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Abstract: Prime period sequences can serve as the fundamental tool to construct arbitrary composite

period sequences. This is a review study of prime period perfect Gaussian integer sequence (PGIS).

When cyclic group {1, 2, . . . , N − 1} can be partitioned into k cosets, where N = k f + 1 is an odd

prime number, the construction of a degree-(k+1) PGIS can be derived from either matching the flat

magnitude spectrum criterion or making the sequence with ideal periodic autocorrelation function

(PACF). This is a systematic approach of prime period N = k f + 1 PGIS construction, and is applied to

construct PGISs with degrees 1, 2, 3 and 5. However, for degrees larger than 3, matching either the flat

magnitude spectrum or achieving the ideal PACF encounters a great challenge of solving a system of

nonlinear constraint equations. To deal with this problem, the correlation and convolution operations

can be applied upon PGIS of lower degrees to generate new PGIS with degree-4 and other higher

degrees, e.g., 6, 7, 10, 11, 12, 14, 20 and 21 in this paper. In this convolution based scheme, both degree

and pattern of a PGIS vary and can be indeterminant, which is rather nonsystematic compared with

the systematic approach. The combination of systematic and nonsystematic schemes contributes the

great efficiency for constructing abundant PGISs with various degrees and patterns for the associated

applications.

Keywords: correlation function; degree; perfect sequence; PGIS

1. Introduction

A Gaussian integer sequence (GIS) is a sequence with coefficients that are complex numbers

a + bj, where j =
√
−1 and a and b are integers. The construction of perfect Gaussian integer sequence

(PGIS) has become an important research topic [1–10] because integers require less memory; also, the

implementation of a PGIS is simpler than those of other perfect sequences (PSs) with real or complex

coefficients, in which a sequence is perfect if and only if it has an ideal periodic autocorrelation function

(PACF).

By tracing the construction of PGISs, a general form of even-period PGISs was presented in [1],

in which the PGISs were constructed by linearly combining four base sequences or their cyclic shift

equivalents using Gaussian integer coefficients of equal magnitude. Yang et al. [2] constructed PGISs of

odd prime period p by using cyclotomic classes with respect to the multiplicative group of GF(p). Ma

et al. [3] later presented PGISs with a period of p(p + 2) based on Whiteman’s generalized cyclotomy

of order two over Zp(p+2), where p and (p + 2) are twin primes. In [4], Chang et al. introduced the

concept of the degree of a sequence and constructed degree-2 and degree-3 PGISs of prime period p.

Then, they up-sampled these PGISs by a factor of m and filled them with new coefficients to build

degree-3 and degree-4 PGISs of arbitrary composite period N = mp. Lee et al. focused on constructing

degree-2 PGISs of various periods using two-tuple-balanced sequences and cyclic difference sets [5,6].

Algorithms that could generate PGISs of arbitrary period were developed by Pei et al. [7], and one

of these algorithms could be applied to construct degree-5 PGISs of prime period p ≡ 1(mod 4) by

applying the generalized Legendre sequences (GLS). A systematic method for constructing sparse

PGISs in which most of the elements are zeros was proposed [8]. PGISs of period pk with degrees equal

to or less than k + 1 and those of period qp with degrees equal to or larger than four were proposed in

[9] and [10].
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With the above mentioned significant results of theoretical PGIS study and matured construction

techniques, exploring the application of PGIS gradually becomes a new research topic [11–17]. In [11],

a PGIS was applied to OFDM systems for peak-to-average power ratio (PAPR) reduction. Subsequently,

the PGIS was used to construct the transform matrix for the associated precoded OFDM systems to

achieve full frequency diversity and obtain optimal bit-error rate [12]. A CDMA scheme based on PGIS,

called PGIS-CDMA system, was developed by Chang [13], where a set of PGISs could substitute and

outperform the PN codes (e.g., m-sequences, Gold sequences, Kasami sequences, and bent sequences)

in a direct sequence (DS) CDMA system. Construction of circular convolution group based on perfect

sequences for block data transmission with high diversity order appeared in [14]. New application of

PGIS to cryptography refers to [15], which a hybrid public/private key cryptography scheme based

on PGIS of period N = pq was proposed. This hybrid cryptosystem can take the advantages of

public and private-key systems, and it is with implementation simplicity for easy adaptation to an IoT

platform. PGIS can also be applied to construct a set of zero circular convolution (ZCC) sequences [16],

which ZCC sequences featured the advantage of possessing the desired PACF and the ideal periodic

crosscorrelation function (PCCF) properties. ZCC sequences could be applied for multiuser channel

estimation as well as the optimal joint symbol detection and channel estimation [16,17].

