
Article

Not peer-reviewed version

Statement-grained Hierarchy Enhanced

Code Summarization

Qianjin Zhang , Dahai Jin

*

 , Yawen Wang , Yunzhan Gong

Posted Date: 17 January 2024

doi: 10.20944/preprints202401.1306.v1

Keywords: Source code summarization; Code representation learning; Code static analysis; Program

comprehension; Transformer

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3361578
https://sciprofiles.com/profile/656974
https://sciprofiles.com/profile/747375

Article

Statement-Grained Hierarchy Enhanced
Code Summarization

Qianjin Zhang , Dahai Jin *, Yawen Wang and Yunzhan Gong

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and

Telecommunications, Beijing, 100876, China; js_0102@bupt.edu.cn

* Correspondence: jindh@bupt.edu.cn

Abstract: Code summarization plays a vital role in aiding developers with program comprehension

by generating corresponding textual descriptions for code snippets. While recent approaches have

concentrated on encoding the textual and structural characteristics of source code, they often neglect

the global hierarchical features causing limited code representation. Addressing this gap, our paper

introduces the Statement-grained Hierarchy enhanced Transformer model (SHT), a novel framework

that integrates global hierarchy, syntax, and token sequences to automatically generate summaries

for code snippets. SHT is distinctively designed with two encoders to learn both hierarchical

and sequential features of code. One relational attention encoder processes the statement-grained

hierarchical graph, producing hierarchical embeddings. Subsequently, another sequence encoder

integrates these hierarchical structures with token sequences. The resulting enriched representation

is then fed into a vanilla Transformer decoder, which effectively generates concise and informative

summarizations. Our extensive experiments demonstrate that SHT significantly outperforms

state-of-the-art approaches on two widely used Java benchmarks. This underscores the effectiveness

of incorporating global hierarchical information in enhancing the quality of code summarizations.

Keywords: source code summarization; code representation learning; code static analysis; program

comprehension; transformer

1. Introduction

As software continues to expand in both size and complexity, developers dedicate approximately

90% of their efforts to software maintenance tasks (version iteration and bug fixing) throughout

the entire software development lifecycle [1]. Program comprehension is crucial in both software

development and maintenance, and providing natural language summaries for the source code

significantly eases the burden on developers [2]. Source code summarization involves the creation of

easily understandable summaries that explain a program’s functionality [3]. Nevertheless, manually

crafting code summaries is a laborious and time-consuming task. Hence, source code summarization,

which automates the generation of concise program descriptions, holds great significance [4].

Code representation is a hot topic in ML-based code summarization, and code usually is

converted into sequence or structure format for code semantic embedding. Sequence-based

methods of code summarization leverage code sequential information(i.e. text, token sequences)

for semantic representation, and benefit from capturing contextual and sequence order of code

snippets. Previous approaches [5,6] treated code as sequential tokens and employed well-established

sequence-to-sequence models for summarization tasks. Although code snippets do exhibit

certain similarities to conventional texts, they encompass more complex and explicitly structured

information [7].

Abstract syntax trees (ASTs) and graph representations (i.e., Control Flow and Program

Dependency graphs) offer structural representations of source code snippets. Structure-based

approaches either utilize the ASTs to precisely represent the structural and grammatical features

of code, or employ graph representation to obtain additional code structures, like control and data

dependencies. AST-based methods directly encode original ASTs [1,8,9] or preprocessed AST, including

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://orcid.org/0000-0001-6263-7144
https://doi.org/10.20944/preprints202401.1306.v1
http://creativecommons.org/licenses/by/4.0/

2 of 17

flatten ASTs [10], paths [11], and subtrees of AST, using Recurrent Neural Networks (RNN) for code

summarization generation. Graph-based methods represent the program as a graph in acquiring for a

deeper code semantic comprehension [12]. Many approaches adopt Graph Neural Network (GNN)

to capture code graph representation [13,14], or employ a Transformer model to encode AST-based

graphs for summary generation [15,16]. However, these methods focus on modeling code structures,

but they often leverage limited structural information and omit the hierarchical structure.

The above methods for code comprehension predominantly focus on token-level granularity

and structural information among tokens. However, in real-world scenarios, proficient programmers

usually focus on understanding each statement within code snippets and leverage the hierarchical

relationships among these statements to summarize the overall functionality of the code. Typically,

each statement in a code snippet functions as a tiny functional component (i.e., loop, invocation).

The hierarchical information among these statements refers to the logical relationships among these

functional components, which are crucial in comprehending the overall purpose and functionality of

the code.

For example, Figure 1 illustrates a code snippet in statement-level granularity for code

understanding. The twoToTarget method that contains five types of statements, including

methodDeclaration_statement, Assignment_statement, while_statement, if_statement, and return_statement.

Each statement represents a tiny function point. Through understanding the elements and logics

among function points, we can roughly summarize the code as "return the numbers of elements in

source list equals to value". The type of statement impacts all token nodes within the statement, as

illustrated in Figure 1(b). For instance, tokens of while_statement may be exacted more than once;

tokens of if_statement may or may not be exacted. Meanwhile, the global hierarchical information of

the statement is also related to the semantics of the statement. Figure 1(b) shows an instance that the

small change in the statements’ position will affect the program’s output. The location of "return new

int[]{i, j}" will completely change the result of return_statement. Locating the statement in the block

structure will help the model better determine the function of the source code. Meanwhile, Zhang et

al. [17] observe that the functionality of the program is closely related to the global hierarchy by the

statistical experiment on code classification task.

public int[] twoToTarget(int[] nums, int target) {
 int numLength = nums.length;
 int i = 0;
 while (i < numLength) {
 int j = i + 1;
 while (j < numLength) {
 if (nums[i] + nums[j] == target) {
 return new int[]{i, j};
 }
 j += 1;
 }
 i += 1;
 }
 return new int[0];
 }

(a) Original Code

public int[] twoToTarget(int[] nums, int target) {
 int numLength = nums.length;
 int i = 0;
 while (i < numLength) {
 int j = i + 1;
 while (j < numLength) {
 if (nums[i] + nums[j] == target) {
 Location 1
 }
 j += 1;
 Location 2
 }
 i += 1;
 Location 3
 }
 return new int[0];
 }

while_statament

while_statament
if_statament

Semantics 1

return new int[]{i, j};Semantics 2

Semantics 3

(b) Hierarchical Code

Figure 1. An illustrative example of the statement-grained hierarchy information in source code. (a)

original code contains several statements. (b) the statement type and hierarchical location affect the

operational semantics of tokens in the statement.

