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Abstract:  Large  scale  cropland  erosion  rates mapping  and  dynamic monitoring  are  critical  for 
agricultural planning but extremely  challenging.  In  this  study, by using  field  investigation data 
collected from 20,155 land parcels in 2,781 sample units in the National Soil Erosion Survey, land 
use change data for two decades from the National Land Use/Cover Database of China (NLUD‐C), 
we proposed a new point to surface approach to quantitatively assess long‐term cropland erosion 
based on the CSLE model and non‐homogeneous voting. The results show that cropland in Yunnan 
suffers from serious problem with unsustainable mean soil erosion rate of 40.47t/(ha∙a) and erosion 
ratio of 70.11%, which are significantly higher than those of other land types. Engineering control 
measures (ECMS) have a profound impact on reducing soil erosion, soil erosion rate of cropland 
with and without ESMs differs by more than five times. Over the past two decades, the cropland 
area in Yunnan continues to decrease, with a net reduction of 7461.83 km2 and a ratio of −10.55%, 
which causes corresponding 0.32×108 t (12.12%) decrease in cropland soil loss. We also quantified 
the impact of different LUCC scenarios on cropland erosion, and extraordinarily high variability 
was  found  in  soil  loss  in  different  basins  and  periods.  Conversion  from  cropland  to  forest 
contributes the most to cropland erosion reduction, while conversion from grassland to cropland 
contributes  56.18%  of  the  increase  in  soil  erosion.  Considering  the  current  speed  of  cropland 
regulation, it is the sharp reduction in land area that leads to cropland erosion reduction rather than 
treatments. The dilemma between the Grain for Green Policy and Cropland Protecting Strategy in 
mountainous areas should be treated carefully with shared understanding and collaborations from 
different roles. 

Keywords: sampling survey; CSLE; land use change; non‐homogeneous voting; cropland erosion 
rate 
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1. Introduction 

Soil, one of the earth’s most precious and threatened resources [1], provides humans with far 
more than foods but also a large variety of services like biomass production, water filtration, nutrient 
transformation, carbon storage, habitat and terrestrial biodiversity maintenance [2,3]. However, most 
of  the  soil  resources worldwide  are  only  in poor health  conditions,  and  accelerated  soil  erosion 
induced by inappropriate human activities and related land use change, is the primary driver behind 
the  problem  [4,5].  Soil  erosion  refers  to  the  complex  process  of  soil  materials  detachment, 
transportation, and deposition by external erosive forces. It causes on‐farm impacts of reduced soil 
fertility  and  productivity  [6,7],  and  also  leads  to  greater  off‐site  costs  such  as muddy  flooding, 
sedimentation, water pollution [8] and at stake are the global biogeochemical cycles [9,10]. Literature 
and  runoff  plots  observations  have  demonstrated  that  cropland  is  the main  source  of  soil  loss 
[5,11,13], and the soil erosion rates from which can be orders of magnitude greater than natural soil 
formation speed and those from other land use types [13–15], especially in mountainous areas. It is 
estimated that about 80% of the agricultural land around the world is suffering from serious erosion 
problems,  with  an  unsustainable  mean  annual  cropland  erosion  rate  of  about  30  t/(ha∙a). 
Consequently, more  than one‐third of cropland has been vanished  in  the  last decades due  to soil 
erosion [16]. To monitor and assess the impacts of soil erosion and make strategies to deal with them, 
mapping up to date quantitative information on cropland erosion rates at regional scale is essential 
but  also  very  challenging  [17,18],  since  for most  areas worldwide  the  observed  erosion  data  is 
woefully inadequate.   

On  the one hand,  it  is difficult to gain  insight  into the spatial pattern of soil erosion without 
specific soil erosion rates and hotpots information, confusion raises in the allocation of soil erosion 
mitigation programs and priorities, the formulations of policies, and the effectiveness evaluation of 
soil  conservation measures  [19]. Besides, knowledge gaps will be generated  in  critical  fields  like 
climate  change,  landslides  and  flood  prediction,  carbon mitigation  scenarios  and  earth  science 
modelling, and the well‐known polices of SDGs, CAP, UNCCD and IPBES will be out of focus [20]. 
Despite  soil  erosion  modelling  and  prediction  have  received  considerable  attention  from 
governments and scientists for more than seven decades [21,22], with various empirical, conceptual 
and physically‐based models and approaches been developed to measure, estimate and monitor soil 
erosion from field to landscape scales [23–26]. Yet, most models are only applicable to micro‐scales 
like field plots, hillslopes and small catchments, and are difficult to applied to large scales due to the 
spatial heterogeneity of soil erosion affecting factors [28], scale issues [14,27], model limitations and 
applicability [14,29,30], especially high demand for model input data [20,31]. Since most empirical 
soil erosion models are established based on the scales of plots and hillslopes with certain applicable 
conditions and scopes [31]. For example, the most widely applied soil erosion prediction USLE‐type 
models, are originally developed at  the plot scale  for agricultural  lands  (gradient  less  than 18 %) 
based on the “unit plot concept” of a 22.1 m long, 1.83 m wide plot, with a 9% slope with up‐and‐
down  hill  tillage  [20].  The major  limitation  of  soil  erosion modelling  for  any  given  area  is  the 
microscopic process involved is less considered, and it is difficult to acquire up‐to‐date soil erosion 
information  like  crop  rotation,  terracing, mulching,  contouring  and  hedgerow  planting  at  large 
scales, especially in fragmented mountainous landscapes. When upscaling the models to large scales, 
the input variables or parameters of the models generally simplified, huge uncertainties may lead to 
extrapolation error, and the reliability of the results is often questioned. Currently, the contradiction 
between the relatively  low resolution of available  input data and  the high resolution required for 
runoff‐erosion processes is the major obstacle to overcome for large scale dynamic quantification of 
soil erosion [29]. For mountainous areas, poor data availability, timeliness and data quality has been 
the biggest obstacle in mapping and visualizing soil erosion rates at large scales [32]. 