Different from that of binary sequence families, there are no upper bound the available numbers

of PGISs, which one can construct as many different PGISs as one would expect. We can use degree,

pattern and period as three parameters to uniquely define a PGIS. From the application point of view,

the available numbers of degrees and patterns of a set of PGISs are desired when the period of a this

set of PGISs is fixed. For example, the capacity of a PGIS-CDMA system is determined by the number

of degrees and patterns [13]. In addition, prime period PGISs can serve as the fundamental tool for

constructing arbitrary composite period PGISs [4]. These two reasons stimulate us to make a review

and through study of constructing prime period PGIS from both degree and pattern points of view.

To construct more degrees and patterns of different PGISs is the goal of this study, which we

conclude and group the construction approaches into systematic and nonsystematic two schemes. When

perfect sequences are constructed by matching the flat magnitude spectrum or the ideal PACF criterion,

the pattern and degree of a sequence are determined and known in advance. For example, the

construction of degree-2 and degree-3 PGISs of prime period in [4] and the construction of degree-5

PGIS adopting from the generalized Legengre sequences(GLS) by Pei et al. [7]. This is the reason this

approach can be called a systematic scheme. In this approach, when the cyclotomic order is greater

than 3, solving constraint equations by matching flat magnitude spectrum criterion becomes a great

challenge. With this aspect, we can apply correlation and convolution operations in this study to

construct degree-4 and many other degrees which belong to the set {6, 7, 10, 11, 12, 14, 20, 21}. However,

the degree, as well as the pattern, of a PGIS constructed from taking either correlation or convolution

operation between two or more PGISs might vary, and is too complicated to be analyzed systematically,

which is a case by case condition. This is rather a nonsystematic scheme of PGIS construction compared

with the mentioned systematic scheme. One can apply systematic scheme to construct lower degree

PGISs, and then these lower degree PGISs can be applied to construct many other higher degree PGISs

using nonsystematic scheme. The proposed systematic and nonsystematic schemes can be combined

to construct efficiently abundant PGISs with various degrees and patterns for the associated different

applications.

The structure of this paper is briefly described. Followed by depicting the properties of PGISs in

Section 2, Sections from 3 to 6 present a review study of the systematic construction of general prime

period PGISs of degrees 1, 2, 3 and 5, respectively. New study of PGIS construction by correlation and

convolution operations is addressed in Section 7, which there exist abundant degrees and patterns to

those PGISs of particular prime periods, e.g., N = 2m − 1 and N = pm−1
m−1 , where p is an odd prime.

Conclusions are summarized in Section 8.
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2. Definitions and PGIS Properties

2.1. Notations

δ[τ] is the Kronecker delta sequence of period N. The boldface character s denotes a sequence

or a vector of period N which is expressed as s = {s[n]}N−1
n=0 , and s∗−1 = {s∗[(−n)N ]}N−1

n=0 , where

the superscript ∗ and (·)N stand for complex conjugate and modulo N operation, respectively. Let

s(−m) = {s[(n + m)N ]}N−1
n=0 and s(m) = {s[(n − m)N ]}N−1

n=0 denote the circular shift of s to the left and

right, respectively, by m places, where 0 ≤ m ≤ N − 1. A set of N different sequences is expressed as

{sm}N−1
m=0 . S1 ◦ S2 denotes component-wise product between S1 and S2.

2.2. Definitions

2.2.1. Degree

The degree of a sequence is defined as the number of distinct non-zero elements within one period

of the sequence.

2.2.2. Pattern

The pattern of a sequence is defined as the distribution of non-zero elements within one period of

the sequence.