Driven by the analysis outlined above, we propose unifying hierarchical information of statements

with token sequences for source code summarization. Initially, we employ the comma and grammar

parser to segment the code snippets into individual statements. Subsequently, we construct a

statement-grained semantic graph that contains both the hierarchical relationship among statements

and statement types information, serving as the code structural skeleton. Drawing inspiration

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

3 of 17

from [18], Natural Language Processing (NLP) techniques usually leverage the transformer-based

model to encode tokens, tokens’ tags, and positions to comprehend the semantics of natural language.

Programming languages, while sharing similarities with natural languages, exhibit more complex

structures and adhere to stricter syntax rules. Therefore, we attempt to treat the statement-grained

semantic graph, along with the syntax of tokens, as a representation of the global hierarchical position

information and tags of code tokens. The aggregation of code tokens’ position, tags, and text is then

fed into the sequence Transformer for effective code summarization.

To validate the effectiveness of the above-mentioned code semantic representation, we propose a

novel framework, the Statement-grained Hierarchy Transformer (SHT). This framework is designed

to capture the hierarchical characteristics of statements and aggregate statement-grained hierarchical

features with sequential syntax and tokens, thereby generating concise natural language descriptions

of code functions. The SHT model comprises two pivotal components: a Transformer-based

hierarchy encoder for learning the representation of statement-grained hierarchical information,

and a Transformer-based sequence encoder for the aggregated code semantic representation. We

conducted an empirical study to investigate the impact of the statement-grained hierarchical structure

on code summarization, and experimental results demonstrate the effectiveness of statement-grained

hierarchical information. SHT was rigorously evaluated on two public datasets for source code

summarization tasks, where it surpassed previous works and achieved new state-of-the-art results.

Additionally, ablation studies and human evaluation were conducted to illustrate the efficiency of the

proposed method. In summary, our work makes contributes to the field by:

• We are the first to explore the use of a statement-grained hierarchy graph for extracting global

hierarchical structural properties. This graph is integrated with the code token sequence to

represent code semantics for source code summarization.
• We propose a novel model, SHT, which incorporates the statement-grained hierarchy graph and

token sequence to generate code summaries. This model uniquely combines two encoders for

sequence and graph learning within the Transformer framework.
• Our approach is evaluated on two source code summarization benchmark datasets against

baseline models, surpassing previous works and achieving new state-of-the-art results.

Additionally, the ablation study and human evaluation further validate our strategy for code

comprehension in code summarization.

The remainder of this paper is organized as follows. Section 2 reviews the background knowledge of

the work. Section 3 defines the problem formulation of code summarization. Section 4 presents our

proposed methodology. Section 5 details the experimental setup and discusses the results. Section 6

describes the related works, followed by the limitations of our work in Section 7. Finally, Section 8

concludes the paper and outlines directions for future research.

2. Background

In this section, we introduce the background knowledge of the proposed approach, including the

Transformer model architecture and Relational Attention.

2.1. Transformer

Transformer [19] is a kind of deep self-attention network that has been initially proposed for

neural machine translation and demonstrated its powerful representation capability in many NLP

applications [20,21]. The architecture of the Transformer consists of multiple stacked encoder and

decoder layers. Within each encoder stack, the inputs first pass through a self-attention sublayer,

and then are fed into a position-wise feed-forward sublayer followed by a layer normalization. The

decoder features a similar structure to the encoder, yet includes a cross-attention layer. These layers

are strategically positioned between the encoder’s sublayers to enable the decoder to focus on relevant

parts of the input sequence. Both the encoder and decoder employ residual connections and layer

normalization to facilitate the flow and integration of information across their respective sub-layers.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

4 of 17

2.2. Self-attention

Self-attention is the key component of the Transformer model. The attention mechanism can be

formulated as querying a dictionary composed of key-value pairs. For a single head of attention, the

matrix form equation is typically represented as follows:

Attention(Q, K, V) = so f tmax(
QKT

√
d
)V (1)

Here, Q(Query), K(Key), and V(Value) matrics are derived from the inputs, and d represents the

dimension of the vectors, which helps in scaling the dao products. The attention mechanism then

computes the dot products of the Query with all Keys, scales these values, and applies a softmax

function to obtain the weights on the Values. The intuition behind attention is that not all tokens in

a sequence are of equal importance to the final output prediction. The attention mechanism tries to

learn the important words in a sequence. As each word in a sentence simultaneously flows through

the encoder and decoder stack, the model does not inherently understand the order of words. To

compensate for this, position embeddings are added to each word embedding.

2.3. Relation-aware self-attention

Recently, there has been a surge in research that adopts the Transformer model as the backbone for

enhanced source code representations [6,17]. This trend includes adapting the Transformer, originally

designed for processing plain text, to handle structural data (graphs and trees) [15,16,22]. These

Structure-aware transformer models encode structures by introducing soft inductive biases. Relational

attention [23,24] extended from self-attention is widely applied in structure-aware Transformer.

Comparing self-attention projects QKV vectors from each node vector, Relational attention’s central

innovation, as depicted in the Figure 2, involves conditioning the QKV vectors on the directed edge

eij between the nodes, which concatenates the edge vector eij with each node vector before the linear

transformers. The process can be formally described as:

qij = [ni, eij]W
Q kij = [ni, eij]W

K vij = [ni, eij]W
V

Where each weight matrix W ∈ R
(dn+de)dn , and de is the edge vector size.

ni njeijni nj

Figure 2. Left is the standard transformer attention computeing QKV among node vectors. Right is

relational attention computing edge vector as well.

3. Problem Formulation

In our work, we aim to generate readable and concise source code descriptions. We formalize the

task as a supervised natural language generation problem. Formally, let D denote a dataset containing

a set of programs C and their associated summarize Z, given source code c = (x1, x2, ..., xn) from C,

where n denotes the code sequence length. Furthermore, we leverage relational attention to extract

the global hierarchical features of code sequence c. Finally, the aggregation of textual and hierarchical

features is fed to the model to generate the code summary z̃ = (y1, y2, ..., ym) by maximizing the

conditional likelihood: z̃ = argmaxp(z|c) (z is the corresponding summary in the summary sets in Z).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

5 of 17

4. Proposed Approach

This study introduces a novel code summarization model named SHT, which is designed to

process both the code sequence and hierarchy information. The comprehensive pipeline of our

approach is depicted in Figure 3. We initiate the process by extracting three-level semantic features

from the ASTs. This feature set encompasses a statement-grained hierarchical graph, token sequence,

and syntax sequence. Subsequently, the hierarchical graph is processed through a relational attention

encoder block, yielding hidden vector representations of statement nodes. These representations

encapsulate global hierarchical information and statement types. Following this, the aggregated

hidden states of statement nodes, along with embeddings of token and syntax sequences, are input

into a Transformer-based sequence encoder. This encoder is employed to acquire the final semantic

representation of the source code. Lastly, the resulting semantic representation is fed into a vanilla

Transformer decoder to generate a concise summary.

