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Abstract: With the rapid advancements in remote sensing technology, the spectral information from
hyperspectral remote sensing images has become increasingly rich, facilitating detailed spectral
analysis of the Earth's surface objects. However, this abundance of spectral data poses significant
challenges in data processing, such as the curse of dimensionality leading to the “Hughes”
phenomenon, "strong correlation” due to high resolution, and "non-linear characteristics" caused by
varied surface reflectance rates. Therefore, dimensionality reduction of hyperspectral data has
become a crucial task. This paper, grounded in manifold theory and manifold learning techniques,
and considering the non-linear structures and features in hyperspectral remote sensing data,
elucidates the principles and processes of dimensionality reduction in hyperspectral remote sensing
images using manifold learning, with a formalized expression of the process. This article introduces
spectral information divergence (SID) into the nearest neighbor graph computation of manifold
learning algorithms. The principles and computational processes of nearest neighbor graph
algorithms based on Euclidean distance (ED), spectral angle mapping (SAM), and SID are studied,
and a comparative analysis of the dimensionality reduction effects under these three metrics in
hyperspectral data is conducted. Experiments on feature extraction under different metrics were
performed using the publicly available Indian Pines hyperspectral dataset. The intrinsic features
obtained post-dimensionality reduction were used as inputs for classification algorithms in ground
objects classification experiments, with algorithm runtime, overall accuracy, and Kappa coefficient
as evaluation metrics for dimensionality reduction quality. The results demonstrate that nearest
neighbor graph computation based on SAM and SID outperforms traditional ED methods; SAM-
based computation has the lowest time complexity, while SID-based manifold learning yields the
highest accuracy in ground objects classification. Thus, manifold learning based on SAM and SID
metrics proves to be an effective method for feature extraction in hyperspectral remote sensing data,
underscoring the potential of manifold learning techniques in the dimensionality reduction of
hyperspectral remote sensing images.

Keywords: hyperspectral remote sensing; manifold learning; local tangent space alignment; spectral
angle mapping; spectral information divergence; dimensionality reduction; feature extraction

1. Introduction

1.1. Characteristics and Challenges of Hyperspectral Remote Sensing Images

Remote sensing utilizes modern carrying tools and sensors to acquire the electromagnetic wave
characteristics of target objects from a distance. It involves the transmission, storage, correction, and
interpretation of information to analyze changes in the shape, location, nature, and state of the target
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objects [1-3]. Hyperspectral remote sensing technology, which is one of the emerging directions in
remote sensing science, captures imagery characterized by high spectral resolution, high feature
dimensionality, precise quantitative analysis, rich spectral information, and integrated image-
spectrum [4]. This technology significantly enriches the information content of Earth observation.
The reflectance of surface materials at different wavelengths manifests their spectral characteristics.
Different ground objects have unique spectral features. Through steps like spectral feature extraction,
data analysis, and application, it becomes possible to accurately identify and monitor surface
characteristics, thereby enhancing the breadth and depth of applications in the field of surveying and
mapping.

Due to the increasing spectral, spatial, and temporal resolutions of hyperspectral imaging
remote sensing instruments, hyperspectral sensors can capture the Earth's surface reflectance spectra,
enabling the sensing of reflectance across various wavelengths, and consequently, the hyperspectral
remote sensing images data obtained is becoming more complex. Hyperspectral data, which is
acquired in the visible and near-infrared spectral ranges, typically includes hundreds of bands, each
corresponding to a different wavelength and specific spectral range. Thus, the spectral features in
hyperspectral data are unique. Different objects, types of ground objects, or environmental conditions
display distinct spectral characteristics. This uniqueness allows for widespread application and
distinct advantages in areas such as remote sensing, Earth observation, environmental monitoring,
and agriculture. Applications include land object classification and recognition, monitoring of
ground objects changes, extraction of topographic and geomorphic features, resource surveys, and
environmental monitoring, among others [5-8].

The core advantage of hyperspectral remote sensing lies in its ability to reflect subtle differences
in spectral characteristics. However, the numerous bands present significant challenges in data
processing: the "big data" characteristic leads to the "curse of dimensionality" issue, often resulting in
the "Hughes" phenomenon; strong inter-band correlations cause high "information redundancy"; and
non-linear structural features increase computational complexity.

(1) Curse of Dimensionality

Hyperspectral data is known for its hundreds of band features, forming a high-dimensional
structure. Each band provides spectral information within different wavelength ranges, offering a
detailed description of the spectral characteristics of objects. This high-dimensional structure enables
hyperspectral data to capture subtle spectral differences in target objects, aiding in more accurate
ground objects classification, detection, and recognition. Generally, as the number of training samples
remains constant, the performance of classification algorithms improves with an increase in
embedding dimensions. However, when the embedding dimension continues to grow beyond a
certain point, the classification performance of the algorithm shows a "first increase and then
decrease" phenomenon due to the rising feature dimensionality. This phenomenon is known as the
"curse of dimensionality" [9-12], also referred to as the "Hughes" phenomenon [13]. Although the
impact of the "Hughes" phenomenon on overall accuracy gradually diminishes with an increase in
the number of training samples, it comes at the cost of difficulties in obtaining a large number of
training samples and high computational complexity [14,15].

(2)Strong Inter-band Correlation

In hyperspectral data, there is often a certain degree of spectral continuity between adjacent
bands. This means that spectral changes between neighboring bands are smooth, and an object’s
spectral characteristics show a gradual transition in adjacent bands. Spectral continuity allows for
more flexibility in spectral analysis with hyperspectral data, enabling better capture of spectral
trends. In hyperspectral remote sensing images, the higher the spectral resolution and the smaller the
band interval, the stronger the correlation between bands; conversely, the lower the spectral
resolution and the larger the band interval, the weaker the inter-band correlation. Due to the large
number of bands and strong inter-band correlations characteristic of hyperspectral remote sensing
images, these correlations lead to significant information redundancy. This is particularly true for
adjacent bands, which results in a large amount of superfluous information in hyperspectral data.
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This redundancy not only affects the classification performance of algorithms but also leads to lower
efficiency in algorithm execution [16,17].

(3) Non-linear Data Structures The data in hyperspectral remote sensing images is not
distributed in a linear Euclidean space but rather in some form of non-linear feature space. The
collection process of hyperspectral remote sensing data is influenced by various environmental
factors, such as differences in atmospheric components, electromagnetic wave reflection angles, and
the state of imaging system hardware. These factors lead to non-linearities in ground scattering,
described by models such as the Bidirectional Reflectance Distribution Function (BRDF) [18,19],
significant non-linear changes in wavelengths of minimum reflectance [19], attenuation effects of
water bodies within pixels [20], and heterogeneity of multiple scattering and sub-pixel components
within a single pixel [21,22], all contributing to the non-linearity of Hyperspectral Images spectral
data [23].

In this non-linear feature space, the similarity measure between samples is not defined by their
Euclidean distance (ED) but is related to the distribution of samples in this non-linear feature space.
Therefore, in the analysis of remote sensing imagery, the proximity of samples in Euclidean space
does not necessarily imply that they belong to the same category. These non-linear features have not
been adequately considered in traditional algorithms. Thus, it is necessary to model the true
distribution of the non-linear feature space to accurately perform non-linear feature dimensionality
reduction of high-dimensional data. The goal of dimensionality reduction is to explore a low-
dimensional coordinate description of the dataset, projecting the original dataset into a lower-
dimensional space to obtain a concise representation of the original dataset. This is based on high-
dimensional data, aiming to obtain corresponding low-dimensional data for different purposes.

1.2. Manifold Learning Theory and Its Principles in Dimensionality Reduction of Hyperspectral Remote
Sensing Images

Dimensionality reduction is a critical step in the analysis, organization, and management of
hyperspectral data and has become a significant research topic in the field of hyperspectral remote
sensing dimensionality reduction. In recent years, manifold learning theory has been introduced into
the processing of hyperspectral remote sensing images to address issues of high dimensionality,
information redundancy, and the complex non-linear spectral structure. By employing manifold
learning, the intrinsic manifold feature subspace is excavated, facilitating the dimensionality
reduction of hyperspectral remote sensing images. The earliest concept of manifold learning emerged
in two articles published in Science in 2000 [24,25], which emphasized the importance of preserving
the neighborhood structure of data in the manifold learning process. The introduction of manifold
learning signifies a shift in data processing approaches from global to local. The following section
further elaborates on the specific applications and implementation processes of manifold learning in
the dimensionality reduction of hyperspectral remote sensing images, through an introduction to
basic theories and methods of manifolds and manifold learning.

1.2.1. Manifold Definition

Manifold is a concept in topology, an extension of Euclidean space, and an object of study in
differential geometry and topology. It was first proposed by Bernhard Riemann in 1854 [26]. A set
endowed with a topological structure is known as a topological space [27]. Continuous mappings can
be defined between multiple topological spaces.

