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Abstract: Foodborne illnesses can be infectious and dangerous and most of them are caused by bacteria. Some 

types of common food-related bacteria exist widely in nature and pose a serious threat to both humans and 

animals, and can cause poisoning, diseases, disabilities and even death. Rapid, reliable and cost-effective 

methods for bacteria detection are of paramount importance in food-safety and environmental monitoring. 

Polymerase chain reaction (PCR), lateral flow immunochromatographic assay (LFIA) and electrochemical 

methods have been widely used in food-safety and environmental monitoring. In this paper, the recent 

developments (2013-2023) covering PCR, LFIA and electrochemical methods for various bacteria detection 

(Salmonella, Listeria, Campylobacter, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)) considering 

different foods types, analytical performances and the reported limit of detection (LOD) are discussed. It is 

found that the bacteria type and food sample type contribute significantly to the analytical performance and 

LOD. Detection by LFIA has higher average LOD (24 CFU/ml) than detection by electrochemical methods (12 

CFU/ml) and PCR (6 CFU/ml). Salmonella and E. coli in the Pseudomonadota domain usually have low LODs. 

LODs are usually lower for detection in fish and eggs. LFIA with gold and iron nanoparticles are prominent in 

the majority of articles of 26 CFU/ml and 12 CFU/ml respectively. Electrochemical methods reveal that the 

average LOD is highest for cyclic voltammetry (CV) of 18 CFU/ml), followed by electrochemical impedance 

spectroscopy (EIS) of 12 CFU/ml and differential pulse voltammetry (DPV) of 8 CFU/ml. Finally, the review 

discusses the challenges and future perspectives (including the role of nanomaterials/advanced materials) to 

improve the analytical performance for bacterial detection. 

Keywords: limit of detection; bacterial detection; food sample; LFIA; PCR; electrochemical; 

multiplexing; food safety 

 

1. Introduction 

Foodborne illnesses can be dangerously infectious, and they are predominantly caused by 

pathogens (e.g., bacteria, fungi, viruses, parasites, etc.) or toxins (e.g. dioxins, heavy metals, 

mycotoxins, etc.) entering the body through contaminated food [1]. Most of the pathogens that can 

cause foodborne diseases are bacteria [2]. Bacteria can cause acute poisoning, long-term diseases, 

serious disabilities and even deaths [3]. Among all, Salmonella species causes the most serious 

illnesses and deaths related to contaminated food [4-6]. Salmonella is commonly found in birds, eggs, 

vegetables and also in natural water. Its symptoms include fever, vomiting, pain and dehydration etc. 

Salmonella can be divided into over 2600 species. Among them, Salmonella enterica and Salmonella 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 January 2024                   doi:10.20944/preprints202401.1268.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202401.1268.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

typhimurium are the most commonly found [7]. Listeria usually exists in processed products such as 

milk, meat, seafood and can grow in the refrigerators [8]. Listeria was shown to cause miscarriages in 

pregnant women or deaths of infants, although the chance is really low [9]. Around 20 species in 

Listeria can cause human diseases and Listeria monocytogenes is the type that causes the most harm 

to humans [10]. Most Campylobacter infections in humans are acquired by eating and touching 

contaminated poultry, seafood and meat [11-12]. More than 20 species of Campylobacter have been 

implicated in human disease, with  Campylobacter jejuni and Campylobacter coli being the most well 

known ones [13]. The most common symptoms of Campylobacter infections are diarrhea, fever, 

vomiting, and stomach cramps [14-15]. S. aureus is normally found in birds, meat and milk [16]. S. 

aureus is one of the common bacteria that display antimicrobial resistance, to antibiotics like 

methicillin and vancomycin [17-18]. Common symptoms of S. aureus are shown on the skin, as painful 

red welts and sores [19-20]. Generally, E. coli can be found in contaminated meat, milk and vegetables 

[21]. E. coli can be divided into 3 main groups-Enteropathogenic, Enteroinvasive and 

Enterohemorrhagic. A subtype of Enterohemorrhagic E. coli is the most toxic variant that is also easily 

transferred [22-23]. Although E. coli does not cause any symptoms in most healthy humans, it can 

lead to diarrhea, vomiting, and fever [24-25]. 

As many bacterial species currently pose a major threat to humans, a quick, accurate and cheap 

method to detect bacteria in the environment is essential, especially for food samples [26]. The 

traditional method to detect bacteria is through culturing of bacteria, which includes isolating the 

bacteria and monitoring the growth of the colonies [27]. During the culture process, the bacterial 

colonies are fixed and stained on a glass slide and confirmed by microscopy observation in order to 

identify different types of bacteria. This process is usually very time-consuming and labor-intensive 

[28]. Other methods are more complex and can overcome some limitations of bacteria culture. 

Another common detection method is high-performance liquid chromatography (HPLC) which has 

high sensitivity [29]. When the concentration of bacterial colonies is very low but still cannot be 

ignored for human health, it will be a challenge for these methods [30]. Researchers have developed 

many alternative methods to overcome these problems [26]. One technology that has been widely 

used more recently is enzyme-linked immunosorbent assay (ELISA), which is available as a 

commercial test kit for the detection of bacteria. However, it has disadvantages, some of which 

include; low sensitivity and necessary cold chain that limits its application range [31]. As a result, it 

is really difficult to meet the demand for large-scale bacteria detection in food samples with current 

technologies.  