AST parser

Syntax sequence

..........

.......... +

Token sequence

Muti-head
Attention

Add & Norm

Feed Forward

Input

N *

Token
Positional
Encoding

relational attention
Encoder

Statement-graind hierarchical graph

.....

.....

.....

Vanilla Decoder * N

Linear & Softmax

Copy

Output Probabilities

+
Token

Positional
Encoding

Code summary

Figure 3. Model Architecture of our Approach

4.1. Data Processing

According to [25], entities in distinct granularities highlight specific aspects of source code from

multiple perspectives. The statement-grained hierarchical graph reveals the code’s global logical

semantics and structural information. Similarly, the syntax sequence provides an in-depth analysis

of the code’s grammatical structure. Moreover, decomposing tokens into sub-tokens yields a textual

analysis. For extracting these diverse granularities, each Java method is initially parsed into ASTs.

ASTs are crucial as they encapsulate comprehensive syntax and semantic details. Our evaluation,

focusing on Java programs, employs the javaLang parser, a Python library for Java code parsing. The

following sections will elaborate on the approaches used to construct the model input.

4.1.1. Construction of statement-grained hierarchical graph

Given a code snippet, the code is first parsed to obtain the AST, followed by a pre-order traversal of

this AST. The javaLang parser encompasses a limited set of statement-node types (i.e., methodDeclaration,

statement, ifStatement). When encountering an AST node whose tag is within the predefined set

of statement node types, we collect the node into a set N. To represent the hierarchical structure

of statements in a program, we introduce two types of hierarchical edges. A Sibling edge connects

statement nodes with the same parent node, whereas a Parent-Child edge links nodes in a parent-child

relationship. Conversely, a Child-parent edge represents the child-parent relationship. Formally, we

define a semantic-grained hierarchical graph G(N, E). For the code depicted in Figure 4, N consists of

[declaration, local_variable_declaration, while_statement, ..., return_statement], and E comprises {Parent-child

edge, Child-parent edge, Sibling edge}. The statement types elucidate the syntactic information, while the

hierarchical edges capture the global hierarchical information of the source code.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

6 of 17

IntegralType

MethodDeclaration

LocalVariableDeclaration

WhileStatement

WhileStatement

IfStatement ReturnStatement

ReturnStatement

VariableDeclarator

identifier FieldAccess

Identifier Identifier

int

numLength

nums length

ArrayCreationExpression

Identifier Dimensions

DecimalIntegerLiteralint

0

1st: Statement-grained hierarchy diagram

LocalVariableDeclaration

LocalVariableDeclaration

ExpressionStatement
ExpressionStatement

..........

..........

..........

..........
AssignmentExpression

Identifier Identifier

j 1

2 9 111 6..... 7

label 1

label 2

label 3

label 4

label 5

label 6

label 7 label 8

label 9
label 10label 11

2 9 11

..........

int

numLength

IntegralType

num length

Identifier Identifier

nums length

Identifier Identifier

...... int 0j 1

Identifier Identifier

......

Identifier DecimalIntegerLiteral

2nd: Syntax sequence

3rd：Token sequence

child-parent edge

Parent-child edge

Sibling edge

Figure 4. An example of illustrating the construction of Statement-grained hierarchy graph, syntax

sequence, and token sequence from AST.

4.1.2. Construction of token and syntax sequences

Each leaf node of AST corresponds to a specific token in the source code. Recognizing that method

and variable names in programs often comprise multiple natural language words, formatted in either

camelCase or snake_case, we further decompose these tokens into sub-tokens to reveal the textual

feature of the program. Constructing of the sub-token sequence commences with the acquisition

of the leaf nodes’ sequence from the AST through depth-first pre-order traversal, followed by the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

7 of 17

division of each token into its constituent sub-tokens. The sub-tokenization approach, widely adopted

in source code summarization methodologies [6,26], has been validated for its efficacy. Formally, we

denote the ordered sub-token sequence as T = [t1, t2, ..., tn]. In Figure 4, T is exemplified as [public, int,

two, To, Target, ...]. The attribute of each token’s parent node within the AST conveys its grammatical

characteristic. To acquire the syntactical feature of tokens, we generate a sequence of syntax nodes,

wherein each token in T is substituted by its corresponding syntactical node (i.e. parent node). This

sequence is formally represented as S = [s1, ..., sn], indicating the ordered array of token syntactical

types. As illustrated in Figure 4, S comprises elements like [modifier, type, identifier, identifier, ...].

Importantly, we ensure that the lengths of the sub-token sequence and the syntax sequence are aligned.

Furthermore, we establish a one-to-many mapping relationship between statement nodes and token

nodes, and this relationship is formally expressed as MN→T . When MN→T(nj, ti) = 1, indicating that

a token node ti, is derived from a statement node nj.

In this study, we present three distinct code representations, each capturing different levels of

granularity in program analysis: (1) a statement-grained hierarchical graph G, which focuses on the

structure of the program by delineating the hierarchical relationships of statements; (2) a subtoken

sequence T, offering detailed insights into the granular elements of the code such as variable names

and function calls; and (3) a syntax sequence S that highlights the grammatical feature within the code.

Collectively, these representations, {N, T, S} provide a comprehensive multi-grained analysis of code,

encompassing aspects from overarching program architecture to fine-grained syntactic details.

4.2. Statement-grained hierarchy Transformer

We introduce the Statement-grained Hierarchy Transformer SHT, which integrates hierarchical,

syntactical, and sequential textual information for code semantic representation. SHT follows

the standard Transformer architecture yet incorporates a two-phase encoder module: a relational

attention-based hierarchical graph encoder and a sequence encoder. The first encoder employs

relational attention to process the statement node hidden states within the graph G, learning

the statement-grained hierarchical graph’s characteristics from two aspects: global hierarchical

structure and statement types. In the second phase, the sequence encoder is adopted to process

the sequence representation, effectively aggregating hierarchical, syntactical, and textual information.

This aggregation is crucial for deriving a final, enriched code representation that encapsulates multiple

facets of the source code. Finally, the output from the encoder module is fed into a Transformer decoder

for code summarization tasks.

