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Abstract: Large scale cropland erosion rates mapping and dynamic monitoring are critical for
agricultural planning but extremely challenging. In this study, by using field investigation data
collected from 20,155 land parcels in 2,781 sample units in the National Soil Erosion Survey, land
use change data for two decades from the National Land Use/Cover Database of China (NLUD-C),
we proposed a new point to surface approach to quantitatively assess long-term cropland erosion
based on the CSLE model and non-homogeneous voting. The results show that cropland in Yunnan
suffers from serious problem with unsustainable mean soil erosion rate of 40.47t/(ha-a) and erosion
ratio of 70.11%, which are significantly higher than those of other land types. Engineering control
measures (ECMS) have a profound impact on reducing soil erosion, soil erosion rate of cropland
with and without ESMs differs by more than five times. Over the past two decades, the cropland
area in Yunnan continues to decrease, with a net reduction of 7461.83 km? and a ratio of —-10.55%,
which causes corresponding 0.32x108 t (12.12%) decrease in cropland soil loss. We also quantified
the impact of different LUCC scenarios on cropland erosion, and extraordinarily high variability
was found in soil loss in different basins and periods. Conversion from cropland to forest
contributes the most to cropland erosion reduction, while conversion from grassland to cropland
contributes 56.18% of the increase in soil erosion. Considering the current speed of cropland
regulation, it is the sharp reduction in land area that leads to cropland erosion reduction rather than
treatments. The dilemma between the Grain for Green Policy and Cropland Protecting Strategy in
mountainous areas should be treated carefully with shared understanding and collaborations from
different roles.

Keywords: sampling survey; CSLE; land use change; non-homogeneous voting; cropland erosion
rate
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1. Introduction

Soil, one of the earth’s most precious and threatened resources [1], provides humans with far
more than foods but also a large variety of services like biomass production, water filtration, nutrient
transformation, carbon storage, habitat and terrestrial biodiversity maintenance [2,3]. However, most
of the soil resources worldwide are only in poor health conditions, and accelerated soil erosion
induced by inappropriate human activities and related land use change, is the primary driver behind
the problem [4,5]. Soil erosion refers to the complex process of soil materials detachment,
transportation, and deposition by external erosive forces. It causes on-farm impacts of reduced soil
fertility and productivity [6,7], and also leads to greater off-site costs such as muddy flooding,
sedimentation, water pollution [8] and at stake are the global biogeochemical cycles [9,10]. Literature
and runoff plots observations have demonstrated that cropland is the main source of soil loss
[5,11,13], and the soil erosion rates from which can be orders of magnitude greater than natural soil
formation speed and those from other land use types [13-15], especially in mountainous areas. It is
estimated that about 80% of the agricultural land around the world is suffering from serious erosion
problems, with an unsustainable mean annual cropland erosion rate of about 30 t/(ha-a).
Consequently, more than one-third of cropland has been vanished in the last decades due to soil
erosion [16]. To monitor and assess the impacts of soil erosion and make strategies to deal with them,
mapping up to date quantitative information on cropland erosion rates at regional scale is essential
but also very challenging [17,18], since for most areas worldwide the observed erosion data is
woefully inadequate.

On the one hand, it is difficult to gain insight into the spatial pattern of soil erosion without
specific soil erosion rates and hotpots information, confusion raises in the allocation of soil erosion
mitigation programs and priorities, the formulations of policies, and the effectiveness evaluation of
soil conservation measures [19]. Besides, knowledge gaps will be generated in critical fields like
climate change, landslides and flood prediction, carbon mitigation scenarios and earth science
modelling, and the well-known polices of SDGs, CAP, UNCCD and IPBES will be out of focus [20].
Despite soil erosion modelling and prediction have received considerable attention from
governments and scientists for more than seven decades [21,22], with various empirical, conceptual
and physically-based models and approaches been developed to measure, estimate and monitor soil
erosion from field to landscape scales [23-26]. Yet, most models are only applicable to micro-scales
like field plots, hillslopes and small catchments, and are difficult to applied to large scales due to the
spatial heterogeneity of soil erosion affecting factors [28], scale issues [14,27], model limitations and
applicability [14,29,30], especially high demand for model input data [20,31]. Since most empirical
soil erosion models are established based on the scales of plots and hillslopes with certain applicable
conditions and scopes [31]. For example, the most widely applied soil erosion prediction USLE-type
models, are originally developed at the plot scale for agricultural lands (gradient less than 18 %)
based on the “unit plot concept” of a 22.1 m long, 1.83 m wide plot, with a 9% slope with up-and-
down hill tillage [20]. The major limitation of soil erosion modelling for any given area is the
microscopic process involved is less considered, and it is difficult to acquire up-to-date soil erosion
information like crop rotation, terracing, mulching, contouring and hedgerow planting at large
scales, especially in fragmented mountainous landscapes. When upscaling the models to large scales,
the input variables or parameters of the models generally simplified, huge uncertainties may lead to
extrapolation error, and the reliability of the results is often questioned. Currently, the contradiction
between the relatively low resolution of available input data and the high resolution required for
runoff-erosion processes is the major obstacle to overcome for large scale dynamic quantification of
soil erosion [29]. For mountainous areas, poor data availability, timeliness and data quality has been
the biggest obstacle in mapping and visualizing soil erosion rates at large scales [32].

To date, limited by the over parameterization of physical models and poor datasets available,
large scale soil erosion assessment methods are generally based on empirical models, and can be
divided into two categories of sampling surveys and remote sensing assessments [27,33]. (a)
Sampling survey refers to the method of allocating samples within a region according to certain
proportion and rules, field investigation on erosion features and parameters is then conducted, soil
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erosion models will be further applied to quantify soil erosion rates or conditions, and statistical
methods will be used to estimate the overall soil erosion patterns of the region finally. The typical
examples are the National Resource Inventory (NRI) conducted in the United States [34], the National
Soil Erosion Survey in China [35], the EUSEDcollab network [36] and the gully erosion monitoring
based on the Land Use/Cover Area frame survey in Europe [37]. (b) Another category is remote
sensing based assessments with simplified models. Since large-scale application of complex models
is challenging, as the availability of high-resolution remote sensing images increases, large-scale
estimation using empirical models such as USLE/RUSLE, becomes feasible due to the relatively
simple input data. Compared with field investigation, satellite remote sensing is characterized by
timely, affordable data, uniform data over large areas, real-time information acquisition and regular
revisit wide view field [38], and has been widely applied in soil erosion modelling and mapping [39].
Particularly, efforts have been put into direct soil erosion detection [19,40], and parameters of rainfall
erosivity estimation [41,42], soil related properties derivation [43], topographic factors extraction [44],
cover-management (C-factor) and support practices (P-factor) [45—48], specific soil conservation
measures mapping using high-resolution imageries [49-51], as well as those large-scale soil erosion
assessments with raster layers operations [52,53]. The biggest advantage of sampling survey is it
provides reliable soil erosion rates, and large-scale spatial patterns of soil erosion status can be
achieved by combining with statistical principles [54,55], but the field measurement and investigation
of indices is labor-intensive and high cost. Remote sensing-based methods allow rapid and efficient
soil erosion assessment even in areas that intensive field investigation is a challenge, but more in a
qualitative or semi-quantitative way. Although high resolution imagery like SPOT 5, IKONOS and
Quikbird ensure high quality data in erosion mapping, their utility remain hindered as large area
imageries are also unaffordable for most countries [40].