LFIA is a relatively novel method in food safety analysis for the detection of bacteria in food. 

LFIA is cost-effective, simple to use, and can produce results rapidly with fewer samples [32-33]. It 

measures the concentration of bacteria by the darkness of color on the strip. Conjugated nanoparticles, 

dominate the porous membrane as an indicator [34-35]. Gold nanoparticles (GNPs) and iron oxide 

NP (IONP) are the most used NPs in the LFIA because of their low toxicity, and particles size and 

shape can be controlled by many factors [7,36]. Another relatively new method-PCR is a widely used 

technique for the detection of bacteria in food. It can make millions to billions of copies of a DNA 

sample rapidly so it has a high sensitivity and a relatively better detection limit than other common 

detection methods [37-38]. An alternative well-known technique is electrochemical analysis methods 

for the detection of bacteria in food. The electrochemical methods mainly measure the changes in the 

electronic properties caused by bacteria introduced to the solution [39-40]. 

In this review, PCR, LFIA and electroanalytical techniques and their efficiency in the detection 

of bacteria in food samples have been summarized. Recent developments (2013-2023) covering PCR, 

LFIA and electrochemical methods for detection of various bacterial species (Salmonella, Listeria, 

Campylobacter, S. aureus and E. coli) taking into account the different food types, analytical 

performances and the reported limit of detection (LOD) are discussed from 150 references. Current 

challenges and future avenues (including the role of nanomaterials /advanced materials) to further 

improve the analytical performance for bacterial detection are discussed. 
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2. Research Methods 

Information was collected from Science Direct with keywords: bacteria, PCR, LFIA, 

electrochemical method, LOD. In Figure 1, 50 peer-reviewed articles by every detection method from 

2013–2023 were compared to identify the limit of detection (LOD) for different bacteria: bacteria in 

the Pseudomonadota domain which includes Salmonella, E. coli; the Campylobacterota domain 

includes Campylobacter; and the Bacillota domain includes bacteria Listeria, S. aureus. In Figure 1, 

every type of bacteria by every detection method contains 10 articles and lowest LOD of it is listed. 

Please note that some papers included the LOD of more than one bacterium or more than one 

detection method, but only the detection of bacteria with the lowest LOD in that paper is discussed 

here. The data were collated by bacteria type, year of article, detection type: multiplex or not, food 

sample type, number of replicates, LOD (CFU/ml) in Table 1-3. 

 

Figure 1. Hierarchy of analysis of papers dealing with limits of detection for different bacteria. 

Table 1. PCR: summary of parameters and limit of detection (LOD) for bacteria considered. 

Bacteria 

type 
Multiplex? Food sample 

Sample 

number 
LOD(CFU/ml) Year Reference 

Salmonella 

No Beef 10 0.04 2022 [41] 

No Chicken 10 0.1 2017 [42] 

Yes 
Bacteria 

Solution 
8 0.2 2013 [43] 

Yes Pork 7 2 2019 [44] 

No Lettuce 18 2.65 2021 [45] 

Yes 
Bacteria 

Solution 
6 3 2022 [46] 

Yes 
Natural 

Water 
8 3 2020 [47] 

Yes Chicken 6 4 2018 [48] 

No Sheep 7 9 2020 [49] 

No Chicken 6 10 2017 [50] 

Listeria 

Yes Fish 9 0.2 2022 [51] 

Yes Egg 50 0.2 2014 [52] 

Yes Duck 160 0.48 2022 [53] 

No Soybean 20 4 2019 [54] 

No Milk 35 5 2017 [55] 

No Milk 6 5 2022 [56] 
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Yes Pork 5 9 2013 [57] 

Yes Milk 13 10 2023 [58] 

Yes Lettuce 14 10 2022 [59] 

Yes Lettuce 21 10 2016 [60] 

Campylobac

ter 

No Pork 8 0.3 2014 [61] 

No Milk 5 1 2023 [62] 

No Milk 8 1 2020 [63] 

Yes Chicken 9 1 2017 [64] 

No Sheep 41 4.3 2013 [65] 

Yes Pork 30 10 2013 [66] 

No Pork 54 10 2020 [67] 

Yes Chicken 40 10 2018 [68] 

No Chicken 6 10 2013 [69] 

No Milk 12 13 2020 [70] 

S. aureus 

No Milk 24 0.25 2019 [71] 

Yes Milk 46 0.48 2017 [72] 

No Fish 8 1.2 2018 [73] 

No Egg 50 3.8 2020 [74] 

Yes Pork 51 9.6 2014 [75] 

Yes Milk 9 10 2022 [76] 

Yes Rice 8 19 2016 [77] 

Yes Egg 12 20 2022 [78] 

No Milk 5 28 2018 [79] 

Yes Beef 9 42 2016 [80] 

E. coli 

No 
Natural 

Water 
6 0.04 2018 [81] 

Yes Fish 180 0.12 2016 [82] 

Yes Beef 32 0.14 2020 [83] 

Yes Cabbage 25 1 2018 [84] 

No Milk 5 1.03 2021 [85] 

No 
Natural 

Water 
7 1.2 2015 [86] 

Yes Apple 22 2 2020 [87] 

No Milk 7 4.4 2020 [88] 

No Beef 12 10 2018 [89] 

Yes  Milk 8 10 2015 [90] 

Table 2. LFIA: summary of parameters and limit of detection (LOD) of for bacteria considered. 