4.2.1. Relational attention-based hierarchical graph encoder

For transformer-based architectures, Shaw et al. [23] show that relation features can be

incorporated directly into the attention function by changing the attention computation. We leverage

the relational attention encoder in the same form as [15] to encode the statement-grained hierarchical

graph. Relational attention is built on the standard self-attention with relative position embeddings, yet

we replace the relative position embeddings derived from the linear relationship with the hierarchical

edge types among statement nodes. For the statement-grained hierarchical graph G = (N, E), we

first embed the statement nodes and edges type edge, and then feed them into the relational attention

encoder.

x1, x2, ..., xl = Embed(n1, n2, ..., nl) (2)

The input of the relational attention encoder is a sequence X = (x1, x2, ..., xl) where xi is a vector

in R
d and represents the learned embedding of node ni. Here, l denotes the length of sequence X.

Additionally, eij symbolizes the learned embedding of the edge type that connects nodes i and j in the

graph. It’s important to note that if two nodes i and j are not connected by hierarchical edges then

their corresponding edge eij is set to zero. O = {o1, o2, ..., ol}(oi ∈ R
d) is a sequence of output vectors

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

8 of 17

of node N, which contains each node’s global hierarchical information in the program. Relational

attention can be formulated as:

oi =
n

∑
j=1

σ(aij)V(xi) (3)

αij =
(Q(xi) + e(We)T)K(xj)

T

√
d

(4)

where Q, K : Rd → R
m are query and key functions respectively, We ∈ R

d is the projection matrices for

edge embedding eij, V : Rd → R
d is a value function, σ is a scoring function (e.g. softmax or hardmax).

The
√

d term is used to scale the attention weights.

4.2.2. Sequnce encoder

The sequence encoder is designed to encode a combination of hierarchical, syntactical, and textual

representations of the code. The sequence of token embedding [s′1, s′2, ..., s′n] represents the textual

features of the code snippet. To enhance the understanding of tokens, the sequence encoder also

incorporates a sequence of syntax embedding [t′1, t′2, ..., t′n], which contains the syntactical information

corresponding to the token. Additionally, then the encoder stores a position embedding P, which

indicates the absolute position of tokens. The global hierarchical information among statement

nodes also affects the tokens of each statement, so we utilize the one-to-many mapping relationship

MN→T(nj, ti) to pass the global hierarchical and into tokens. Finally, the input of sequence encoder

[z1, z2, ..., zn] is considered as the comprehensive representation of code snippets, which is the sum of

various embeddings, including tokens, syntax, absolute positions, and hierarchical information. The

output of the sequence encoder [h1, h2, ..., hn] is passed to the decoder for summary generation.

s′1, s′2, ..., s′n = Embed(s1, s2, ..., sn) (5)

t′1, t′2, ..., t′n = Embed(t1, t2, ..., tn) (6)

zi = s′i + t′i +
l

∑
j=1

MN→T(nj, ti)oj + pi (7)

h1, h2, ..., hn = Trans f ormerseq(z1, z2, ..., zn) (8)

4.2.3. Decoder with copy machine

In this work, we enhance Transformer-based models by incorporating a pointer network [27]

into the decoders. This integration significantly improves prediction capabilities by allowing direct

references to positions in the input sequence. As indicated by [26], approximately one-third of tokens,

in summary, are directly copied from the source code in code summarization datasets. This method

proves particularly advantageous for less frequent tokens, facilitating the model’s ability to predict

out-of-vocabulary (OOV) tokens. Specifically, a decoder input hi, and decoder output vi at timesetp t,

are computed for a context vector h∗t , as shown in equation 9.

h∗t = ∑
i

so f tmax(WT
1 tanh(W2hi + W3vi + b1))hi (9)

The pointer generator operates at each timestep t by leveraging the context vector h∗t , decoder input hi,

and decoder output vi to calculate the generation probability pgen ∈ [0, 1]. This probability serves as a

soft switch, determining whether to generate a token from the model’s vocabulary or to copy a token

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

9 of 17

directly from the input sequence. The probability of predicting the token w at timestep t is calculated

as follows:

Pgen = sigmoid(W4h∗t + b2) (10)

pvocab = so f tmax(W5h∗t + b3) (11)

P(w) = (1 − pgen) ∑
(i:wi=w)

at
i + pgenPvocab (12)

where W and b are learnable paremeters. pvocab represents probability distribution over all words in

the vocabulary.

5. Experiment

In this section, we will begin by presenting our experimental setup, which encompasses the

evaluation datasets, metrics, comparison baselines, and parameter configurations. Then, the main

results are reported, including comparison with baselines, ablation studies, human evaluation, and

qualitative analysis.

5.1. Experiments Setup

5.1.1. Evaluation datasets

To evaluate the performance of the proposed method, we conducted our experiments using

two public Java datasets: TL-CodeSum1 [28] and EMSE-Deepcom2 [29], extensively utilized in prior

research [6,25,26]. Specifically, the TL-CodeSum Java dataset comprises 87,136 pairs of Java methods

and corresponding summaries, collected from GitHub repositories. The EMSE-Deepcom dataset

contains approximately 485,812 pairs of Java methods and comments. To ensure consistency in dataset

preprocessing and facilitate fair comparisons with baseline models, we directly employed tokenized

versions of these datasets as provided by [6,25]. Both datasets were tokenized using CamelCase and

snake_case tokenizers to get sub-tokens [6], which can reduce the vocabulary significantly. For the

summary sequences, we extracted the first sentence of Javadoc as the natural language description

in the TL-CodeSum, while in the EMSE-Deepcom dataset, we selected the first line of Javadoc as

the corresponding summary. The original datasets do not include ASTs, therefore, we generate the

associated ASTs from the raw source code using the javalang library3, discarding unparseable methods.

It is important to note that some summaries were of limited utility. To maintain data quality,

we excluded comments with fewer than 4 words, as well as constructors, setters, getters, and

tester methods, following the approach of [8]. We follow [25] to remove the deduplicated pairs

of EMSE-DeepCom. Consequently, we obtained a final dataset comprising 83,661 pairs of source code

and summaries for TL-CodeSum and 308,193 pairs for EMSE-DeepCom, respectively. Table 1 provides

a breakdown of these datasets into training, validation, and test sets after applying the aforementioned

filtering criteria. Additionally, we pre-shuffled all datasets to mitigate any potential impact resulting

from the order of the data.

1 https://github.com/xinghu/TL-CodeSum
2 https://github.com/xing-hu/EMSE-DeepCom
3 https://pypi.org/project/javalang

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://github.com/xinghu/TL-CodeSum
https://github.com/xing-hu/EMSE-DeepCom
https://pypi.org/project/javalang
https://doi.org/10.20944/preprints202401.1306.v1

10 of 17

Table 1. Dataset statistics. #train indicates the number of instances for training. #/Avg.# tokens in code

means the number of unique tokens and average method lengths in the code. The rest are similar to

this.