To date, limited by the over parameterization of physical models and poor datasets available, 
large scale soil erosion assessment methods are generally based on empirical models, and can be 
divided  into  two  categories  of  sampling  surveys  and  remote  sensing  assessments  [27,33].  (a) 
Sampling  survey  refers  to  the method of allocating  samples within a  region according  to  certain 
proportion and rules, field investigation on erosion features and parameters is then conducted, soil 
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erosion models will be  further applied  to quantify soil erosion  rates or conditions, and statistical 
methods will be used to estimate the overall soil erosion patterns of the region finally. The typical 
examples are the National Resource Inventory (NRI) conducted in the United States [34], the National 
Soil Erosion Survey in China [35], the EUSEDcollab network [36] and the gully erosion monitoring 
based on  the Land Use/Cover Area  frame  survey  in Europe  [37].  (b) Another category  is  remote 
sensing based assessments with simplified models. Since large‐scale application of complex models 
is  challenging,  as  the  availability  of high‐resolution  remote  sensing  images  increases,  large‐scale 
estimation  using  empirical models  such  as USLE/RUSLE,  becomes  feasible due  to  the  relatively 
simple  input data. Compared with field  investigation, satellite remote sensing  is characterized by 
timely, affordable data, uniform data over large areas, real‐time information acquisition and regular 
revisit wide view field [38], and has been widely applied in soil erosion modelling and mapping [39]. 
Particularly, efforts have been put into direct soil erosion detection [19,40], and parameters of rainfall 
erosivity estimation [41,42], soil related properties derivation [43], topographic factors extraction [44], 
cover‐management  (C‐factor)  and  support  practices  (P‐factor)  [45–48],  specific  soil  conservation 
measures mapping using high‐resolution imageries [49–51], as well as those large‐scale soil erosion 
assessments with  raster  layers operations  [52,53]. The biggest advantage of  sampling  survey  is  it 
provides  reliable  soil  erosion  rates,  and  large‐scale  spatial  patterns  of  soil  erosion  status  can  be 
achieved by combining with statistical principles [54,55], but the field measurement and investigation 
of indices is labor‐intensive and high cost. Remote sensing‐based methods allow rapid and efficient 
soil erosion assessment even in areas that intensive field investigation is a challenge, but more in a 
qualitative or semi‐quantitative way. Although high resolution imagery like SPOT 5, IKONOS and 
Quikbird ensure high quality data in erosion mapping, their utility remain hindered as  large area 
imageries are also unaffordable for most countries [40]. 

Previous studies [56–59] confirmed that land use/cover change (LUCC) is the primary cause of 
accelerated soil erosion under climate change scenarios, and is the most direct and intuitive reflection 
of the interaction between human activities and the soils on earth surface [60]. For most cases, the key 
to prevent soil erosion is to change various unreasonable land uses to a sustainable mode which in 
line with  the principles of sustainable development, such as the projects of returning  farmland to 
forest/grassland  and  converting  slopes  into  terraces  in  China.  Meanwhile,  compared  with  the 
inversion of soil erosion indices, remote sensing application in LUCC monitoring is the field with the 
most complete and mature technology. At large scales, by integrating most commonly usedLandsat 
series data imagery, relevant studies [61,62] also reveal the long‐term impact of land use change on 
soil erosion, and provides the suitable information necessary for assessing soil erosion intensity, but 
due  to  the  lack  of  field‐based  soil  erosion  investigation data,  the  estimated dynamic  results  are 
generally  potential  soil  erosion  risks without  exact  dynamic  soil  erosion  rates. Obviously, more 
detailed field experimental data that accurately quantify soil erosion rates are needed. 

In 2010 through 2012, the Ministry of Water Resources of China (MWRC) conducted the first 
ever and only field‐based National Soil Erosion Survey (NSES) in history by using sampling survey 
and  the Chinese  Soil Loss Equation  (CSLE)  [63–65]. Those detailed  onsite  investigated  provides 
abundant information on soil erosion rates at land parcel scale, which reduces the uncertainties in 
soil  erosion modeling  and  prediction.  As  soil  erosion  is  a  dynamic  process  demands  constant 
monitoring  to  obtain  up‐to‐date  information  on  its  spatial  pattern  [40].  The  combination  of 
advantages between both sampling survey and remote sensing is definitely the potential solution for 
the dilemma of  large‐scale soil erosion rates quantification. The objectives of this paper,  is thus to 
quantitatively assess the cropland soil erosion dynamics induced by the long‐term cropland change 
in mountainous areas, with perspectives from soil erosion field investigation and the LUCC scenarios 
based on time‐series satellite images. 
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2. Materials and Methods 

2.1. Study Area 

Yunnan Plateau (20°8′–29°16′N, 97°31′–106°12′E) is a low latitude highland region situated in the 
southwest border of China, it covers a total area of about 3.83 ×105 km2, and borders the Himalayan 
Range, Myanmar,  Laos  and  Vietnam  (Figure  1). Mostly mountainous  in  character,  94%  of  the 
province  is  dominated  by mountains  and  plateaus,  only  6%  of which  interspersed with  small, 
scattered valley  basins. The  landscape  tilts downward  from  the northwest  to  the  southeast,  and 
elevation ranges from 76m to 6740 m above sea level, with an average altitude of 2000 m [65]. Affected 
by the Indian and East Asian monsoons and air masses from the Qinghai‐Tibet Plateau, the region 
has a subtropical plateau monsoon climate with substantial variation, though relatively mild due to 
the  elevation. Mean  annual  precipitation  varies  from  600  in  dry‐hot  valleys  to  2300 mm  in  the 
southern and western mountains, with over half of  the rain occurring between  June and August, 
while the dry season (November to April of the following year) accounts for only 20% or less of the 
1100 mm annual precipitation. Annual average temperatures in the winter and summer are 6–8 °C 
and 19–22 °C, respectively [33,35]. Soils in Yunnan are generally rich in clay and formed under high 
precipitation and temperature conditions such as Acrisols, Cambisols and Luvisols. It is particularly 
worth mentioning  that Yunnan has  long been recognized as  the hotspot of biodiversity  in China. 
Taking vegetation resources as an example, tropical, seasonal, subtropical evergreen broad‐leaved, 
temperate coniferous forests and meadow steppes can all be found in the region [69]. The landscape 
is deeply dissected by six major rivers of the Irrawaddy, Nu (Salween), Lancang (upper reach of the 
Mekong), Jinsha (upper reach of the Yangtze), Honghe and Pearl. The province also owns the largest 
sloping cropland area  in China, as the  limited basin areas already been fully utilized, soil erosion 
pressure on remaining land resources is extremely high.   

 
Figure 1. Map of Yunnan province showing six major rivers, basins, cities and elevation variation. 

2.2. Data Sources 

2.2.1. Sampling Survey and Primary Sample Units (PSUs) 

The  sampling  survey  in  the NSES was  conducted  using  a  non‐equal  probability  sampling 
method  (Figure 2a).  In view of  the dominant erosive  force of soil  loss and the  integrity of county 
boundaries, the whole country was firstly divided into water erosion region, wind erosion region, 
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freeze thaw erosion region and other regions co‐occurrence erosion (Figure 2b). Generally, a uniform 
national gridding was employed for water erosion, which has the greatest implications. Four layers 
of grids were set according to the grid size, including the county‐level (40 km×40 km), township level 
(10 km×10 km), the control area level (5 km×5 km) and Primary Sample Units (1 km×1 km). The grids 
were divided according to the Gauss‐Krüger Projection zoning method, which divides the country 
into 3°interval geographical zones (a total of 22 zones). In each zone, the Y‐axis direction is divided 
into grids on both sides based on the central meridian, and the X‐axis direction is divided into grids 
on both sides based on the equator. PSUs for water erosion was allocated with four sampling densities 
of 4%, 1%, 0.25% and 0.0625% [66,67]. For the plain area, PSU was a single 1 km×1 km grid, while for 
the mountainous area, PSU was a small watershed of 0.2–3.0 km2. PSU is a small geographical area 
with a fixed location and a certain area that can express the basic characteristics of soil erosion and 
show spatial heterogeneity in soil erosion factors (especially soil conservation measures). For areas 
of  glaciers,  permanent  snowfields,  deserts,  swamps,  large  lakes  and  reservoirs where  no water 
erosion occurs, and high altitudes exceeding 4800 m with less human activities, water erosion was 
generally  less  considered  [66,67].  Based  on  the  erosion  characteristics,  human  disturbance  and 
accessibility of each province, a total of 33, 966 PSUs were determined nationwide in the NSES (Figure 
2d). Compared to the NRI, NSES in China is actually an area sampling survey rather than a point 
sampling survey.   