Suppose M is a topological space. We say that M is a topological manifold of dimension 7 or a
topological 7 -manifold if it has the following properties[28]:

1. M is a Hausdorff space: for every pair of distinct points p,g € M ; there are disjoint open
subsetsU,V € M suchthatpe U andge V.

2. M is second-countable: there exists a countable basis for the topology of M .

3. M is locally Euclidean of dimension 7 : each point of M has a neighborhood that is
homeomorphic to an open subset of R".
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As aforementioned, manifold is a fundamental concept in differential geometry, a special type
of topological space with attributes that locally resemble Euclidean space. It is a particular type of
connected affine topological space and can essentially be viewed as a locally coordinatizable
topological space. A manifold can be considered a non-linear extension of Euclidean space, thus
leading to its definition as follows:

Definition (C” Manifold) 1. Let B be a topological space with properties 4, and T, .Suppose
there exists an open covering {Ual..r of M and a corresponding family of continuous mappings
¢, :U, = R" such that:

(1) ¢.:U, > ¢,(U,)cR" is a homeomorphism from U, to an open set ¢,(U,) in Euclidean
space;

(2) When U,NU;#Q , the transition mapping ;°%, 0, (U, NU,) =0, (U,NU,) is a
C’(r21) mapping. Then M iscalleda C" manifold. {U,} or {U,.®,} is referred to as the local
coordinate covering of M , {U 0,,(/7,,} as a local coordinate system, U, as a local coordinate

neighborhood, and ¢, as alocal coordinate mapping [29].

The essence of a manifold is a topological space, which is locally coordinatizable . By integrating
the locally computed coordinates smoothly within the topological space, the overall structure of the
local coordinate space is revealed.

1.2.2. Definition of Manifold Learning

Manifold learning is a category of non-linear dimensionality reduction and feature extraction
methods that utilize local geometric structures for dimensionality reduction, aiming to uncover latent
low-dimensional manifold structures within high-dimensional data. The fundamental premise is the
assumption that data is distributed on a low-dimensional manifold, and manifold learning involves
learning the embedding mappings on the manifold to project high-dimensional data into a lower-
dimensional space. Manifold learning is about exploring the intrinsic structure of data to achieve
dimensionality reduction towards inherent dimensions, thereby finding the low-dimensional
embedding manifold corresponding to the high-dimensional original data.

Manifold learning is typically defined as expressing the local true topological relationships and
global spatial relationships of data points in the original high-dimensional data space with the
minimal number of features. Mathematically, its definition can be expressed as follows:

Definition (Manifold Learning) 2. Suppose there is a high-dimensional dataset

X= {xl 3 Xy 5eees xN} , with each data point in space X; € R” . The goal of manifold learning is to find
a low-dimensional representation Y = { VisVosees Y N} , where each data point is in space

V€ R? (d < D) , such that the data points in space Y maintain the local geometric structures of

the original data in space X .

In this study, a randomly generated Swiss roll dataset (n=10000) was utilized (Figure 1). By
selecting different nearest neighbor values (k), dimensionality reduction was performed using
manifold learning algorithms, and the results were displayed in a Cartesian coordinate system
(Figure 2). The experimental results demonstrate that manifold learning algorithms can effectively
reduce the dimensionality of high-dimensional data while preserving the local topological
relationships and global spatial positions of the data points in the original high-dimensional space.
However, it is also evident that the choice of different k values in the manifold learning algorithm
significantly affects the results of the dimensionality reduction. A too-large k value may lead to
overfitting and fail to represent the spatial distribution of the original high-dimensional data points.
This is an important aspect of the subsequent research in this paper: exploring the impact of different
metrics in computing the nearest neighbor graph and the effect of different parameter selections on
the algorithm's results.
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Figure 2. The two-dimensional effect of reducing dimensionality with different k values in the Swiss

roll data set: (a) k=50; (b) k=100; (c) k=200; (d) k=300.

1.2.3. Principle and Process of Dimensionality Reduction in Hyperspectral Remote Sensing Images

in Manifold Learning

Dimensionality reduction of hyperspectral remote sensing images refers to the process of
decreasing the number of dimensions in hyperspectral data, retaining the most significant features
contributing to data characteristics, while eliminating minor or redundant information. This
reduction lowers data complexity, preserves key information, reduces computational load, and
avoids the "curse of dimensionality." Hyperspectral remote sensing images data is typically high-
dimensional, and neighboring pixels often exhibit local spectral similarities, indicating similar
ground objects or spectral characteristics. However, high-dimensional data with similar spectral
features are challenging to comprehend, represent, and process. Therefore, dimensionality reduction
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is necessary to obtain a more manageable low-dimensional representation of the data for better
understanding and further processing.

Hyperspectral data usually exists in a low-dimensional manifold space, and the goal of manifold
learning is to maintain the manifold structure of the data as much as possible while reducing its
dimensionality. This algorithm discovers local linear relationships between samples in high-
dimensional space and maps these relationships to a lower-dimensional space. Consequently, the
principle of dimensionality reduction in hyperspectral remote sensing data using manifold learning
is to map data from a high-dimensional space to a lower-dimensional one, thereby obtaining a
compact, low-dimensional representation of the original dataset. Assuming that hyperspectral
remote sensing data lies on a low-dimensional manifold space, manifold learning theories and
methods are used to map the original high-dimensional hyperspectral remote sensing data to its low-
dimensional manifold space. Through this lower-dimensional manifold space, the intrinsic sub-
feature space of the original hyperspectral remote sensing data is obtained, achieving dimensionality
reduction and uncovering the potential manifold structure. The dimensionality reduction process in
hyperspectral remote sensing data using manifold learning involves: firstly, constructing the optimal
neighborhood for each pixel; then, computing the local tangent space and obtaining local coordinates
based on each pixel's optimal neighborhood; next, aligning the overlapping local tangent spaces to
obtain the global manifold coordinates; and finally, achieving dimensionality reduction of the
hyperspectral remote sensing images and obtaining the sub-feature space.

From the manifold learning dimensionality reduction process, it is understood that in practical
research, all pixels within a certain range of one pixel in hyperspectral remote sensing data are
considered as the optimal neighborhood in the manifold space. By calculating the reconstruction
error function with the least error, the corresponding local tangent space coordinates are obtained. In
the manifold space of the original hyperspectral remote sensing data, multiple sets of local tangent
space coordinates representing the neighborhood of each pixel's coordinates are calculated. Finally,
by calculating the global optimal reconstruction error, the overlapping sets of local tangent space
coordinates are aligned to obtain the global manifold coordinates of the dimensionally reduced
hyperspectral remote sensing images, achieving the dimensionality reduction of the hyperspectral
remote sensing data. The mathematical definition can be expressed as follows:

Definition (Hyperspectral Images Dimensionality Reduction) 3. Let the manifold space of a

Hyperspectral Sensing Images (HSI) dataset be M, , and the dataset of sample points within a
certain neighborhood centered on a particular pixel be an open covering {U HS,} of M, witha
corresponding family of continuous mappings @, U, — R

Here, U, represents the local coordinate neighborhood, denoting the nearest neighbor graph
of a certain pixel in hyperspectral remote sensing images; @y is the local coordinate mapping,
representing the Euclidean linear expression of the local non-linear structure in hyperspectral remote
sensing images, achieving dimensionality reduction of hyperspectral image data; {U HS,} is the
local coordinate covering of M g, denoting the computed collection of nearest neighbor graphs for

hyperspectral remote sensing images; {U.s»>®us ) is a local coordinate system, representing the
local coordinates of hyperspectral remote sensing images obtained through the computation of
nearest neighbor graphs; Ris the local tangent space computed from the nearest neighbor graph,
representing the intrinsic feature space after dimensionality reduction in hyperspectral remote
sensing images(Figure 3).


https://doi.org/10.20944/preprints202401.1274.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1274.v1

Figure 3. Schematic diagram of hyperspectral image dimensionality reduction based on manifold
learning technology.