We can demonstrate two degree-6 PGISs of period 31, which are with different pattern, as follows:

(−3, 9, 9, 2, 9,−2, 2, 8, 9,−2,−2, 2, 2, 2, 8,−5, 9, 2,−2, 8,−2, 2, 2,−5, 2, 8, 2,−5, 8,−5,−5),

and

(−9, 0, 0, 1, 0,−1, 1,−2, 0,−1,−1, 5, 1, 5,−2, 2, 0, 1,−1,−2,−1, 5, 5, 2, 1,−2, 5, 2,−2, 2, 2).

Notice that since sequence and pattern are periodic with period N, thus sequence {s[n]} and

its circular shifts {s[(n ± m)N ]} in this paper are considered to be with the same pattern, so are both

sequences {cs[n]} and {s∗[n]}. However the pattern of sequence {s[(−n)N ]} may not be the same as

that of {s[n]}.

2.2.3. Circular convolution

The circular convolution between s1 = {s1[n]}N−1
n=0 and s2 = {s2[n]}N−1

n=0 , denoted by s1 ⊗
s2={s12[n]}N−1

n=0 , where s12[n] is the nth component of s1 ⊗ s2, is defined as

s12[n] =
N−1

∑
τ=0

s1[τ]s2[(n − τ)N ],

where (·)N denotes modulo N.

2.2.4. PACF

Let s = {s[n]}N−1
n=0 denote a sequence of period N, where s[n] is the nth component of s. Rs ≡

s ⊗ s∗−1 = {R[τ]}N−1
τ=0 denote the periodic autocorrelation function (PACF) of s, i.e.,

R[τ] =
N−1

∑
n=0

s[n]s∗[(n − τ)N ],

where s−1 = {s[(−n)N ]}N−1
n=0 . Let S = {S[n]}N−1

n=0 denote the discrete Fourier transform (DFT) of s.

Then, the DFT of Rs is S ◦ S∗=|S|2, where | · | denotes the Euclidean norm. The sequence s is called
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perfect if and only if Rs = E · δ[τ], where E is energy of the sequence s. The DFT pair-relationship

between Rs = E · δ [τ] and S ◦ S∗ = |S|2 indicates that a sequence s is perfect if and only if the

magnitude spectrum of s is flat, i.e., |S [n]| =
√

E, ∀ 0 ≤ n ≤ N − 1.

2.2.5. PCCF

The periodic crosscorrelation function (PCCF) between s1 = {s1[τ]}N−1
τ=0 and s2 = {s2[τ]}N−1

τ=0 is

defined as

R1,2[τ] =
N−1

∑
n=0

s1[n]s
∗
2 [(n − τ)N ].

2.2.6. Coset

Let N = KM + 1 be an odd prime number, thus ZN = {1, 2, . . . , N − 1} is both a multiplicative

group and a cyclic group [22]. If α ∈ ZN is a primitive element, it follows that αN−1 = 1. Let

H ≡ {αm·K}M−1
m=0 and γ ∈ ZN . The subset Hγ ≡ {hγ|h ∈ H} is called the right coset of subgroup H

generated by γ. Define

Hk ≡ Hαk, k = 0, 1, . . . , K − 1. (1)

It is easy to shown that Hk, k = 0, 1, . . . , K − 1, are distinct right cosets of H, where H = H0. It can be

further shown that ZN = H0 ∪ H1 ∪ · · · ∪ HK−1 and |ZN | = |H0|+ |H1|+ · · ·+ |HK−1| = KM. It is

noted that Hk = Hαk = Hα(k+m·K), where αk+m·K, m = 0, 1, . . . , M − 1, belong to the same coset.

2.3. PGIS Properties

Only parts of PGIS properties, which are related to this study, are summarized to form the

following Theorem. Especially the property 7 is applied for nonsystematic PGIS construction.

Theorem 1. Let s = {s[n]}N−1
n=0 , s1 and s2 be three PGISs of prime period N. The following sequences are also

PGISs of period N

1) {s[(n ± m)N ]}, where m is any integer;

2) {cs[n]}, where c is any nonzero Gaussian integer;

3) {s∗[n]}, where s∗[n] denotes complex conjugation;

4) {S[k]}, the DFT of {s[n]}, given that {s[n]} is with constant amplitude;

5) {s[(−n)N ]};

6) s1 ⊗ s2;

7) {R1,2[τ]}N−1
τ=0 , {R2,1[τ]}N−1

τ=0 , {R1,1[τ]}N−1
τ=0 and {R2,2[τ]}N−1

τ=0 .