Previous studies [56-59] confirmed that land use/cover change (LUCC) is the primary cause of
accelerated soil erosion under climate change scenarios, and is the most direct and intuitive reflection
of the interaction between human activities and the soils on earth surface [60]. For most cases, the key
to prevent soil erosion is to change various unreasonable land uses to a sustainable mode which in
line with the principles of sustainable development, such as the projects of returning farmland to
forest/grassland and converting slopes into terraces in China. Meanwhile, compared with the
inversion of soil erosion indices, remote sensing application in LUCC monitoring is the field with the
most complete and mature technology. At large scales, by integrating most commonly usedLandsat
series data imagery, relevant studies [61,62] also reveal the long-term impact of land use change on
soil erosion, and provides the suitable information necessary for assessing soil erosion intensity, but
due to the lack of field-based soil erosion investigation data, the estimated dynamic results are
generally potential soil erosion risks without exact dynamic soil erosion rates. Obviously, more
detailed field experimental data that accurately quantify soil erosion rates are needed.

In 2010 through 2012, the Ministry of Water Resources of China (MWRC) conducted the first
ever and only field-based National Soil Erosion Survey (NSES) in history by using sampling survey
and the Chinese Soil Loss Equation (CSLE) [63-65]. Those detailed onsite investigated provides
abundant information on soil erosion rates at land parcel scale, which reduces the uncertainties in
soil erosion modeling and prediction. As soil erosion is a dynamic process demands constant
monitoring to obtain up-to-date information on its spatial pattern [40]. The combination of
advantages between both sampling survey and remote sensing is definitely the potential solution for
the dilemma of large-scale soil erosion rates quantification. The objectives of this paper, is thus to
quantitatively assess the cropland soil erosion dynamics induced by the long-term cropland change
in mountainous areas, with perspectives from soil erosion field investigation and the LUCC scenarios
based on time-series satellite images.
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2. Materials and Methods

2.1. Study Area

Yunnan Plateau (20°8'-29°16'N, 97°31'-106°12'E) is a low latitude highland region situated in the
southwest border of China, it covers a total area of about 3.83 x10° km?, and borders the Himalayan
Range, Myanmar, Laos and Vietnam (Figure 1). Mostly mountainous in character, 94% of the
province is dominated by mountains and plateaus, only 6% of which interspersed with small,
scattered valley basins. The landscape tilts downward from the northwest to the southeast, and
elevation ranges from 76m to 6740 m above sea level, with an average altitude of 2000 m [65]. Affected
by the Indian and East Asian monsoons and air masses from the Qinghai-Tibet Plateau, the region
has a subtropical plateau monsoon climate with substantial variation, though relatively mild due to
the elevation. Mean annual precipitation varies from 600 in dry-hot valleys to 2300 mm in the
southern and western mountains, with over half of the rain occurring between June and August,
while the dry season (November to April of the following year) accounts for only 20% or less of the
1100 mm annual precipitation. Annual average temperatures in the winter and summer are 6-8 °C
and 19-22 °C, respectively [33,35]. Soils in Yunnan are generally rich in clay and formed under high
precipitation and temperature conditions such as Acrisols, Cambisols and Luvisols. It is particularly
worth mentioning that Yunnan has long been recognized as the hotspot of biodiversity in China.
Taking vegetation resources as an example, tropical, seasonal, subtropical evergreen broad-leaved,
temperate coniferous forests and meadow steppes can all be found in the region [69]. The landscape
is deeply dissected by six major rivers of the Irrawaddy, Nu (Salween), Lancang (upper reach of the
Mekong), Jinsha (upper reach of the Yangtze), Honghe and Pearl. The province also owns the largest
sloping cropland area in China, as the limited basin areas already been fully utilized, soil erosion
pressure on remaining land resources is extremely high.
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Figure 1. Map of Yunnan province showing six major rivers, basins, cities and elevation variation.
2.2. Data Sources

2.2.1. Sampling Survey and Primary Sample Units (PSUs)

The sampling survey in the NSES was conducted using a non-equal probability sampling
method (Figure 2a). In view of the dominant erosive force of soil loss and the integrity of county
boundaries, the whole country was firstly divided into water erosion region, wind erosion region,
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freeze thaw erosion region and other regions co-occurrence erosion (Figure 2b). Generally, a uniform
national gridding was employed for water erosion, which has the greatest implications. Four layers
of grids were set according to the grid size, including the county-level (40 km=40 km), township level
(10 kmx10 km), the control area level (5 kmx5 km) and Primary Sample Units (1 kmx1 km). The grids
were divided according to the Gauss-Kriiger Projection zoning method, which divides the country
into 3°interval geographical zones (a total of 22 zones). In each zone, the Y-axis direction is divided
into grids on both sides based on the central meridian, and the X-axis direction is divided into grids
on both sides based on the equator. PSUs for water erosion was allocated with four sampling densities
of 4%, 1%, 0.25% and 0.0625% [66,67]. For the plain area, PSU was a single 1 kmx1 km grid, while for
the mountainous area, PSU was a small watershed of 0.2-3.0 km?2. PSU is a small geographical area
with a fixed location and a certain area that can express the basic characteristics of soil erosion and
show spatial heterogeneity in soil erosion factors (especially soil conservation measures). For areas
of glaciers, permanent snowfields, deserts, swamps, large lakes and reservoirs where no water
erosion occurs, and high altitudes exceeding 4800 m with less human activities, water erosion was
generally less considered [66,67]. Based on the erosion characteristics, human disturbance and
accessibility of each province, a total of 33, 966 PSUs were determined nationwide in the NSES (Figure
2d). Compared to the NRI, NSES in China is actually an area sampling survey rather than a point
sampling survey.

