propagation is

seamlessly integrated, applying an isophote-driven technique locally (Figure 1d). The propagation

process ensures that matched patches align along the boundary of a hole between two distinct
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colored regions, with the best-matched patch duplicated into the target area based on confidence and

data terms.

In the quest for optimal patches, our approach employs a fused reaction that integrates the

outcomes of weighted Laplacian synthesis and patch-based propagation through Pyramid blending

(Figure 1e,f). Pyramid blending emerges as a standout blending method, effectively handling scale

differences between images and ensuring smoother transitions. Its hierarchical structure prevents

noticeable seams in blended results, particularly advantageous when merging images with diverse

content or structures. The computational efficiency of pyramid blending makes it suitable for real-time

applications or large-scale image blending tasks.

The proposed Algorithm 1 guides the entire process, beginning with segmentation and

progressing through weighted Laplacian synthesis, patch-based propagation, and Pyramid blending

until multi-regions are empty. This comprehensive approach, applied to a high-resolution art painting

with missing regions sized 1600×2136 pixels, results in the completion of visually pleasing and

artifact-free art paintings.

Algorithm 1: Weighted Similarity-Confidence Laplacian Synthesis

Data: A damaged high-resolution art painting with a missing region Iin with a size of around
1600×2136 pixels.

Result: A restored high-resolution art painting Iout.
Segmentation
Divide the input image Iin and its mask image Min into 16 multi-regions, each with a size of
400×400 pixels (Figure 2b).

do
Weighted Laplacian Synthesis (Figure 2c);
Patch-based Propagation (Figure 2d);
Pyramid Blending (Figure 2e,f);

while multiregions! = empty;

Figure 2. High-resolution art painting completion with a size of around 1600×2136 pixels. (a) Input,

(b) Criminisi et al. [1], (c) Laplacian [39], and (b) EdgeConnect [30], (e) Ours, and (f) Ground Truth.
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4. Experimental Results

In the assessment of our proposed approach within the domain of art paintings, particularly

those characterized by complicated structures and textures, we conducted experiments using a

dataset obtained from https://useum.org/. The methodology is applied to address randomly

irregular missing regions, simulating common damages found in paintings. Two scenarios are

considered: high-resolution paintings with dimensions around 1600×2136 pixels and low-resolution

counterparts with sizes of approximately 400×400 pixels. To establish a comprehensive evaluation, we

benchmark our approach against two comparison methods: a deep learning approach represented

by EdgeConnect [30] and a traditional method denoted as Criminisi et al. [1] and Laplacian [39]. By

adopting this comparative framework, we aim to measure the effectiveness and performance of our

proposed method in restoring art paintings with varying complexities and resolutions.

4.1. Qualitative Comparison

In examining the fidelity of our results in accordance with human visual perception, we utilize

a qualitative comparison to scrutinize the complicated details of structures and textures. This

comparative analysis aims to highlight the distinctions and improvements achieved in our approach

compared to previous methodologies.

In Figure 3, the limitations of the Criminisi method [1] become apparent, revealing evident

color discrepancies in the texture area. This issue persists even in the completion of low-resolution

damaged images, as highlighted in Figure 2. The root cause of this problem lies in the drawbacks of the

patch-based synthesis following the construction of structure propagation. The method heavily relies

on image isophotes, significantly impacting the prioritization of filling and resulting in suboptimal

color consistency in the final results.

Figure 3. Low-resolution art painting completion with a size of around 400×400 pixels. (a) Input, (b)

Criminisi et al. [1], (c) Laplacian [39], and (d) EdgeConnect [30], (e) Ours, and (f) Ground Truth.
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Meanwhile, the Laplacian approach [39] proposes a strategy involving the construction of a

Laplacian pyramid to address the unknown area. This method systematically examines consistent

patch similarity at each level and resolves the issue through a weighted vote of scales. However, a

notable limitation arises from its exclusive focus on the target area of the current level for filling the

missing region. This singular approach contributes to significant color inconsistencies and blurriness,

as observed in all images depicted in Figures 2 and 3.