Proof. 1). The proof of properties 1) to 6) can refer to [21] and [13].

2). To prove property 7), at first {s∗2 [(−τ)N ]} is also a PGIS, and it has {R1,2[τ]}={s1[τ]} ⊗
{s∗2 [(−τ)N ]}. The convolution between {s1[τ]} and {s∗2 [(−τ)N ]} two PGISs yields that {R1,2[τ]} is also

a PGIS of period N by property 6). Similarly {R2,1[τ]}={s2[τ]} ⊗ {s∗1 [(−τ)N ]}, {R1,1[τ]}={s1[τ]} ⊗
{s∗1 [(−τ)N ]} and {R2,2[τ]}={s2[τ]} ⊗ {s∗2 [(−τ)N ]} are also PGISs of period N as well.

When the degree of sequence is a great concern, one can apply the cyclotomic class for constructing

systematically PS and PSIS according to following Theorem.

Theorem 2. Let a cyclic group ZN = {1, 2, . . . , N − 1} be partitioned into K cosets, where each coset contains

M elements and N = 1 + KM. Let c1, c2, . . ., cF be all the F positive factors of N − 1. There exist F + 1

classes of PSs of period N with degrees 1, 1 + N−1
c1

, 1 + N−1
c2

, . . ., 1 + N−1
cF

, respectively. It is noted that

K ∈ {N−1
c1

, N−1
c2

, . . . , N−1
cF

}.
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Proof. Referred to [18].

Consider the case of N = 13, where the six positive factors of N − 1 = 12 are 1, 2, 3, 4, 6 and 12,

respectively. Therefore, the corresponding degrees of the PSs or PGISs are given by 13, 7, 5, 4, 3, and

2, respectively. We would like to mention that Theorem 2 can ensure the existence of six patterns of

PSs with period N = 13, however it is challenging to construct PGISs of these six patterns where the

coefficients of these sequences should be Gaussian integer numbers.

3. Unique Degree-1 PGIS

To encompass a broader scope of sequence degree, a particular degree-1 PGIS, which is originated

from Kronecker delta sequence δ[τ], is addressed in this section.

Theorem 3. For any nonzero Gaussian integer a, sequence s = (a, 0, . . . , 0
︸ ︷︷ ︸

N−1

) and all N − 1 other circular shifts

of s, with notation s(n), are the only existing degree-1 PGISs of period N. In other words, (a, 0, . . . , 0) is the

unique pattern of degree-1 PGIS.

Proof. At first, the number of different nonzero elements for degree-1 PGIS is one. The DFT of

s = (a, 0, . . . , 0
︸ ︷︷ ︸

N−1

) is S = (a, a, . . . , a
︸ ︷︷ ︸

N−1

), which S meets the flat magnitude spectrum criterion for sequence s

to be a PGIS. Let s(n) = (0, . . . , 0
︸ ︷︷ ︸

n

, a, 0, . . . , 0
︸ ︷︷ ︸

N−n−1

) be the n-shift of s. The DFT of s(n) is S(n) =
{

ae−j 2πnm
N

}N−1

m=0
,

where
∣
∣
∣ae−j 2πnm

N

∣
∣
∣ = |a|, ∀m. This infers that s(n) is a degree-1 PGIS, and this is valid to all n =

1, . . . , N − 1.

When there exist 2 “a" elements in this sequence, e.g., s + s(n), the DFT of sequence s + s(n)

becomes S + S(n) =
{

a
(

1 + e−j 2πnm
N

)}N−1

m=0
, where

∣
∣
∣a(1 + e−j 2πnm

N )
∣
∣
∣ ̸=

∣
∣
∣a(1 + e−j 2πnk

N )
∣
∣
∣, 0 ≤ m, k ≤

N − 1, m ̸= k. The flat magnitude spectrum criterion for a sequence to be perfect can not be maintained

in this situation. By extending this result, when sequence exists more than two “a" elements, the

DFT of this sequence becomes
{

a(1 + ∑n ̸=0 e−j 2πnm
N )

}N−1

m=0
for some n, which it is straightforward that

∣
∣
∣a(1 + ∑n ̸=0 e−j 2πnm

N )
∣
∣
∣ ̸=

∣
∣
∣a(1 + ∑n ̸=0 e−j 2πnk

N )
∣
∣
∣ is true, 0 ≤ m, k ≤ N − 1, m ̸= k. This leads conclusion

that the sequence can no longer be a degree-1 PGIS when there exist two or more “a" elements.