Dataset TL-CodeSum EMSE-Deepcom

#train 66,928 283,741
#validition 8,366 12,226
#test 8,366 12,226

#/Avg.#tokens in code 20,162/120.10 47,939/93.93
#/Avg.#tokens in summary 25,619/17.76 26,145/11.24

5.2. Metrics

We assess source code summarization performance using three widely accepted metrics:

BLEU [30], METEOR [31], and ROUGE-L [32]. These evaluation criteria are well-established in the field

of NLP and software engineering for quality assessment of text generation [33,34]. This combination

of metrics enables a comprehensive and well-rounded evaluation of our model’s performance.

• BLEU calculates the n-gram precision overlap between two texts, serving as an accuracy measure.

It indicates the proportion of generated text that corresponds to the reference text.
• METEOR, a recall-oriented metric, reflects the percentage of correctly generated content in

comparison to the reference summary.
• ROUGE-L quantifies the longest common subsequence (LCS) between the reference and the

generated code summary. It serves as a recall metric and provides additional insights not

captured by BLEU scores alone.

5.3. Comparison baselines

To evaluate the performance of SHT, we conducted a comparative analysis with several

well-established code summarization models serving as baselines.

• CODE-NN [5]: the first data-driven source code summarization model. It views source code as a

sequential text and utilizes LSTM, a sequential model, for generating source code summaries.
• HDeepCom [29]: a neural machine translation (NMT) based code summarization model that

converts the AST into a sequence by employing a structure-based traversal (SBT) method. It then

feeds this sequence into a sequence-to-sequence model for comment generation.
• ASTattGRU [35]: This is a dual learning framework that jointly trains code summarization and

code generation tasks, aiming to enhance both aspects simultaneously.
• NeuralCodeSum [6]: is a transformer-based code summarization model that leverages relative

position information among code tokens to enhance the summary generation process.
• CAST [26]: is a hybrid code summarization model that combines a tree-based Recursive

Variational Neural Network (RvNN) and a vanilla code token encoder to capture both code

structure and sequence. It incorporates a hybrid mechanism in the decoding phase to combine

inputs for generating descriptive summaries.
• TPTrans [36] a transformer-based code summarization model that captures the pairwise path

information in AST and integrates path encodings into the Transformer for concise summary

generation.

We selected these baselines to establish comprehensive benchmarks for performance evaluation of our

approach in code summarization. During implementation, we either replicated the results precisely as

reported in corresponding papers or rigorously reproduced the results using the publicly available

repositories for most of the baselines.

5.4. Parameter configurations

We followed the approach outlined by [25] to set the maximum sequence lengths and vocabulary

sizes for both code and summaries in both datasets. We constrained the vocabulary size to 50,000 for

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

11 of 17

code sequences and 30,000 for summary sequences in both datasets. The maximum lengths of code

and summary are set to be 150 and 30. Meanwhile, the vocabulary size and sequence length of AST

are set as 50,000 and 200 respectively.

Our model architecture employed an embedding dimension and hidden size of 256, with 8 heads

in each transformer layer. The hierarchical encoder consisted of 2 layers, the sequential encoder had

4 layers, and the decoder comprised 2 layers. We trained the Transformer models using the Adam

optimizer with an initial learning rate of 10−4. We incorporated dropout with a probability of p = 0.2.

The mini-batch size was set to 32. Our experiments were conducted on the Pytorch framework with

an NVIDIA 3090 GPU. The training was capped at a maximum of 200 epochs, and we selected the

checkpoint with the best performance on the validation set for subsequent evaluation on the test set.

Additionally, to prevent overfitting, we implemented early stopping if the model’s performance on the

validation set did not improve for 20 epochs.

5.5. Main Results

To provide a comprehensive analysis of our model’s performance, we begin by conducting a

comprehensive performance comparison with baselines. Additionally, we have designed an ablation

study to assess the effectiveness of our proposed code semantic representation. Furthermore, we

perform human evaluations to assess the generated code summaries regarding informativeness and

readability. Finally, we present examples of generated summaries to qualitatively illustrate the results.

5.5.1. Compasisons with baselines

The overall results of our proposed model and the baselines are presented in Table 2. Our

model outperforms all the baselines, showing robust generalization performance on both datasets.

CodeNN, employing exclusively code tokens with an LSTM network, captures sequential token

information. In comparison, HDeepCom and ASTattGRU encode AST structures using GRU and then

concatenate this encoding with the token sequence to predict the summary. Notably, CodeNN achieves

higher METEOR scores and lower BLEU scores than HDeepCom, primarily attributed to its tendency

to generate shorter summaries. This observation highlights the impact of code structure on code

comprehension and summary generation, as both HDeepCom and ASTattGRU outperform CodeNN.

NeuralCodeSum exclusively encodes code tokens, achieving superior performance by utilizing a

transformer to capture long-range dependencies among code tokens. Moreover, transformer-based

approaches, CAST and TPTrans, outperform LSTM-based methods in code summarization tasks.

Compared to NeuralCodeSum, which integrates pairwise relative positional information among tokens

into the encoder, our approach utilizes relational attention encoding to capture global hierarchical

information among statements, yielding notable improvements in BLEU, ROUGE-L, and METEOR

scores, with increases of 5.13% and 1.72%, 3.7% and 1.15%, and 3.37% and 0.85% on both datasets,

respectively. In comparison to the leading methods CAST and TPTrans, which take all nodes in ASTs

and token sequences as input, our model, which aggregates global hierarchical features, syntax, and

tokens, demonstrates superior performance on both datasets. These results validate the rationale

behind our approach, which combines statement-level hierarchical information with conventional

syntax and token textual information, as an effective strategy for code summarization.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

12 of 17

Table 2. Comparisons with baseline methods on both TL-CodeSum and EMSE-DeepCom datasets

Approaches Input Backbone
TL-CodeSum EMSE-Deepcom

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

CodeNN [5] Code LSTM 22.22 33.14 14.08 28.45 43.51 17.89
HDeepcom [29] AST GRU 23.32 33.94 13.76 32.19 49.03 21.53
ASTattGRU [35] AST GRU 30.78 39.94 17.35 33.40 49.76 22.20

NeuralCodeSum [6] Code Transformer 40.63 52.00 24.85 37.13 54.87 25.05
CAST [26] AST Transformer 43.76 54.09 27.15 37.19 54.87 25.07

TPTrans [36] AST Transformer 44.50 55.08 27.88 37.25 54.99 25.02

SHT AST Transformer 45.76 55.70 28.22 38.85 56.02 25.90

5.5.2. Ablation study

We further conducted ablation studies to evaluate the impact of various code structural properties,

hierarchical granularity, and aggregation strategies. Initially, to assess the influence of different code

structure types, we individually omitted code tokens and token syntax. Additionally, we transferred

the hierarchical relationships from statement nodes to the individual tokens they encompass to evaluate

the effect of hierarchical granularity on code semantic comprehension. Finally, we explored different

strategies for aggregating the multi-structural properties of source code. These ablation experiments

were carried out on the TL-CodeSum dataset, with the training setup unchanged unless specified

otherwise. The results are illustrated in the Table 3.