In contrast, the deep learning method EdgeConnect [30] takes a distinct approach by utilizing

edge-map guidance to predict a model for recovering missing regions. However, despite its innovative

strategy, limitations become apparent in the form of bright colors resulting from miscalculations

and opaqueness across all presented results in Figures 2 and 3. These issues appear from long-term

memorization and an insufficient model derived from a less extensive dataset of painting images.

Furthermore, our proposed method excels over other approaches based on several key aspects of

the proposed methodologies. Firstly, the integration of weighted Laplacian synthesis and patch-based

completion across multi-regions allows our method to provide more precise and targeted completion.

This approach ensures a focused completion process, addressing specific regions with a higher

level of accuracy. Secondly, the comparison with existing methods, such as Criminisi method [1],

Laplacian approach [39], and EdgeConnect [30] highlights the superiority of our approach in terms

of artifact reduction and minimizing blurriness. While these existing methods struggle with color

discrepancies, particularly in texture areas, our method exhibits a notable improvement in maintaining

color consistency and sharpness.

In addition, our method employs the advantages of pyramid blending, offering a more effective

strategy for combining or blending images. The hierarchical structure of pyramids ensures smoother

transitions, preventing noticeable seams and artifacts in the blended results. This is an advantage

when dealing with images featuring diverse content or structures.

4.2. Quantitative Comparison

The evaluation of our results incorporates two distinct perceptual metrics: Learned Perceptual

Image Patch Similarity (LPIPS) [43] and Deep Image Structure and Texture Similarity (DISTS) [44].

In contrast to commonly used metrics like Structural Similarity Index Measure (SSIM) [41] and Peak

Signal to Noise Ratio (PSNR) [42], we opt for LPIPS, a metric rooted in deep feature networks that

employs human perceptual similarity judgments. This metric involves the learning of linear weights

for perceptual calibration, tuning configuration, and Gaussian weights:

d(x, x0) = ∑ l
1

HlW l ∑ h, w
∣

∣

∣
wtl ⊙ (ŷh, wl − ŷ0h, wl)

∣

∣

∣

2

2
(7)

In this equation, d(x, x0) represents the distance between the ground truth x and the restored

images x0. The terms ŷh, wl and ŷ0h, wlϵRHl×W l×Cl
denote feature stacks from l layers, each

unit-normalized in the channel dimension. Here, H, W, and C respectively indicate the number

of height h, weight w, and channel dimension c of layers, while wtlϵRCl
serves as an activation

channel-wise.

Moreover, our evaluation includes the utilization of Deep Image Structure and Texture Similarity

(DISTS) [41]. This approach, anchored in a Conventional Neural Network (CNN), seamlessly integrates

spatial texture averages and feature structure maps to generate diverse texture patterns. Within this

model, quality assessments are harmonized between convolution layers of texture, as expressed by

global means l
(

x̃i
j, ỹi

j

)

, and structure, represented by global correlations s
(

x̃i
j, ỹi

j

)

. The integration is

accomplished through the computation of the weighted sum of different convolution layers, denoted

as D(x, y; α, β):
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l(x̃i
j, ỹi

j) =
2µx̃i

j
µỹi

j
+ c1

(

µx̃i
j

)2

+

(

µỹi
j

)2

+ c1

(8)

s(x̃i
j, ỹi

j) =
2σx̃i

j ỹ
i
j
+ c2

(

σx̃i
j

)2

+

(

σỹi
j

)2

+ c2

(9)

D(x, y; α, β) = 1 −
m

∑
i=0

ni

∑
j=1

(

αijl
(

x̃i
j, ỹi

j

))

+
(

βijs
(

x̃i
j, ỹi

j

))

(10)

Where i and j refer to the convolution layers of the ground truth image x and the restored

images y, respectively. The variables x̃i
j and ỹi

j represent the convolution channels of x and y. The

terms m and ni represent the number of convolution layers for x and y in the i-th layer, respectively.