«~ 40km ———>

Figure 2. (a) A spatial representation of the sampling design and grid division scheme; (b) Soil and
water conservation regionalization map of China based on erosive forces; (¢) Primary sample units
(PSUs) allocated in Yunnan province in the National Soil Erosion Survey (NSES) in China; (d)
Distribution of corresponding PSUs with different sampling densities and investigation goals in
NSES.

PSUs were the main object of field investigation and data collection in the NSES. Each PSU was
then divided into pieces of land defined as a land parcel that share the same land type and
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conservation measure. Data gathers were then trained to investigate each land parcel and collect
information concerning soil erosion factors of the CSLE with uniform standards. Specifically, by
using high-precision topographic maps as field survey base maps, detailed information such as land
parcel number, fraction vegetation coverage, canopy density, land use, vegetation type, engineering
measures and crop rotation patterns were acquired. Suffering from serious water erosion problem,
Yunnan attracted a lot of attention in the NSES, and both the number of PSUs and land parcels
selected were the largest among all provinces in China, with 2,817 and 20,155 respectively (Figure
2c). All these field investigated data was provided by Beijing Normal University (the technical
support unit of the NSES) [65,69].

In addition to the data of field investigation, critical data involved in calculating annual average
soil erosion rate was obtained nationwide as follows: (a) Daily erosive rainfall (greater than 12 mm)
data for three decades; (b) Digital DEMs of 1:10,000 scale for each PSU to extract slope gradient and
length; (c) More than 10,000 records of soil profile data and soil types at 1:500,000 scale retrieved from
the Second National Soil Survey, and observed unit plot and cropland plot data; (d) time series multi-
spectral reflectance data of Sentinel-2, Landsat TM/ETM/OLI images prepared to revise vegetation
indices during 2000-2020; (e) High resolution satellite imagery in Yunnan of GF-1 (2m), GF-2 (1 m),
GF-7 (0.8 m) images and Beijing-2 (resolution of 0.65 m) at different periods to optimize land use map.

After standardized data processing, each PSUs contain 7 raster layers (spatial resolution of 10
m) of soil erosion factors in the CSLE model, soil erosion modulus was then computed by using raster
multiplication operation and statistical methods, soil loss for each land use type was finally evaluated
at land parcel, PSU, province and national levels. Figure 3 presents the detailed information on a
random PSU of small watershed and each land parcel within it. For this study, the most critical data
is the multi-year average soil erosion rate of various land use parcels obtained based on field surveys,
which is the basis for comprehensive analysis of soil erosion distribution, area, ratio and intensity.
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Figure 3. A random example of field investigated PSU and layers of detailed soil erosion information
(factors and rates, a resolution of 10 m).

2.2.2. Land Use/Cover Change (LUCC) Dynamics
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Initialized in the latter half of the 1990s, the National Land Use/Cover Database of China (NLUD-
C) [70] has been applied to land use/cover related researches as the most well-known LUCC database
in China for decades. By drawing boundaries and labelling attributes for each LUCC polygon based
on Landsat TM/ETM/OLI images (resolution of 30 m), we have updated the database for several
periods using interactive interpretation method. NLUD-C include datasets of land use status and
LUCC dynamics of China with a 5-year interval, and land use types are classified into six first-level
categories and 25 corresponding second-level classes.

Compared to numerous LUCC products retrieved using automatic classification and change
detection methods, the biggest advantage of NLUD-C lies in the professional knowledge, uniform
interpretation symbols and unified image acquisition phases before and after, which ensures its high-
accuracy information of land attributes. Although the OA of NLUD-C is significantly higher than
other similar products, distortion and inaccurate patch boundaries still exists in mountainous areas
since manual geometric correction is performed at different periods. At present, remote sensing
LUCC data with higher resolution may be a better choice for soil erosion modeling as it reduces
model uncertainty, but is also characterized by shortcomings of high image acquisition costs and
short time series. To optimize the accuracy of land use data, we employed NLUD-C as the main
LUCC basis, supplemented by 7 publicly accessible used non-homogeneous LUCC datasets, which
are three long term 30 m resolution products of GLC_FCS30 [71], CLCD [72] and GlobeLand30 [73],
as well as four short term 10 m resolution products of ESRI_LandCover [74], ESA_WorldCover [75],
CRLC [76] and Dynamic World from Google [77]. The detailed information of those land use datasets
is listed in Table 1. In this study, land use maps of Yunnan in 2000, 2005, 2010, 2015 and 2020 were
prepared for further analysis.

Table 1. Details of the used publicly accessible non-homogeneous LUCC datasets.

Datasets Image Source Method Cover Resolution OA
NLUD-C Landsat TM/ETM Interactive Interpretation =~ China 30m >90%
GLC_FCS30 Landsat TM/ETM/OLI Random Forest Global 30m 82.5%
CLCD Landsat TM/ETM/OLI Supervisory Algorithm China 30m 79.31%
GlobelLand30 Landsat/HJ-1/GF-1 POK method Global 30m 85.72%
ESRI_LC Sentinel-2 Deep learning Global 10m 85%
ESA_WC Sentinel-2 Random Forest Global 10m 75%
CRLC Sentinel-2 Deep learning China 10m 84%
Dynamic World Sentinel-2 Deep learning Global 10m 72%
2.3. Methods

2.3.1. The CSLE Model

By adapting parameters of the Universal Soil Loss Equation (USLE) to China, Liu et al.
developed the CSLE model based on measured data from Chinese unit plot and numerous plots
modified to unit plot [64]. As the official model of the Ministry of Water Resources of China (MWRC)
for soil erosion assessment, the differences of CSLE compared to USLE are modifications that made
for crop system, management, practice, soil type, rainfall pattern and topography in China.

CSLE is a model used to estimate annual soil loss by sheet and rill water erosion for a given
combination of the soil erosion affecting factors. The major advantage of CSLE is that it is more in
line with the topographical conditions and the actual situation of soil conservation measures in
China, while the two factors of cover management and support practices (C, P) in USLE were
modified into three factors of biological measures (B), engineering measures (E) and tillage measures
(T) [64,65]. Five dimensionless factors of slope length, slope gradient, biological measure, engineering
measure and tillage measure are used to modify the soil loss determined by the dimensional rainfall
erosivity factor and soil erodibility factor in this model.