From the above principles and implementation processes of manifold, manifold learning theory,
and its application in dimensionality reduction of hyperspectral remote sensing images, it is feasible
to use non-linear manifold algorithms to address issues such as "curse of dimensionality," "high
information redundancy," and "non-linear characteristics" in hyperspectral remote sensing images
dimensionality reduction. By mapping high-dimensional spectral information to a low-dimensional
space, a better representation of the intrinsic structure of the data can be achieved. Currently, several
non-linear manifold learning methods studied by scholars include: Isometric Mapping (Isomap)
algorithm, which uses geodesic distance instead of traditional ED to characterize data distribution,
aiming to maintain the geodesic distances between all data points in low-dimensional space [25,30].
Isomap is susceptible to noise [31] and struggles to map new samples to low-dimensional space; Local
Linear Embedding (LLE) assumes high-dimensional data is linear in a very small local region,
utilizing the basic property of manifold's local linearity [32], preserving local linear structures of high-
dimensional data in low-dimensional space [24,33]; Laplacian Eigenmaps (LE) constructs a Laplacian
graph reflecting data's neighborhood information, obtaining low-dimensional data representation by
maintaining local neighborhood information in low-dimensional space [34,35]; Hessian Locally
Linear Embedding (HLLE) attempts to recover manifold's generative coordinates that are locally
isometric to open connected subsets in low-dimensional Euclidean space [36]; Local Tangent Space
Alignment (LTSA) whose core idea is to use the tangent space of sample points' neighborhoods to
represent local geometric properties, then aligning these local tangent spaces to construct the global
coordinates of the manifold [37]; Maximum Variance Unfolding (MVU) [38], also known as Semi-
definite Embedding (SDE) [39], and others. Comparison of geometric relationships and
computational complexity of several manifold learning algorithms (Table 1):

Table 1. Comparison of geometric relationships and computational complexity of algorithms.

Method Geometric relationship Glob.al/Lo?al Computatl’onal
Relationships complexity
Isomap Point pair Geodesic Distance Global Very high
LLE Local linear 'recon'structlon Local Low
relationship
LE Local domain similarity Local Low
HLLE Local isometry Local High
LTSA Local coordllnate Global & Local Low
representation
MVU Local distance Global & Local Very high

From Table 1, it is evident that the Local Tangent Space Alignment (LTSA) algorithm has unique
advantages over other algorithms in reducing the dimensionality of high-dimensional, nonlinear
complex data, particularly in preserving local and global geometric relationships and computational
complexity. Moreover, the LTSA manifold learning algorithm has become a research focus in
hyperspectral remote sensing images dimensionality reduction due to its adaptability to nonlinear
structures. Therefore, in the study of hyperspectral remote sensing images dimensionality reduction,
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LTSA offers significant advantages in better preserving local and ultimate global relationships. This
paper will focus on hyperspectral remote sensing images dimensionality reduction research and
experimental analysis based on the LTSA algorithm. The overall framework of the LTSA manifold
learning algorithm includes the following three steps:

®  First, constructing a nearest neighbor graph on the sample point set;

® Then, linearly approximating the local geometry within each sample point's neighborhood on
the manifold;

® Finally, minimizing a global error function to obtain the global embedding involving solving an
eigenvalue problem.

It is clear that the first challenge faced by the LTSA manifold learning method is the selection of
the neighborhood, which requires choosing an appropriate neighborhood to capture local linear
information. The result of neighborhood selection directly influences the final embedding outcome.

This paper will primarily focus on the first step of the LTSA algorithm, constructing the nearest
neighbor graph. Combining the imaging principles of hyperspectral remote sensing images and
spectral data characteristics, different "nearest neighbor graphs" will be computed using three distinct
"distance" metrics: ED, spectral angle mapping (SAM), and spectral information divergence (SID), to
create different "local tangent spaces” of hyperspectral remote sensing data for each sample point,
obtaining local coordinates. Finally, these local coordinates will be arranged to form the global
coordinates, achieving dimensionality reduction of hyperspectral remote sensing images data. On
the one hand, different metrics for computing the nearest neighbor graph and the time complexity of
the LTSA algorithm will be compared and analyzed. On the other hand, the intrinsic features of the
dimensionally reduced hyperspectral remote sensing images will be used in ground objects
classification experiments. The effectiveness of the nearest neighbor graphs constructed under
different metrics and the overall efficiency of the LTSA algorithm will be evaluated by comparing
and analyzing the time complexity, ground objects overall accuracy, and Kappa coefficient.

2. Materials and Methods

2.1. Study Area

The scene was imaged in 1992 by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
over the Indian Pines test site in northwestern Indiana, USA. The Indian Pines dataset is one of the
earliest datasets used for hyperspectral image classification testing. A subset of the dataset with a
dimension of 145x145 was annotated for hyperspectral image classification purposes. Figure 4(a)
displays a false-color image created by stacking a two-dimensional matrix extracted from three bands
as the three channels of an RGB image. Figure 4(b) shows the true distribution map of the ground
objects.

(b)

Figure 4. Indian Pines data set:(a) False-color image;(b) Ground truth.

Table 2 shows the ground objects classes included in the Indian Pines dataset along with the
number of samples contained in each class, and it also differentiates between different ground objects
classes using color coding.

doi:10.20944/preprints202401.1274.v1
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Table 2. Ground truth classes and sample numbers of Indian Pines.

Category Classification Colour Samples
1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-tree 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Tress-Drives 386
16 Stone-Steel-Towers 93

2.2. Data Description

The Indian Pines dataset consists of 145x145 pixels and 220 spectral reflectance bands with a
wavelength range from 0.4 to 2.5 micrometers, representing a subset of a larger scene. The imagery
of Indian Pines includes two-thirds of agricultural land and one-third of forest or other natural
perennial vegetation. There are two major dual-lane highways, a railway line, and some low-density
housing, other buildings, and smaller roads. Since the scene was captured in June, some of the crops
(like corn and soybeans) were in the early stages of growth, with less than 5% coverage. The existing
ground objects are divided into 16 categories (Table 2), which are not all mutually exclusive.
However, due to the non-reflection of water in bands 104-108, 150-163, and 220, typically only 200
bands, excluding these 20 bands, are used in actual research. The dataset has a total of 21,025 pixels,
out of which only 10,249 are ground objects pixels, and the remaining 10,776 are background pixels.

This paper focuses on the 10,249 ground objects pixels and divides them into 80% training and
20% testing sets for subsequent ground objects classification experiments in this study (Table 3).

Table 3. Ground classification and division of Indian Pines data set.

Category Classification Training samples Testing samples
1 Alfalfa 37 9
2 Corn-notill 1142 286
3 Corn-mintill 664 166
4 Corn 190 47
5 Grass-pasture 386 97
6 Grass-tree 584 146
7 Grass-pasture-mowed 22 6
8 Hay-windrowed 382 96
9 Oats 16 4
10 Soybean-notill 778 194
11 Soybean-mintill 1964 491

—_
N

Soybean-clean 474 119
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13 Wheat 164 41
14 Woods 1012 253
15 Buildings-Grass-Tress-Drives 309 77
16 Stone-Steel-Towers 74 19
Total 8199 2050

The selected area consists entirely of crops, encompassing 16 classes in total. Consequently,
different ground objects exhibit somewhat similar spectral characteristics curves. Among these 16
classes, the distribution of samples is highly uneven. The spectral characteristics curves of these 16
ground objects (Figure 5) reveal that while the spectral features of various ground objects are distinct
in bands 1-50, they become difficult to differentiate in bands 140-200. Additionally, there are instances
where different ground objects exhibit extremely similar spectral features in the same band. This
presents significant challenges in the subsequent processing, analysis, and application of
hyperspectral remote sensing images data. Therefore, it is necessary to perform dimensionality
reduction on this dataset, using the minimal spectral features to maximally distinguish different
types of ground objects, thereby leveraging the inherent advantages of hyperspectral remote sensing
images data.

0.9

0.8

=
5

Spectral characteristic values

0.2

Bands

—Alfalfa —Corn-notill Corn-mintill Corn

—Grass-pasture —Grass-tree —Grass-pasturc-mowed —Hay-windrowed

—Qats —Soybean-notill —Soybean-mintill —Soybean-clean
Wheat Woods Buildings-Grass-Tress-Drives — Stone-Steel-Towers

Figure 5. Spectral characteristics curves of 16 features in the Indian Pines dataset.
2.3. Methods

2.3.1. Dimensionality Reduction Method for Hyperspectral Remote Sensing Data Based on LTSA
Algorithm

The fundamental concept of the Local Tangent Space Alignment (LTSA) algorithm is to use the
tangent space of a sample point's neighborhood to represent its local geometric structure, and then
align these local tangent spaces to construct global coordinates of the manifold [37]. For a given
sample point, LTSA uses its neighboring region to build a local tangent space to characterize the local
geometric structure. The local tangent space provides a low-dimensional linear estimate of the
nonlinear manifold's local geometric structure, preserving the local coordinates of sample points in
the neighborhood. Subsequently, the local tangent coordinates are rearranged in the low-dimensional
space through different local affine transformations to achieve a better global coordinate system. This
method is particularly suitable for hyperspectral data as it can more effectively capture the spectral
characteristics and local structures of ground objects. The process of dimensionality reduction of
hyperspectral remote sensing images data using the LTSA algorithm primarily includes the following
steps:
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® Step 1: Nearest Neighbor Search: For each sample point, identify its nearest neighbors in the
high-dimensional space to construct a nearest neighbor graph.

®  Step 2: Local Tangent Space: Calculate the tangent space between the nearest neighbors for each
sample point. The tangent space represents the local linear relationships, describing how the
nearest neighbors are arranged relative to each other.