Bacteria 

type 

Multiplex

? 

Food 

sample 

Sample 

number 
Particle 

Size(n

m) 

LOD(CFU/ml

) 
Year Reference 

Salmonella 

No Orange 5 Gold 20 1 2023 [91] 

No Chicken 5 Gold 40 1 2019 [92] 

No Chicken 6 Gold NA 1 2018 [93] 

No Egg 11 Gold 15 1.05 2017 [94] 

No Milk 7 Gold 20 1.6 2017 [95] 

Yes Grape 9 Iron 40 8 2022 [96] 

No Milk 7 Gold 15 8.6 2021 [97] 

No Chicken 5 Iron 150 16 2019 [98] 

No Lettuce 6 Gold NA 17 2023 [99] 

No Milk 5 Iron NA 34 2019 [100] 
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Listeria 

Yes Beef 6 
Europiu

m 
NA 7 2021 [101] 

No Pork 30 Gold 20 8 2023 [102] 

No Milk 12 
Mangane

se 
200 9.2 2021 [103] 

No Lettuce 5 Iron 189 10 2022 [104] 

No Milk 8 Gold 50 10 2017 [105] 

No Pork 6 Gold 28 11 2022 [106] 

Yes Egg 9 Gold 10 19 2017 [107] 

No Lettuce 6 Gold 10 30 2017 [108] 

No Lettuce 5 
Palladiu

m 
NA 48 2020 [109] 

Yes Milk 6 Gold NA 75 2019 [110] 

 

Campylobact

er 

No Milk 7 Iron NA 3 2022 [111] 

No Poultry 60 Gold 50 10 2018 [112] 

Yes Poultry 9 Iron NA 10 2018 [113] 

Yes Poultry 8 Cobalt 50 10 2018 [114] 

No Fish 105 Iron NA 10 2014 [115] 

No Milk 6 Gold 15 50 2019 [116] 

No Chicken 6 Gold 2 100 2020 [117] 

No Pork 112 Gold 30 100 2018 [118] 

No Chicken 7 Gold 33 131 2019 [119] 

No Beef 5 Gold 40 150 2016 [120] 

S. aureus 

No Egg 6 Gold 40 1.6 2022 [121] 

No Pork 9 Gold NA 2 2017 [122] 

No Milk 80 Silicon NA 3 2014 [123] 

No Lamb 36 Gold 40 5.96 2021 [124] 

Yes Fish 80 Gold NA 10 2022 [125] 

No Milk 30 Gold 10 10 2013 [126] 

Yes Milk 32 Gold 50 18 2023 [127] 

Yes Pork 6 Gold 15 35 2015 [128] 

No Turkey 6 Carbon NA 40 2017 [129] 

No  Milk 6 Silicon NA 100 2023 [130] 

E. coli 

No Pork 50 
Europiu

m 
NA 1 2020 [131] 

No Milk 7 Gold NA 1 2016 [132] 

No Pork 8 Gold NA 2.2 2023 [133] 

No Milk 5 Gold NA 2.7 2019 [134] 

No Apple 7 Gold NA 3 2020 [135] 

No Chicken 7 Iron NA 10 2022 [136] 

No Beef 10 Gold 36 10 2020 [137] 

No Milk 5 Gold 38 12.5 2020 [138] 

Yes Milk 6 Gold 2 20 2019 [139] 

Yes Milk 8 
Palladiu

m 
35 34 2017 [140] 
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Table 3. Electrochemical methods: summary of parameters and limit of detection (LOD) for bacteria 

considered. 

Bacteria 

type 

Multiplex

? 

Food  

sample 

Sample 

numbe

r 

Electrochemic

al technique 

Sensor  

material 

Linear 

range 

(CFU/ml) 

LOD 

(CFU/

ml) 

Yea

r 

Referenc

e 

Salmonella 

Yes Milk 8 DPV 

Polymer 

Mn-MOF 

on gold 

10-108 2.6 
202

2 
[141] 

No Apple 7 EIS 

screen- 

printed 

gold 

100-108 3 
201

6 
[142] 

No Pork 8 CV 

gold, 

graphene 

on glassy 

carbon  

24-2400 3 
201

4 
[143] 

No Egg 10 EIS 

Hechtia 

argentea  

lectin on 

gold 

15-2.57*107 5 
202

0 
[144] 

No Milk 5 CV 

chitosan  

hydrogel, 

and 

glassy 

carbon 

10-105 5 
201

5 
[145] 

No Milk 5 DPV 

CoFe-

MOFs-

graphene 

on gold 

10-105 6 
202

1 
[146] 

No Milk 9 EIS 
DNA-

AuNPs 
24-2.4*108 6 

201

4 
[147] 

No 
Chicke

n 
8 DPV 

ssDNA/ 

rGO-

CNT/ 

GCE 

10-108 10 
202

0 
[148] 

No 
Chicke

n 
7 DPV 

DNA/ 

rGO-TiO2/ 

GCE 

10-108 10 
201

9 
[149] 