The principal equation of CSLE can be expressed as follows:
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A=RxKxLxSxBxExT (1)

where A is mean annual soil loss with unit of t/(hm?a); R is the rainfall and runoff factor or rainfall
erosivity, MJ-mm/(hm?h-a); K is the soil erodibility factor, t-hm?h/(M]-hm?mm); L is the slope length
factor and S is the slope steepness factor; B is the biological measure factor; E is the engineering
measure factor; T is the factor of tillage measures, B, E, T factors have a unitless range of 0-1 and the
smaller the value is, the better the soil conservation effect of a certain measure is.

The specific calculation methods of R, K, L and S factors are described in detail in our previous
work [60,78] and related literatures [79,80] and listed as follows:

R=YR, )

1 -
R=20 2@ B 3)

&
MR = 4)

where k represents the 12 months in a year, R« is the average rainfall erosivity in the k-th month
(MJ-mm-ha-t-h-1-a™!), N refers to the time series, the term « is a value of 0.3937 for the warm season
and 0.3101 for the cold season, Pijk is the actual erosive rainfall (212 mm) of the j-th day in the k-th
month in the i-th year, m is the number of days with erosive rainfall in the corresponding month. WR«
is the ratio of average rainfall erosivity in the k-th month to the average annual rainfall erosivity,
which reflects the seasonal distribution of rainfall erosivity.

K =[2.1x10* M (12-0M)+3.25(S -2)+2.5(P—3) | 1100 (5)
M=N(100-N,) (6)
M=NN+N) (7)

where N (particle size: 0.002-0.1 mm) is the percent of silt (0.002-0.05 mm) plus very fine sand (0.05—
0.1 mm), Nz (<0.002 mm) is the clay fraction, (100-Nz) (0.002-2 mm) represents all soil fractions other
than clay, OM is the soil organic matter content (%), S is the soil structure code and P is the soil
permeability code.

10.8sin6+0.03 o<5°

S§'=:16.8sin6—0.50 P <O<L1P (8)
21.95in60—-0.96 o>10°
m=0.2 0<1°

@y m=03 P<g<3
"4, —A4)x22.13"]|m=04 = F<f<5°
m=0.5 0>5°

where Li is the slope length factor of the i-th pixel, Awt and A are the pixel exit and entrance slope
lengths and m is the slope length exponent depending on the slope.
_ NDVI,, — NDVI

©)

FVC — soil
NDVI,,, - NDVI,,, (10)
5"
= &= 11
> "
1 Frc=0

B =40.6508—0.34361g FFCx100 0<FVC<0.783 (12)

0 FVC>0.783

where NDVImx refers to the regional maximum NDVI; NDVIwg is the NDVI value of the pure
vegetation pixels; NDVIsi is the NDVI value of the pure bare soil pixels; Bi is the B-factor of the i-th
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month. The relationship between the FVC and B value was compiled using Equation (12). The ET-
factors in the CSLE are mainly collected based on the field survey, with reference to corresponding
values from runoff plot experiments by local experts and an extensive literature review analysis on a
national effort.

2.3.2. Non-Homogeneous Voting and LUCC Optimization

The rapid development of remote sensing technology provides a key technical approach to
obtain comprehensive information on large-scale land use/cover distribution and changes. In recent
years, scientists worldwide have incorporated image processing methods to interpret and analyze
remote sensing images, and produced numerous LUCC products with different spatial resolutions.

Our accuracy evaluation of datasets and extensive literature review demonstrate that: (a)
automatic image classification and change detection approaches can provide satisfactory results only
when applied to certain land use types with homogeneous color and texture, such as water bodies,
built-up land, and bare rock [70]. Due to the difference in satellite sensors, processing methods and
classification systems, the description ability of earth surface conditions of different LUCC products
are also different, especially in fragmented mountainous areas like Yunnan, affected by cloudy and
rainy weather, high quality image availability is poor and the difference can be even more significant,
and the reliability of data is often questioned. For example, despite the 8 datasets we mentioned above
share similar definition of cropland, the cropland area of Yunnan in 2020 provided by them are totally
different. The cropland areas of the 4 long time series 30m-datasets are 6.74x10* km? NLUD-C,
3.24x104 km? for GLC_FCS30, 8.39x104 km? for CLCD and 10.99x10¢ km2? GlobeLand30, and the
cropland areas of the 4 recent 10m-datasets are 3.58x10* km? for ESRI_LC, 5.09x10* km? for ESA_WC,
9.77x10* km? for CRLC and 2.50x10* km? for Dynamic World, respectively. For Yunnan, based on our
field surveys, CLCD significantly underestimates the impervious area, GLC_FCS30 generally
underestimates the cropland area, GlobeLand30 significantly overestimates the cropland area,
ESRI_LC and Dynamic World significantly overestimates the impervious area, CRLC misclassifies
woodland into cropland and ESA_WC misclassifies divides impervious area into bare land.
Misclassification, omission and high confusion degree between grassland and shrub can be found in
almost all the datasets. High resolution dataset does not always provide more reliable information,
significant differences can be found at the same resolution. Obviously, the overall accuracy of global
or national-scale LUCC datasets in local areas needs to be verified, since the verification methods and
reference data for datasets are different, the independently completed accuracy assessments cannot
be directly compared [81]. Therefore, critical evaluation of the suitability and optimization of LULC
products based on application purposes should be made before use.

For plateau mountain areas like Yunnan, long term high-resolution (higher than 10 m) LUCC
data is inaccessible and impractical so far. Here, we proposed a non-homogeneous voting method to
modify and optimize the NLUD-C data. Specifically, we selected time series geometrically fine-
corrected Landsat images from October to February in each year to ensure the uniformity of multiple
phases. Based on NLUD-C, the interpretation symbols and the professional knowledge, the non-
homogeneous voting was then performed to analyze the classification consistency. For high
consistency degree area, we kept the first-level type to reduce uncertainty, while for high confusion
degree area, especially for basin valleys and urban periphery areas with frequent human activities
and dramatic changes, high-resolution remote sensing images were used to assist in precise visual
interpretation. Finally, the obtained time series LUCC data combines the advantages of multiple
datasets and avoids the respective shortcomings. Figure 4 presents the workflow of the non-
homogeneous voting method for modifying the LUCC data, and Figure 5 shows our revised NLUD-
C results in a typical inter-mountain basin, by using high-resolution remote sensing images, we also
compare them to three other time series land use products of different underlying surfaces.
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3. Results
3.1. Soil Erosion Pattern of Yunnan Based on Sampling Survey and Field Investigation

3.1.1. Investigated Land Parcel Basics of Yunnan in the NSES

According to the sampling survey, a total of a total of 20,155 land parcels in 2,781 PSUs were
investigated on site in Yunnan. The average area of the PSUs was 34.83 ha, and the average patch
area of the land parcels was 4.79 ha, which is in consistency with the model requirements. The
measured mean slope gradient for all the land patches was 20.23° and with a range of 0-82.8°, while
the mean slope length is 47.73 m and a range of 0-233.9, the average soil erosion rate of all the land
use parcels is 17.02 t/(ha-a). Table 2 lists the basic information in land parcels of the first-level NLUD-
C types. Obviously, in terms of spatial distribution, woodland has the largest average patch area and
number (a total of 10015 land parcels) and is the dominant land use in the landscape. The average
patch area of cropland is 2.77 ha, and the average slope reaches 17.88°, which is very prone to soil
erosion.