® Step 3: Global Tangent Space: Using the nearest neighbor graph, construct the global tangent
space, taking into account the local linear relationships between all nearest neighbors.

®  Step 4: Eigenvector Calculation: Perform eigenvalue decomposition on the global tangent space
to obtain eigenvectors.

® Step 5: Dimensionality Reduction Mapping: Arrange the eigenvectors in ascending order of their
corresponding eigenvalues, select the first few eigenvectors to form a mapping matrix, and use
this matrix to map the high-dimensional data to a low-dimensional space.

®  Step 6: Output Results: The dimensionally reduced data can be obtained through the mapping
matrix, where each sample's coordinates in the low-dimensional space represent its position in
the manifold structure.

The following is a detailed implementation process of using the LTSA algorithm to reduce the
dimensionality of hyperspectral remote sensing images:

Suppose d-dimensional manifold is embedded in an m-dimensional space (d < m) , where the

m -dimensional space is a high-dimensional space containing noise. Given a sample set

axl . e . .
X = [X 1ot X N],X ,€ R™ distributed in this noisy m-dimensional space:
5 =f(5)+e,i=1.N (1)
7,e R™ X, f
where " represents the intrinsic representation of “?, and is a mapping function, with

& . .
! representing the noise.

Given a hyperspectral remote sensing imagery dataset X = {xl’xZ’ . .,xN} ,X; € R™", where

m is the number of bandsand N is the number of pixel points. The first step of the algorithm is to
find the optimal neighborhood for each pixel point. Let X, = [xil’xiZ’ cens xik] be a matrix

composed of the nearest k pixel points to pixel point X, including itself, measured using ED. The
algorithm calculates the best d-dimensional approximate affine space for samples in X, to
approximate the points in )(l., minimizing the reconstruction error:

@

2
F

x, = (x+00,)

k
min=2, = minX, ~(xe" +00)
x,0,0 j=1 x,0,0

where Q is a standard orthogonal matrix of local affine transformation with d columns, and
= [01 IR Hk] is the local manifold coordinates of X, = [xl.1 I xl.k] . After minimization, the

local manifold coordinates of each pixel in the neighborhood X, are obtained as
1
0, = QI.T X, ( 1 —zeerj , where Q. represents the left singular vectors corresponding to the first

d largest singular values of the centralized neighborhood matrix X, ([ —ee' / k). X, is the

central pixel point of the neighborhood matrix X, and e is a unit column vector of length & .

By constructing the local tangent spaces, the local manifold coordinates of all neighborhoods are

obtained, and these overlapping local manifold coordinate systems ©, =[(91(i),---,6’,£i)] are

arranged to form the global coordinate system T =[Tl,---,T N] . LTSA (Local Tangent Space
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Alignment) posits that Ti,l' =1,---, N is obtained based on the local representative structure Hj(,i) ,
that is, the global coordinates 7, are used to reflect as much as possible the local spatial geometric

structure expressed by the local coordinates &, . Therefore, it is necessary to satisfy

1
T = EZeeT +L©, +E,, where L, is the local affine transformation to be found, playing the role

()

of arranging the global coordinates. The reconstruction residuals E, = [El(i) N Eki } for each pixel

point represent the local reconstruction error, and the global manifold coordinates are calculated by

minimizin € local reconstruction resiauals. minimizin € error matrix . , e optima
inimizing the local tructi iduals. By minimizing th trix ||E,|, , the optimal

1
solution L, is obtained as T, (1 —;eeT =T 0] . To preserve as much local geometric structure as

possible in the low-dimensional space, LTSA aims for the post-dimensionality reduction sample

representation 7, and the local affine transformation L, to minimize the reconstruction residual:

Z“||Ei||2 = ZHT (1 —%eeTJ—L,@i

where O] is the Moore-Penrose generalized inverse matrix of ©,.Let S, be a 0-1 selection matrix

2
=min 3)

satisfy IS, =T , and then find T such that the total reconstruction error of all samples is

minimized: mTin”Ei”;:mTin”TSW”zF . Where S=[S1,---,SN],W=diag(Wl,---,WN) , and

1

1
W, = ([ —zeeT j (I — (H);’(H)i) . To ensure that 7" has a unique solution, LTSA restricts IT" = 1,,

and [/ 4 isan d -dimensional identity matrix.

From the above process, it can be seen that given X , LTSA first finds k nearest neighbors for
each sample (including itself) using ED metric, forming a neighborhood region X, containing itself

for each sample X;. Then, within this region X ;» PCA is performed without dimensionality

reduction, and then X, is transformed into ©, by PCA, where X, becomes Hj(i) . Subsequently,

1

it is assumed that there is a linear relationship between the dimensionality reduction result 7, and
X, aiming to minimize the error between the two. The affine relationship L, is represented by T,

, and the residual E; is also represented by 7, thus turning it into a nonlinear method. The local

aspect refers to what is known as the local tangent space, and the subsequent nonlinear
dimensionality reduction is what is referred to as alignment, ultimately forming a problem in the
following form:
min |7SW/,
! )
st. TT" =1

The square of the Frobenius norm is transformed into the sum of the squares of the vector's L2

norms. Where T, is redefined as the i-throw of T, differing from the previous section, thus:
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d d
sl = Sl = X (nsw) swy
=S r (s )
i=1
=tr (TSWW'S'T")
st. TT =1

The classical Lagrangian multiplier method is applied to derive #r (T Sww's'T" ) and set the
derivative to zero. The resulting solution 1is then substituted back to obtain
tr(TSWW'S'T" ) =1r(TT"A) =1r(2).

Therefore, it can be seen that minimizing the original reconstruction error is equivalent to

minimizing fr (/1) . Consequently, the eigenvectors corresponding to the 2nd to d +1-th smallest

eigenvalues of SWW'S" form the global aligned manifold coordinate system T .

During the feature extraction process, the LTSA algorithm minimizes data redundancy on the
basis of retaining effective information, reduces data dimensions to avoid the "curse of
dimensionality," and decreases the occurrence of "same object different spectrum" and "different
object same spectrum” phenomena. The transformed low-dimensional features represent a larger
amount of information with fewer data points.

2.3.2. Nearest Neighbor Graph Calculation Method Based on Different Distance Metrics

When applying the LTSA algorithm for dimensionality reduction of hyperspectral remote
sensing images data, the first step involves determining the optimal neighborhood for each pixel.
Most manifold learning algorithms compute the nearest neighbor graph based on ED metric, which
fails to accurately capture the potential local non-linear structural features of hyperspectral remote
sensing images. Consequently, scholars have introduced SAM and SID into the Isomap non-linear
manifold learning algorithm as alternatives to ED for calculating the optimal neighborhood [40].
However, since the Isomap algorithm focuses on the global structure of sample points and does not
consider the local geometric relationships of data points, it does not reflect the local true topology of
non-linear high-dimensional data. For hyperspectral remote sensing data, where different pixels
represent different ground objects spectral features, the data distribution should form cloud-like
clustering structures. Data from the same ground objects class cluster together, while data from
different classes form multiple cloud-like clusters of varying sizes, distinguishable in the original
high-dimensional space [41]. Considering the inherent non-linear characteristics and spatial
distribution features of hyperspectral remote sensing images, researchers have introduced the
concept of spectral angle into the LTSA non-linear manifold learning algorithm [42]. This paper
attempts to incorporate SID into the LTSA algorithm. It compares and analyzes the effects of
calculating the nearest neighbor graph using ED, SAM, and SID metrics, and studies the
dimensionality reduction capability of the LTSA manifold learning algorithm under these three
different metrics. The specific implementation steps of the nearest neighbor graph are as follows:

Step 1: Distance Calculation. Use different distance metrics to calculate the distance between
each data point and all other data points;

Step 2: Sorting. Sort the distances for each data point and find the k nearest neighbors;

Step 3: Storing Results. Store the distance matrix and the index matrix of the nearest neighbors.

1. Nearest neighbor graph calculation based on Euclidean distance (ED) metric

In the LTSA algorithm, the construction of the nearest neighbor graph utilizes the ED metric. It
determines the k nearest neighbors by calculating the ED between the sample point and its
neighboring sample points, thereby constructing the nearest neighbor graph. Given a dataset
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X= (x1 3 Xyttt Xy ), the k nearest neighbors of a data point X; are identified by calculating its ED
to other sample points in the dataset, where k is the number of nearest neighbors to be found.
Suppose there are two spectral vectors A= (xl 5 Xy57" " xN) and B= (yl s Vo Vy ) , each

with the same number of bands N. The “distance” d between the two spectral curves can be calculated
using the ED definition:

a=\(x =) +(n-y,) ®

Therefore, the ED metric can be used to calculate the optimal neighborhood of a sample point,
and thus construct the nearest neighbor graph for each sample point. The implementation steps of
the nearest neighbor graph algorithm using the ED metric are as follows:

®  Step 1: Define a function [D, ni] = find_nn(X, k), which returns the ED matrix D and the nearest
neighbor index matrix ni when given a dataset X and the defined number of nearest neighbors
k.