No Apple 8 EIS 

diazoniu

m layer 

onto SPEs 

10-108 10 
201

6 
[150] 

Listeria 

No Milk 13 SWV 
Methylen

e blue 
NA 1 

202

3 
[151] 

No Lettuce 12 CV 

Aptamer  

Pt/HCNs  

nanozyme 

NA 2 
202

3 
[152] 

Yes Milk 11 EIS 
AuNPs-

MWCNTs 
10-107 3.22 

202

1 
[153] 

No Pork 6 EIS 

DNA 

modified 

ferrocene 

14-1.4*106 4 
202

0 
[154] 
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No 
Tomat

o 
6 EIS gold  NA 4 

201

3 
[155] 

No Milk 8 EIS 

paper-

based 

with 

tungsten 

disulfide 

10-108 4.5 
202

2 
[156] 

No 
Chicke

n 
6 CV 

ALG-

thiomer/P

t 

10-106 5 
202

2 
[157] 

No Milk 5 EIS 

gold 

interdigita

ted 

100-2200 5.5 
201

8 
[158] 

No Pork 25 DPV 
ZnO-

3DNGH 
15-1.5*107 6.8 

202

2 
[159] 

No Lettuce 5 DPV 

Si@MB/A

uNP 

modified 

glassy 

carbon 

100-107 10 
202

1 
[160] 

 

Campylobac

ter 

No Beef 31 EIS 

DNA  

modified 

gold 

NA 8 
202

3 
[161] 

No 
Poultr

y 
118 EIS 

 glassy 

carbon 
NA 10 

202

1 
[162] 

No 
Chicke

n 
156 DPV 

DNA  

modified 

gold 

10-1000 10 
202

0 
[163] 

No 
Poultr

y 
100 SWV 

thin-film 

gold  
NA 11 

201

5 
[164] 

Yes 
Chicke

n 
36 DPV Ag/AgCl NA 13 

201

8 
[165] 

No 
Poultr

y 
7 ASV 

graphene 

modified 

glassy 

carbon 

50-500 15 
201

5 
[166] 

No 
Chicke

n 
50 EIS 

AuNPs on 

glassy 

carbon 

NA 50 
201

9 
[167] 

No Milk 6 EIS 

interdigite

d 

platinum 

NA 100 
202

0 
[168] 

No Milk 5 CV TiO2 NA 100 
202

0 
[169] 

No Milk 5 CV 

DNA  

modified 

gold 

NA 100 
201

9 
[170] 

S. aureus No Apple 9 CV 

Au/nitrog

en doped 

carbon 

10-108 1 
202

2 
[171] 
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No Apple 7 CV 

AuNPs@ 

Fe3O4/GC

E 

10-107 1 
202

2 
[172] 

No Milk 6 CV 

Au 

modified 

paper- 

carbon 

NA 2 

 

202

2 

[173] 

No Pork 7 EIS 

Stamp  

imprinted 

gold  

NA 3 
202

1 
[174] 

No Milk 7 EIS 

AuNP  

modified 

GCE 

10-107 3.3 
202

0 
[175] 

No Orange 9 CV 

Ag-Cs-Gr 

QDs/NTi

O2 

SPEs 

10-5*108  5 
202

2 
[176] 

No Milk 6 DPV 

 

carboxylat

ed  

MWCNTs 

NA 5 
202

0 
[177] 

No Fish 7 EIS 

AuNPs- 

rGO-

ssDNA 

10-106 10 
201

4 
[178] 

No Milk 7 DPV 
Ab-

SWCNT 
10-107 13 

201

7 
[179] 

Yes Milk 7 EIS 
BSA on  

platinum 
100-106 15.9 

202

1 
[180] 

E. coli 

No Milk 7 DPV 
ZnO-CuO 

on gold 
1000-106 2 

202

1 
[181] 

No Egg 6 CV 
Ferrocene 

SPCEs 
10-108  3 

202

2 
[182] 

No Milk 6 DPV 
CdS@ZIF-

8 
10-108  3 

201

9 
[183] 

No Milk 8 EIS 

cysteamin

e/ 

ferrocene- 

modified 

NA 3 
201

8 
[184] 

No Milk 5 CV 

AuNPs 

modified 

SPCEs  

7-7*106 3.5 
201

9 
[185] 

No Milk 9 EIS 

rGO-

CysCu on 

gold 

10-108  3.8 
201

7 
[186] 

No Fish 5 CV 

AuNPs on 

glassy 

carbon 

15-1.5*108 4 
202

2 
[187] 

Yes Lettuce 12 EIS 

ZIF-8 

decorated 

ferrocene 

10-107  5 
202

3 
[188] 

No Apple 9 CV silver 10-108  10 
202

0 
[189] 
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No Milk 5 DPV gold 50-5*107 10 
201

9 
[190] 

3. Results 

Table 1 provides a breakdown of the analysis of 50 peer-reviewed articles used in this review, 

based on the type of bacteria, multiplexing capability, the type of food sample, replicates and, 

reported LOD. The limits of detection are further shown in Figure 2, according to (a) multiplex 

detection capability and (b) food sample types, in an attempt to and highlight the analytical 

capabilities of the various techniques/methods considered. Since there are too many food samples in 

Table 1, they are divided into eight types: mammals (including beef, pork and sheep), birds (include 

chicken and duck), fish, egg, milk, plants (including lettuce, soybean, rice, cabbage and apple), 

natural water and bacterial solution for easier analysis.  

