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Abstract Cooling fans are one of the critical components of air-forced (AF) dry-type transformers for regulating 
internal temperatures. Therefore, effective malfunction detection is crucial to maintain the transformer 
temperature within an acceptable range and prevent overheating. Regular maintenance occurs periodically 
and issues with cooling fans may arise between maintenance periods, leading to prolonged operation under 
malfunctioning conditions and potential failures. In addition, utilities typically have online information about 
whether a fan works or not without providing information about cooling fan malfunctioning circumstances. 
To address these challenges, this study proposes learning-based online monitoring techniques to detect 
malfunctions in AF transformer cooling fans. Random forests (RFs) and convolutional neural networks (CNNs) 
are developed to classify the audio signals from cooling fans into normal and malfunctioning classes. Unlike 
RFs, which require separate feature extraction, CNNs are trained based on spectrogram images derived from 
audio signals. Thus, various time-frequency techniques are utilized for feature extraction in RFs. Besides, 
multiple data augmentation techniques are employed to enhance the dataset size and diversity. Algorithmic 
performance is optimized through hyperparameter tuning and classifier threshold adjustment. Simulations 
reveal that CNNs outperform RFs, whereas the latter provides superior interpretability of acoustic features 
compared to the former. 

INDEX TERMS: malfunction detection; air-forced power transformers; cooling fans; acoustic 
features; learning algorithms; data augmentation; joint time-frequency feature extraction 
 

I. INTRODUCTION 

Transformers play a vital role in electrical power systems by stepping up or down voltage. 
Transformers can be categorized into different types based on their specific functions, including 
distribution, power, and instrument transformers [1]. Regardless of the transformer type, the reliable 
operation of transformers is crucial to ensure the stability and quality of the power supply. The 
copper losses result from the electrical resistance in the transformer winding, and iron losses 
associated with the transformer magnetic core increase the temperature of the windings and the core 
[2]. Exposing the transformers to excessive heat may lead to insulation degradation, component 
decomposition, reduced lifespan, and even catastrophic failures [3]. To prevent the overheating of 
transformers, cooling systems are essential. By transferring excess heat to an external medium, a 
cooling system efficiently dissipates heat generated within transformers. A proper cooling system 
not only enhances the lifespan of transformers but also contributes to energy efficiency, reducing the 
operational costs associated with transformer maintenance  [4]. The design of transformer cooling 
systems varies based on the transformer type. These systems may incorporate specific components, 
such as oil, pumps, fans, and radiators to regulate and maintain transformers within specified 
temperature limits.  
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A.  TRANSFORMER COOLING SYSTEM METHODS 
Based on the cooling medium employed, transformers are commonly classified into two primary 
categories: dry-type transformers, which rely on air, and oil-type transformers, which utilize oil-air [5]. 

1) DRY-TYPE TRANSFORMERS 

The dry-type transformers dissipate heat generated during operation by using air as a cooling 
medium. Cooling methods for dry-type transformers typically are based on air-natural (AN) and air-
forced (AF) methods. The AN method is generally utilized in small transformers (less than 3 MVA) 
and uses natural air circulation for cooling [6], [7]. However, natural air is not enough for cooling the 
transformer with higher loads. In this case, additional fans are embedded to improve airflow and 
transformer cooling system efficiency as the AF method [7].   

2) OIL-TYPE TRANSFORMERS 

The oil-type or oil-immersed transformers use oil-air as a cooling medium. Oil circulates through 
windings and core transferring heat away from the transformer. Additionally, oil provides insulation 
for transformers [8]. Oil-type transformers can be cooled by a variety of methods. The oil-natural air-
natural (ONAN) method dissipates heated oil naturally into the surrounding air without relying on 
forced cooling mechanisms. In contrast, the oil-natural air-forced (ONAF) method uses external fans. 
In the oil-forced air-forced (OFAF) method, external pumps and fans facilitate both oil and air 
circulation [9].  

B. MONITORING OF COOLING SYSTEMS 

Monitoring and detecting malfunctions in cooling systems is critical for preventing transformer 
overheating. Various studies have been conducted to monitor the cooling system conditions of 
transformers. Offline and online methods are typically used to assess the condition of the cooling 
system of transformers [10]. 

1) OFFLINE AND ONLINE MONITORING 

Offline methods refer to regular maintenance checks conducted periodically outside the real-
time operation of the transformer. However, the cooling systems may malfunction in between 
maintenance periods, which can result in overheating and potential problems. Moreover, regular 
maintenance inspections are costly because transformers must be disconnected from the grid [11]. On 
the other hand, online methods can continuously monitor cooling fan conditions. Most utilities only 
have access to online information on whether the cooling fans are working or not. However, this 
method cannot detect cooling systems malfunctioning [12]. Despite their limitations, online methods 
have the potential for malfunctioning detection allowing for the timely detection of faults and early 
alerts. 

2) OVERVIEW OF ONLINE COOLING SYSTEM MONITORING TECHNIQUES 

A variety of online cooling system monitoring techniques have been employed across 
transformer types. For example, in [11], a simple online regressive monitoring algorithm was 
proposed, utilizing a minimal set of sensor feedback to estimate the temperature and life expectancy 
of ONAF transformers. The thermal modeling approach outlined in reference [13] employed ambient, 
top-oil, winding, and radiator temperatures as indicators for the estimation of the top-oil and radiator 
temperatures in oil-immersed AF transformers. Additionally, Sn2-based gas sensors were employed 
[14] to identify faults in oil-type transformers by analyzing characteristic gases emitted from the 
transformer oil. As demonstrated in [15], the internet of Things consists of a temperature acquisition 
module, data processing unit, transmitting module, and control module utilized for remote 
monitoring of traditional oil-immersed transformers, with a text message informing of any failures.  
In [16], a novel multi-input and multi-output polynomial neural network was proposed to classify 
the transformer states as normal and abnormal states based on the characteristic gases namely H2, 
CH4, C2H2, C2H4, and C2H6 serving as inputs.  