 

Figure 2. (a) A spatial representation of the sampling design and grid division scheme; (b) Soil and 
water conservation regionalization map of China based on erosive forces; (c) Primary sample units 
(PSUs)  allocated  in  Yunnan  province  in  the National  Soil  Erosion  Survey  (NSES)  in  China;  (d) 
Distribution  of  corresponding  PSUs with  different  sampling  densities  and  investigation  goals  in 
NSES. 

PSUs were the main object of field investigation and data collection in the NSES. Each PSU was 
then  divided  into  pieces  of  land  defined  as  a  land  parcel  that  share  the  same  land  type  and 
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conservation measure. Data gathers were  then  trained  to  investigate each  land parcel and collect 
information  concerning  soil  erosion  factors of  the CSLE with uniform  standards. Specifically, by 
using high‐precision topographic maps as field survey base maps, detailed information such as land 
parcel number, fraction vegetation coverage, canopy density, land use, vegetation type, engineering 
measures and crop rotation patterns were acquired. Suffering from serious water erosion problem, 
Yunnan attracted a  lot of attention  in  the NSES, and both  the number of PSUs and  land parcels 
selected were the largest among all provinces in China, with 2,817 and 20,155 respectively (Figure 
2c). All  these  field  investigated  data was  provided  by  Beijing Normal University  (the  technical 
support unit of the NSES) [65,69]. 

In addition to the data of field investigation, critical data involved in calculating annual average 
soil erosion rate was obtained nationwide as follows: (a) Daily erosive rainfall (greater than 12 mm) 
data for three decades; (b) Digital DEMs of 1:10,000 scale for each PSU to extract slope gradient and 
length; (c) More than 10,000 records of soil profile data and soil types at 1:500,000 scale retrieved from 
the Second National Soil Survey, and observed unit plot and cropland plot data; (d) time series multi‐
spectral reflectance data of Sentinel‐2, Landsat TM/ETM/OLI images prepared to revise vegetation 
indices during 2000‐2020; (e) High resolution satellite imagery in Yunnan of GF‐1 (2m), GF‐2 (1 m), 
GF‐7 (0.8 m) images and Beijing‐2 (resolution of 0.65 m) at different periods to optimize land use map. 

After standardized data processing, each PSUs contain 7 raster layers (spatial resolution of 10 
m) of soil erosion factors in the CSLE model, soil erosion modulus was then computed by using raster 
multiplication operation and statistical methods, soil loss for each land use type was finally evaluated 
at  land parcel, PSU, province and national  levels. Figure 3 presents  the detailed  information on a 
random PSU of small watershed and each land parcel within it. For this study, the most critical data 
is the multi‐year average soil erosion rate of various land use parcels obtained based on field surveys, 
which is the basis for comprehensive analysis of soil erosion distribution, area, ratio and intensity. 

 

Figure 3. A random example of field investigated PSU and layers of detailed soil erosion information 
(factors and rates, a resolution of 10 m). 

2.2.2. Land Use/Cover Change (LUCC) Dynamics 
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Initialized in the latter half of the 1990s, the National Land Use/Cover Database of China (NLUD‐
C) [70] has been applied to land use/cover related researches as the most well‐known LUCC database 
in China for decades. By drawing boundaries and labelling attributes for each LUCC polygon based 
on Landsat TM/ETM/OLI  images  (resolution of 30 m), we have updated  the database  for several 
periods using  interactive  interpretation method. NLUD‐C  include datasets of  land use status and 
LUCC dynamics of China with a 5‐year interval, and land use types are classified into six first‐level 
categories and 25 corresponding second‐level classes. 

Compared  to numerous LUCC products  retrieved using automatic  classification and  change 
detection methods, the biggest advantage of NLUD‐C lies in the professional knowledge, uniform 
interpretation symbols and unified image acquisition phases before and after, which ensures its high‐
accuracy  information of  land attributes. Although the OA of NLUD‐C  is significantly higher than 
other similar products, distortion and inaccurate patch boundaries still exists in mountainous areas 
since manual  geometric  correction  is performed  at different periods. At present,  remote  sensing 
LUCC data with higher  resolution may be a better choice  for soil erosion modeling as  it  reduces 
model uncertainty, but  is also characterized by shortcomings of high  image acquisition costs and 
short  time series. To optimize  the accuracy of  land use data, we employed NLUD‐C as  the main 
LUCC basis, supplemented by 7 publicly accessible used non‐homogeneous LUCC datasets, which 
are three long term 30 m resolution products of GLC_FCS30 [71], CLCD [72] and GlobeLand30 [73], 
as well as four short term 10 m resolution products of ESRI_LandCover [74], ESA_WorldCover [75], 
CRLC [76] and Dynamic World from Google [77]. The detailed information of those land use datasets 
is listed in Table 1. In this study, land use maps of Yunnan in 2000, 2005, 2010, 2015 and 2020 were 
prepared for further analysis. 

Table 1. Details of the used publicly accessible non‐homogeneous LUCC datasets. 

Datasets  Image Source  Method  Cover  Resolution  OA 

NLUD‐C  Landsat TM/ETM  Interactive Interpretation  China  30m  > 90% 
GLC_FCS30  Landsat TM/ETM/OLI  Random Forest  Global  30m  82.5% 

CLCD  Landsat TM/ETM/OLI  Supervisory Algorithm  China  30m  79.31% 
GlobeLand30  Landsat/HJ‐1/GF‐1  POK method  Global  30m  85.72% 
ESRI_LC  Sentinel‐2  Deep learning  Global  10m  85% 
ESA_WC  Sentinel‐2  Random Forest  Global  10m  75% 
CRLC  Sentinel‐2  Deep learning  China  10m  84% 

Dynamic World  Sentinel‐2  Deep learning  Global  10m  72% 

2.3. Methods 

2.3.1. The CSLE Model 

By  adapting  parameters  of  the  Universal  Soil  Loss  Equation  (USLE)  to  China,  Liu  et  al. 
developed  the CSLE model based on measured data  from Chinese unit plot and numerous plots 
modified to unit plot [64]. As the official model of the Ministry of Water Resources of China (MWRC) 
for soil erosion assessment, the differences of CSLE compared to USLE are modifications that made 
for crop system, management, practice, soil type, rainfall pattern and topography in China. 