 

Figure 2. Number of articles (a) with multiplex detection of bacteria simultaneous and (b) food 

samples by different detection methods. 

Figure 2a indicates that the percentage of articles include multiplex detection of bacteria 

simultaneously by PCR, LFIA and electrochemical methods. It is a little more than half (52%) in PCR, 

but only around one fifth (22%) for LFIA, and one tenth (10%) for electrochemical methods. Figure 

2b shows the percentage of articles according to food sample type with varying detection methods. 

Although milk was always included in most articles (13, 17, 22 in PCR, LFIA, and electrochemical 

methods respectively), the second is mammals in PCR and LFIA (12 and 11 respectively) but plants 

mainly feature for electrochemical methods (11). In addition, more common food samples in every 

detection method accounts for more than half of the articles together. On the other hand, articles 

about natural water and bacterial solution only appear in PCR, not LFIA or electrochemical methods. 

 

 

Figure 3. Timeline of the annual number of articles collected and the annual average limit of detection 

in different years by different detection methods. (a) Number of articles. (b) Average limit of 

detection. 

Figure 3a presents the annual number of articles and average limit of detection over the years 

2013 to 2023 by different detection methods. There was at least one article published every year for 

every detection method from 2013 to 2023. Articles published in 2019 to 2023 are always higher than 
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articles published in 2013 to 2018 in every detection method indicating increased research interest. 

For PCR, the annual number of articles published was 5 in 2013, then it decreased to 2 in 2014. It 

increased gradually to 7 in 2018 and decreased to 3 in 2019. After 2019, fluctuations were observed 

every year. It reached the highest point of 10 in 2020 and decreased to the bottom at 2 in 2021. In the 

case of LFIA, it was only 1 in 2013. It increased gradually to 8 in 2018 and highly fluctuated every 

other year. It reached 8 again in 2019 and decreased to the lowest level at 4 in 2021. In the case of 

electrochemical analysis, it also started with 1 in 2013. It increased sharply to 3 in 2014 and decreased 

to 2 in 2016. Then it increased gradually to 9 in 2022, followed by a large decline to 5 in 2023.  

In Figure 3b, the annual average LOD was usually the highest in LFIA, except for the 

electrochemical methods in 2018. Overall, the LOD was usually the lowest in PCR, except for the 

electrochemical methods in 2016 and 2022. In PCR, the average LOD was about 4 CFU/ml in 2013. 

Then it increased gradually to around 18 CFU/ml in 2016, and was followed by a large drop to 

roughly 3 CFU/ml in 2017. After 2017, fluctuations were observed every year and decreased in an 

overall trend to about 2 CFU/ml in 2021 (also the lowest for all detection methods in every year). It 

increased to about 6 CFU/ml in 2022. In LFIA, it was around 10 CFU/ml in 2013, it decreases to 

roughly 7 CFU/ml in 2014 and increased tremendously to about 75 CFU/ml in 2016 (also the highest 

for all detection methods in every year). Then it decreased sharply to about 17 CFU/ml in 2017 and 

was followed by an increase to nearly 40 CFU/ml in 2019 again. After that, it decreases gradually to 

approximately 8 CFU/ml in 2021 and increased again to roughly 25 CFU/ml in 2023. By the 

electrochemical method, it was about 4 CFU/ml in 2013, and it increased gradually to around 10 

CFU/ml in 2015. After a decrease to about 7 CFU/ml in 2016, it increased again to around 35 CFU/ml 

in 2018. Then it decreases gradually to roughly 3 CFU/ml in 2022. 

 

Figure 4. Detection of bacteria with LFIA with different nanoparticles (white: Gold, red: Iron; dark 

blue: Europium; green: Palladium; light blue: Silicon; pink: Carbon; yellow: Cobalt; brown: 

Manganese). (a) Number of articles with different nanoparticles. (b) Average LOD with different 

nanoparticles. 

Figure 4a shows that gold is the most studied nanoparticles in articles with LFIA involving 33 

articles, and it is followed by iron involving 8 articles. These two nanoparticles account for more than 

four fifths of the articles on LFIA. Only 2 articles involving europium, palladium, and silicon. Only 1 

article involve carbon, cobalt, and manganese. Figure 4b illustrates that the average LOD is the 

highest for articles involving silicon (little over 50 CFU/ml), followed by carbon and palladium of 

roughly 40 CFU/ml. The average LOD for gold is about 26 CFU/ml, which is a little higher than the 

average LOD for all articles with LFIA (24 CFU/ml). It is followed by iron of around 12 CFU/ml, cobalt 

of 10 CFU/ml, Manganese of about 9 CFU/ml and Europium of only 4 CFU/ml. 
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Figure 5. Detection of bacteria by electrochemical method with different techniques (white: cyclic 

voltammetry (CV); red: differential pulse voltammetry (DPV); dark blue: square wave voltammetry 

(SWV); green: anodic stripping voltammetry (ASV); light blue: electrochemical impedance 

spectroscopy (EIS)). (a) Number of articles by different techniques. (b) Average LOD by different 

techniques. 