Table 2. Land parcel basics for the PSUs in Yunnan in the National Soil Erosion Survey.

1st Level Types NP APA Max-PA Min-PA ASG ASL SEM SEM Range
Cropland 6714 277  81.92 0.02 1788 4794 40.47 0-428.95
Woodland 10015 7.03  86.53 0.03 2279 48.62 537 0-174.12
Grassland 1742 3.05  73.16 0.02  20.84 4785 5.16 0-49.70
Water bodies 257 134 1856 0.03 414 2128 — —
Built-up land 1237 133 2501 0.01 14.02 4296 295 0-293.67
Unused land 190 250  41.96 0.04  19.05 4494 96.52 0-455.15

Notes: NP, number of patches; APA, average parcel area, ha; Max-PA, max parcel area, ha; Min-PA, min parcel
area, ha; ASG, average slope steepness, °; ASL, average slope length, m; SEM, soil erosion modulus, t/(ha-a).

3.1.2. Soil Erosion Rate Variations under Different Land Use Types and Topography

Table 3 lists the various soil erosion factors in the CSLE and the multi-year average soil erosion
rates of the NLUD-C second-level land types. Woodland has an overall higher average rainfall
erosivity than other types, with a value of 3570.37 thm2h/(MJ-hm?mm), followed by grassland,
cropland, built-up land, water bodies and unused land. The highest rainfall erosivity was found in
paddy fields and garden plantations (classified as woodland in NLUD-C) as they are mainly
distributed in southern Yunnan. Additionally, the lowest lower R values were found in sparse grass
and bare land, which are mostly distributed in the northern part of Yunnan and the dry-hot valleys
of the six major rivers. Since the main soil types are highly sticky, the K values are relatively close
and small in all regions. In terms of terrain factors, except for built-up land, water bodies, and
irrigated land (basically cropland in flat areas with irrigation conditions), all other land types are
characterized by great slope steepness and short slopes, LS values are generally high for sloping
cropland, gardens and unused land. In the CSLE model, the vegetation factor B is mainly for
woodland and grassland. The vegetation coverage of woodland in Yunnan is significantly higher
than that of grassland (lower B factor value), while the impact of vegetation on soil erosion is
incorporated into the tillage measure factor T, and intercropping and rotation are the dominant tillage
measures. Out of 6714 cropland parcels investigated, 52.25% of them were adopted with engineering
measures. Overall, cropland without ECMs contributes 83.51% of the total soil loss from cropland
with only a land area of 47.75%.

doi:10.20944/preprints202401.1264.v1
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Table 3. Soil erosion rates and factors of NLUD-C land types at parcel scale based on investigation.

NLUD-C Land Types

1st Level 2nd Level

Dryland 334394 0.006 148  5.69 1 069 033 4534

Cropland Paddy fields 3898.49 0.005 125 437 1 0.02 040 1.61
Irrigated land  2681.28 0.006 1.15 217 1 051 027 7380

Forest 348529 0.006 156 3.96  0.03 1 1 3.61

Shrub 3270.27 0.006 157 416  0.04 1 1 4.68

Sparse woods 3378.44 0.0056 155 373 012 096 1 14.48

Gardens 382529 0.006 152 642 0.05 077 098 6.65

Dense grass  3569.07 0.006 148 351 005 097 1 4.89

K L S B E T A

Woodland

Grassland ~ Moderate grass 321825 0.006 149 3.62 006 097 1 5.72
Sparse grass  3029.18 0.005 152 379 006 097 1 5.87
Water bodies — 314759 — 0.98  2.06 0 1 1 —
Rural 3249.22 0.006 140 457 0.02 0.2 1 1.18
Built-up land Urban 3200.18 0.006 091 071 0.01 0.09 1 1.20
Mining land 327148 0.005 139 381 095 0.14 1 18.21
Bare soil 294528 0.006 147 590 1 0.98 1 156.73

Unusedland 5 o rock 301759 0006 147 621 0 098 1 0

Notes: R, M]-mm/(hm?h-a); K, thm?h/(MJ-hm?>mm); L, S, B, E, T, dimensionless; A, t/(hm?-a).

As Yunnan is the only province with a fully plateau mountainous landscape in China, the impact
of terrain on soil erosion rate is crucial, and it is often the most important factor in water erosion
models. With the change of terrain conditions, the soil erosion rates of the five major land use types
except water bodies show varying degrees of difference in different slope gradient and length zones,
and soil erosion is much more sensitive to changes in slope steepness than to changes in slope length
(Figure 6). For cropland, the average annual soil erosion rate is 40.47t/(ha-a) and the erosion ratio of
70.11% (4707 out of 6714 land parcels with soil erosion rate higher than soil loss tolerance of 5 t/(ha-a)),
far exceeding other land types (28.57% for woodland, 35.42% for grassland, 10.27% for built-up land
and 60.53% for unused land). Rain-fed dry land is the main type of cropland (5644 out of 6714 land
parcels), and the soil erosion rate is 45.34 t/(ha-a) and erosion ratio of 81.48% (4599 out of 5644 land
parcels with soil erosion rate higher than soil loss tolerance), which are also significantly higher than
those of paddy fields and irrigated cropland. For woodland and grassland parcels, higher values are
mostly found in sparse vegetations and garden plantations (divided as woodland but retains the
attributes of cropland). Due to low coverage and intensive disturbance, high soil erosion rates of
built-up land were mainly found in mining areas. Bare soil suffers from some of the highest soil
erosion rates among all NLUD-C second-level land types, but it occupies a small area and does not
contribute much to the total soil.
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Figure 6. Relationship between topographical factors and land use type soil erosion modulus, for
slope length and gradient.