The weights α and β are learned weights, satisfying the condition ∑
m
i=0 ∑

ni
j=1 αij + βij = 1. Additionally,

µx̃ji , µỹji , σ2
x̃i

j

, σ2
ỹi

j

denote the global means and variances of x̃i
j and ỹi

j, while σx̃i
j ỹ

i
j

represents the global

covariance between x̃i
j and ỹi

j. Constants c1 and c2 are introduced for numerical stability.

Furthermore, our method stands out as a superior choice for high and low-resolution art

painting completions due to several key factors that address and surpass the limitations of alternative

approaches. Firstly, in the case of high-resolution art paintings, our method excels in handling

complicated structures and complicated textures. The integration of weighted Laplacian synthesis and

patch-based completion across multi-regions ensures a more precise and specific completion of missing

regions within the local area. The proposed algorithm guides the entire process, from segmentation to

weighted Laplacian synthesis, patch-based propagation, and Pyramid blending. This comprehensive

approach results in visually pleasing and artifact-free art painting, as demonstrated in Figure 1.

Moreover, our method employs the abundance of pixels in high-resolution paintings to make

consistent completion decisions across various resolutions. Inspired by Lee et al. [39], the use of

Laplacian and upsampled Gaussian pyramids progressively enhances completion quality from the

coarsest to the finest layer. Texture synthesis, employing Laplacian of a Gaussian pyramid at different

levels, addresses structure diffusion challenges, ensuring enhanced edge awareness. The improved

nearest neighbor search algorithm, employed for matching patches at different levels, ensures accurate

matching of areas for robust completion. Our method innovates the voting similarity function by

considering potential overlap of nearest neighbor pixels in color, even across different levels. This

refinement results in a more accurate estimation of optimal pixel values for completing missing regions.

To address errors introduced by ambiguity in restored pixels, patch-based propagation is seamlessly

integrated, applying an isophote-driven technique locally. This ensures that matched patches align

along the boundary of a hole between two distinct colored regions, with the best-matched patch

duplicated into the target area based on confidence and data terms.

In the context of low-resolution art paintings, our method demonstrates its versatility by handling

randomly irregular missing regions effectively. The comparison with deep learning (EdgeConnect [30])

and traditional (Criminisi [1] and Laplacian [39]) methods showcases the robustness of our approach

across different resolutions.

5. Discussion

In our evaluation of art painting completion, we utilized a dataset sourced from https://useum.

org/. This dataset features art paintings with complicated structures and textures, providing a diverse

range of challenges for completion algorithms. Two distinct scenarios were considered: high-resolution

paintings with dimensions around 1600×2136 pixels and their low-resolution counterparts with sizes

approximately 400×400 pixels. To comprehensively assess the effectiveness of our proposed method,
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we benchmarked it against two comparison methods: EdgeConnect [30] representing a deep learning

approach, and a traditional method denoted as Criminisi [1] and Laplacian [39]. The aim was to

measure the performance of our proposed method in restoring art paintings with varying complexities

and resolutions.

Qualitatively assessing the fidelity of our results in accordance with human visual perception

is fundamental. Figures 2 and 3 showcase the visual comparisons between different methods,

providing insights into their strengths and limitations. The Criminisi method [1] exhibits evident

color discrepancies in texture areas, even in the completion of low-resolution damaged images. This

limitation stems from the drawbacks of the patch-based synthesis, affecting color consistency. The

Laplacian approach [39] addresses the unknown area using a Laplacian pyramid but falls short in

color consistency and results in blurriness. EdgeConnect [30], while innovative, exhibits issues such as

bright colors from miscalculations and opaqueness. Our proposed method excels in several aspects.

The integration of weighted Laplacian synthesis and patch-based completion across multi-regions

ensures precise and targeted completion, outperforming existing methods. The comparison highlights

our method’s superiority in artifact reduction and minimizing blurriness, addressing challenges in

color discrepancies observed in texture areas. Additionally, the incorporation of pyramid blending

proves advantageous, ensuring smoother transitions and preventing noticeable seams or artifacts in

blended results.