4. Degree-2 PGISs Consturction

Besides that of degree-2 PGISs that can be constructed using cyclotomic class the same as other

degree PGISs do, many binary sequences, e.g., m-sequences and cyclic difference set, can also be

adopted to construct degree-2 PGISs, where binary sequence construction is rather a matured topic

with many construction schemes or algorithms [5,6,21]. This implies the more abundant patterns of

degree-2 than other degrees. The significance of existence abundant sequence patterns of degree-2

PGISs has the merit that the more number of PGISs the more they can be applied to generate more

new PGISs by means of taking convolution or correlation operation upon themselves. This topic of

convolution technique on PGIS construction is addressed in the Section 7 of this paper.
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4.1. Construction using cyclotomic class

4.1.1. Cyclotomic class of order 1

Let N = k f + 1 be a odd prime. When k = 1, there is no partition the cyclic multiplicative group

ZN = {1, 2, . . . , N − 1}. In this situation, the pattern of degree-2 PGIS is

s = (a, b, . . . , b
︸ ︷︷ ︸

N−1

), (2)

where a and b are two nonzero Gaussian integers.

The autocorrelation function of sequence s = (a, b, . . . , b
︸ ︷︷ ︸

N−1

) is

R[τ] =

{

|a|2 + (N − 1)|b|2, τ= 0

ab∗ + ba∗1 + (N − 2)|b|2, τ ̸= 0.

Constraint equation ab∗ + ba∗ + (N − 2)|b|2 = 0 is the necessary as well as sufficient condition for

sequence s to be a degree-2 PGIS with nonzero Gaussian integers a = x1 + jy1 and b = x0 + jy0, which

this equation can be further simplified as

2(x0x1 + y0y1) + (N − 2)(x2
0 + y2

0) = 0. (3)

Example 1. When f = 4 and N = 4 + 1 = 5, Gaussian integers a = 9 + 2j and b = −1 − 3j fulfill (3). A

degree-2 PGIS of period 5 is given by

s = (9 + 2j,−1 − 3j,−1 − 3j,−1 − 3j,−1 − 3j).

4.1.2. Cyclotomic class of order 2

When k=2 and N = 2 f + 1 is an odd prime. The cyclic group ZN = {1, 2, . . . , N − 1} can be

partitioned into two cosets ZN = Hb0 ∪ Hb1, where α2 f = 1, Hb0 = {α2n} f−1
n=0 and Hb1 = {α2n+1} f−1

n=0.

To construct PGIS, at first, three base sequences xδ and xi = {xi[n]}N−1
n=0 , i = 0, 1, are defined as follows:

xδ = (1, 0, . . . , 0
︸ ︷︷ ︸

N−1

),

xi[n] =

{

1, n ∈ Hbi

0, otherwise.

Theorem 4. Let N = 2 f + 1 be an odd prime and f be an odd integer. The sequence s = a(xδ + x0) + bx1

with two nonzero Gaussian integers a and b is a degree-2 PGIS if the following constraint equation holds.

|a ( f + 1) + b f | =

∣
∣
∣
∣
∣
∣

(a − b)
(

1 + j
√

N
)

2

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

(a − b)
(

1 − j
√

N
)

2

∣
∣
∣
∣
∣
∣

. (4)

Proof. Referred to [4].
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Corollary 1. Let N = 2 f + 1 be an odd prime and f be an odd integer. The sequence s = b(xδ + x1) + ax0

with two nonzero Gaussian integers a and b is a degree-2 PGIS if

|b ( f + 1) + a f | =

∣
∣
∣
∣
∣
∣

(b − a)
(

1 + j
√

N
)

2

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

(b − a)
(

1 − j
√

N
)

2

∣
∣
∣
∣
∣
∣

. (5)

Proof. The flat magnitude spectrum criterion leads to the constraint equation (5).