CSLE  is a model used to estimate annual soil  loss by sheet and rill water erosion for a given 
combination of the soil erosion affecting factors. The major advantage of CSLE is that it is more in 
line with  the  topographical  conditions  and  the  actual  situation  of  soil  conservation measures  in 
China, while  the  two  factors  of  cover management  and  support  practices  (C,  P)  in USLE were 
modified into three factors of biological measures (B), engineering measures (E) and tillage measures 
(T) [64,65]. Five dimensionless factors of slope length, slope gradient, biological measure, engineering 
measure and tillage measure are used to modify the soil loss determined by the dimensional rainfall 
erosivity factor and soil erodibility factor in this model. 

The principal equation of CSLE can be expressed as follows: 
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A R K L S B E T         (1)

where A is mean annual soil loss with unit of t/(hm2∙a); R is the rainfall and runoff factor or rainfall 
erosivity, MJ∙mm/(hm2∙h∙a); K is the soil erodibility factor, t∙hm2∙h/(MJ∙hm2∙mm); L is the slope length 
factor and S  is  the  slope steepness  factor; B  is  the biological measure  factor; E  is  the engineering 
measure factor; T is the factor of tillage measures, B, E, T factors have a unitless range of 0–1 and the 
smaller the value is, the better the soil conservation effect of a certain measure is. 

The specific calculation methods of R, K, L and S factors are described in detail in our previous 
work [60,78] and related literatures [79,80] and listed as follows: 
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where k  represents  the 12 months  in a year, Rk  is  the average  rainfall erosivity  in  the k‐th month 
(MJ∙mm∙ha−1∙h−1∙a−1), N refers to the time series, the term α is a value of 0.3937 for the warm season 
and 0.3101 for the cold season, Pi,j,k is the actual erosive rainfall (≥12 mm) of the j‐th day in the k‐th 
month in the i‐th year, m is the number of days with erosive rainfall in the corresponding month. WRk 
is  the ratio of average rainfall erosivity  in  the k‐th month  to  the average annual rainfall erosivity, 
which reflects the seasonal distribution of rainfall erosivity. 
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than clay, OM  is  the soil organic matter content  (%), S  is  the soil structure code and P  is  the soil 
permeability code. 
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where Li is the slope length factor of the i‐th pixel, λout and λin are the pixel exit and entrance slope 
lengths and m is the slope length exponent depending on the slope. 
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where NDVImax  refers  to  the  regional maximum NDVI; NDVIveg  is  the NDVI  value  of  the  pure 
vegetation pixels; NDVIsoil is the NDVI value of the pure bare soil pixels; Bi is the B‐factor of the i‐th 
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month. The relationship between the FVC and B value was compiled using Equation (12). The ET‐
factors in the CSLE are mainly collected based on the field survey, with reference to corresponding 
values from runoff plot experiments by local experts and an extensive literature review analysis on a 
national effort. 

2.3.2. Non‐Homogeneous Voting and LUCC Optimization 

The  rapid development of  remote  sensing  technology provides  a key  technical  approach  to 
obtain comprehensive information on large‐scale land use/cover distribution and changes. In recent 
years, scientists worldwide have incorporated image processing methods to interpret and analyze 
remote sensing images, and produced numerous LUCC products with different spatial resolutions.   

Our  accuracy  evaluation  of  datasets  and  extensive  literature  review  demonstrate  that:  (a) 
automatic image classification and change detection approaches can provide satisfactory results only 
when applied to certain land use types with homogeneous color and texture, such as water bodies, 
built‐up land, and bare rock [70]. Due to the difference in satellite sensors, processing methods and 
classification systems, the description ability of earth surface conditions of different LUCC products 
are also different, especially in fragmented mountainous areas like Yunnan, affected by cloudy and 
rainy weather, high quality image availability is poor and the difference can be even more significant, 
and the reliability of data is often questioned. For example, despite the 8 datasets we mentioned above 
share similar definition of cropland, the cropland area of Yunnan in 2020 provided by them are totally 
different.  The  cropland  areas  of  the  4  long  time  series  30m‐datasets  are  6.74×104  km2 NLUD‐C, 
3.24×104  km2  for GLC_FCS30,  8.39×104  km2  for CLCD  and  10.99×104  km2 GlobeLand30,  and  the 
cropland areas of the 4 recent 10m‐datasets are 3.58×104 km2 for ESRI_LC, 5.09×104 km2 for ESA_WC, 
9.77×104 km2 for CRLC and 2.50×104 km2 for Dynamic World, respectively. For Yunnan, based on our 
field  surveys,  CLCD  significantly  underestimates  the  impervious  area,  GLC_FCS30  generally 
underestimates  the  cropland  area,  GlobeLand30  significantly  overestimates  the  cropland  area, 
ESRI_LC and Dynamic World significantly overestimates the impervious area, CRLC misclassifies 
woodland  into  cropland  and  ESA_WC  misclassifies  divides  impervious  area  into  bare  land. 
Misclassification, omission and high confusion degree between grassland and shrub can be found in 
almost all the datasets. High resolution dataset does not always provide more reliable information, 
significant differences can be found at the same resolution. Obviously, the overall accuracy of global 
or national‐scale LUCC datasets in local areas needs to be verified, since the verification methods and 
reference data for datasets are different, the independently completed accuracy assessments cannot 
be directly compared [81]. Therefore, critical evaluation of the suitability and optimization of LULC 
products based on application purposes should be made before use. 

For plateau mountain areas like Yunnan, long term high‐resolution (higher than 10 m) LUCC 
data is inaccessible and impractical so far. Here, we proposed a non‐homogeneous voting method to 
modify  and  optimize  the NLUD‐C data.  Specifically, we  selected  time  series  geometrically  fine‐
corrected Landsat images from October to February in each year to ensure the uniformity of multiple 
phases. Based on NLUD‐C,  the  interpretation  symbols and  the professional knowledge,  the non‐
homogeneous  voting  was  then  performed  to  analyze  the  classification  consistency.  For  high 
consistency degree area, we kept the first‐level type to reduce uncertainty, while for high confusion 
degree area, especially for basin valleys and urban periphery areas with frequent human activities 
and dramatic changes, high‐resolution remote sensing images were used to assist in precise visual 
interpretation. Finally,  the obtained  time  series LUCC data  combines  the advantages of multiple 
datasets  and  avoids  the  respective  shortcomings.  Figure  4  presents  the  workflow  of  the  non‐
homogeneous voting method for modifying the LUCC data, and Figure 5 shows our revised NLUD‐
C results in a typical inter‐mountain basin, by using high‐resolution remote sensing images, we also 
compare them to three other time series land use products of different underlying surfaces. 
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Figure 4. Data optimization process using the non‐homogeneous voting method in this study. 