In the existing literature, malfunction detection of cooling fans, which serve as key components 
in AF transformers and auxiliary equipment in oil-type transformers, has not received much 
attention. A novel approach to early fault detection in oil-immersed transformer fans was proposed 
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in [17]. Based on existing top-oil temperature data, it utilized the oil exponent concept as a parameter 
of fan operation. A thermal model for malfunction detection in cooling fans of ONAF power 
transformers was presented in [18] based on monitoring the error in top-oil temperatures. An alarm 
signal is triggered, if the standard error exceeds a limit. [19] presented an online improved method 
for estimating the hot-spot temperature of ONAN transformers, when auxiliary cooling fans are 
employed. A novel online algorithm for fan malfunction detection in ONAF transformers integrated 
with renewable energy resources was proposed in [20]. This algorithm relies on detecting changes in 
the estimated parameters of top-oil temperature, such as oil convection, ambient temperature, and 
load factor. 

3) AF TRANSFORMER COOLING FAN MONITORING 

While various studies were conducted on the malfunction detection of cooling fans of 
transformers, a certain gap still remains. Many existing studies focused on online fault detection of 
oil-type transformer cooling fans. In such studies, the malfunctioning detection of cooling fans relies 
on complementary indicators, such as top-oil temperature, oil convection, dissolved gas analysis, and 
oil quality. However, such indicators are not applicable to AF transformers, which primarily use 
cooling fans as their cooling system. Therefore, an independent online monitoring method is essential 
for the malfunctioning detection of AF transformers ensuring reliable operation, preventing 
overheating, and extending transformer lifetime.  

Recognizing this gap in the existing literature on cooling fan malfunction of AF transformers, 
this study presents an innovative acoustic-based method that utilizes audio signals from AF 
transformers as an effective alternative indicator. Acoustic data is non-intrusive, allowing 
microphones to be placed near cooling fans without requiring major modifications to existing 
infrastructure. It also enables real-time monitoring, providing instant alerts and minimizing latency 
in malfunction detection. Additionally, acoustic data collection is cost-effective and it is easy to install 
[21]. 

A simple microphone was used to collect the required data for the learning algorithms. Various 
data augmentation techniques were employed to increase the diversity and number of the training 
dataset. Random forests (RFs), a machine learning algorithm, and convolutional neural networks 
(CNNs), a deep learning model, were utilized to train the online models. CNNs were trained on 
spectrogram images derived from audio signals. This allows CNNs to automatically learn relevant 
features from the spectrogram representations, whereas RFs require a distinct process to extract the 
features from audio signals. Accordingly, different joint time-frequency feature extraction 
approaches were used to capture relevant acoustic characteristics from the raw audio signals. Then, 
a classification task was conducted to group the audio signals into normal and malfunctioning classes 
by using the RFs and CNNs. Hyperparameter tuning and classifier threshold optimization were 
utilized to enhance the learning algorithm performances. Finally, the trained learning models were 
evaluated with different metrics. It should be noted that the proposed methods in this study, can be 
applied to other types of transformers that are equipped with cooling fans.    

C. CONTRIBUTIONS  

The main contributions of this study can be summarized as follows: 
• We introduce machine and deep learning methods to address the gap in the literature regarding 

malfunction detection in AF transformer cooling fans.  
• Acoustic data are used to detect malfunctions in transformer cooling fans. Utilizing simple 

microphones to collect audio signals, the study provides a novel approach to online monitoring 
of cooling fan conditions. This introduces alternative data types and methods that would help 
operational decision-making. 

• We also develop a comprehensive optimization process for classifier threshold optimization to 
enhance the performance of the learning algorithms for fault detection in transformer cooling 
systems. 
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II. METHODOLOGY 

This section outlines the techniques employed for malfunction detection in AF transformer 
cooling fans. 

A. DATA COLLECTION AND PREPROCESSING 

In this study, a dataset of 300 recorded voices from an AF transformer cooling fan was collected. 
The audio signals had a sample rate of 44100 per second and a length of 225792 samples resulting in 
an approximate duration of 5.12 seconds. These recordings were obtained from an AF transformer 
located in a closed room away from an urban area. The dataset consists of 200 instances recorded 
during the normal fan operation and 100 instances captured during the fan malfunctions at different 
loads and fan speeds. The recording process involved using a high-quality microphone placed close 
to the transformer cooling fan to capture acoustic signals accurately. The data were organized along 
with their corresponding labels and were divided into three subsets including training, validation, 
and test.  The training subset was used to train the learning models. The validation subset was used 
to evaluate the performance of the model during the training phase and tuning of hyperparameters. 
The test subset contained unseen data that the model was not exposed to them during the training or 
validation step.  

1) DATA AUGMENTATION 

Since the number of data samples was limited, the data augmentation techniques were used to 
artificially expand the size of the training dataset by creating additional samples as it helps mitigate 
the risk of overfitting and improves the generalization capability and robustness of the learning 
models [22]. It is essential to ensure that data augmentation does not distort the integrity of the 
original signals and to avoid applying data augmentation to validation and test datasets [23]. 

Data augmentation has a wide application in learning algorithms. In the context of deep 
learning, particularly in image processing, techniques such as flipping, rotation, image cropping, and 
shifting are widely utilized to diversify the training dataset. However, applying these traditional 
image-based augmentation techniques to spectrogram images derived from audio signals may 
substantially alter or distort their time-frequency characteristics. To address this challenge, the 
SpecAugment data augmentation techniques which are specifically designed for augmenting 
spectrograms without altering their acoustic characteristics were developed [24]. The SpecAugment 
methods of frequency and time masking techniques that have been shown to effectively increase the 
diversity of the spectrograms were employed in this study [25]. A frequency mask sets a band of 
frequencies as  

0 0[ , )f f f+ in the spectrogram to zero, where f is the consecutive frequency to be masked. Number 
of consecutive frequencies of f was set from the uniform distribution ~ (0, )f U F , where F is a 
frequency mask parameter. Besides, 0f was adjusted from the interval (0, )v f− , where v is the 
number of frequency channels.  This simulates the effect of removing a certain range of frequencies 
from the audio signals. As a result, the model becomes more robust to missing frequency bands when 
trained on augmented data. Time masking involves selecting a segment of time and setting all values 
in the spectrogram for that segment to zero. The procedure for setting consecutive time steps to zero 
is similar to that for frequency masking, except instead of frequency, time is used. Consequently, the 
model is robust to occurrences in the real-world such as short silences or missing audio. The selection 
of frequency and time mask parameters are mainly arbitrary and per the recommendation of [25]. 