To better present the spatial pattern of cropland erosion rates, we mapped the spatial
distribution pattern of cropland erosion rates at the PSUs scale (Figure 7) according to the
classification standards of the MWRC. As can be seen from the figure, soil erosion rates in
downstream areas of the six major river basins are generally higher than upstream areas, and
aggregation occurred. Cropland land erosion rates in the central flat area was much lower.
Considering the influence of terrain, and the similarity in soil properties, planting system and
rotation patterns, the difference can be attributed to the fact that rainfall erosivity in the downstream
areas are significantly higher than those in the upstream areas.

>z

Mean Soil Erosion Rate (t/ha/a)
¢ o0-s 5050
5-25 80-150

LS
o g 2. .
[ 60 25-50 W =150

Figure 7. Soil Erosion Rates of Rain-fed Cropland in PSUs.

3.1.3. Impact of Engineering Conservation Measures on Cropland Soil Erosion

For a long time, scientists and soil conservancy departments have attached great importance to
soil conservation in cropland, but limited by data availability, little is known about the effectiveness
of engineering conservation measures (ECMs) at large scales. ECMs refer to the measures applied by
changing micro terrain conditions to intercept runoff, increase soil infiltration or crop production,
such as the level terrace, sloping terrace, fruit tree pit, check dam, intercepting drains, diversion canal,
etc. In the NSES, one of the major tasks is to conduct detailed field surveys on the type, distribution,
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quantity and area of ECMs. We also quantify the impact of ECMs on soil erosion based on literature,
standard runoff plot observations and data collected under natural or artificial simulated rainfall
conditions. To further understand the impact of ECMs on cropland erosion, we also mapped the
spatial distribution of ECMs on PSUs that contain cropland parcels, and analyzed their impact on soil
erosion rates at different slope steepness intervals (Figure 8a). Obviously, except for the cultivated
areas with flat terrain and low soil erosion rate in the central part, ECMs are spatially distributed
throughout the province. The proportion of cropland parcels with ECWs shows a decreasing trend
as the slope steepness increases. This is mainly because large scale adoption of remediation measures
on steep slopes in plateau mountainous region is difficult, unaffordable, and may cause disaster like
landslides. Besides, farmers are more encouraged to return steep slope cropland to forest/grass rather
than terraced fields based on the Grain for Green Policy.

Figure 8b reveals the effectiveness of soil conservation measures in mitigating cropland erosion
beyond just a reduction in the magnitude of erosion rate. For the sloping cropland in the province,
soil erosion rate of both cropland with and without ECMs increases as the slope gradient increase.
Based the field investigation, cropland parcels can be found in 1863 out of 2871 PSUs, the average
cropland soil erosion rate with ECMs is 12.14 t/(ha-a), while the average cropland soil erosion rate
without ECMs is 67.25 t/(ha-a), and the rate difference is more than five times, which is based on the
premise that low erosion rate cropland in the central part does not equipped with ECMs. For steep
slope zones, this difference can be even bigger and reaches a gap of 100 t/(ha-a) for steepness class of
30-35°, indicating that the effect of ECMS also decreases as the slope gradient increases. Apparently,
the allocation of ECMs largely affects the spatial distribution pattern of cropland erosion rates. In
terms of soil loss prevention, almost all the croplands in Yunnan demand ECMs to control the soil
erosion within tolerant rate. But more attention to focused on assessing the difficulty, cost and
effectiveness of the treatment (including soil productivity) to determine priorities where projects
should really be adopted.
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Figure 8. The soil erosion rate of cropland with engineering measures and without engineering
measures.

3.2. Land Use Change Dynamics in Yunnan from 2000 to 2020

By following the update mode of NLUD-C data, we optimized land use change dynamics data
of Yunnan from 2000 to 2020. Figure 9 shows the corresponding land use maps of year 2000, 2005,
2010, 2015, and 2020. Woodland (67.79%—68.44%), cropland (16.56%-18.51%), and grassland
(10.43%-11.64%) are the dominant land types. Woodland can be found in the whole province,
cropland is mainly distributed in the central, northeast and southeast parts, and grassland is
concentrated in the Jinsha River Basin and the dry-hot valleys of other river basins. The proportions
of water bodies (1.19%-1.22%), built-up land (0.82%-3.33%) and unused land (0.05%-0.06%) are
relatively low.
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Based on the land use transfer matrix, the land use transformation process and change dynamics
from 2000 to 2020 were presented in Figure 10. For the 2000-2005 and 2005-2010 periods, the total
land change areas were 1.62x10* km? and 1.73x10* km? respectively, of which the conversion between
cropland and woodland were the dominant change. For the 2010-2015 and 2015-2020 periods, the
total land change areas were 2.06x10* km?2 and 1.97x10* km? respectively, and the cropland-grassland
transformation dominated the periods, the one-way conversion from cropland to built-up land was

also noticeable.
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Figure 9. Optimized land use maps of Yunnan from 2000 to 2020.
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Figure 10. Land use transfer process and change dynamics in Yunnan from 2000 to 2020.

The main LUCC characteristics of Yunnan Province from 2000 to 2020 can be summarized as
follows. The built-up land area continues to rise, with a net increase of 9451.57 km? and a rate of
300.39%. The cropland area continues to decrease, with a net decrease of 7461.83 km? and a rate of
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-10.55%. The grassland area continues to decrease, and the net decrease was 4603.39 km?, and a rate
of —10.36%. The woodland area increased by 2482.63 km?, but because of the large area base, the
change rate was the lowest at 0.95%. The water bodies and unused land were relatively stable, with
increasing areas of 92.75 km? and 36.75 km?, respectively. Although the change trend of LUCC in each
period is relatively consistent, significant differences were also found in region, quantity and main
change scenarios. It should be highlighted that the land conversion area related to cropland accounts
for 74.02% of all the transformation scenarios, and is the most significant type of land use conversion.

To finally achieve dynamic quantitative monitoring of cropland erosion rate and soil loss, as a
focus, we analyzed the conversions between cropland and other land types spatially. For each time
period, most of the cropland change area was converted to woodland, grassland or built-up land,
with less conversion to water bodies and unused land, while the cropland reclamation area was also
mostly from grassland and woodland (Figure 11). The cropland-woodland conversions were mainly
found in the river basins of Lancang, Nu, Irrawaddy and southern parts, while the
cropland—grassland conversions mainly occurred in the Jinsha River Basin and the central
grassland—cropland-built-up transition zones. In the past 20 years, the cropland loss area of the six
major river basins was ordered as Lancang(21.35 km?) > Honghe(13.86 km?) > Nu(13.45 km?) >
Pearl(10.76 km?)>Jinsha(9.70 km?) >Irrawaddy(5.50 km?), while the cropland loss ratio was ordered
as Nu(28.76%) > Irrawaddy (22.95%) > Lancang (20.34%) > Honghe(10.20%) > Pearl(5.74%) >
Jinsha(4.66%). Apparently, northwestern Yunnan are suffering serious cropland degradation and loss
problem.