® Step 2: Obtain the size of the dataset n=size(X,1); and create matrices D and ni to store the
computed ED values and their corresponding nearest neighbor indices, respectively.

®  Step 3: Use a single-layer nested loop to calculate the ED values between each sample point and
all other sample points. First, use the function bsxfun() to compute the matrix DD of squared ED
between two pixels and all other pixels, then sort the obtained distance matrix sort(DD).

®  Step 4: Find the indices of the k nearest neighbors and store the corresponding ED matrix values
in ascending order in the distance matrix D and the index matrix ni .

Where D is the computed distance matrix, storing the distance information of each data point to
its nearest neighbors. The size of matrix D is typically (n, k), where n is the number of data points,
and k is the number of nearest neighbors. ni is the computed nearest neighbor index matrix, storing
the indices of the nearest neighbors for each data point. The size of ni is also generally (n, k), with k
being the number of nearest neighbors. These two matrices will be involved in subsequent LTSA
algorithm computations for dimensionality reduction of hyperspectral remote sensing images.

2. Nearest neighbor graph calculation based on spectral angle mapping (SAM) metric

SAM is an algorithm based on the overall similarity of spectral curves, which evaluates their
similarity by calculating the generalized angle between the test spectrum and the target spectrum.
When the angle between two spectra is less than a given threshold, they are considered similar; when
the angle is greater than the threshold, they are considered dissimilar. The basic principle of spectral
angle matching is to treat spectra as vectors and project them into an N-dimensional space, where N
is the total number of selected bands. In this N-dimensional space, the spectrum of each pixel in the
spectral image is treated as a high-dimensional vector with both direction and magnitude. The angle
between spectra, known as the spectral angle, is used to quantify the angle between two spectral
vectors, measuring their similarity or difference. The similarity between spectra is measured by
calculating the angle between two vectors; the smaller the spectral angle, the more similar the two
spectra are, with a spectral angle close to zero indicating identical spectra.

Suppose there are two spectral vectors A=(x1,x2,---,xN) and B = (yl,yz,---,yN) , each
with the same number of bands N. The spectral angle between the two spectral curves can be
calculated using the definition of cosine similarity:

N

DXy,

— i=1
= arccos —— (7

SA=arccos A—B
4]
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where A-B is the dot product of A and B,

|A|| and ”B ” are the norms of A and B, respectively.

SA represents the spectral angle between the two spectra. Z:x2 and z ¥y

magnitudes of the two spectral vectors, respectively.

Consequently, the spectral angle measure between two spectral feature curves can be used to
calculate the optimal neighborhood of a sample point, leading to the construction of the nearest
neighbor graph for each sample point. The implementation steps of the nearest neighbor graph
algorithm using the spectral angle measure are as follows:

®  Step 1: Define a function [D, ni] = calculate_SAM_for_pixels_test(X, k), which returns the SAM
value matrix D and the nearest neighbor index matrix ni when given a dataset X and the defined
number of nearest neighbors k.

® Step 2: Obtain the size of the dataset n=size(X,1); and create matrices D and ni to store the
computed SAM values and their corresponding nearest neighbor indices, respectively.

®  Step 3: Use a double-layer nested loop to calculate the SAM values for each sample point with
all other sample points. First, obtain the spectral values spectrum_x and spectrum_y of two pixel
points, then compute the dot product A - B of the spectral feature values of the two pixel points,

followed by calculating the norms ”A“ and ”B || of each pixel point, finally calculate the SAM

value and sort it.
®  Step 4: Find the indices of the k nearest neighbors and store the corresponding SAM values in
ascending order in the SAM matrix D and the index matrix ni.

3. Nearest neighbor graph calculation based on Spectral Information Divergence (SID) metric

Unlike SAM, SID is a stochastic method that considers spectral probability distributions. It is a
spectral classification method based on information theory to measure the differences between two
spectra. Treating spectral vectors as random variables, this method starts from the shape of spectral
curves and uses probability and statistical theory to analyze and calculate the information entropy
contained in each data point. It compares the magnitude of information entropy to judge the
similarity between two different curves. SID can reflect the differences or degrees of change between
different bands in hyperspectral data; the smaller the value of SID, the more similar the two sets of
spectra are. Larger SID indicates significant spectral variations between different bands, while
smaller divergence signifies consistent spectra. SID can describe the diversity of spectral features
within a pixel or area and can consider the differences in reflected energy values, thereby more
comprehensively assessing spectral similarity.

SID treats each pixel as a random variable and uses its spectral histogram to define a probability
distribution. It then measures the spectral similarity between two pixels through the differences in
probability behavior between spectra. This advantage is unachievable by any deterministic metric.
ED, commonly used in classic pattern classification to measure spatial distance between two data
samples, and SAM in remote sensing imagery are deterministic, as each data sample itself is a
deterministic data vector, unlike the random variables considered by SID. Therefore, SID can be
viewed as a stochastic or probabilistic method.

Suppose X = (x1 3 Xy, Xy ) and Y = (y1 s Vst yN) represent the target spectrum and the

test spectrum, respectively, with N being the number of bands, the SID for a pixel or region's spectral
data can be calculated as follows [43]:

SID=(x,y)=D(x|y)+D(y|x)

D(x”y) ZaD(x”y :éal[l x)]zliailg(ai/bi)

®)

Similarly,
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N
D(y|lx)=2b1g(b /a,) ©)
i=1

N N
where a, =x;/ in and b =y, / Z V; represent the probabilities of the two spectra,
i=1 i=1

respectively, and /, (x) =-lga,, I, ( y) =—Igb, are the self-information values of the two spectra

l
derived from information theory.

Consequently, the SID between two spectral feature curves can be used to calculate the optimal
neighborhood of a sample point, leading to the construction of the nearest neighbor graph for each
sample point. The implementation steps of the nearest neighbor graph algorithm using SID measure
are as follows:

® Step 1: Define a function [D, ni] = calculate_SID_for_pixels_test(X, k), which returns the SID
value matrix D and the nearest neighbor index matrix ni when given a dataset X and the defined
number of nearest neighbors k.

® Step 2: Obtain the size of the dataset n=size(X,1); and create matrices D and ni to store the
computed SID values and their corresponding nearest neighbor indices, respectively.

®  Step 3: Use a double-layer nested loop to calculate the SID values for each sample point with all
other sample points. First, obtain the spectral feature values spectrum_x and spectrum_y of two

pixel points, then calculate the probability vectors Az(al,az,---,aN) and
B =(bl,bz,"',bN) of the spectral feature values of the two pixel points, followed by

computing D (X ||y) and D (y ”x) , and finally calculate the SID value and sort it.

®  Step 4: Find the indices of the k nearest neighbors and store the corresponding SID values in
ascending order in the SID matrix D and the index matrix ni.

3. Results

In section 3.1, to validate and compare the effectiveness of constructing the nearest neighbor
graph using ED, SAM, and SID metrics, seven classes of ground objects were selected from the Indian
Pines dataset. The first and second principal features after dimensionality reduction were obtained
through LTSA manifold learning under these three different metrics. Then, 200 samples from each
ground objects class were projected into two-dimensional space for visualization. The dimensionality
reduction effects of the LTSA manifold learning method under the three metrics were analyzed and
compared through visualization, algorithm runtime, and overall accuracy. In sections3.2-3.4, based
on the Indian Pines dataset, the best neighborhood size k and the optimal intrinsic dimension d for
the LTSA manifold learning algorithm were sought using cross-validation methods under different
metrics. By calculating the overall accuracy and Kappa coefficients after dimensionality reduction
using LTSA manifold learning under the three metrics, the study aimed to validate and compare the
effectiveness of the LTSA manifold learning dimensionality reduction method under these three
metrics, providing references and guidance for dimensionality reduction of similar hyperspectral
remote sensing images. The following sections will detail the datasets used in each experimental
phase and discuss the implementation details and evaluation metrics, followed by the presentation
of the experimental results.

The experimental hardware environment used in this study includes: 12th Gen Intel(R)
Core(TM) 19-12900H 2.50 GHz, RAM 32.0GB; and the software environment is MATLABR2022b.
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3.1. Visualization of Dimensionality Reduction in Constructing Nearest Neighbor Graphs under Different

Metrics

For this experiment, seven classes of ground objects from the Indian Pines dataset were selected
(Table 4), with 200 samples from each class projected into two-dimensional space for visualization.

The scatter plots after dimensionality reduction are shown in Figures 6-8.

Table 4. 7 types of ground objects categories and sample sizes for visualization.