Furthermore, in this study, a range of the most common audio signal augmentation methods 
including time stretching, time shifting, and noise injection were utilized in order to expand the 
training data sets. 

Time stretching involves modifying the speed of audio signals while preserving their pitch. This 
method could simulate variations in fan speed. By randomly adjusting the playback speed within a 
range from 0.8 to 1.5, we generated new audio samples that represent the fan operating at different 
speeds [26].  
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Time shifting involves moving an audio signal forward or backward in time. This technique 
allows us to simulate changes in the start time of the fan operation. By randomly introducing time 
shifts to the audio recordings, we created additional samples reflecting different instances when the 
cooling fan began its operation [27].  

Noise injection involves adding various types and levels of noise to the audio samples to 
simulate real-world recording conditions. In this study, we employed two distinct noise injection 
methods, such as white noise and environmental noise, each serving a specific purpose. White noise 
is a fundamental source of randomness, characterized by equal energy distribution across all 
frequencies and a flat power spectral density [28]. Using this method allows us to convey the 
unpredictability that is present in real-world audio recordings into our audio samples. To add white 
noise to the cooling fan audio signals, the process involves the following steps [29]: 

1. Calculating the power of the original audio signal: 

21 ( )
N

signal i
i

P x t
N =

=   
(1) 

where N is the length of the original audio signal ( )ix t and signalP represents the power of the 
original audio signal, respectively. 
2. Select a random Signal-to-Noise Ratio (SNR) within a range from 7 to 20 dB [30]. 
3. Calculating of the desired noise power: 

( )
1010

signal
noise SNR

P
P =  

(2) 

where noiseP indicates the desired noise power. 
4. Generating white noise ( )i tω by sampling from a normal distribution with mean 0 and standard 

deviation of 1. 
5. Scaling the white noise to match the desired noise power: 

2
noiseP

SF
σ

=  (3)

( ) ( )s
i it SF tω ω= ×  (4)

where SF , 2σ , and ( )s
i tω indicates scale factor, variance of the white noise, and scaled white noise, 

respectively.  
6. Adding the scaled white noise to the original audio signal: 

( ) ( ) ( )s
i i iy t t x tω= +  (5)

where ( )iy t is the injected audio signal with the white noise.  

Environmental noise includes various background sounds and disturbances that are typically 
present in a specific setting. This study incorporated a range of environmental noise sources, 
including thunder, rain, wind, and ambient noise. The processes for adding environmental noise to 
cooling fan audio signals are the same as for adding white noise. To simulate the conditions more 
realistically, we have used a range of different SNRs from 1 to 40 dB to account for variability and 
fluctuation in environmental noises [31]. 

Audio augmentation techniques can be applied parallelly and sequentially. In parallel 
augmentation, multiple augmentation techniques are applied simultaneously to the audio data. It is 
particularly useful to generate a diverse set of augmented data. Whereas sequential augmentation is 
applied one after another. This approach can be beneficial when there is a need to expand a limited 
dataset by generating additional samples. In this study, both parallel and sequential data 
augmentation approaches were utilized to take advantage of the benefits associated with them. 

B. FEATURE EXTRACTION AND SPECTROGRAM REPRESENTATION 
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Since the recorded audio data were in the form of signals and thus not suitable for learning 
algorithms, they needed to be converted into an appropriate format. Accordingly, feature extraction 
techniques were utilized in RFs and CNNs leverage spectrogram representation.  

1) FEATURE EXTRACTION TECHNIQUES 

Feature extraction is a crucial step for detecting malfunctions from the signals because the 
training and testing of RF algorithms highly depend on the features used to develop them [32]. This 
is achieved through feature extraction, which transforms the audio signals into representative 
features. This study employed various joint time-frequency feature extraction methods to derive 
meaningful representations from audio signals. To calculate time-frequency domain features from a 
signal, audio signals were divided into smaller windows or segments. For each window, the time and 
frequency features were calculated. Besides, the next window should overlap with the previous 
window to prevent loss of information at the window edges. Choosing the window length and 
overlapping time are mainly arbitrary and per the recommendation of [33]. 

We employed the following time-domain feature extraction methods that are effective in 
identifying the dominant features of the audio signals [34]: 

• RMS quantifies the amplitude of a signal over a certain time period and represents the overall 
energy of the signal as follows: 

2

1

1RMS
K

i
i
x

K =

=   (6)

where K is the number of samples in a window.  
• ZCR counts how many times the signal crosses the zero-amplitude line as follows: 

1

1
1

1ZCR sing( ) - sing( )
1

K

i i
i

x x
K

−

−
=

=
−   (7) 

• Kurtosis factor quantifies the extent to which a distribution is heavy-tailed or light-tailed relative 
to a normal distribution and could be expressed as follows: 

4

1 1

2 2

1

k s

1 1(
s

)

1
urto i fact

( )
or

K K

i i
i i

K

i
i

x x
K K

x
K

= =

=

−
=

 


 (8)

A positive kurtosis suggests heavier tails, a negative kurtosis suggests lighter tails and a kurtosis 
of 0 indicates normal tails. 
• The shape factor provides insight into the duration and relative proportions of the positive and 

negative peaks in a signal amplitude by describing its shape or waveform as follows: 

 
   Duration of pS ositive peaks

Duratio
ea

n of n
 

eg
t

at
=

i v
h

e
p fac or

 peaks 
 (9)

• The crest factor measures the ratio between the peak amplitude and RMS as follows:  

Peak Amplitude
RMS
 Crest factor=  (10)

• The impulse factor is used to characterize the impulsiveness or transient nature of a signal. It 
provides information about sudden changes or impulses within a signal and could be expressed 
as follows: 

1Impulse Factor
RMS

 

K

i
i
x

K
==

×


 

(11)

• Besides, statistical measures such as the mean, variance, minimum, and maximum of signals 
were calculated for each window. 
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To calculate the frequency-domain features, the signals were transformed from the time domain 
to the frequency domain using the Fast Fourier Transform (FFT) as follows [36]: 

( ) { ( )}i iX f FFT x t=  (12)
where ( )iX f  is the frequency domain of ( )ix t . 