Figure 5a shows that electrochemical impedance spectroscopy (EIS) accounts for the highest 

number of articles of 20, and it is followed by cyclic voltammetry (CV) of 14, differential pulse 

voltammetry (DPV) of 13, and these techniques occupy the majority (more than nine tenths) of articles 

in electrochemical methods. In addition, only 2 articles involve square wave voltammetry (SWV) and 

only 1 article involves anodic stripping voltammetry (ASV). Figure 5b illustrates that the average 

LODs for all articles, articles involving EIS and voltammetry have similar LOD at around 12 CFU/ml. 

The average LOD for CV is the highest at roughly 18 CFU/ml. It is followed by ASV of 15 CFU/ml, 

DPV of around 8 CFU/ml, and SWV of only 6 CFU/ml. 

  

Figure 6. Average limits of detection of different bacteria and food samples by different detection 

methods. (a) Different bacteria. (b) Different types of food samples. 

Figure 6 presents the average LOD of different (a) types of bacteria and (b) types of food/ water 

samples by different detection methods. Figure 6a shows that the overall average LOD is lowest for 

PCR, and highest for LFIA. The average LOD is higher for multiplex detection of bacteria 

simultaneous in PCR than single detection ones, but lower in LFIA and electrochemical methods. 

PCR has the lowest average LOD among all detection methods for Salmonella, Campylobacter and E. 

coli and these bacteria are all gram negative (-). In addition, electrochemical methods have the lowest 

average LOD among all detection methods for Listeria and S. aureus and these bacteria are all gram 

positive (+). On the other hand, LFIA always has the highest average LOD for every type of bacteria. 

The average LOD for bacteria in the Pseudomonadota domain are usually lower than bacteria in the 

Bacillota domain by PCR and LFIA, but similar to the latter by electrochemical method. For bacteria 

in the Pseudomonadota domain, the average LOD for E. coli is lower than it is for Salmonella by PCR 

and electrochemical methods, but higher than the latter by LFIA. For bacteria in the Bacillota domain, 

the average LOD for Listeria is lower than it for S. aureus by PCR and electrochemical method, but 

higher than the latter by LFIA. The average LOD of Campylobacter is usually the highest among all 
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bacteria by every detection method, except that it is lower than S. aureus by PCR. In addition, only 

average LODs of Campylobacter LFIA and electrochemical methods are over 30 CFU/ml by all 

detection methods and among all bacteria. 

Figure 6b shows that PCR has the lowest average LOD among birds, fish, milk, while the 

electrochemical methods show the lowest average LOD among mammals, egg and plants. LFIA 

always has the highest average LOD among all food samples, except that it is highest by PCR in egg. 

Among all food samples, egg has the lowest average LOD by LFIA and electrochemical methods 

among all food samples, while fish has the lowest average LOD by PCR (the lowest among all foods 

samples by all detection methods, also the only average LOD lower than 1 CFU/ml). In contrast, the 

data for birds demonstrated the highest average LOD by PCR, which is followed by mammals and 

milk (only these three have average LODs over 20 CFU/ml by all detection methods and among all 

bacteria). In addition, mammals exhibited the highest average LOD by PCR and milk the highest 

average LOD by PCR by electrochemical method among all food samples. Natural water and 

bacterial solution only show in detection by PCR, and their average LODs are lower than all other 

food samples by all detection methods except fish by PCR. 

EU limits for Salmonella, Listeria, Campylobacter, S. aureus and E. coli in food for most people are 

100, 100, 1000, 1000, 100 CFU/mL, respectively [21]. All the LODs in this review are far lower than the 

EU limits stipulate. Although some food intended for special groups such as infants, elderly people 

and patients with certain diseases require no presence of these bacteria at all, at least one article with 

LOD within 0.3 CFU/ml is included in every type of bacteria by PCR [21] 

4. Discussion 

The review of the LODs for PCR, LFIA and electrochemical methods has revealed trends in this 

research area that will inform food safety and public health experts. Figure 2a illustrates that the 

percentage of articles with multiplex is the highest in PCR, followed by LFIA and electrochemical 

method. That is the main reason that PCR is considered as a reliable standard detection method in 

the detection of bacteria under many circumstances. However, PCR does have disadvantages of high 

cost, time-consuming and complex procedure. As a result, PCR cannot replace LFIA and 

electrochemical method in the detection of bacteria completely. Milk is the most popular food sample 

for bacteria detection by every detection method. In addition, many articles involve mammals, plants 

and birds in every detection method (Figure 2b). 

The results in Figure 3a show that more articles were published in 2019-2023 than in 2013-2018 

by every detection method. In addition, the number of articles every year by every detection 

fluctuates highly. While the number of articles in LFIA and electrochemical method reached the peak 

in 2022 (8 and 9 articles respectively), articles in PCR reached the peak in 2020 of 10 articles. While 

the number of articles in LFIA and electrochemical method reached the lowest with only 1 article in 

2013, articles in PCR reached the lowest in 2014 and 2015 in every year of 2 articles. 