Let a = aR + jaI and b = bR + jbI . The constraint equation (4) infers that the following equation

should be fulfilled:

b2
R + b2

I

(aR + bR)
2 + (aI + bI)

2
=

f + 1

2
. (6)

And (5) infers that

a2
R + a2

I

(aR + bR)
2 + (aI + bI)

2
=

f + 1

2
. (7)

Example 2. When f = 15 and N = 2 f + 1 = 31, Gaussian integers a = −5 and b = 6 + 2j fulfill (6). A

degree-2 PGIS of period 31 is given by

s = (a, a, a, b, a, a, b, a, a, a, a, b, b, b, a, b, a, b, a, a, a, b, b, b, b, a, b, b, a, b, b). (8)

Example 3. Gaussian integers a = 2 − 6j and b = −3 + 4j can fulfill (7). A degree-2 PGIS of period 31, but

with different pattern to that of (8), is

s = (b, a, a, b, a, a, b, a, a, a, a, b, b, b, a, b, a, b, a, a, a, b, b, b, b, a, b, b, a, b, b). (9)

However, there exists no degree-2 PGIS of prime period N = 2 f + 1 when f is an even integer, if

base sequences xδ, x0 and x1 are applied for sequence construction[4].

4.2. Degree-2 PGISs of arbitrary prime period

Let’s define two base sequences xa, xb as follows:

xa = (1, 1, . . . , 1
︸ ︷︷ ︸

N−1

), (10)

xb = (N − 1,−1, . . . ,−1
︸ ︷︷ ︸

N−1

),

Base sequences xa and xb can be applied to construct degree-2 PGIS of prime period N = 2 f + 1 for

both even and odd f according to Theorem 5.

Theorem 5. The sequence s = axa + bxb with nonzero Gaussian integers a and b is a degree-2 PGIS if

|a| = |b|.

Proof. Referred to [4].
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Above all, there exist three different sequence patterns to degree-2 PGISs of odd prime period

N = 2 f + 1 when f is odd, but there is only one pattern when f is even. However, note that any

degree-2 PGISs constructed based on Theorem 5 belong to the same sequence pattern as that of (2). To

explain the reason, the two base sequences that span sequence pattern in (2) are xδ and xc = (0, 1, . . . , 1
︸ ︷︷ ︸

N−1

),

which {xδ, xc} and {xa, xb} can span the same vector space.

From sequence application point of view, it is desirable to design as many distinct sequences as

possible for a given period. There do exist many other sequence patterns to the degree-2 PGIS family

of particular prime period, addressed in the following two subsections.

4.3. Degree-2 PGISs adopting from ternary perfect sequences

4.3.1. Construction based on ternary perfect sequences

Ipatov derived a large class of ternary PSs of period N = qm−1
q−1 , where m is an odd number and

q = ps, p is an odd prime and s is an integer [21,23,24]. Having with sequence elements belong to

{0,+1,−1}, the ternary PSs can be adopted to obtain general degree-2 PGISs by replacing +1 and −1

with any nonzero Gaussian integers a and −a, respectively. The degree-2 PGISs derived from ternary

PSs may contain many zero elements. Given q = 3 and m = 3, ternary PS of period 13 = 33−1
3−1 is

(0, 0, 1, 0, 1, 1, 1,−1,−1, 0, 1,−1, 1), and a degree-2 PGIS of period N = 13 is given by:

s = (0, 0, a, 0, a, a, a,−a,−a, 0, a,−a, a). (11)

4.3.2. Construction based on CIDTS

The second type degree-2 PGISs can be built adopting from the correlation identity derived ternary

sequences(CIDTS) [21]. Momentarily we present only the construction of 12 different degree-2 PGISs of

prime period N = 25 − 1 based on CIDTS, which are {t1, · · · , t12}, in Table 1. The detailed construction

rules of this scheme can refer to Section 7.5.

4.4. Degree-2 PGISs of prime period 2m − 1

In the case of prime period N = 2m − 1 family, there exists many sequence patterns of degree-2

PGISs. In [5], Lee et al. constructed four different kinds of degree-2 PGISs of period N = 2m − 1 from

the trace representations of Legendre sequences, Hall’s sextic residue sequences, m-sequences, and

GMW sequences, respectively. In addition, a new design degree-2 PGISs using cyclic difference sets

can refer to [6]. Let’s present Theorem 6 before addressing the construction of degree-2 PGISs of prime

period N = 2m − 1.