After this transformation, the following frequency-domain feature extraction methods that have 
demonstrated great capability in capturing information about the energy distribution of audio signals 
were employed [35]: 
• Spectral centroid calculates the location of the mass center of a spectrum providing an estimate 

of the dominant frequency in the signal and could be expressed as follows [36]: 

1

1

Spectral Centroid 

K

i i
i

K

i
i

f X

X

=

=

×
=



 (13)

Where, if is the frequency of bin i in the FFT of the window.  

• The Spectral bandwidth is the standard deviation of the distribution of spectral components 
around the spectral centroid as follows [37]: 

•  

2

1

1

( Spectral Centroid)
Spectral bandwid h

 
 t

K

i i
i

K

i
i

f X

X

=

=

− ×
=



 (14)

• Spectral flatness measures the uniformity of the power spectrums of a signal in the frequency 
distribution. Mathematically, spectral flatness is the ratio of the geometric mean to the arithmetic 
mean of the power spectrums [38]: 

1

0
1

0

Spectral flatness
1

 

K
K i

i
K

i
i

X

X
K

−

=
−

=

=
∏


 (15)

• Spectral flux represents the rate of change in the spectral content of a signal providing 
information about how quickly the frequency energy distribution of the signals change. The 
spectral flux is the 2-norm of the difference between the magnitude spectra of consecutive frames 
[39].  

1 2Spectral flux i iX X −= −  (16)

• Peak frequency can be determined by identifying the frequency value associated with the 
maximum power in the signals [40]. 
Feature extraction was performed over short segments of the audio signals. Therefore, each 

feature extraction technique generated a vector of features where each value corresponds to a specific 
window in an audio signal. These vectors represent the time and frequency characteristics of an audio 
signal. It should be noted that using multiple and various feature extraction techniques helps to 
capture various aspects and characteristics of the audio signal, which can improve the performance, 
robustness, and accuracy of the learning algorithms. 

2) SPECTROGRAM REPRESENTATION TECHNIQUE 

Inputs to CNN algorithms typically consist of multi-dimensional arrays of pixel values that 
encode visual information. Since CNN models have been extensively developed and trained on 
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image datasets, using image representations allows to leverage predefined deep learning models that 
have demonstrated success in various computer vision tasks [41]. To leverage the power of deep 
learning models for audio processing, a common practice is to convert audio signals into spectrogram 
image representations [24]. By employing this technique, the temporal evolution of audio signals can 
be transformed into a multi-dimensional visual representation. This transformation enables CNN 
models to extract meaningful audio features and learn complex patterns from spectrograms. 
Accordingly, in this study, the spectrogram technique was utilized to develop the CNN classification 
model. Spectrograms were generated from audio signals as follows [42]: 

1. Using a windowing technique, audio signals were divided into short overlapping segments.  
2. FFT was applied to each segment to transform the audio signal from the time domain to the 

frequency domain.  
3. The power spectrum ( )iP f was calculated by taking the squared magnitude of the Fourier 

transform. 

2( ) ( )i iP f X f=  (17)

4. By plotting the power spectrum values as a heat map or a grayscale image, the spectrograms are 
created. The X-axis represents time, the Y-axis indicates frequency, and the intensity or color of 
each pixel indicates the magnitude or power of the corresponding frequency component. 
One significant advantage of using spectrogram representations over feature extraction 

techniques in audio processing is the ability to apply SpecAugment techniques to the training 
spectrogram samples. In other words, frequency and time masking techniques were applied to the 
spectrograms in addition to time shifting, time stretching, and noise injection techniques that had 
been applied to the original training audio signals.  

C. DATA NORMALIZATION TECHNIQUES 

Another technique that can improve learning models is data scaling or normalization [43]. The 
purpose of the rescaling is to normalize the values of spectrograms and extracted features so that 
they fall within a specific range. In this study, the normalization scaled the data values to the range 
of [0, 1]. By scaling, the model can learn more effectively and converge faster [44].  

D. LEARNING ALGORITHMS 

After the preprocessing techniques and preparing the audio signal to the suitable formats, the 
data can be fed into learning algorithms. Recently, deep learning models have attracted scholar 
attention due to their ability to achieve high accuracy and extract features from data automatically 
[45]. However, one of the complexities associated with deep learning models is their interpretability 
and explainability [46]. Deep learning models operate as black boxes, meaning it is challenging to 
understand the underlying patterns. On the other hand, machine learning models like the RF 
algorithms provide a transparent and interpretable framework for analyzing the features. 
Additionally, RFs are well-suited for this study because they are less prone to overfitting due to 
imbalanced data, especially when the dataset size is not large enough to mitigate this risk [47]. 
Therefore, we employed two powerful learning approaches, namely CNNs and RFs to achieve both 
high accuracy and feature extraction explanations.  

E. EVALUATION METRICS 

To evaluate the performance of the fitted RFs and CNNs for the detection of cooling fan 
malfunctions, we employed the following key evaluation metrics [48]: 
• Accuracy: it measures the overall correctness of the model predictions. It calculates the ratio of 

correctly classified samples to the total number of samples. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 January 2024                   doi:10.20944/preprints202401.1266.v1

https://doi.org/10.20944/preprints202401.1266.v1


 9 

 

• Recall: it measures the ability of the models to correctly identify all instances of cooling fan 
malfunctions, providing insights into their capacity to minimize cases where malfunctioning 
cooling fans are not detected. 

• F1 score: It balances the trade-off between the ability to correctly classify malfunctioning 
predictions and recall the ability to capture all malfunctioning instances.  

F. TECHNIQUES TO IMPROVE LEARNING MODELS 

This section outlines methods for improving the performance of learning models, including 
hyperparameter tuning, learning curve analysis, and classifier boundary threshold adjustment. 

1) HYPERPARAMETER TUNING 

Unlike the learning model parameters, which are set during training, hyperparameters are the 
parameters of learning algorithms that should be tuned before training. Since the performance of 
learning models highly depends on the hyperparameters of the model, tuning the hyperparameters 
is a crucial step in learning algorithms. In this study, Bayesian optimization, a probabilistic model-
based optimization technique was employed to find the optimal set of hyperparameters. This 
systematic approach involves several key steps [49]. First, we defined a search space encompassing 
the hyperparameters relevant to the learning models. Then, we selected accuracy as the objective 
function to quantify the performance of these models. Bayesian optimization began with initial 
random evaluations of this objective function to build an initial surrogate model. This surrogate 
model approximated the true objective function and guided the selection of hyperparameters to 
evaluate next, using an acquisition function that balanced exploration and exploitation. The process 
iteratively refined the surrogate model, optimizing the acquisition function until a predefined 
convergence criterion was met. Ultimately, Bayesian optimization provided us with the optimal set 
of hyperparameters, which we used to train the learning models. 