In Figure 3b, the annual average LOD was usually the highest by LFIA, and the lowest by PCR 

in every year. While the annual average LOD for PCR and LFIA reached the first peak in 2016 (about 

75 CFU/ml and 18 CFU/ml respectively), the LOD for electrochemical method reached the first peak 

in 2015 of around 10 CFU/ml. Later, the annual average LOD for PCR and electrochemical method 

reached the second peak in 2018 (around 8 CFU/ml and 35 CFU/ml respectively), the LOD for LFIA 

reached the second peak in 2019 of around 40 CFU/ml. And the annual average LOD by PCR reached 

the lowest of only about 2 CFU/ml in 2019, and it was around 7 CFU/ml in 2014 by LFIA, and 3 

CFU/ml in 2014 by detection method. The relationship between the annual average LOD and the year 

by every detection method is still unclear. Figure 3 shows that although the detection of bacteria has 

attracted more attention from researchers in recent years, LOD in PCR, LFIA and electrochemical 

method did not a decreasing trend. The main reason is that LODs in these articles are all lower than 

the EU limits, so the main purpose in many articles may not be lowering the detection limit. 

Figure 4a shows that only 3 articles by LFIA involve nonmetal nanoparticles (silicon: 2, carbon: 

1). The majority of articles with LFIA involve metal nanoparticles. Figure 4b illustrates that average 
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LODs for nonmetal nanoparticles are usually higher than metal nanoparticles, except that the average 

LOD of palladium is little higher than carbon. 

Figure 5a shows that EIS, CV, DPV account for the most articles by electrochemical method. 

Figure 5b illustrates that among these three main techniques in electrochemical method, average LOD 

is highest for articles with CV (18 CFU/ml), followed by EIS (12 CFU/ml) and DPV (8 CFU/ml). The 

main reason is that 2 articles with LODs of 100 CFU/ml for the detection of Campylobacter involve CV, 

and 1 article with a LOD of 100 CFU/ml for the detection of Campylobacter involve EIS. It also shows 

that few articles for the detection of Campylobacter of extremely LODs increase average LODs of 

different techniques by electrochemical methods. 

In Figure 6a, the average LOD was usually the highest for LFIA in bacteria investigated. The 

average LOD was the lowest by PCR in gram (-) bacteria, and by electrochemical method in gram (+) 

bacteria. Campylobacter is gram (-), and its average LOD is usually the highest among all bacteria by 

every detection method, except it was lower than S. aureus by PCR. The recommended EU limits for 

Salmonella, Listeria, Campylobacter, S. aureus and E. coli in food for most people are 100, 100, 1000, 1000, 

100 CFU/ml, respectively. All the LODs in this review are far lower than these EU limits. A possible 

reason for the relative higher average LOD of Campylobacter and S. aureus is that EU limits for them 

are relatively high. The average LOD for Salmonella and E. coli (both gram (-)) in the Pseudomonadota 

domain are usually lower than Listeria and S. aureus (both gram (+)) in the Bacillota domain by PCR 

and LFIA, but similar to the latter by electrochemical method. The difference between 2 bacteria in 

the same domain is much smaller than the difference between 2 different domains.  

This review also shows that the average LOD for multiplex ones is higher than non-multiplex 

ones by PCR, but lower than them by LFIA and electrochemical methods. One of the main possible 

reasons is that PCR usually has lower LOD than LFIA and electrochemical method. It is difficult to 

keep both detection efficiency and sensitivity at the same time when LOD is already really low, but 

not that difficult when LOD is relatively high. This could be a promising focus for the development 

of bacteria detection in the future. This review also indicates that fish and egg have the lowest average 

LOD among all types of food samples. One of the main reasons is that bacteria in fish and egg can be 

distinguished FROM nearby animal cells. The complexity of food sample composition can lower the 

performance of detection and makes LOD higher. To address such limitations and challenges, sample 

enrichment and improvement in device properties of detection are needed. PCR, LFIA and 

electrochemical method have been used in detection of different bacteria, and many of them involve 

multiplex detection. It is often observed that different types of bacteria coexist in a single food sample. 

As a result, a multiplex detection that can fulfill the requirements of a low detection limit and high 

efficiency is necessary for food safety. These detection methods can also be combined with other 

technologies to obtain a better detection performance. 

Challenges and Future Perspectives 

Sensitivity & Specificity: Enhancing the sensitivity and specificity poses a significant challenge. 

For LFIA, lateral-flow design and integration of monoclonal antibodies and nanomaterials seems 

crucial for enhancing specificity and LODs. For electrochemical methods, electrode modification with 

diverse nanomaterials has emerged as a prevalent technique, amplifying signals and improving 

sensitivity. Despite the high specificity of monoclonal antibodies, their production remains intricate 

and expensive. Microfluidic platforms offer a seamless integration with LFIA and electrochemical 

approaches. The integration of specific aptamers or DNA strands enhance the PCR-based bacterial 

detection in terms of sensitivity and specificity.  

Sample Complexity: Addressing the challenges related to sample complexity and matrix effects 

and cost is crucial for the development of efficient bacterial detection systems. Complex biosensing 

systems necessitate pretreatment of food samples, with different food types requiring varied sample 

treatments and techniques. Achieving data under similar sample treatment and identical testing 

conditions is challenging but important.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 January 2024                   doi:10.20944/preprints202401.1268.v1

https://doi.org/10.20944/preprints202401.1268.v1


 14 

 

Analysis Time: The total time required for analysis varies across different bacterial detection 

methods including LFIA, electrochemical, PCR-based systems. LFIA and electrochemical sensors are 

well known for their rapid analysis speed and are capable of multiplexing. 