Category Classification Samples
2 Corn-notill 200
3 Corn-mintill 200
5 Grass-pasture 200
6 Grass-tree 200
10 Soybean-notill 200
11 Soybean-mintill 200
14 Woods 200

Three sets of experiments were conducted with k=50 d=2, k=100 d=2, and k=150 d=2 to reduce
the dimensions of the selected seven classes of ground objects in the Indian Pines dataset and
visualize the results. A comparison of the scatter plots after dimensionality reduction reveals that
different visual effects are obtained by selecting different k values. On the other hand, for the same k
value, the dimensionality reduction effects under the three different metrics also vary. As k increases,
the classification effect of the nearest neighbor graph calculated using ED metric gradually improves.
However, when k exceeds 100, the dimensionality reduction results show little change in
visualization, indicating that an appropriate k value should be chosen to avoid underfitting when k
is too small. With increasing k values, the dimensionality reduction effects of SAM and SID metrics
are better than that of ED, as the reduction results are more compact and the distinction between
classes is clearer. At the same k value, the dimensionality reduction effects under the three metrics
progressively show better classification results. It is also observed that dimensionality reduction
using LTSA with SAM and SID metrics can better mine the local topological structure of data and
more accurately reflect the spatial relationships and classification situations between ground objects.
Therefore, when dealing with large datasets, choosing SAM or SID for nearest neighbor graph
calculation and LTSA dimensionality reduction is preferable to using ED metric.
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Figure 6. Calculate the best neighborhood graph dimensionality reduction effect under different
metrics when k=50 and d=2: (a) ED;(b) SAM;(c) SID.
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Figure 8. Calculate the best neighborhood graph dimensionality reduction effect under different
metrics when k=150 and d=2:(a) ED;(b) SAM;(c) SID.

Figure 9 reveals that the computation times for the nearest neighbor graph and the runtime of
the LTSA algorithm differ under the three different metrics. As the value of k increases, it is observed
that the computation times for the nearest neighbor graph using ED and SID metrics continue to
increase, while the computation time for the optimal neighborhood using the SAM metric remains
almost constant, indicating that SAM metric is more efficient than ED and SID in calculating the
nearest neighbor graph. Regarding the LTSA computation time, it is seen that the computation time
for all three metrics increases continuously. However, when the value of k exceeds 100, the change
in LTSA computation time under SID metric becomes less significant. It is also noticeable that the
LTSA computation time using SAM metric increases slowly with the increase of k, and it consistently
takes less time compared to the other two metrics. In conclusion, the SAM metric outperforms ED
and SID metrics in terms of both nearest neighbor graph computation and LTSA algorithm
computation time. Therefore, from the perspective of computational cost, using SAM metric for
calculating the nearest neighbor graph is the best choice.
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Figure 9. Comparison of time and LTSA algorithm runtime for calculating the best neighborhood
graph with three different metrics under different k/d values: (a) k=50 d=2; (b) k=100 d=2; (c) k=150
d=2.
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3.2. Dimensionality Deduction Results of LTSA Algorithm Based on Euclidean Distance Metric

This part of the experiment was conducted based on the 10,249 ground objects samples from the
Indian Pines dataset. The k values were selected incrementally from 40, increasing by increments of
10 up to 160, and the d values started from 30, also increasing by increments of 10. However, d values
must be less than k values, as the optimal intrinsic dimension must be smaller than the chosen
neighborhood size k. While calculating the computation times for the nearest neighbor graph and the
LTSA algorithm for different k/d values, the division of the 10,249 ground objects samples into
training and testing sets was conducted according to Table 3 for the calculation of ground objects
overall accuracy. Some of the computational results are presented in Table 5:

Table 5. Based on ED metric, select different k/d values to calculate the optimal neighborhood graph
and LTSA algorithm runtime, and calculate overall accuracy.

K d The calculation time of the = LTSA algorithm Overall
nearest neighbor graph/s runtime/s accuracy/%

40 30 85.0031 237.8442 76.5739
50 30 130.6625 293.6383 79.3558
40 130.5847 310.7664 79.0142

30 185.5544 389.1228 79.7462

60 40 185.9724 411.4543 80.6274
50 189.3846 401.9933 79.4046

30 1988.9 1949.1 81.6008

40 1993.6 2038.6 82.2352

50 2026.1 2701.1 82.3328

60 1968 2721.4 82.284

160 70 1406.8 2704.4 81.4056
80 1538.6 2757.2 79.7462

90 1844.3 1969.6 79.4543

100 1415.9 2027 80.7223

110 1726.4 2147 78.8189

120 1650.1 2476.5 79.6974

As shown in Figure 10, the computation time for the nearest neighbor graph and the runtime of
the LTSA algorithm, both based on ED metric, continuously increase with the rising values of k/d.
The runtime for both processes is relatively similar, indicating that the overall runtime of the LTSA
algorithm is determined by the cost of computing the nearest neighbor graph. Therefore, when
reducing dimensions of large-scale hyperspectral remote sensing images data, the computational
expense of constructing the nearest neighbor graph is significant, consequently increasing the
operational cost of the LTSA algorithm. On the other hand, the time curve presents a sawtooth
pattern, suggesting that with a fixed k value, as d value increases, the computation time for the
nearest neighbor graph initially increases and then decreases. Thus, when d value is larger, it
represents a higher dimensionality after reduction, retaining more features, which leads to an
increase in the computational cost of the nearest neighbor graph. Therefore , when employing ED
metric to calculate the nearest neighbor graph, it is crucial to consider the size of the dimension d
after reduction to avoid excessive computational costs.
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Figure 10. Comparison between the computation time of nearest neighbor graph based on ED metric
and the dimensionality reduction time of LTSA algorithm.

As observed from Figure 11 and Table 6, with the continuous increase of k/d values, the overall
fluctuation in overall accuracy based on ED metric is relatively small, but the curve locally shows a
“sawtooth” pattern. This is because, with a constant k value, the overall accuracy initially increases
and then decreases as d increases, which aligns with the classification results observed when using
different d values for manifold learning algorithm dimensionality reduction at a constant k value. It
can be concluded that the highest overall accuracy is achieved when k=130 and d=50, indicating that
the nearest neighbor graph calculated based on ED metric represents the optimal "local tangent
space" for the dataset's sample points, and it best reflects the local topological relationships of the
data.
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Figure 11. Overall accuracy curve based on ED metric.

Table 6. Comparison of overall accuracy for different k/d values based on ED metric.

Metric k/d value Overall accuracy/% Kal.)[?a
coefficient
k=130 d=40 80.1367 78.9922
ED k=130 d=50 83.3557 82.2112
k=130 d=60 82.6745 81.53

k=140 d=40 80.5759 79.4314
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k=140 d=50 83.0649 81.9204
k=140 d=60 81.4056 80.2611
k=150 d=40 81.6984 80.5539
k=150 d=50 81.9912 80.8467
k=150 d=60 81.552 80.4075

3.3. Dimensionality Reduction Rresults of LTSA AlgorithmBbased on SAM Metric

The experimental data, as well as the selection and calculation process of k/d values for this part
of the experiment, are the same as in section 3.2. Some of the computational results are presented in
Table 7

Table 7. Based on SAM distance metric, select different k/d values to calculate the optimal
neighborhood graph and LTSA algorithm runtime, and calculate overall accuracy.

K d The calculation time of the = LTSA algorithm Overall
nearest neighbor graph/s runtime/s accuracy/%

40 30 63.9568 191.6867 78.9395
50 30 63.9751 223.7559 82.2094
40 63.5359 227.2922 82.795

30 64.3453 263.465 83.8687

60 40 67.7445 283.2065 83.2831
50 64.7961 272.8833 82.4046

30 61.4655 548.3659 83.9775

40 62.8563 614.0328 86.1137

50 67.9539 688.9331 84.1615

60 62.2563 705.472 83.4783

160 70 64.5107 680.2691 83.4783
80 63.3355 685.8673 82.0142

90 64.663 683.0453 80.6964

100 66.6848 675.4022 79.3787

110 67.8423 701.4498 81.2333

120 67.5131 703.186 78.6467

As shown in Figure 12, the computation time for the nearest neighbor graph using SAM metric
remains almost unchanged with the increase of k/d values, while the runtime of the LTSA algorithm
is rapidly increasing. Therefore, SAM metric can be used for calculating the nearest neighbor graph
when setting larger k/d values. However, the computational cost of running the LTSA algorithm
should also be considered. One should not overly rely on the lower computational cost of the nearest
neighbor graph calculation and should choose appropriate k/d values based on actual needs to
maximize the performance of the LTSA algorithm. On the other hand, when it comes to computation
time, both the nearest neighbor graph and the runtime of the LTSA algorithm under SAM metric are
significantly less than those under ED metric. Therefore, SAM metric is a more appropriate choice for
dimensionality reduction of large-scale hyperspectral remote sensing images data.
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Figure 12. Comparison of computation time of nearest neighbor graph based on SAM metric and
dimensionality reduction time of LTSA algorithm.