Table 3. Evaluation results of ablation study on TL-CodeSum datasets.

Approaches BLEU ROUGE METEOR

SHT 45.76 55.70 28.22
w/o token 42.33 53.27 26.89

w/o syntax 45.38 55.03 27.63
token-grained hierarchy 45.08 55.17 27.90

concatenation 45.42 55.36 28.06

The performance comparison, omitting either syntax embeddings or token embeddings, highlights

the greater significance of token textual information over token syntax in code semantic representation.

Remarkably, removing tokens led to an approximate 8.1% decline in the BLEU score, whereas omitting

syntax resulted in a small decrease of about 0.8%. The result suggests that the modeling of semantic

relations among tokens is beneficial for the code summarization task. Concurrently, the preservation

of both textual and syntactic features of tokens enables a more comprehensive representation of the

source code’s semantic information.

Transferring the global hierarchical relationships from statement nodes to tokens substantially

increases the complexity of the token-grained hierarchical graph. Furthermore, given the relatively

minor impact of tokens’ syntax on code semantic representation, we opted to employ only the relational

attention encoder to learn the token-grained hierarchical graph for summary prediction. As indicated

in Table 3, this approach of capturing code semantic information from a token-grained hierarchical

graph resulted in a performance decrease of approximately 1.4%. This suggests that token-grained

hierarchical graphs may struggle to represent the global hierarchy within code snippets effectively. It is

noteworthy that statements, as fundamental units for conveying source code semantics, also represent

an ideal level of granularity for encapsulating global hierarchy.

Regarding the input of our sequence Transformer, which includes the token’s textual embedding,

syntax embeddings, and hierarchical features, several aggregation strategies are feasible. In our

model, we chose a straightforward approach of directly adding these elements together for summary

prediction. [37] describes various strategies for multi-source transformers. For simplicity, our contrast

experiment employed concatenation instead of component-wise addition, replacing zi = si + ti + oi

with zi = [si; ti; oi]. As demonstrated in Table 3, the concatenation strategy does not perform as well as

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

13 of 17

the simple addition of multi-granularities. Nevertheless, it delivers comparable performance, with the

concatenation strategy achieving a BLEU score of 45.08, which is not significantly different from our

original strategy.

5.5.3. Human evaluation

To further assess the quality of code summaries generated by our proposed model, we conducted

a human evaluation, comparing its generative capabilities against three state-of-the-art baselines.

We randomly selected 50 samples for evaluation, comprising 25 from the test sets of TL-CodeSum

and 25 from EMSE-CodeSum, respectively. Five experienced developers, each boasting over three

years of software development experience and proficient English skills, were invited to participate

in this evaluation. The developers were tasked with assessing the generated summaries based on

three criteria: similarity, conciseness, and readability, rating on a scale from 1 (very dissatisfied) to 5

(very satisfied). Similarity refers to how closely the generated summary matches the ground truth

summary. Conciseness evaluates the extent to which the summaries describe the code’s functionality

without unnecessary or extraneous information. Readability focuses on the grammatical correctness

and fluency of the generated code descriptions. The results of this evaluation are presented in Table 4.

The final score for each example represents the average of the scores given by the five developers. The

findings from the evaluation reveal that the summaries produced by our model surpass all baselines

across all evaluated metrics, indicating the efficacy of our approach in generating summaries with

comprehensive semantics.

Table 4. Human evaluation results.

Approaches Similarity Conciseness Readability

SHT 3.52 3.17 3.34
NeuralCodeSum 2.51 2.72 2.34

CAST 3.11 2.90 2.97
TPTrans 3.20 3.17 3.34

5.5.4. Qualitative Analysis

To visually demonstrate our model’s performance, we present two examples for qualitative

analysis, as depicted in Table 5. These examples illustrate that our proposed model not only generates

summaries closely resembling the reference but also maintains readability. We specifically focused on

the summary generation capabilities of our approach versus the token-grained hierarchy model. In

the first example, a code snippet contains a simple structure with three statement types, characterized

primarily by parent-children relationships. The token-grained hierarchy model, in this case, produces

summaries with certain semantic relevance yet less readability. The second example involves a

more complex hierarchical structure. Here, the token-grained hierarchy model generates summaries

with a limited understanding of the source code’s semantics. However, despite ignoring syntax,

the token-grained hierarchy model still manages to grasp the core function in its summaries. This

suggests that hierarchical information of source code excels in capturing global structural and logical

relationships for code comprehension. The results of these qualitative examples indicate that our

approach, which considers the global hierarchy, syntax, and text of the source code, is adept at

generating concise and readable summaries for both simple and complex code snippets.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

14 of 17

Table 5. Qualitative examples

Source Code

private void sendRemainingParts(Client client , String [] strings){

for(int i = NUM_; i < strings.length; ++i){

client.appendMessage(strings[i]);

}

}

Summaries:
Reference: send the remaining parts of a string array to a client
SHT: send the remaining elements of a string array to a client
SHT w/o syntax: Sends array remaining strings to client
token-grained hierarchy: send remaining string array to a client

Source Code

public boolean containsValue(Object value){

Entry tab[] = table;

if(value == null){

for(int i = tab. length; i -- > NUM_;)

for(Entry e = tab[i]; e! = null; e = e.next)

if(e.value == null) return BOOL_;

}

else {

for(int i = tab.length; i -- > NUM_;)

for(Entry e = tab[i]; e! = null; e = e.next)

if(value.equals(e.value))

return BOOL_;

}

return BOOL_;

}

Summaries:
Reference: check whether a given value exists in a collection of objects
SHT: check whether a given value exists in a collection of objects
SHT w/o syntax: search entries for value, returns predefined value
token-grained hierarchy: search entries for value, returns predefined value

6. Related Work

Research on source code summarization has been extensively conducted for over a decade, and

it can be categorized into three primary types: template-based approaches, information retrieval

(IR) based approaches, and data-driven approaches. With the rapid advancement of deep learning

techniques, data-driven approaches have become the predominant method, achieving the best

performance in recent years. Consequently, in this section, we mainly focus on data-driven

approaches in related works. Source code summarization is considered a sequence generation task

and adopts Natural Machine Translation (NMT) frameworks with encoder-decoder models to enhance

performance.