Quantitative evaluation is performed using two perceptual metrics: Learned Perceptual

Image Patch Similarity (LPIPS) [43] and Deep Image Structure and Texture Similarity

(DISTS) [44]. Tables 1 and 2 present the accuracy of these metrics for different methods and scenarios.

Our method consistently outperforms Criminisi [1], Laplacian [39], and EdgeConnect [30] across

both high and low resolutions. In terms of LPIPS, our method achieves significantly higher accuracy,

indicating better perceptual similarity with ground truth images. The DISTS metric further supports

our method’s superiority, emphasizing its ability to synthesize diverse texture patterns and maintain

structural quality.

Table 1. Accuracy of Learned Perceptual Image Patch Similarity (LPIPS)

Name
Criminisi [1] Laplacian [39] EdgeConnect [30] Ours
High Low High Low High Low High Low

Girl 0.631 0.443 0.701 0.562 0.702 0.344 0.846 0.812

Man 0.642 0.531 0.719 0.407 0.745 0.307 0.897 0.808

Scenery 0.611 0.472 0.754 0.592 0.762 0.412 0.853 0.781

Woman 0.714 0.523 0.758 0.575 0.781 0.635 0.892 0.852

Table 2. Accuracy of Deep Image Structure and Texture Similarity (DISTS)

Name
Criminisi [1] Laplacian [39] EdgeConnect [30] Ours
High Low High Low High Low High Low

Girl 0.721 0.543 0.899 0.661 0.895 0.618 0.951 0.786

Man 0.792 0.601 0.872 0.644 0.834 0.562 0.932 0.888

Scenery 0.710 0.592 0.888 0.691 0.842 0.512 0.921 0.834

Woman 0.812 0.611 0.878 0.655 0.852 0.615 0.932 0.891

Moreover, our proposed method applies advanced techniques to address challenges in both high

and low-resolution scenarios. In high-resolution paintings, the integration of Laplacian and upsampled

Gaussian pyramids progressively enhances completion quality. Texture synthesis employing Laplacian

of a Gaussian pyramid at different levels ensures improved edge awareness. The nearest neighbor

search algorithm is enhanced to consider potential overlap in color, contributing to more accurate

completion decisions. In low-resolution paintings, our method showcases versatility in handling

randomly irregular missing regions. The comprehensive approach, from weighted Laplacian synthesis
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to patch-based completion and Pyramid blending, demonstrates the robustness of our method across

different resolutions.

6. Conclusions

In conclusion, our proposed methodology, anchored in weighted Laplacian synthesis and

patch-based completion across multi-regions, emerges as a robust solution for the complicated task

of restoring art paintings with irregularly damaged regions. Through a comprehensive evaluation,

including qualitative and quantitative comparisons, our approach showcased its superiority over

existing methods. Notably, the integration of hierarchical pyramid blending and advanced nearest

neighbor search algorithms contributed to artifact reduction, minimized blurriness, and ensured

visually pleasing outcomes in both high and low-resolution art paintings. The comprehensive

calibration of perceptual similarity, as demonstrated by the Learned Perceptual Image Patch Similarity

(LPIPS) metric, and the synthesis of diverse texture patterns through Deep Image Structure and Texture

Similarity (DISTS) further validated the efficacy of our method. Our proposed approach not only

addresses the limitations observed in current methodologies but also establishes a new standard for

art completion algorithms, particularly in handling complex structures and textures.

While our current methodology presents a significant advancement, future work may delve

into enhancing the scalability of the algorithm for real-time applications. Additionally, exploring the

integration of machine learning techniques to adaptively adjust parameters based on image content

variations could further optimize performance. Collaborations with art conservationists and experts

could provide valuable insights for refining the algorithm to cater to specific nuances in diverse art

styles. Continuous refinement and validation across a broader range of art datasets will be essential

for establishing the broader applicability and robustness of our proposed method in the field of digital

art completion.
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