As observed from Figure 13 and Table 8, with the continuous increase of k/d values, the overall
trend in overall accuracy based on the SAM metricis similar to the results calculated using ED metric.
However, the overall accuracy is higher than that calculated using ED. It can be concluded that the
highest overall accuracy is achieved when k=150 and d=40.
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Figure 13. Overall accuracy curve based on SAM metric.

Table 8. Comparison of overall accuracy based on SAM metric for different k/d values calculation.

Metric k/d values Overall accuracy/% Kappa coefficient
k=130 d=40 86.0649 84.9295
k=130 d=50 83.2343 82.0989
k=130 d=60 84.8448 83.7094
k=140 d=40 85.3816 84.2462

SAM k=140 d=50 85.1864 84.051
k=140 d=60 84.2103 83.0749
k=150 d=40 86.8946 85.7592
k=150 d=50 84.3568 83.2214

k=150 d=60 83.7711 82.6357
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3.4. Dimensionality Reduction Results of LTSA Algorithm Based on SID Metric

The experimental data, as well as the selection and calculation process of k/d values for this part
of the experiment, are the same as in section 3.2. Some of the computational results are presented in
Table 9:

Table 9. Based on SID distance metric, select different k/d values to calculate the optimal
neighborhood graph and LTSA algorithm runtime, and calculate overall accuracy.

The calculation time of the = LTSA algorithm Overall
k d . .
nearest neighbor graph/s runtime/s accuracy/%

40 30 2374.8 2403.4 84.0821
50 30 2313.3 2343.9 84.7165
40 2321.6 2443.8 84.3749

30 2404 2450.9 85.9855

60 40 2398.3 2436.9 87.5472
50 2382 2427.7 85.4486

30 2533.4 2751 86.5223

40 2512.3 2754.6 88.0352

50 2497 4 2757.6 87.108

60 2536.8 2812.5 86.3759

160 70 2574.5 2826.7 85.839
80 2585 2837.9 84.3749

90 2456.9 2789.4 84.1797

100 2398.6 2658.9 83.2036

110 2329.7 2609.3 84.1797

120 2409.5 2700.6 82.3739

As shown in Figure 14, the computation time for the nearest neighbor graph and the runtime of
the LTSA algorithm under the SID metric remain almost unchanged with the increase of k/d values.
Moreover, the runtime of both processes is relatively similar, indicating that the overall
computational expense of the LTSA algorithm is primarily concentrated in the nearest neighbor
graph computation phase. However, it is also observed that with increasing k/d values, the
computation time for both the nearest neighbor graph and the LTSA algorithm remains nearly
constant under SID metric, suggesting that the choice of k/d values has a minimal impact on the
overall runtime of the algorithm. Therefore, when large k/d values are required for the LTSA
algorithm, considering SID for calculating the nearest neighbor graph is advisable.
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Figure 14. Comparison of nearest neighbor graph calculation and LTSA algorithm running time based
on SID metric.
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As observed from Figure 15 and Table 10, with the continuous increase of k/d values, the overall
trend in overall accuracy based on SID metric is similar to the results calculated using ED metric.
However, the overall accuracy is higher than that calculated using both ED and SAM metrics.
Similarly, it can be concluded that the highest overall accuracy is achieved when k=150 and d=40.
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Figure 15. Overall accuracy curve based on SID metric.

Table 10. Comparison of overall accuracy for different k/d values based on SID metric.

Metric k/d values Overall accuracy/% Ka[.)l?a
coefficient

k=130 d=40 86.9615 85.8012

k=130 d=50 86.1807 85.0204

k=130 d=60 87.4008 86.2405

k=140 d=40 85.9367 84.7764

SID k=140 d=50 86.6199 85.4596
k=140 d=60 86.2295 85.0692

k=150 d=40 88.0352 86.8749

k=150 d=50 85.5462 85.5462

k=150 d=60 86.6687 85.5084

3.5. Comparison and Analysis

As shown in Figure 16, by comparing the computation times for the nearest neighbor graph and
the LTSA algorithm under three different metrics, it is observed that the computation time is shortest
for SAM metric and longest for SID metric. The computation times for the nearest neighbor graph
and the LTSA algorithm, from longest to shortest, are in the order of SID, ED, and SAM. From the
perspective of time expenditure, SAM metric appears to be the most suitable choice. However,
considering the selection of k/d values, SAM metric is preferable when k/d values are smaller, while
SID metric becomes more suitable as k/d values increase. Therefore, it can be seen that ED falls
between SAM and SID in terms of time costs, making SAM and SID metrics preferable to ED when
considering time costs for dimensionality reduction of hyperspectral remote sensing images.
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Figure 16. Comparison of nearest neighbor graph calculation and LTSA algorithm running time with
increasing k/d values under three different metrics.

As demonstrated in Figure 17, by comparing the classification accuracies obtained under three
different metrics, they are ranked from highest to lowest as follows: SID, SAM, and ED. Therefore,
the final overall accuracy based on SID metric is higher than the latter two. Combining this with the
analysis from Figure 16, it is evident that SID metric should be used for dimensionality reduction and
classification of hyperspectral remote sensing images. From Table 11, it is shown that for
dimensionality reduction and classification of the Indian Pines dataset using SID metric, the overall
accuracy is 88.0352, and the Kappa coefficient is 86.8749, both of which are higher than the other two
metrics. This verifies that the intrinsic features obtained from hyperspectral remote sensing images
dimensionality reduction based on SID metric are superior to those based on ED and SAM metrics.
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Figure 17. Comparison of overall accuracy with increasing k/d values under three different metrics.
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Table 11. Overall accuracy and Kappa coefficient under different metrics.

Metric k/d values Overall accuracy/% Kappa coefficient
ED k=130 d=50 83.3557 82.2112
SAM k=150 d=40 86.8946 85.7592
SID k=150 d=40 88.0352 86.8749

4. Discussion

4.1. The Impact of Three Metrics of "Distance” and the Choice of Different k Values on the Construction of
the Nearest Neighbor Graph

The time complexity of constructing the nearest neighbor graph using ED metric lies between
those of SAM and SID metrics. The highest time complexity is observed when using SID metric, while
the lowest is with SAM metric. The time expenditure for constructing the nearest neighbor graph
using ED metric increases rapidly with the increase in the k value. In contrast, the time expenditure
with SID metric increases slowly with the increasing k value, and the time expenditure with SAM
metric remains almost constant regardless of changes in the k value. Therefore, it can be observed
that the time cost of constructing the nearest neighbor graph based on SAM metric is least affected
by changes in the k value, whereas the time cost based on ED metric is most significantly impacted
by the k value.

4.2. The Impact of the Nearest Neighbor Graph Constructed Using Three Metrics of "Distance” and the
Choice of Different Parameters on the LTSA Algorithm

When the nearest neighbor graphs calculated using ED, SAM, and SID metrics are respectively
used as inputs for the Local Tangent Space Alignment (LTSA) algorithm to calculate the local
coordinates of sample points, it is observed that the runtime of the LTSA algorithm with ED inputs
still falls between SAM and SID. Moreover, with the continuous increase of k/d values, the nearest
neighbor graph calculated using ED has a significant impact on the time expenditure of the LTSA
algorithm, rapidly increasing with the computation time of the nearest neighbor graph. This indicates
that the nearest neighbor graph calculated using ED significantly affects the subsequent computation
of local coordinates in the LTSA algorithm. For the nearest neighbor graph calculated using SAM
metric, the time cost of the LTSA algorithm increases slowly with the rising k/d values, implying a
minor impact on the computation of local coordinates in the LTSA algorithm. The nearest neighbor
graph calculated using SID metric has almost no effect on the time expenditure of the LTSA algorithm
as k/d values increase, which means that the overall time cost of the LTSA algorithm based on SID
metric is primarily focused on the computation of the nearest neighbor graph, with negligible impact
on the subsequent computation of local coordinates.

4.3. The Effect of LTSA Manifold Learning Algorithm on Dimensionality Reduction of Hyperspectral Remote
Sensing Images Using Three Metrics of ”Distance”

In this study, the LTSA algorithm was used for dimensionality reduction and ground objects
classification of the Indian Pines hyperspectral remote sensing images data based on ED, SAM, and
SID metrics. A comparison of overall accuracy and Kappa coefficients under these three metrics
reveals that the dimensionality reduction effect is optimal for SID, least effective for ED, and
intermediate for SAM. Through two-dimensional visualization, it is evident that the LTSA algorithm
based on ED metric does not adequately reflect the local topological relationships of the same ground
objects sample points or the spatial-geometric relationships between different ground objects sample
points after dimensionality reduction. In contrast, LTSA dimensionality reduction based on SAM and
SID metrics effectively resolves the complex nonlinear relationships within and between sample
points and better restores the real spatial distribution of the sample points.
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4.4. Uncertainties, Limitations, and Future Direction

4.4.1. Uncertainties

The LTSA nonlinear manifold algorithm is sensitive to parameter selection, such as the number
of neighbors k chosen for computing the optimal neighborhood and the determination of the intrinsic
feature dimension d for hyperspectral remote sensing images. With these settings, the results can
vary significantly, leading to uncertainties in the stability and reliability of the dimensionality
reduction outcomes. In this study, cross-validation was used to determine the optimal values of k
and dimension d. However, This approach may yield uncertainties in different hyperspectral remote
sensing images datasets, necessitating the search for corresponding k values and dimensions d for
different datasets. Consequently, the selection of parameters is characterized by inherent
uncertainties."