2) LEARNING CURVE 

To ensure the learning models were trained effectively on the dataset, a comprehensive learning 
curve analysis was conducted on the training and validation datasets. It helps to identify underfitting, 
which occurs when the learning models are too simple to capture the underlying patterns within the 
data, and overfitting, which occurs when the models are overly complex and essentially memorize 
the training data instead of generalizing from it. In addition, it provides insight into whether or not 
more training data should be acquired, or regularization techniques should be employed to enhance 
the performance of the models. 

To construct the learning curves for RFs, we trained the RFs initially with a single audio signal 
and subsequently evaluated them on the validation data. The training sample size was incrementally 
increased to cover the entire training dataset. For each training sample size, the learning curve was 
created by plotting the accuracy of both the training and validation data. However, in CNNs, the 
learning curve demonstrates how the loss of the model changes with respect to the number of epochs 
or iterations.  An optimal learning curve is characterized by a small gap between the training and 
validation curves, indicating good generalization. Additionally, when both curves stabilize at a low 
loss (for CNNs) or high accuracy (for RFs), it suggests that learning algorithms perform well on the 
dataset. Such trends indicate that the models are generalizing effectively and adding further training 
data may not yield significant improvements. Conversely, if these characteristics are not observed in 
the learning curves, it is an indication that the model performance may be suboptimal and require 
further adjustment [50]. 

3) ADJUSTING THE CLASSIFICATION THRESHOLD 

In addition to hyperparameters that considerably impact the learning classifier algorithms, the 
decision boundary for classifying samples must be optimized. The decision boundary for classifying 
samples into normal or malfunctioning classes in the learning algorithms is typically set at a threshold 
of 0.5 by default. In other words, if the probability of a sample belonging to the normal class is greater 
than or equal to 0.5, it is classified as normal; otherwise, it will be classified as malfunctioning.  
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However, the default threshold of 0.5 may not be optimal. To determine the optimal threshold, the 
receiver operating characteristic (ROC) curve was used. ROC curves are graphical representations of 
the performance of a learning classifier across various thresholds. The Y-axis represents the true 
positive rate (TPR) and the X-axis represents the false positive rate (FPR). The TPR and FPR can be 
expressed as follows: 

TPR TP
TP FN

=
+  

(18)

FPR FP
FP TN

=
+

 (19)

where TP and TN are the numbers of correctly classified normal and malfunctioning cases, whereas 

FP and FN are the counts of incorrectly classified malfunctioning and normal cases, respectively. The 

top-left corner of the ROC plot denotes the ideal point where the TPR is 1 and the FPR is 0. So, the 

optimal threshold is the point closest to the top-left corner of the plot [51].  

G. FEATURE IMPORTANCE 

RFs offer a transparent and interpretable framework for feature analysis. They create a 
hierarchical structure of decision rules that can be easily visualized and understood. In an RF model, 
nodes and branches represent specific features and their corresponding thresholds, enabling a clear 
interpretation of the model decision-making process. To leverage RF capability to analyze features 
and enhance interpretability, we utilized the SHapley Additive exPlanations (SHAP) method [52]. 
SHAP values quantify the importance and contribution of the extracted time-frequency features to 
identify which acoustic features or characteristics of the cooling fan sounds are most influential in 
determining whether a malfunction is present. 

Besides, the organizational flowchart of the simulation procedure in this study is shown in 
Figure 1. 

 

Figure 1. Organizational flowchart of the simulation procedure in this study. 

III. RESULTS AND DISCUSSION 

A. DATA PREPROCESSING AND AUGMENTATION 

In this study, time stretching, time shifting and noise injection data augmentation techniques 
were employed sequentially and parallelly to enrich the training dataset. 

Time stretching was used to generate additional audio samples for both normal and 
malfunctioning operation of the fan sounds. By randomly adjusting the playback speed within a 
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range from 0.8 to 1.5, we generated new audio samples with lengths ranging from 3.4 to 6.4 seconds. 
The size of the training dataset was further increased by shifting the original and stretched signals 
randomly. Besides, artificially generated and original audio signals were rendered more realistic by 
exposing them to white and environmental noises. In this study, we assumed that 20 percent of the 
training data were exposed to environmental and white noise randomly. Figures 2 and 3 display the 
various data augmentation techniques used for a single instance of the normal and malfunctioning 
cooling fan operation. A stretch factor of 0.9 increased the original audio signal duration from 5.2 
seconds to 5.8 seconds. This change created a slower auditory perception, simulating a cooling fan 
operating at a reduced speed while preserving the original pitch. Due to the use of small stretch 
factors, the shape of the signal was not distorted significantly, confirming the credibility of the time 
stretching method. Time shifting preserved amplitude, frequency content, and energy whereas 
displacing the signal by 0.5 seconds along the time axis to the right. Thundering noise has minimal 
impact on the original signal characteristics up to the 2-second. However, after this point, thundering 
noise significantly changed the amplitude, frequency components, and energy of the original signal, 
serving as a real example of how environmental factors can affect acoustic audio signals. White noise 
introduced fluctuations in amplitude, influenced the frequency content by spreading energy across 
all frequencies, and increased the overall energy of the signal resulting in variations in loudness. The 
combination of these data augmentation techniques significantly expanded the training dataset 
diversity.  

 

Figure 2. Various data augmentation techniques used to a single instance of the normal cooling fan 
audio signal. 
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Figure 3. Various data augmentation techniques used to a single instance of the malfunctioning 
cooling fan audio signal. 

B. FEATURE EXTRACTION AND SPECTROGRAM REPRESENTATION 

Noticeable distinctions are observed in terms of amplitude, frequency, and spectral density in 
Figures 2 and 3. However, we explored more specific audio characteristics in the following sections 
to gain a deeper understanding of these differences for developing effective RF and CNN classifier 
models.  