Most approaches either treat the source code as a sequence of tokens or structural representation

from AST or graph(i.e., Control Flow, Program Dependency), thereby employing various encoders

to handle the diversity of inputs. To encode the code sequence, Iyer et al. [5] was the first to propose

an RNN-based model with a Long Short-Term Memory (LSTM) network. Ahmad et al. [6] utilized a

transformer model with relative position embedding to capture the code’s semantic representation. For

extracting structural information from ASTs, Tree-LSTM [1,8] and Tree-Transformer [9] models adopt

RNN-based and Transformer-based frameworks, respectively, to directly encode ASTs. Additionally,

some approaches have worked with variants of AST. Hu et al. [10] proposed the "Structure-Based

Traversal" (SBT) method to flatten ASTs, leveraging an attention-based RNN encoder to encode

flattened ASTs by Structure-Based Traversal (SBT) method for code summarization. Alon et al. [11]

extract paths from an AST, and encode these paths using random walks. CAST [26] leverages a

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

15 of 17

tree-based Recursive Neural Network to encode reconstructed subtrees of AST. Graph-based methods

represent the program as a graph in acquiring a deeper code semantic comprehension [12]. Fernandes

et al. [13] and Junyan et al. [14] encode graph-structured representation by a Graph Neural Network

(GNN). To capitalize on the advantages of both code sequence and structural information, some

researchers have attempted to jointly learn these aspects for code representation. GREAT [15] utilizes

the Transformer model to encode an AST-based graph, which adds edges of data flow and control

dependency into the tokens of the AST; furthermore, relative positional encoding is utilized to acquire

the pairwise relations between tokens. CodeTransformer [16] also considers the distance on the

AST-based graph in the self-attention operation.

7. Limitation

There are three main threats to the validity of our study.

• Dataset limitations: While numerous public datasets are available for the code summarization

task, our model evaluation was confined to only two public Java datasets. Consequently, these

datasets may not fully represent other programming languages, potentially limiting the scalability

of our model. In future work, we plan to experiment with more large-scale datasets encompassing

diverse programming languages. We anticipate that our model could be extended to other

languages capable of being parsed into ASTs with minimal adaptation.
• Hyperparameter settings in deep learning: The configuration of dimensions plays a pivotal

role in influencing the outcomes of a deep learning model. We conducted a limited-range

grid search focusing on learning rate and batch size to optimize our model’s performance. To

mitigate the impact of varying hyperparameter settings among baseline models, we compared

our performance against the best results reported in previous works for these baselines.
• Biases of human evaluation: We incorporated human evaluation by inviting five participants to

assess the quality of 50 code-summary pairs, selected randomly. It is important to acknowledge

that the outcomes of human annotations can be influenced by various factors, including the

participants’ programming experience and their comprehension of the evaluation criteria.

Recognizing this potential for bias, future iterations of our study will seek to involve a larger

number of skilled software developers for evaluating an expanded set of code-summary pairs.

Additionally, to further enhance the reliability of our findings, each code-summary pair will be

reviewed by a minimum of five participants.

8. Conclusion

In this article, we introduce SHT, a Transformer-based architecture designed to generate

summaries for Java methods. This model uniquely integrates the globally hierarchical and sequential

information of source code snippets. In SHT, source code is parsed from three perspectives: a

statement-grained hierarchical graph, and sequences of syntax and tokens. The hierarchical graph

is encoded using a relational attention encoder, after which the hierarchical features are combined

with tokenized sequences by another sequence encoder. This process facilitates the effective extraction

of code semantics. Our comprehensive experiments demonstrate that SHT achieves state-of-the-art

results on two public Java benchmarks. Looking ahead, we plan to expand our approach to other

programming languages using larger datasets. Moreover, we aim to adapt and evaluate our model

across various coding task domains. This expansion is anticipated to further enhance the accuracy

of code semantic representations, broadening its applicability and utility in the field of software

engineering.

Author Contributions: Conceptualization, Q.Z.; methodology, Q.Z.; software, Q.Z.; validation, Y.W. and D.J.;
investigation, Q.Z.; resources, Y.G.; writing—original draft preparation, Q.Z.; writing—review and editing, Q.Z
and D.J; supervision, Y.W.; project administration, Y.W. and D.J.; funding acquisition, Y.G.

Funding: This work was supported by the National Natural Science Foundation of China (No. U1736110).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

16 of 17

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wan, Y.; Zhao, Z.; Yang, M.; Xu, G.; Ying, H.; Wu, J.; Yu, P.S. Improving automatic source code summarization

via deep reinforcement learning. In Proceedings of the Proceedings of the 33rd ACM/IEEE international

conference on automated software engineering, 2018, pp. 397–407.

2. Xia, X.; Bao, L.; Lo, D.; Xing, Z.; Hassan, A.E.; Li, S. Measuring program comprehension: A large-scale field

study with professionals. IEEE Transactions on Software Engineering 2017, 44, 951–976.

3. Stapleton, S.; Gambhir, Y.; LeClair, A.; Eberhart, Z.; Weimer, W.; Leach, K.; Huang, Y. A human study

of comprehension and code summarization. In Proceedings of the Proceedings of the 28th International

Conference on Program Comprehension, 2020, pp. 2–13.

4. Liu, S.; Chen, Y.; Xie, X.; Siow, J.; Liu, Y. Retrieval-augmented generation for code summarization via hybrid

gnn. arXiv preprint arXiv:2006.05405 2020.

5. Iyer, S.; Konstas, I.; Cheung, A.; Zettlemoyer, L. Summarizing source code using a neural attention model. In

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics 2016. Association

for Computational Linguistics, 2016, pp. 2073–2083.

6. Ahmad, W.U.; Chakraborty, S.; Ray, B.; Chang, K.W. A transformer-based approach for source code

summarization. arXiv preprint arXiv:2005.00653 2020.

7. Allamanis, M.; Barr, E.T.; Devanbu, P.; Sutton, C. A survey of machine learning for big code and naturalness.

ACM Computing Surveys (CSUR) 2018, 51, 1–37.