4.4.2. Limitations

(1) This article solely focuses on the study of dimensionality reduction effectiveness of the LTSA
manifold learning algorithm using nearest neighbor graphs computed based on three different
metrics. The evaluation of the dimensionality reduction effects under these metrics was conducted
through the overall accuracy and Kappa coefficients derived from the post-reduction feature values.
The obtained overall accuracy may not be very high, which could imply that the classification
outcomes might not be ideal. Therefore, there is room for improvement in the absolute overall
accuracy of the final classification results. It necessitates further refinement of the LTSA nonlinear
manifold learning algorithm for specific classification challenges and its application in subsequent
high-precision classification algorithm feature inputs. Hence, exploring new metrics is essential for
further research on high-precision classification issues.

(2) In this study, the algorithmic design for calculating SAM and SID values exhibited issues of
redundant computations, leading to significant computational overhead, especially noticeable in the
computation of nearest neighbor graphs based on SID. Optimization of the computational process is
required. For instance, pre-storing already computed results could be a solution. Before recalculating
SAM or SID values for two spectral features, a search in the pre-stored area could be conducted. If
the values already exist, they can be directly retrieved without the need for recalculating, thereby
necessitating improvements in the algorithm design to address the issue of redundant computations.

(3) As the Indian Pines dataset used in this study is limited in data volume, the proposed
algorithm may face computational limitation due to large data volumes, leading to low
computational efficiency and challenges in dealing with large hyperspectral datasets due to inherent
noise and variability. Thus, there may be limitations when dealing with excessively large datasets.

(4) The rich nonlinear structures present in hyperspectral data pose an ongoing challenge for
effective modeling. While the LTSA nonlinear manifold learning algorithm used in this study can
handle nonlinear structures to some extent, there is still room for improvement in dealing with
complex spectral relationships. Therefore, researching the dimensionality reduction of more
complex, high-dimensional hyperspectral data still necessitates enhancing the robustness of the
algorithm.

4.4.3. Future Direction

Nonlinear manifold learning algorithms have demonstrated strong capabilities in
dimensionality reduction of hyperspectral remote sensing images, effectively handling nonlinear
data structures and enhancing data analysis results. However, challenges remain in computational
complexity, parameter selection, and better modeling of nonlinear structures. With the continuous
development of various dimensionality reduction techniques, combining them effectively with
manifold learning algorithms can leverage their strengths to construct deeper manifold learning
models. This improves the extraction of deep features from hyperspectral remote sensing images and
applies the reduced results in subsequent research, such as ground objects classification, target
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recognition, etc., while expanding the application of manifold learning techniques in broader
research fields. Future research directions can be developed in the following areas:

(1) Nearest Neighbor Graph Metric Selection for Manifold Learning Algorithms. Based on the
study of nearest neighbor graphs computed using three metrics and LTSA manifold learning
algorithm dimensionality reduction, further research can explore the combination of SAM and SID
metrics [44]. By fully utilizing the advantages of SAM in shape comparison and SID in reflecting
differences in reflected energy values, we can extract the most similar pixel neighborhoods from both
spectral shape and energy difference perspectives, effectively calculating spectral similarity and
achieving high-precision dimensionality-reduced subspace.

(2) Adaptive Parameter Selection for Manifold Learning Algorithms. Parameter selection in
manifold learning algorithms mainly involves the choice of the nearest neighbor number k and the
dimension d of the low-dimensional embedding space. Extensive research has been conducted on
determining dimension d [45-51], but the choice of these two parameters still poses a core technical
challenge in the efficiency of manifold learning algorithms. Creating more efficient algorithms less
sensitive to parameter settings, improving scalability, and enhancing the ability to reduce dimensions
while preserving local and global data structures is necessary.

(3) Reduction of Computational Complexity in Manifold Learning Algorithms. High
computational complexity is a prevalent issue in the dimensionality reduction of large-scale
hyperspectral data. Future research can be conducted in two main areas: computation of the nearest
neighbor graph and calculation of local tangent space coordinates. For the nearest neighbor graph
computation, appropriate metrics, such as SAM, can be chosen. On the other hand, optimization of
local tangent space coordinate calculations can be explored, such as the construction of reconstruction
errors and the computation of error matrices.

(4) Nonlinear Structure Modeling in Manifold Learning Algorithms. Balancing local and global
information is an issue. The LTSA algorithm used in this study addresses the optimization of local
and global aspects to some extent, but manifold learning dimensionality reduction methods tend to
focus more on local feature mining, mapping points on the manifold that are close to each other in
high-dimensional space to remain close in low-dimensional space. Therefore, effectively preserving
both local details and overall structure in data remains a challenge.

(5) Combining Manifold Learning Algorithms with Various Technologies. Manifold learning
techniques are primarily used for feature extraction. Future research can integrate GeoAl technology
with machine learning, deep learning, and other techniques to better extract potential geospatial
features, thereby enhancing the feature extraction efficiency and accuracy of manifold learning
models. For instance, deep learning, with its powerful learning capabilities and efficient feature
representation, can extract deep features from high-dimensional data. Effectively combining the
strengths of deep learning and manifold learning to build deep manifold learning models can extract
profound discriminative features from hyperspectral remote sensing images, further improving
algorithm performance and developing new manifold learning algorithms.

(6) Multi-source Data Fusion in Manifold Learning Algorithms. This study focuses solely on
LTSA manifold learning dimensionality reduction for hyperspectral remote sensing images, hence
the research on dimensionality reduction for ground objects classification is rather preliminary.
Future research could consider fusing hyperspectral data with other multi-source remote sensing
data to obtain richer information, which could further enhance the performance of nonlinear
manifold learning algorithms in tasks like ground objects classification and target recognition.

(7) Broader Applications of Manifold Learning Techniques. With the advancement of data
acquisition technologies, vast amounts of high-dimensional, complex, multi-feature data are
generated across various industries. This includes diverse types of trade transaction data, weather or
environmental monitoring, video stream surveillance, gene expression data, document word
frequency data, user rating data, Web usage data, and multimedia data, all generating massive data
streams. These data streams often have dimensions (attributes) ranging up to thousands or even tens
of thousands. Applying manifold learning methods to process these data streams effectively remains
a challenge and is worth further in-depth exploration.
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5. Conclusions

Based on the Indian Pines dataset, this paper investigates how nonlinear manifold learning
algorithms can be applied to the dimensionality reduction of hyperspectral remote sensing images.
The study focused on constructing nearest neighbor graphs based on ED, SAM, and SID metrics. The
results were compared and analyzed through two-dimensional visualization, algorithm runtime,
overall accuracy, and Kappa coefficient. The key findings are summarized as follows:

(1) The paper starts from manifold theory and the characteristics of hyperspectral remote sensing
images, elaborating on the formal expression and mathematical definition of manifold learning
algorithms in dimensionality reduction, revealing the application principles and implementation
process of manifold learning algorithms in hyperspectral remote sensing images dimensionality
reduction.

(2) Addressing the issues of " Curse of Dimensionality”, "information redundancy,” and
"nonlinear features" in hyperspectral remote sensing images, the study calculates nearest neighbor
graphs based on ED, SAM, and SID metrics and applies the results to the LTSA manifold learning
method for dimensionality reduction. It concludes that the dimensionality reduction effect based on
SID measurement is optimal.

(3) The comparison of nearest neighbor graphs calculated using ED, SAM, and SID metrics
reveals that SAM measurement yields the lowest computational complexity and memory
consumption.

(4) Through the study of hyperspectral remote sensing images dimensionality reduction using
the LTSA manifold learning method, the paper demonstrates the ability to more accurately reflect the
local topological structures of sample points while better representing the overall spatial distribution
characteristics and spatial relationships of hyperspectral remote sensing data sample points.

(5) The paper undertakes preliminary exploration into the dimensionality reduction of
hyperspectral remote sensing images using the LTSA manifold learning method under different
metrics, revealing the potential of different metrics in computing nearest neighbor graphs and
proving the effectiveness and research significance of nonlinear manifold learning algorithms in the
domain of hyperspectral remote sensing images dimensionality reduction.
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