1) FEATURE EXTRACTION RESULTS 

A comprehensive set of time and frequency features was extracted from both normal and 
malfunctioning AF transformer audio signals to aid learning algorithms in discriminating between 
the two. For example, Figure 4 presents the extracted joint time-frequency features for the original 
normal and malfunctioning audio signals depicted in Figures 2 and 3. It seems that certain features 
such as ZCR, spectral centroid, and spectral bandwidth exhibit substantial differences between 
normal and malfunctioning audio signals. These differences indicate that normal and malfunctioning 
fans produce unique audio characteristics offering valuable discriminative characteristics for 
effectively distinguishing between the two types of signals. In malfunctioning cooling fans, high ZCR 
values can be attributed to abrupt changes, transient events, or irregular sound patterns. However, 
the spectral centroid and spectral bandwidth values are notably higher for the normal audio signals 
in comparison to the malfunctioning one. The difference in spectral centroid can be attributed to the 
fact that normal cooling fans tend to produce consistent and relatively steady sounds, which results 
in a higher spectral centroid. The elevated spectral bandwidth in the normal signals indicates a 
broader range of frequencies present in these audio samples. It is consistent with the typical behavior 
of healthy cooling fans, which produce sounds spanning various frequencies. In contrast, 
malfunctioning fans often generate audio signals with a narrower frequency range, leading to lower 
spectral bandwidth values. In addition, spectral flatness values are higher for normal audio 
indicating that normal signals have a more uniform distribution of power across the frequency 
spectrum. This aligns with the expected behavior of normal cooling fans, which produce audio 
signals with a balanced distribution of energy across different frequencies. Further, the dominance 
of peak frequency in normal audio signals suggests that normal cooling fans tend to produce 
consistent frequency peaks in their signals. It is noteworthy that the variance for normal audio signals 
remains relatively steady with small fluctuations whereas malfunctioning audio signals exhibit large 
fluctuations. Besides, the RMS and minimum values are relatively higher for malfunctioning audio 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 January 2024                   doi:10.20944/preprints202401.1266.v1

https://doi.org/10.20944/preprints202401.1266.v1


 13 

 

signals, which may indicate more pronounced sound intensity and possible irregularities in the 
malfunctioning audio signal. However, for the remaining features, no significant distinction can be 
observed between the audio signals of cooling fans. These distinctive extracted features from the 
audio signals of cooling fans were used as discriminators in the classification of normal and 
malfunctioning AF transformer audio signals using the RFs.  

 

Figure 4. Derived joint time-frequency characteristics for the original normal and malfunctioning 
audio signals depicted in Figures 2 and 3. 

2) SPECTROGRAM REPRESENTATION 

To leverage the power of CNNs for AF transformer malfunctioning detection, we transformed 
the audio signals into spectrogram image representations. Figure 5 displays original spectrograms 
alongside their time-frequency masked counterparts, derived from the original normal and 
malfunctioning audio signals shown in Figures 2 and 3. Darker shades indicate lower energy or 
amplitude, whereas brighter colors signify higher energy. The masked frequency and time areas 
appear as horizontal and vertical bands of blackness, respectively, indicating zero energy or absence 
of information in those specific frequency and time regions. The spectrogram of the malfunctioning 
audio signal exhibits a brighter area than the normal one. This suggests a higher energy or amplitude 
in the malfunctioning signal, indicating potential irregularities or abnormalities in the frequency 
distribution. Besides, in the malfunctioning audio signal, several bright frequency bands in low and 
high frequencies are observed, whereas only a few are seen for normal function. This indicates a 
significant concentration of energy at various frequencies in the normal and malfunctioning signal. 
These observations underscore the distinctions within the spectrograms, indicating their potential as 
effective discriminators for classifying normal and malfunctioning audio signals in AF transformer 
cooling fans using CNNs. 
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Figure 5. Spectrogram of the original normal and malfunctioning audio signal augmented with 
frequency and time masking depicted in Figures 2 and 3. 

C. CNN CLASSIFICATION 

A CNN classification algorithm was developed in this study to classify the spectrograms into 
normal and malfunctioning classes. The image pixels were normalized into values between 0 and 1 
to achieve better convergence rates during training. Then, the CNN model was developed with 
multiple layers, including convolutional layers for feature extraction and max-pooling layers for 
dimensionality reduction. Besides, batch normalization and dropout layers were implemented to 
improve model generalization ability and prevent overfitting. The optimal hyperparameters of the 
fitted CNN by using Bayesian optimization are given in Table І.  

TABLE І. Optimal hyperparameters of the fitted CNN. 

Hyperparameters  Values 

Number of convolutional layers 3 

Number of dense layers 2 (fully connected) 

Kernel size of the first layers 3×3 

Number of neurons in the first dense layer256 

Number of neurons in the second dense

layer 

8 

Activation function of the layers Relue and sigmoid 

Pooling size after the first layer 2×2 

Pooling size after the second layer 2×2 

Dropout rate 0.5 

Batch size 32 

Loss function  Categorical cross-entropy 

Learning rate 0.001 

Learning rule Adam 

1) CNN LEARNING CURVE ANALYSIS 

Figure 6 demonstrates the learning curve of the trained CNN by using the loss of the training 
and validation datasets. Initial training and validation losses are relatively high. This indicates that 
the model started with a high error rate, which is expected as the model was initialized with random 
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weights. The training losses decreased as the epochs increased and converged to a stable point 
indicating that the CNN learned to fit the training datasets. A similar trend is observed in the 
validation set indicating that the model was generalizing well to validation data but shows some 
fluctuations. These fluctuations may be due to the model facing new patterns in the validation set 
that it had not encountered during training. Both the training and validation curves converged after 
epochs around 20 and beyond this point, both losses fluctuate slightly but stay relatively constant. 
Accordingly, further adding more training data is unlikely to yield significant improvements. In 
addition, the gap between the training and validation loss is very low representing that the fitted 
CNN does not suffer from overfitting or underfitting. Consequently, the fitted CNN performs well 
and is able to capture the underlying patterns of the audio signals.  

 
Figure 6. Learning curve associated with CNN. 