Role of nanomaterials and advanced materials for future developments: The integration and 

successful utilization of various materials and nanomaterials for bacterial detection in food samples 

is well reported in recent years. Nanomaterials offer unique properties including high surface area, 

tunable physicochemical characteristics and enhanced reactivity which makes them ideal candidates 

for improving sensitivity and detection limits, specificity, and overall performance [193-196]. Figure 

7 shows some commonly used materials/nanomaterials for various sensing fabrication which can be 

employed for sensitive bacterial detection. 

 

Figure 7.  Commonly used nanomaterials in various kind of sensors fabrication with their sizes. L: 

length; D: Diameter. Reproduced under the terms of the CC-BY license from Ref. [196], Copyright 

2020, The Authors, published by MDPI. 

LFIA: Nanomaterials play a crucial role in enhancing the performance of LFIA for bacterial 

detection in food samples. Gold nanoparticles (AuNPs), carbon nanotubes, magnetic nanoparticles, 

and quantum dots are among the commonly utilized nanomaterials. These materials are employed 

for conjugation with antibodies specifically related to the targeted species. Nanomaterials are 

normally integrated into the test strip e.g., AuNPs are frequently utilized as labels for bacterial 

detection (due to their distinct color change properties). The immobilization of antibodies on the 

surface of these nanoparticles facilitates the specific binding to bacterial antigens, thereby enabling 

the qualitative or quantitative detection of the target bacteria. Moreover, the use of nanomaterials in 

LFIA is reported to help in signal amplification and improved sensitivity (and lower detection limit) 

[191].  

PCR: Nanomaterials find major application in PCR-based bacterial detection methods, 

contributing to the sensitivity and efficiency of the amplification process. Nanoparticles, such as 

AuNPs, silicon and magnetic nanoparticles, are often utilized in PCR assays. One significant 

application is in the extraction/purification of nucleic acids from bacterial samples. Magnetic 

nanoparticles coated with specific ligands can bind to bacterial DNA or RNA selectively, enabling 

the isolation from complex food matrices. This enhances purity and subsequently improves the 

reliability of PCR amplification. Additionally, nanoparticles, as labels for detection can help in 

facilitating the visualization of PCR products. Quantum dots, for instance, provide a fluorescent 
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signal which can be quantified, enhancing the sensitivity and specificity of bacterial detection in food 

samples via PCR [192].  

Electrochemical methods: Nanomaterials play a crucial role in enhancing the performance of 

electrochemical methods for bacterial detection. Carbon-based nanomaterials, metal nanoparticles 

and nanocomposites are commonly integrated onto the electrode surfaces to improve the response 

and signal amplification. Nanomaterials provide improved surface area for the immobilization of 

specific recognition elements (antibodies or aptamers) which ensures efficient capture of the target 

bacteria, thereby improving the sensitivity. In addition, nanomaterials modify the electrode surface 

to promote electron transfer kinetics and hence result in rapid and reliable electrochemical signals 

and detection. The unique properties of nanomaterials, such as size, structure, conductivity, and 

catalytic activity, contribute to the overall performance of electrochemical biosensors for bacterial 

detection [193-196].  

In summary, the integration of nanomaterials in LFIA, PCR, and electrochemical methods for 

bacterial detection in food samples represents a promising strategy to overcome the challenges 

associated to sensitivity, specificity, overall performance and LODs. The exploration of novel 

nanomaterials and their tailored applications would help to further improve the detection limits 

(LODs) and advance the capabilities of bacterial detection technologies in the food safety realm.  

5. Conclusions 

The development of detection technology for monitoring the quality and safety of foods has 

provided promising tools for improved quantitative performance. In order to improve the accuracy 

and precision of different detection methods (PCR, LFIA and electrochemical method), different 

parameters such as bacteria type, year of article, detection type: multiplex or not, food sample type, 

number of replicates have been considered as determinants of LOD. The results show that bacteria 

type and food sample type strongly contribute to predict the LOD. Average LOD is the highest for 

the detection by LFIA (24 CFU/ml), followed by electrochemical method (12 CFU/ml) and PCR (6 

CFU/ml). Salmonella and Escherichia coli in the Pseudomonadota domain usually have lower LODs 

than other bacteria. LODs are usually lower for detections in fish and egg than in other food samples 

analyzed. Most articles by LFIA involve metal nanopaticles-especially gold and iron. The average 

LOD of articles involving gold (26 CFU/ml) is higher than it of iron (12 CFU/ml). EIS, CV and DPV 

are three major techniques among articles by electrochemical method. CV has the higher average 

LOD (18 CFU/ml) than EIS (12 CFU/ml) and DPV (8 CFU/ml). Sample enrichment and improvement 

in device properties of detection and the possibility of combination with other detection technologies 

are needed to lower LOD and improve performance of detection further. This review provides 

guidance for future developments of bacteria monitoring technologies, based on the enrichment of 

bacteria from samples, and the development of multiplex detection methods that can increase the 

detection efficiency but also keep the detection limit low. The integration and exploration of novel 

nanomaterials will help to further improve the detection limits (LODs) and advance the capabilities 

of bacterial detection technologies in the realm of food safety. 
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