 

Figure 5. Comparison of three other time series land use products and our revised NLUD‐C result for 
different scenes using high‐resolution images. 
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3. Results 

3.1. Soil Erosion Pattern of Yunnan Based on Sampling Survey and Field Investigation 

3.1.1. Investigated Land Parcel Basics of Yunnan in the NSES 

According to the sampling survey, a total of a total of 20,155 land parcels in 2,781 PSUs were 
investigated on site in Yunnan. The average area of the PSUs was 34.83 ha, and the average patch 
area  of  the  land parcels was  4.79 ha, which  is  in  consistency with  the model  requirements. The 
measured mean slope gradient for all the land patches was 20.23° and with a range of 0−82.8°, while 
the mean slope length is 47.73 m and a range of    0−233.9, the average soil erosion rate of all the land 
use parcels is 17.02 t/(ha∙a). Table 2 lists the basic information in land parcels of the first‐level NLUD‐
C types. Obviously, in terms of spatial distribution, woodland has the largest average patch area and 
number (a total of 10015 land parcels) and is the dominant land use in the landscape. The average 
patch area of cropland is 2.77 ha, and the average slope reaches 17.88°, which is very prone to soil 
erosion. 

Table 2. Land parcel basics for the PSUs in Yunnan in the National Soil Erosion Survey. 

1st Level Types  NP  APA  Max‐PA  Min‐PA  ASG  ASL  SEM  SEM Range 

Cropland  6714  2.77  81.92  0.02  17.88  47.94  40.47  0−428.95 
Woodland  10015  7.03  86.53  0.03  22.79  48.62  5.37  0−174.12 
Grassland  1742  3.05  73.16  0.02  20.84  47.85  5.16  0−49.70 

Water bodies  257  1.34  18.56  0.03  4.14  21.28  ―  ― 
Built‐up land  1237  1.33  25.01  0.01  14.02  42.96  2.95  0−293.67 
Unused land  190  2.50  41.96  0.04  19.05  44.94  96.52  0−455.15 

Notes: NP, number of patches; APA, average parcel area, ha; Max‐PA, max parcel area, ha; Min‐PA, min parcel 
area, ha; ASG, average slope steepness, °; ASL, average slope length, m; SEM, soil erosion modulus, t/(ha∙a). 

3.1.2. Soil Erosion Rate Variations under Different Land Use Types and Topography 

Table 3 lists the various soil erosion factors in the CSLE and the multi‐year average soil erosion 
rates  of  the NLUD‐C  second‐level  land  types. Woodland  has  an  overall  higher  average  rainfall 
erosivity  than  other  types, with  a value  of  3570.37  t∙hm2∙h/(MJ∙hm2∙mm),  followed  by  grassland, 
cropland, built‐up land, water bodies and unused land. The highest rainfall erosivity was found in 
paddy  fields  and  garden  plantations  (classified  as  woodland  in  NLUD‐C)  as  they  are mainly 
distributed in southern Yunnan. Additionally, the lowest lower R values were found in sparse grass 
and bare land, which are mostly distributed in the northern part of Yunnan and the dry‐hot valleys 
of the six major rivers. Since the main soil types are highly sticky, the K values are relatively close 
and  small  in  all  regions.  In  terms  of  terrain  factors,  except  for  built‐up  land, water  bodies,  and 
irrigated  land  (basically cropland  in  flat areas with  irrigation conditions), all other  land  types are 
characterized by great  slope  steepness and short slopes, LS values are generally high  for  sloping 
cropland,  gardens  and  unused  land.  In  the  CSLE model,  the  vegetation  factor  B  is mainly  for 
woodland and grassland. The vegetation coverage of woodland  in Yunnan  is significantly higher 
than  that  of  grassland  (lower  B  factor  value), while  the  impact  of  vegetation  on  soil  erosion  is 
incorporated into the tillage measure factor T, and intercropping and rotation are the dominant tillage 
measures. Out of 6714 cropland parcels investigated, 52.25% of them were adopted with engineering 
measures. Overall, cropland without ECMs contributes 83.51% of the total soil loss from cropland 
with only a land area of 47.75%. 
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Table 3. Soil erosion rates and factors of NLUD‐C land types at parcel scale based on investigation. 

NLUD‐C Land Types
R  K  L  S  B  E  T  A 

1st Level  2nd Level   

Cropland 
Dryland  3343.94  0.006  1.48  5.69  1  0.69  0.33  45.34 

Paddy fields  3898.49  0.005  1.25  4.37  1  0.02  0.40  1.61 
Irrigated land  2681.28  0.006  1.15  2.17  1  0.51  0.27  7.80 

Woodland 

Forest  3485.29  0.006  1.56  3.96  0.03  1  1  3.61 
Shrub  3270.27  0.006  1.57  4.16  0.04  1  1  4.68 

Sparse woods  3378.44  0.005  1.55  3.73  0.12  0.96  1  14.48 
Gardens  3825.29  0.006  1.52  6.42  0.05  0.77  0.98  6.65 

Grassland 
Dense grass  3569.07  0.006  1.48  3.51  0.05  0.97  1  4.89 

Moderate grass  3218.25  0.006  1.49  3.62  0.06  0.97  1  5.72 
Sparse grass  3029.18  0.005  1.52  3.79  0.06  0.97  1  5.87 

Water bodies  —  3147.59  —  0.98  2.06  0  1  1  — 

Built‐up land 
Rural  3249.22  0.006  1.40  4.57  0.02  0.2  1  1.18 
Urban  3200.18  0.006  0.91  0.71  0.01  0.09  1  1.20 

Mining land  3271.48  0.005  1.39  3.81  0.95  0.14  1  18.21 

Unused land 
Bare soil  2945.28  0.006  1.47  5.90  1  0.98  1  156.73 
Bare rock  3017.59  0.006  1.47  6.21  0  0.98  1  0 

Notes: R, MJ∙mm/(hm2∙h∙a); K, t∙hm2∙h/(MJ∙hm2∙mm); L, S, B, E, T, dimensionless; A, t/(hm2∙a). 

As Yunnan is the only province with a fully plateau mountainous landscape in China, the impact 
of terrain on soil erosion rate  is crucial, and  it  is often the most  important factor  in water erosion 
models. With the change of terrain conditions, the soil erosion rates of the five major land use types 
except water bodies show varying degrees of difference in different slope gradient and length zones, 
and soil erosion is much more sensitive to changes in slope steepness than to changes in slope length 
(Figure 6). For cropland, the average annual soil erosion rate is 40.47t/(ha∙a) and the erosion ratio of 
70.11% (4707 out of 6714 land parcels with soil erosion rate higher than soil loss tolerance of 5 t/(ha∙a)), 
far exceeding other land types (28.57% for woodland, 35.42% for grassland, 10.27% for built‐up land 
and 60.53% for unused land). Rain‐fed dry land is the main type of cropland (5644 out of 6714 land 
parcels), and the soil erosion rate is 45.34 t/(ha∙a) and erosion ratio of 81.48% (4599 out of 5644 land 
parcels with soil erosion rate higher than soil loss tolerance), which are also significantly higher than 
those of paddy fields and irrigated cropland. For woodland and grassland parcels, higher values are 
mostly  found  in sparse vegetations and garden plantations  (divided as woodland but  retains  the 
attributes of cropland). Due  to  low coverage and  intensive disturbance, high soil erosion  rates of 
built‐up  land were mainly  found  in mining areas. Bare  soil suffers  from some of  the highest soil 
erosion rates among all NLUD‐C second‐level land types, but it occupies a small area and does not 
contribute much to the total soil. 
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Figure 6. Relationship between topographical factors and  land use type soil erosion modulus，for 
slope length and gradient. 