2) CNN OPTIMAL CLASSIFIER THRESHOLD ANALYSIS 

Besides, the CNN model was executed multiple times with various thresholds, and in each 
iteration, the FPR and TPR were calculated. The resulting ROC curve is depicted in Figure 7. The 
diagonal line serves as a baseline and denotes a random classifier that has no discriminative ability 
between the normal and malfunctioning classes. ROC curves represent CNN performance at various 
thresholds. This curve is above the diagonal line indicating the CNN ability to distinguish between 
the normal and malfunctioning classes. The closest point to the top-left corner of the ROC plot occurs 
at a TPR of 0.96 and an FPR of 0.06. This point suggests that the model correctly identifies 96% of the 
actual normal audio signals and only 6% of the malfunctioning signals are incorrectly classified as 
normal, which is relatively low. The high TPR of 0.96 means the superior ability of the CNNs to detect 
the normal class. The low FPR of 0.06 implies that the model has low false alarms and rarely 
misclassifies malfunctioning instances as normal. This is crucial in operational settings to avoid 
unnecessary maintenance or inspections. This optimal point corresponds to a classification threshold 
of 0.44. That means CNNs classify instances as normal if the probability of them being normal is 
greater than or equal to 0.44; Otherwise, they are classified as malfunctioning. 

To evaluate the impact of the optimal threshold, Table Ⅱ presents the performance metrics of the 
CNN model using both the optimal threshold of 0.44 and the default threshold of 0.5. The optimal 
threshold of 0.44 results in superior performance to the commonly used threshold of 0.5 across all 
metrics. These results underscore the importance of optimizing the classification threshold when 
developing the learning models.  

Based on the evaluation of the CNN model using the optimal threshold of 0.44, high values of 
F1 score, accuracy, and recall for both the test and training datasets exhibit the robust performance 
of the CNN to classify the cooling fan normal and malfunction operation. Model accuracy on unseen 
data is remarkably high at 97%, indicating that CNN is able to classify 97% of the audio signals in the 
test dataset correctly. A recall of 0.96 on the test set means that the CNN model correctly identified 
96% of the actual normal cooling fan instances. Besides, an F1 Score of 0.98 indicates that the model 
effectively identified normal and malfunctioning cooling fan states, with very few classification 
errors. As a result of the fitted CNN on the entire training sample size, the model can be trusted in 
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real-world applications where accurate classification of cooling fan operational states (evidenced by 
the high accuracy), identifying normal fans (evidenced by the high recall), and avoiding false alarms 
(high F1 score) are critical. Furthermore, the slight differences in performance metrics between the 
training and test datasets could be attributed to the extensive data augmentation applied to the 
training datasets. That is, the test datasets which are not subject to the same level of variability, the 
model could classify the data easier.  

 

Figure 7. Receiver operating characteristic curve associated with CNN classifier. . 

TABLE Ⅱ. CNN PERFORMANCE WITH DIFFERENT THRESHOLD. 

Threshold Metric Training Test 

0.44 

Accuracy 0.94 0.97 

Recall 0.96 0.96 

F1 score 0.95 0.98 

0.5 

 

Accuracy 0.89 0.92 

Recall 0.9 0.89 

F1 score 0.92 0.94 

3) DATA AUGMENTATION ANALYSIS 

In addition, to specifically assess the impact of data augmentation techniques on model 
performance and their ability to capture hidden patterns in audio signals, CNNs were trained with 
the optimal threshold on the non-augmented data, 50%, 75%, and 100% of the entire training samples. 
Results using 100% of the data are those in Table Ⅱ and for non-augmented data, 50%, and 75% of the 
training samples were provided in Table Ⅲ. Model performance drops as the training sample size 
decreases. When only the non-augmented training data was used, performance metrics decreased 
noticeably. Due to the limited diversity and size of the raw dataset, the model may not be effectively 
trained to generalize well to unseen data. However, as the training sample size increases to 50%, 75%, 
and 100%, all through data augmentation techniques, model performance improves considerably. 
This improvement suggests that data augmentation plays a significant role in enhancing model 
performance and generalization ability.  

The consistently high performance of the model trained on 100% of the current augmented 
training dataset indicates that the existing level of data augmentation is acceptable. The model has 
achieved strong results across multiple evaluation metrics. This indicates that the model has 
effectively learned the complexities of the audio signals and can be utilized for malfunction detection 
in AF transformers. 

4) RANDOM FOREST CLASSIFICATION 

In this section, the RF classifier was employed to classify the audio signals of the AF transformer. 
Similar to CNN, all preprocessing techniques (except for SpecAugment techniques) were utilized to 
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prepare the samples for further analysis. To train RFs, features were extracted from a combination of 
time and frequency-domain methods. The Bayesian optimization was applied to find the optimal 
hyperparameters of the RF algorithm. Table Ⅳ provides the architecture and optimal 
hyperparameters of the RFs by utilizing Bayesian optimization.  

TABLE Ⅲ. CNN PERFORMANCE ON VARIOUS TRAINING SAMPLE SIZES. 

Training sample 

size 

 
Metric Training Test 

75% 

 

 Accuracy 0.90 0.83 

 Recall 0.88 0.85 

 F1 score 0.92 0.88 

50% 

 Accuracy 0.77 0.73 

 Recall 0.73 0.66 

 F1 score 0.8 0.79 

Non-augmented 

 Accuracy 0.58 0.54 

 Recall 0.48 0.42 

 F1 score 0.63 0.54 

TABLE Ⅳ. Parametric values of the random forest. 

Hyperparameters  Values 

n_estimators 200 

max_depth 50 

min_samples_split 20 

min_samples_leaf 1 

max_features Auto 

min_impurity_decrease 0.0 

bootstrap True 

class_weight 2×2 

ccp_alpha 0.0 

criterion entropy 

warm_start True 

Learning rate 0.001 

Learning rule Adam 

1) RF LEARNING CURVE ANALYSIS 

The learning curve of the RF classifier is shown in Figure 8. The RF model exhibits perfect 
accuracy with a single training sample. This is expected given that the RFs have been trained on a 
singular data point and can predict it accurately. In contrast, validation accuracy is significantly low 
at this stage. When trained on just one sample, the model fails to generalize to the diverse patterns 
present in the validation dataset. As the training sample size increases, the RF model encounters more 
diverse data, making perfect accuracy harder to achieve in the training dataset. This slight reduction 
in training accuracy signifies the model shift from memorizing data to generalizing across varied 
patterns. In addition, as the training sample size increases, the validation accuracy rises, indicating 
that RF models can generalize and predict unseen data more accurately. However, after about 6-7 
steps, both curves become fairly stable suggesting that further data may not yield significant 
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improvements. Furthermore, the small gap between the training and validation curves indicates that 
the model is complex enough to capture the underlying patterns in the data. So, achieving high 
accuracy without overfitting or underfitting indicates that the developed RF classifier serves as a 
highly reliable and effective model for the malfunctioning detection of AF transformer cooling fans. 