As can be seen from Figure 1le that the areas with the largest net decrease in cropland are
concentrated in the western Yunnan, and mainly distributed in the Irrawaddy River Basin, Nu River
Basin and Lancang River Basin. The spatial pattern of cropland decrease trend in the three river
basins are basically consistent with each other. Specifically, the net cropland decrease from 2000 to
2005 was mainly found in the upper reaches of the basins, as time changes, the center of the net
cropland decrease gradually moves from the upstream to the downstream areas. Nearly 90% of the
basin area is experiencing cropland loss. Especially in the Irrawaddy River Basin, the net decrease
was mainly concentrated in the middle and upper reaches before 2015. From 2015 to 2020, the entire
basin was experiencing a net decrease in cropland.


https://doi.org/10.20944/preprints202401.1264.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1264.v1

(e) 1. 2000-2005 i. 20052010 fif. 20102015 Vi 2015-2020

72
¥ v

Figure 11. Spatial distribution of cropland conversions and net change at county level in Yunnan.

3.3. Cropland Soil Erosion Dynamics in Yunnan from 2000 to 2020

In previous work, we optimized the input parameters of the CSLE with the annual average
values of vegetation coverage and erosive rainfall data from 2000 to 2020, and recalculated annual
average soil erosion rate for each land type of the PSUs. Since NLUD-C update and NSES originate
from different programs and with different application purposes, the land use/cover classification
system of NLUD-C is much simpler than field investigation. Thus, we unified the classification
system and retained the six first-level land types of NLUD-C, and determined the average soil erosion
rate using an area percentage weighted average method in PSUs. The high-precision soil erosion rate
for different land types in PSUs was further interpolated to the corresponding control area of PSUs
using a nearest neighbor interpolation method. Finally, net soil erosion rate and soil loss changes for
different land use conversion scenarios was calculated (Table 4), and then up-to-data quantitative soil
erosion dynamic information on cropland can be acquired by incorporating with the revised LUCC
dynamics area during the past two decades (Figure 12). Considering the average soil erosion rate of
each land type, for different LUCC scenarios in Yunnan, cropland change induced increases and
decreases in soil erosion rate and soil loss exists during the four periods. Conversions from cropland
generally reduced the soil erosion intensity, while slope cropland reclamation was the main LUCC
type that intensifies of soil erosion.
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Table 4. Soil erosion rate change under different LUCC scenarios in the six major river basins.

LUCC Scenarios Honghe Irrawaddy Jinsha Lancang Nu Peal
CtoF -46.02 -31.72 -24.63 -65.22 -52.90 -28.80
CtoG -44.82 -29.02 -23.12 -64.31 -48.91 -28.53
CtoW -50.12 -34.53 -29.17 -69.95 -57.06 -33.12
CtoR -43.23 -28.16 -27.72 -66.53 -55.72 -29.27
CtoU 64.02 101.11 63.23 93.83 115.62 54.69

Notes: unit, t/(ha-a); C-cropland; F-forestland; G-grassland; W-water; R-residential land; U-unused land.
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Figure 12. Calculation process of net soil erosion change caused by the transformations of cropland.

Figure 12 presents a representative area located in Jinsha River basin, each grid is the control
area (grid size of 5 km x 5 km ) of a certain Primary Sample Unit. Through sampling surveys, we
calculated the multi-year average soil erosion rate of all the land use types in the corresponding grids,
as well as the erosion rate change of various conversion scenarios. As can be seen that both cropland
abandonment and expansion were found in the region, there is a significant soil erosion rate variation
for the same LUCC conversion among grids despite they are very close in spatial distance. During
this period, 1.66 km? and 0.91 km? of cropland abandonment and expansion occurred in the
representative area, with the largest area of cropland converted to built-up land, followed by area
converted to water bodies. In the dynamic zones, soil erosion rate caused by different cropland
transformation types are also different. Returning cropland to woodland and grassland, converting
cropland to built-up land reduced the soil erosion rate dramatically.

When land use type changes, the soil erosion rates and intensity will change accordingly. From
2000 to 2020, as cropland related LUCC transformations dominant the landscape, changes of soil
erosion rates and soil loss are also significant in corresponding areas. In the past two decades, the
amount of soil loss due to the cropland transfer out was —1.28x108 t, while the amount of soil loss due
to the cropland reclamation was 0.96x108 t, and the net change in soil erosion caused by cropland
transformations was —0.32x108 t, with a decrease ratio of 12.12% of the total cropland soil loss (Figure
13).
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The cropland area continues to decline over the past two decades, and most of it was converted
into woodland, grassland and built-up land. The conversions from cropland to woodland and
grassland account for the largest proportions of cropland erosion reduction, with 43.75% and 34.64%
respectively. The conversion from cropland to built-up land accounts for 21.36% of the reduction.
Conversion from cropland to woodland has been a major contributor to the decline in soil erosion in
cropland areas. As for the soil erosion increase, about 99% of which was caused by cropland
reclamation, and conversion from grassland to cropland contributed 56.18% of the total soil erosion

mecrease.
N
(a) . . . 5 (b) A
2000-2005 2005-2010 2010-2015 2015-2020 x10%
Cropland to Woodland  -14.20 -13.76 -15.06 1297 16
Cropland to Grassland 973 812 1334 1314 12
Cropland to Water bodies  -0.07 -0.09 0.13 -0.08 8
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Figure 13. Amount and spatial pattern of soil loss induced from cropland transformations in Yunnan
during 2000-2020.

The conversions between cropland and other land uses also have different effects on soil erosion
amount in different periods. Among them, compared with the mutual conversions with woodland
and grassland, the conversion between cropland and built-up land is more often a unidirectional
change. Due to the larger net change area, the net reduction in erosion generated from cropland to
built-up land is also the largest, and the reduction in soil erosion during the 2010-2015 period
accounts for nearly 40% of the total cropland-built up land change scenario, as it is also the period
with the fastest urbanization speed. For the four periods of 2000-2005, 2005-2010, 2010-2015 and 2015-
2020, the mutual conversions between cropland and woodland are relatively stable in each period.
Most of the soil erosion reduction caused by the conversion from cropland to grassland is
concentrated in 2010-2020, while the soil erosion increase caused by the conversion from grassland
to cropland shows a decreasing trend year by year.