To  better  present  the  spatial  pattern  of  cropland  erosion  rates,  we  mapped  the  spatial 
distribution  pattern  of  cropland  erosion  rates  at  the  PSUs  scale  (Figure  7)  according  to  the 
classification  standards  of  the  MWRC.  As  can  be  seen  from  the  figure,  soil  erosion  rates  in 
downstream  areas  of  the  six major  river  basins  are  generally  higher  than  upstream  areas,  and 
aggregation  occurred.  Cropland  land  erosion  rates  in  the  central  flat  area  was  much  lower. 
Considering  the  influence  of  terrain,  and  the  similarity  in  soil  properties,  planting  system  and 
rotation patterns, the difference can be attributed to the fact that rainfall erosivity in the downstream 
areas are significantly higher than those in the upstream areas. 

 

Figure 7. Soil Erosion Rates of Rain‐fed Cropland in PSUs. 

3.1.3. Impact of Engineering Conservation Measures on Cropland Soil Erosion 

For a long time, scientists and soil conservancy departments have attached great importance to 
soil conservation in cropland, but limited by data availability, little is known about the effectiveness 
of engineering conservation measures (ECMs) at large scales. ECMs refer to the measures applied by 
changing micro terrain conditions to intercept runoff,  increase soil  infiltration or crop production, 
such as the level terrace, sloping terrace, fruit tree pit, check dam, intercepting drains, diversion canal, 
etc. In the NSES, one of the major tasks is to conduct detailed field surveys on the type, distribution, 
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quantity and area of ECMs. We also quantify the impact of ECMs on soil erosion based on literature, 
standard  runoff plot observations and data collected under natural or artificial simulated  rainfall 
conditions. To  further understand  the  impact of ECMs on cropland erosion, we also mapped  the 
spatial distribution of ECMs on PSUs that contain cropland parcels, and analyzed their impact on soil 
erosion rates at different slope steepness intervals (Figure 8a). Obviously, except for the cultivated 
areas with flat terrain and  low soil erosion rate  in the central part, ECMs are spatially distributed 
throughout the province. The proportion of cropland parcels with ECWs shows a decreasing trend 
as the slope steepness increases. This is mainly because large scale adoption of remediation measures 
on steep slopes in plateau mountainous region is difficult, unaffordable, and may cause disaster like 
landslides. Besides, farmers are more encouraged to return steep slope cropland to forest/grass rather 
than terraced fields based on the Grain for Green Policy. 

Figure 8b reveals the effectiveness of soil conservation measures in mitigating cropland erosion 
beyond just a reduction in the magnitude of erosion rate. For the sloping cropland in the province, 
soil erosion rate of both cropland with and without ECMs increases as the slope gradient increase. 
Based the field investigation, cropland parcels can be found in 1863 out of 2871 PSUs, the average 
cropland soil erosion rate with ECMs is 12.14 t/(ha∙a), while the average cropland soil erosion rate 
without ECMs is 67.25 t/(ha∙a), and the rate difference is more than five times, which is based on the 
premise that low erosion rate cropland in the central part does not equipped with ECMs. For steep 
slope zones, this difference can be even bigger and reaches a gap of 100 t/(ha∙a) for steepness class of 
30−35°, indicating that the effect of ECMS also decreases as the slope gradient increases. Apparently, 
the allocation of ECMs  largely affects the spatial distribution pattern of cropland erosion rates. In 
terms of soil loss prevention, almost all the croplands in Yunnan demand ECMs to control the soil 
erosion within  tolerant  rate.  But more  attention  to  focused  on  assessing  the  difficulty,  cost  and 
effectiveness of  the  treatment  (including  soil productivity)  to determine priorities where projects 
should really be adopted. 

 

Figure  8.  The  soil  erosion  rate  of  cropland with  engineering measures  and without  engineering 
measures. 

3.2. Land Use Change Dynamics in Yunnan from 2000 to 2020 

By following the update mode of NLUD‐C data, we optimized land use change dynamics data 
of Yunnan from 2000 to 2020. Figure 9 shows the corresponding land use maps of year 2000, 2005, 
2010,  2015,  and  2020.  Woodland  (67.79%−68.44%),  cropland  (16.56%−18.51%),  and  grassland 
(10.43%−11.64%)  are  the  dominant  land  types. Woodland  can  be  found  in  the whole  province, 
cropland  is  mainly  distributed  in  the  central,  northeast  and  southeast  parts,  and  grassland  is 
concentrated in the Jinsha River Basin and the dry‐hot valleys of other river basins. The proportions 
of water  bodies  (1.19%−1.22%),  built‐up  land  (0.82%−3.33%)  and unused  land  (0.05%−0.06%)  are 
relatively low.   
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Based on the land use transfer matrix, the land use transformation process and change dynamics 
from 2000 to 2020 were presented in Figure 10. For the 2000‐2005 and 2005‐2010 periods, the total 
land change areas were 1.62×104 km² and 1.73×104 km² respectively, of which the conversion between 
cropland and woodland were the dominant change. For the 2010‐2015 and 2015‐2020 periods, the 
total land change areas were 2.06×104 km² and 1.97×104 km² respectively, and the cropland‐grassland 
transformation dominated the periods, the one‐way conversion from cropland to built‐up land was 
also noticeable. 

 

Figure 9. Optimized land use maps of Yunnan from 2000 to 2020. 

 

Figure 10. Land use transfer process and change dynamics in Yunnan from 2000 to 2020. 

The main LUCC characteristics of Yunnan Province from 2000 to 2020 can be summarized as 
follows. The built‐up  land area continues  to rise, with a net  increase of 9451.57 km2 and a rate of 
300.39%. The cropland area continues to decrease, with a net decrease of 7461.83 km2 and a rate of 
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−10.55%. The grassland area continues to decrease, and the net decrease was 4603.39 km2, and a rate 
of  −10.36%. The woodland area  increased by 2482.63 km2, but because of  the  large area base,  the 
change rate was the lowest at 0.95%. The water bodies and unused land were relatively stable, with 
increasing areas of 92.75 km2 and 36.75 km2, respectively. Although the change trend of LUCC in each 
period is relatively consistent, significant differences were also found in region, quantity and main 
change scenarios. It should be highlighted that the land conversion area related to cropland accounts 
for 74.02% of all the transformation scenarios, and is the most significant type of land use conversion.   