 
Figure 8. Learning curve of the random forests. 

2) RF OPTIMAL CLASSIFIER THRESHOLD ANALYSIS 

The next essential step is identifying the optimal threshold for RF classifiers to improve their 
performance. Similar to the methodology employed for the CNN, for each threshold, the 
corresponding FPR and TPR were calculated and presented in Figure 9. The optimal threshold for 
the RF classifier is determined to be 0.39, corresponding to a TPR of 0.91 and an FPR of 0.12. With a 
high TPR of 0.91, the model demonstrates strong capability in correctly identifying normal cooling 
fans. Simultaneously, the relatively low FPR of 0.12 indicates a minimized false alarm rate. The 
performance of the RF classifier under both optimal and default thresholds is summarized in Table 
Ⅴ. The comparison confirms that by employing the optimal threshold of 0.39, the model yields 
accuracy, recall, and F1 scores better than the default threshold of 0.5. Therefore, the threshold of 0.39 
makes the RF classifier more effective for detecting malfunctioning cooling fans than the default 
threshold of 0.5. These high levels of accuracy, F1 score, and recall indicate that the model is effective 
at classifying the cooling fan operational status as normal or malfunctioning.  

TABLE Ⅴ. RANDOM FOREST PERFORMANCE WITH DIFFERENT THRESHOLDS. 

Threshold Metric Training Test 

0.39 

Accuracy 0.93 0.91 

Recall 0.93 0.91 

F1 score 0.93 0.92 

0.5 

 

Accuracy 0.89 0.92 

Recall 0.9 0.89 

F1 score 0.92 0.94 

3) FEATURE IMPORTANCE ANALYSIS 

Although the RF classifier performs lower than CNNs, it offers a special advantage in feature 
interpretability and explainability that is rarely achievable with CNNs. Figure 10 demonstrates this 
capability by presenting the SHAP values, in which each feature importance was measured by its 
mean absolute value across all samples. Among the various time-frequency features utilized for 
classifying AF transformer cooling fan operating states, spectral bandwidth stands as the most 
significant feature. Its high importance in both classes reveals that the spread of frequencies in audio 
signals is a key discriminant in classifying fan operational status. Following the spectral bandwidth, 
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the second important feature is the spectral centroid, indicating that malfunctioning fan and healthy 
fan audio signals have a distinct center of mass in the frequency distribution. For instance, a 
malfunctioning fan may produce a different whining or buzzing sound than a healthy fan, resulting 
in a different distribution of frequencies in the audio signals. Spectral flatness, peak frequency, and 
ZCR are the next significant features, with relatively the same importance values. The slightly higher 
SHAP value of peak frequency for normal fans compared to malfunctioning fans indicates that the 
dominant frequency in the audio signals of normal fans is slightly more influential in classification 
than the audio signals of malfunctioning fans. A high SHAP value of ZCR for malfunctioning fans 
compared to normal fans implies that malfunctioning cooling fans in AF transformers produce 
signals with more abrupt amplitude changes. However, the remaining features contribute less to the 
classification task. RMS, minimum, variance, Kurtosis factor, spectral flux, shape factor, and 
maximum have moderate or insignificant contributions.  The crest factor, impulse factor, and mean 
have the least contribution. This means that the specific shape of the waveform, impulsiveness, and 
average amplitude level of the signals are not strong indicators for classifying fan statuses. 

In the task of malfunction detection of AF transformer cooling fans, the CNN outperforms the 
RF classifier across accuracy, recall, and F1 score. This superior performance can be attributed to the 
following factors. First, CNNs can learn hierarchical features automatically from raw data, whereas 
RFs are limited by manually extracted features, potentially missing the characteristic and relevant 
features in the data. Secondly, the deep architecture of CNNs is capable of capturing complex, non-
linear relationships, a capability that may be limited in random forests. Third, CNNs benefit from a 
wider range of data augmentation techniques than RFs by time and frequency masking techniques 
on the spectrograms. This enhances CNNs learning from a more diverse dataset.  

IV. CONCLUSION  

Cooling fans are the key components of AF transformers and auxiliary equipment in oil-type 
transformers. Failure to timely identify malfunctions in these cooling fans can lead to component 
decomposition, reduced lifespan, and even catastrophic failures. While existing cooling fan 
monitoring systems can capture overt malfunctions, they are limited to complementary indicators 
such as top-oil temperature, dissolved gas analysis, and oil quality. This study addressed this gap by 
introducing an acoustic-based online monitoring approach for malfunction detection in AF dry-type 
transformer cooling fans. Using a single microphone, the audio voices of the AF transformer cooling 
fans were collected. CNNs and RF classifiers were developed to detect the fan conditions. Since the 
recorded audio data was limited, various data augmentations were employed to increase the size and 
diversity of the datasets. Time-frequency domain feature extraction methods were used to provide 
input to the RF models, whereas the CNNs exploited spectrograms.  Moreover, the performance of 
these learning algorithms was enhanced through hyperparameter tuning using Bayesian 
optimization and classification boundary threshold optimization using ROC methods. The 
simulation results revealed that the CNN classifier yielded a high accuracy of 97%, coupled with a 
high recall and f1 score of 0.96, and 0.98, respectively, indicating substantiating ability for early 
malfunction detection. Although the RF classifier presented marginally lower performance metrics, 
its capability in feature interpretability provided insight into the extracted features. The findings of 
this study suggest several areas for future research: 

• Considering the extracted important features in this study, explore different feature extraction 
techniques to improve random forest performance. 

• Investigating ensemble learning methods, including the combination of CNNs and random forest 
algorithms. 

• Analyzing the effect of varying audio signal lengths on the detection of malfunctions. 
• Evaluation of different data augmentation strategies, such as ensemble methods.  
• Incorporating multi-modal sensor data, including vibration and temperature sensors, to develop 

a more comprehensive system. 
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Figure 9. Receiver operating characteristic curve associated with random forest classifier. . 

 

Figure 10. Mean absolute SHAP values of the extracted features. 
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