4. Discussion

Constant soil erosion rates measurement and observation at large scales have proven to be
extremely challenging and unrealistic. Based on field sampling surveys, the CSLE model and LUCC
data, we proposed a rapid monitoring method to extrapolate cropland soil erosion rates and soil loss
from point to surface in mountainous areas. The field investigated 20,155 land parcels share same
standards in data quality and all of them meet the USLE-type empirical model requirements in size
and scale (less than 150 ha). The LUCC data was further improved using a non-homogeneous voting
method, with steps of accuracy assessment, consistency analysis and standardization of the
classification system. To facilitate decision-making, we provided continuous distribution information
on cropland erosion rates, hotspots and soil loss amounts. The soil erosion rates of each land type are
in good consistency with the reported values in literatures [6,30]. Apparently, when choosing a soil
erosion model, one should pay more attention to model strengths, limitations and application scope.
If the input data does not meet the requirements, the results produced by over-parameterization and
scaling extrapolation are often less reliable than those given by a simple model.


https://doi.org/10.20944/preprints202401.1264.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2024 doi:10.20944/preprints202401.1264.v1

20

Under climate change and land use change scenarios, cropland erosion and degradation are a
mutually promoting process. In areas with extremely high biodiversity like Yunnan, the
implementation of policies such as returning farmland to forest/grass is of great value in controlling
soil erosion and protecting habitats and biodiversity. However, our research shows that a cropland
area of 7461.83 km? (-10.55%) has vanished during the past 20 years. which is an extremely shocking
number, and the originally small cropland area per head of population is continuing to shrink, the
newly reclaimed slope lands are often accompanied with severe soil erosion rates, directly
threatening local food security. The real threat should be noted here is that more and more land is
becoming unfarmable due to high soil erosion rates. It is estimated that if the current soil erosion rate
in China continues, the food production will decrease by 40% in the next 50 years [14]. Moreover, the
rising global population demands intensification of agricultural production to meet food demand,
which is expected to increase by 50% in 2030 and possibly a doubling in 2050 [1]. If current population
growth speed and soil erosion rates continue unchecked, humankind may eventually lose the ability
to feed itself in the future barring unforeseen scientific advances [5]. The regulation of sloping
croplands is extremely difficult in mountainous areas, as the croplands are fragmentedly distributed
on steep slopes. According to local statistics [82], the annual average cropland land area with newly
treated erosion control measures in Yunnan is 31.69 km?. It will take more than 1,000 years and 180
billion yuan to complete the regulation of unmeasured sloping cropland and, and this is assuming
that each cropland can be managed without considering the difficulty of governance. Considering
the cropland loss speed, urgent action is needed to face the threat of cropland soil erosion with shared
understanding by considering collaboration and interrelationships among stakeholders, different
roles (e.g. scientists, governments, farmers, environmentalists).

Field observation of soil erosion is always closer to the truth than the modelling results, and it is
the most vital part of scientific investigation. However, most regions around the world have the
problem of under-representation of observational data. Currently, remote sensing is instrumental for
investigating, evaluating, monitoring and understanding the spatial extent and rate of soil erosion
due to the advantages of large coverage area, short revisit period monitoring. High resolution
imageries provide high quality data and less uncertainties in soil erosion mapping, but their utility
remain hindered due to the acquisition cost. As the spatial, hyperspectral and temporal resolution
continuously increase, it sheds more and more light on small scale heterogeneity, and most of the
limitations of large-scale soil erosion modelling may eventually dissipate in the future. With a robust
framework of sample density and samples, remote sensing applications in large scale dynamic soil
erosion mapping and monitoring will be very promising.

We proposed a combination method of point (PSUs) and surface (LUCC data) for quantitative
soil erosion assessment in a large region, the work depended greatly on the detailed data collection
in the field. The NSES was the first ever national soil erosion investigation using based field
investigation, which ensures the accuracy of the input data. However, the quality and
representativeness of the data for areas with low sampling density and missing sample information
requires more in-depth evaluation.

5. Conclusions

Long-term, quantitative large-scale cropland erosion rates information is vital for agricultural
planning and management, but long been hindered by data availability and model limitations.
Taking the CSLE as monitoring tool, by integrating a large number of field sampling surveys and
LUCC remote sensing data in the national surveys, we proposed a long-term time series dynamic
method of monitoring cropland soil erosion rates and soil losses, and conducted an application
research in the Yunnan Plateau with complex terrain conditions. Different from previous studies, this
study was conducted based on a large number of field surveys and remote sensing for improving
model input data and reduces the uncertainties. The results showed that:

(1) The average soil erosion rate and erosion ratio of cropland are significantly higher than other
land use types, and huge spatial erosion differences were within each land use type. In addition, soil
erosion rates are generally more sensitive to slope than slope length for all land uses. Soil
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conservation measures adopted in croplands are highly effective in controlling soil erosion and
changed the spatial pattern of soil erosion significantly.

(2) In the past 20 years, due to the Grain for Green Policy, population growth and rapid
urbanization expansion, the area of cropland and grassland in Yunnan continue to decrease, with the
reduction ratios both exceeding 10%, while the built-up impervious land has increased by 300% in
land area. The conversions between cropland and grassland is mainly concentrated in the Jinsha
River Basin and northern parts, while the conversion between cropland and woodland is widely
distributed throughout the province, especially in the southern region. Cropland related conversions
account for 74.02% of all LUCC scenarios and show significantly different transformation intensities
for each period.

(3) Significant land use changes in landscape scale pose huge impacts on cropland erosion in
Yunnan. During 2000-2020, the amount of cropland soil loss has decreased by 0.32x108 t, with a
decrease rate of 12.12%. Net soil loss change varies significantly in the six major river basins for
different periods and LUCC scenarios. Except for the reclamation of cropland in the lower reaches of
river basins and southern Yunnan, which bring a large amount increase in net soil loss, soil erosion
in other areas significantly reduced due to the sharp reduction in cropland area. It is the first long-
term quantitative study of cropland soil erosion in the area with multiple national investigation
efforts, and is of great significance in under-standing the soil erosion patterns of cropland, clarifying
the direction and focus of prevention, as well as protecting precious cropland resources to ensure
food security in mountainous areas.
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