8. Shido, Y.; Kobayashi, Y.; Yamamoto, A.; Miyamoto, A.; Matsumura, T. Automatic source code summarization

with extended tree-lstm. In Proceedings of the 2019 International Joint Conference on Neural Networks

(IJCNN). IEEE, 2019, pp. 1–8.

9. Harer, J.; Reale, C.; Chin, P. Tree-transformer: A transformer-based method for correction of tree-structured

data. arXiv preprint arXiv:1908.00449 2019.

10. Hu, X.; Li, G.; Xia, X.; Lo, D.; Jin, Z. Deep code comment generation. In Proceedings of the Proceedings of

the 26th conference on program comprehension, 2018, pp. 200–210.

11. Alon, U.; Brody, S.; Levy, O.; Yahav, E. code2seq: Generating sequences from structured representations of

code. arXiv preprint arXiv:1808.01400 2018.

12. Allamanis, M.; Brockschmidt, M.; Khademi, M. Learning to represent programs with graphs. arXiv preprint

arXiv:1711.00740 2017.

13. Fernandes, P.; Allamanis, M.; Brockschmidt, M. Structured neural summarization. arXiv preprint

arXiv:1811.01824 2018.

14. Cheng, J.; Fostiropoulos, I.; Boehm, B. GN-Transformer: Fusing Sequence and Graph Representation for

Improved Code Summarization. arXiv preprint arXiv:2111.08874 2021.

15. Hellendoorn, V.J.; Sutton, C.; Singh, R.; Maniatis, P.; Bieber, D. Global relational models of source code. In

Proceedings of the International conference on learning representations, 2019.

16. Zügner, D.; Kirschstein, T.; Catasta, M.; Leskovec, J.; Günnemann, S. Language-agnostic representation

learning of source code from structure and context. arXiv preprint arXiv:2103.11318 2021.

17. Zhang, K.; Li, Z.; Jin, Z.; Li, G. Implant Global and Local Hierarchy Information to Sequence based Code

Representation Models. arXiv preprint arXiv:2303.07826 2023.

18. Kitaev, N.; Klein, D. Constituency parsing with a self-attentive encoder. arXiv preprint arXiv:1805.01052 2018.

19. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention

is all you need. Advances in neural information processing systems 2017, 30.

20. Song, K.; Wang, K.; Yu, H.; Zhang, Y.; Huang, Z.; Luo, W.; Duan, X.; Zhang, M. Alignment-enhanced

transformer for constraining nmt with pre-specified translations. In Proceedings of the Proceedings of the

AAAI Conference on Artificial Intelligence, 2020, Vol. 34, pp. 8886–8893.

21. Zhao, X.; Wang, L.; He, R.; Yang, T.; Chang, J.; Wang, R. Multiple knowledge syncretic transformer for

natural dialogue generation. In Proceedings of the Proceedings of The Web Conference 2020, 2020, pp.

752–762.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

17 of 17

22. Tang, Z.; Shen, X.; Li, C.; Ge, J.; Huang, L.; Zhu, Z.; Luo, B. AST-trans: Code summarization with efficient

tree-structured attention. In Proceedings of the Proceedings of the 44th International Conference on Software

Engineering, 2022, pp. 150–162.

23. Shaw, P.; Uszkoreit, J.; Vaswani, A. Self-attention with relative position representations. arXiv preprint

arXiv:1803.02155 2018.

24. Diao, C.; Loynd, R. Relational attention: Generalizing transformers for graph-structured tasks. arXiv preprint

arXiv:2210.05062 2022.

25. Chai, L.; Li, M. Pyramid Attention For Source Code Summarization. Advances in Neural Information Processing

Systems 2022, 35, 20421–20433.

26. Shi, E.; Wang, Y.; Du, L.; Zhang, H.; Han, S.; Zhang, D.; Sun, H. Cast: Enhancing code summarization with

hierarchical splitting and reconstruction of abstract syntax trees. arXiv preprint arXiv:2108.12987 2021.

27. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. Advances in neural information processing systems 2015,

28.

28. Hu, X.; Li, G.; Xia, X.; Lo, D.; Lu, S.; Jin, Z. Summarizing source code with transferred api knowledge 2018.

29. Hu, X.; Li, G.; Xia, X.; Lo, D.; Jin, Z. Deep code comment generation with hybrid lexical and syntactical

information. Empirical Software Engineering 2020, 25, 2179–2217.

30. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: a method for automatic evaluation of machine translation.

In Proceedings of the Proceedings of the 40th annual meeting of the Association for Computational

Linguistics, 2002, pp. 311–318.

31. Banerjee, S.; Lavie, A. METEOR: An automatic metric for MT evaluation with improved correlation with

human judgments. In Proceedings of the Proceedings of the acl workshop on intrinsic and extrinsic

evaluation measures for machine translation and/or summarization, 2005, pp. 65–72.

32. Lin, C.Y. Rouge: A package for automatic evaluation of summaries. In Proceedings of the Text summarization

branches out, 2004, pp. 74–81.

33. Liu, Z.; Xia, X.; Treude, C.; Lo, D.; Li, S. Automatic generation of pull request descriptions. In Proceedings of

the 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2019,

pp. 176–188.

34. Nie, L.Y.; Gao, C.; Zhong, Z.; Lam, W.; Liu, Y.; Xu, Z. Coregen: Contextualized code representation learning

for commit message generation. Neurocomputing 2021, 459, 97–107.

35. LeClair, A.; Haque, S.; Wu, L.; McMillan, C. Improved code summarization via a graph neural network. In

Proceedings of the Proceedings of the 28th international conference on program comprehension, 2020, pp.

184–195.

36. Peng, H.; Li, G.; Wang, W.; Zhao, Y.; Jin, Z. Integrating tree path in transformer for code representation.

Advances in Neural Information Processing Systems 2021, 34, 9343–9354.

37. Libovickỳ, J.; Helcl, J.; Mareček, D. Input combination strategies for multi-source transformer decoder. arXiv

preprint arXiv:1811.04716 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1306.v1

https://doi.org/10.20944/preprints202401.1306.v1

	Introduction
	Background
	Transformer
	Self-attention
	Relation-aware self-attention

	Problem Formulation
	Proposed Approach
	Data Processing
	Construction of statement-grained hierarchical graph
	Construction of token and syntax sequences

	Statement-grained hierarchy Transformer
	Relational attention-based hierarchical graph encoder
	Sequnce encoder
	Decoder with copy machine

	Experiment
	Experiments Setup
	Evaluation datasets

	Metrics
	Comparison baselines
	Parameter configurations
	Main Results
	Compasisons with baselines
	Ablation study
	Human evaluation
	Qualitative Analysis

	Related Work
	Limitation
	Conclusion
	References