To finally achieve dynamic quantitative monitoring of cropland erosion rate and soil loss, as a 
focus, we analyzed the conversions between cropland and other land types spatially. For each time 
period, most of the cropland change area was converted to woodland, grassland or built‐up  land, 
with less conversion to water bodies and unused land, while the cropland reclamation area was also 
mostly from grassland and woodland (Figure 11). The cropland−woodland conversions were mainly 
found  in  the  river  basins  of  Lancang,  Nu,  Irrawaddy  and  southern  parts,  while  the 
cropland−grassland  conversions  mainly  occurred  in  the  Jinsha  River  Basin  and  the  central 
grassland−cropland−built‐up transition zones. In the past 20 years, the cropland loss area of the six 
major  river  basins was  ordered  as  Lancang(21.35  km2)＞Honghe(13.86  km2)＞Nu(13.45  km2)＞

Pearl(10.76 km2)＞Jinsha(9.70 km2)＞Irrawaddy(5.50 km2), while the cropland loss ratio was ordered 
as  Nu(28.76%)＞ Irrawaddy  (22.95%)＞ Lancang  (20.34%)＞ Honghe(10.20%)＞ Pearl(5.74%)＞

Jinsha(4.66%). Apparently, northwestern Yunnan are suffering serious cropland degradation and loss 
problem. 

As  can be  seen  from Figure 11e  that  the areas with  the  largest net decrease  in  cropland are 
concentrated in the western Yunnan, and mainly distributed in the Irrawaddy River Basin, Nu River 
Basin and Lancang River Basin. The spatial pattern    of cropland decrease trend  in the three river 
basins are basically consistent with each other. Specifically, the net cropland decrease from 2000 to 
2005 was mainly  found  in  the upper  reaches of  the basins, as  time changes,  the center of  the net 
cropland decrease gradually moves from the upstream to the downstream areas. Nearly 90% of the 
basin area is experiencing cropland loss. Especially in the Irrawaddy River Basin, the net decrease 
was mainly concentrated in the middle and upper reaches before 2015. From 2015 to 2020, the entire 
basin was experiencing a net decrease in cropland. 
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Figure 11. Spatial distribution of cropland conversions and net change at county level in Yunnan. 

3.3. Cropland Soil Erosion Dynamics in Yunnan from 2000 to 2020 

In previous work, we optimized  the  input parameters of  the CSLE with  the annual average 
values of vegetation coverage and erosive rainfall data from 2000 to 2020, and recalculated annual 
average soil erosion rate for each land type of the PSUs. Since NLUD‐C update and NSES originate 
from different programs and with different application purposes, the  land use/cover classification 
system  of NLUD‐C  is much  simpler  than  field  investigation. Thus, we unified  the  classification 
system and retained the six first‐level land types of NLUD‐C, and determined the average soil erosion 
rate using an area percentage weighted average method in PSUs. The high‐precision soil erosion rate 
for different land types in PSUs was further interpolated to the corresponding control area of PSUs 
using a nearest neighbor interpolation method. Finally, net soil erosion rate and soil loss changes for 
different land use conversion scenarios was calculated (Table 4), and then up‐to‐data quantitative soil 
erosion dynamic information on cropland can be acquired by incorporating with the revised LUCC 
dynamics area during the past two decades (Figure 12). Considering the average soil erosion rate of 
each  land  type,  for different LUCC  scenarios  in Yunnan, cropland  change  induced  increases and 
decreases in soil erosion rate and soil loss exists during the four periods. Conversions from cropland 
generally reduced the soil erosion intensity, while slope cropland reclamation was the main LUCC 
type that intensifies of soil erosion. 
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Table 4. Soil erosion rate change under different LUCC scenarios in the six major river basins. 

LUCC Scenarios  Honghe  Irrawaddy  Jinsha  Lancang  Nu  Peal 
C to F  ‐46.02  ‐31.72  ‐24.63  ‐65.22  ‐52.90  ‐28.80 
C to G  ‐44.82  ‐29.02  ‐23.12  ‐64.31  ‐48.91  ‐28.53 
C to W  ‐50.12  ‐34.53  ‐29.17  ‐69.95  ‐57.06  ‐33.12 
C to R  ‐43.23  ‐28.16  ‐27.72  ‐66.53  ‐55.72  ‐29.27 
C to U  64.02  101.11  63.23  93.83  115.62  54.69 

Notes: unit, t/(ha∙a); C‐cropland; F‐forestland; G‐grassland; W‐water; R‐residential land; U‐unused land. 

 
Figure 12. Calculation process of net soil erosion change caused by the transformations of cropland. 

Figure 12 presents a representative area located in Jinsha River basin, each grid is the control 
area (grid size of 5 km × 5 km ) of a certain Primary Sample Unit. Through sampling surveys, we 
calculated the multi‐year average soil erosion rate of all the land use types in the corresponding grids, 
as well as the erosion rate change of various conversion scenarios. As can be seen that both cropland 
abandonment and expansion were found in the region, there is a significant soil erosion rate variation 
for the same LUCC conversion among grids despite they are very close in spatial distance. During 
this  period,  1.66  km2  and  0.91  km2  of  cropland  abandonment  and  expansion  occurred  in  the 
representative area, with the largest area of cropland converted to built‐up land, followed by area 
converted  to water bodies.  In  the dynamic  zones,  soil  erosion  rate  caused by different  cropland 
transformation types are also different. Returning cropland to woodland and grassland, converting 
cropland to built‐up land reduced the soil erosion rate dramatically.   

When land use type changes, the soil erosion rates and intensity will change accordingly. From 
2000  to 2020, as cropland  related LUCC  transformations dominant  the  landscape, changes of soil 
erosion rates and soil loss are also significant in corresponding areas. In the past two decades, the 
amount of soil loss due to the cropland transfer out was −1.28×108 t, while the amount of soil loss due 
to the cropland reclamation was 0.96×108 t, and the net change in soil erosion caused by cropland 
transformations was −0.32×108 t, with a decrease ratio of 12.12% of the total cropland soil loss (Figure 
13). 
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The cropland area continues to decline over the past two decades, and most of it was converted 
into woodland,  grassland  and  built‐up  land.  The  conversions  from  cropland  to woodland  and 
grassland account for the largest proportions of cropland erosion reduction, with 43.75% and 34.64% 
respectively. The conversion from cropland to built‐up  land accounts for 21.36% of the reduction. 
Conversion from cropland to woodland has been a major contributor to the decline in soil erosion in 
cropland  areas. As  for  the  soil  erosion  increase,  about  99%  of which was  caused  by  cropland 
reclamation, and conversion from grassland to cropland contributed 56.18% of the total soil erosion 
increase. 

 
Figure 13. Amount and spatial pattern of soil loss induced from cropland transformations in Yunnan 
during 2000‐2020. 

The conversions between cropland and other land uses also have different effects on soil erosion 
amount in different periods. Among them, compared with the mutual conversions with woodland 
and grassland,  the conversion between cropland and built‐up  land  is more often a unidirectional 
change. Due to the larger net change area, the net reduction in erosion generated from cropland to 
built‐up  land  is  also  the  largest,  and  the  reduction  in  soil  erosion  during  the  2010‐2015  period 
accounts for nearly 40% of the total cropland‐built up land change scenario, as it is also the period 
with the fastest urbanization speed. For the four periods of 2000‐2005, 2005‐2010, 2010‐2015 and 2015‐
2020, the mutual conversions between cropland and woodland are relatively stable in each period. 
Most  of  the  soil  erosion  reduction  caused  by  the  conversion  from  cropland  to  grassland  is 
concentrated in 2010‐2020, while the soil erosion increase caused by the conversion from grassland 
to cropland shows a decreasing trend year by year. 

4. Discussion 

Constant  soil  erosion  rates measurement  and observation  at  large  scales have proven  to be 
extremely challenging and unrealistic. Based on field sampling surveys, the CSLE model and LUCC 
data, we proposed a rapid monitoring method to extrapolate cropland soil erosion rates and soil loss 
from point to surface in mountainous areas. The field investigated 20,155  land parcels share same 
standards in data quality and all of them meet the USLE‐type empirical model requirements in size 
and scale (less than 150 ha). The LUCC data was further improved using a non‐homogeneous voting 
method,  with  steps  of  accuracy  assessment,  consistency  analysis  and  standardization  of  the 
classification system. To facilitate decision‐making, we provided continuous distribution information 
on cropland erosion rates, hotspots and soil loss amounts. The soil erosion rates of each land type are 
in good consistency with the reported values in literatures [6,30]. Apparently, when choosing a soil 
erosion model, one should pay more attention to model strengths, limitations and application scope. 
If the input data does not meet the requirements, the results produced by over‐parameterization and 
scaling extrapolation are often less reliable than those given by a simple model. 
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Under climate change and land use change scenarios, cropland erosion and degradation are a 
mutually  promoting  process.  In  areas  with  extremely  high  biodiversity  like  Yunnan,  the 
implementation of policies such as returning farmland to forest/grass is of great value in controlling 
soil erosion and protecting habitats and biodiversity. However, our research shows that a cropland 
area of 7461.83 km2 (−10.55%) has vanished during the past 20 years. which is an extremely shocking 
number, and the originally small cropland area per head of population is continuing to shrink, the 
newly  reclaimed  slope  lands  are  often  accompanied  with  severe  soil  erosion  rates,  directly 
threatening local food security. The real threat should be noted here is that more and more land is 
becoming unfarmable due to high soil erosion rates. It is estimated that if the current soil erosion rate 
in China continues, the food production will decrease by 40% in the next 50 years [14]. Moreover, the 
rising global population demands intensification of agricultural production to meet food demand, 
which is expected to increase by 50% in 2030 and possibly a doubling in 2050 [1]. If current population 
growth speed and soil erosion rates continue unchecked, humankind may eventually lose the ability 
to  feed  itself  in  the  future  barring  unforeseen  scientific  advances  [5].  The  regulation  of  sloping 
croplands is extremely difficult in mountainous areas, as the croplands are fragmentedly distributed 
on steep slopes. According to local statistics [82], the annual average cropland land area with newly 
treated erosion control measures in Yunnan is 31.69 km2. It will take more than 1,000 years and 180 
billion yuan to complete the regulation of unmeasured sloping cropland and, and this is assuming 
that each cropland can be managed without considering the difficulty of governance. Considering 
the cropland loss speed, urgent action is needed to face the threat of cropland soil erosion with shared 
understanding by  considering  collaboration  and  interrelationships  among  stakeholders, different 
roles (e.g. scientists, governments, farmers, environmentalists). 

Field observation of soil erosion is always closer to the truth than the modelling results, and it is 
the most vital part of  scientific  investigation. However, most  regions around  the world have  the 
problem of under‐representation of observational data. Currently, remote sensing is instrumental for 
investigating, evaluating, monitoring and understanding the spatial extent and rate of soil erosion 
due  to  the  advantages  of  large  coverage  area,  short  revisit  period monitoring. High  resolution 
imageries provide high quality data and less uncertainties in soil erosion mapping, but their utility 
remain hindered due to the acquisition cost. As the spatial, hyperspectral and temporal resolution 
continuously increase, it sheds more and more light on small scale heterogeneity, and most of the 
limitations of large‐scale soil erosion modelling may eventually dissipate in the future. With a robust 
framework of sample density and samples, remote sensing applications in large scale dynamic soil 
erosion mapping and monitoring will be very promising. 

We proposed a combination method of point (PSUs) and surface (LUCC data) for quantitative 
soil erosion assessment in a large region, the work depended greatly on the detailed data collection 
in  the  field.  The  NSES  was  the  first  ever  national  soil  erosion  investigation  using  based  field 
investigation,  which  ensures  the  accuracy  of  the  input  data.  However,  the  quality  and 
representativeness of the data for areas with low sampling density and missing sample information 
requires more in‐depth evaluation. 

5. Conclusions 

Long‐term, quantitative large‐scale cropland erosion rates information is vital for agricultural 
planning  and management,  but  long  been  hindered  by  data  availability  and model  limitations. 
Taking the CSLE as monitoring tool, by integrating a large number of field sampling surveys and 
LUCC remote sensing data in the national surveys, we proposed a long‐term time series dynamic 
method  of monitoring  cropland  soil  erosion  rates  and  soil  losses,  and  conducted  an  application 
research in the Yunnan Plateau with complex terrain conditions. Different from previous studies, this 
study was conducted based on a large number of field surveys and remote sensing for improving 
model input data and reduces the uncertainties. The results showed that:   

(1) The average soil erosion rate and erosion ratio of cropland are significantly higher than other 
land use types, and huge spatial erosion differences were within each land use type. In addition, soil 
erosion  rates  are  generally  more  sensitive  to  slope  than  slope  length  for  all  land  uses.  Soil 
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conservation measures  adopted  in  croplands  are  highly  effective  in  controlling  soil  erosion  and 
changed the spatial pattern of soil erosion significantly.   

(2)  In  the  past  20  years,  due  to  the Grain  for Green  Policy,  population  growth  and  rapid 
urbanization expansion, the area of cropland and grassland in Yunnan continue to decrease, with the 
reduction ratios both exceeding 10%, while the built‐up impervious land has increased by 300% in 
land area. The conversions between cropland and grassland  is mainly  concentrated  in  the  Jinsha 
River Basin and northern parts, while  the  conversion between  cropland and woodland  is widely 
distributed throughout the province, especially in the southern region. Cropland related conversions 
account for 74.02% of all LUCC scenarios and show significantly different transformation intensities 
for each period.   

(3) Significant land use changes in landscape scale pose huge  impacts on cropland erosion in 
Yunnan. During 2000−2020,  the amount of  cropland  soil  loss has decreased by 0.32×108  t, with a 
decrease  rate of 12.12%. Net  soil  loss change varies  significantly  in  the  six major  river basins  for 
different periods and LUCC scenarios. Except for the reclamation of cropland in the lower reaches of 
river basins and southern Yunnan, which bring a large amount increase in net soil loss, soil erosion 
in other areas significantly reduced due to the sharp reduction in cropland area. It is the first long‐
term quantitative  study of  cropland  soil  erosion  in  the  area with multiple national  investigation 
efforts, and is of great significance in under‐standing the soil erosion patterns of cropland, clarifying 
the direction and focus of prevention, as well as protecting precious cropland resources to ensure 
food security in mountainous areas. 
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