Theorem 6. For any prime number N, the set of quadratic residues of N forms a multiplicative group with

cardinality N−1
2 .

Proof. There are N−1
2 quadratic residues of prime N, which are congruent to 12, 22, · · · , N−1

2 ,

respectively. The set ZN = {1, 2, . . . , N − 1} is a cyclic group generated by a primitive root α modulo

N, where αN−1 = 1, and the set {α2n} f−1
n=0 forms the subgroup of ZN . According to Euler’s Criterion [20],

when a ≡ α2n( mod N), an even power of a primitive root, a
N−1

2 ≡ 1( mod N) is true. This implies

a is a quadratic residue modulo N. The set {α2n} f−1
n=0 and the quadratic residues of N are isomorphic

between each other. This proves the quadratic residues of N forms a multiplicative group.
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4.4.1. Degree-2 PGISs from Legendre sequences

According to Theorem 6, the set of quadratic residues of prime N is isomorphic to cyclotomic class

of order 2. Thus, any degree-2 PGISs of prime period 2m − 1 constructed using the trace representations

of Legendre sequences belong to the same sequence patterns built according to Theorem 6.

4.4.2. Degree-2 PGISs from Hall’s sextic residue sequences

In the case of prime period N = 4a2 + 27 = 6 f + 1 = 2m − 1, where a, f and m are positive

integers, e.g., N=31 and N=127, there exist six different sequence patterns of degree-2 PGISs derived

from the trace representation of Hall’s sextic residue sequences [5].

4.4.3. Degree-2 PGISs from m-sequences

In the case of degree-2 PGISs derived from m-sequences of period 2m − 1, the number of distinct

m−sequence is
φ(2m−1)

m , where φ(·) is the Euler’s totient function. For example, when N=7, there exist

two patterns which are the same as that of the cyclotomic class of order 2. In case of N=31, the existing

six sequence patterns are the same as that based on the Hall’s sextic residue sequences [5]. There exist

18 different sequence patterns when N=127, which these patterns are different from both the Hall’s

sextic residue sequences and the cyclotomic class of order 2. The more details of this topic can refer to

[5].

4.4.4. Degree-2 PGISs from cyclic difference set

The TABLE II in [6] presents the cyclic difference sets (ν, κ, λ) of order (κ − λ) ≤ 30, among

of which the two cyclic sets that belong to the family of prime period N = 2m − 1 are (31, 6, 1) and

(31, 15, 7). The degree-2 PGIS pattern constructed using (31, 15, 7) belongs to one of six patterns

derived from m-sequences of period 25 − 1; while a new pattern can be generated using (31, 6, 1),

which when a = −j and b = 1 + 3j are applied, the degree-2 PGIS of period N = 31 is

s = (a, b, a, a, a, b, a, a, a, a, a, b, a, a, a, a, a, a, a, a, a, a, a, a, b, b, a, b, a, a, a). (12)

5. Degree-3 PGISs Consturction

5.1. Construction using cyclotomic class of order 2

Let N = 2 f + 1 be an odd prime. When f is odd, the autocorrelation function of sequence

s = a2xδ + a0x0 + a1x1 can be expressed as follows:

R[τ] =







|a2|2 + f · (|a0|2 + |a1|2), τ = 0

a2a∗1 + a0 ∑
n∈Hb0

s∗[(n − τ)N ] + a1 ∑
n∈Hb1

s∗[(n − τ)N ], τ ∈ Hb0

a2a∗0 + a0 ∑
n∈Hb0

s∗[(n − τ)N ] + a1 ∑
n∈Hb1

s∗[(n − τ)N ], τ ∈ Hb1.

(13)

When f is even, the autocorrelation function becomes

R[τ] =







|a2|2 + f · (|a0|2 + |a1|2), τ = 0

a2a∗0 + a0 ∑
n∈Hb0

s∗[(n − τ)N ] + a1 ∑
n∈Hb1

s∗[(n − τ)N ], τ ∈ Hb0

a2a∗1 + a0 ∑
n∈Hb0

s∗[(n − τ)N ] + a1 ∑
n∈Hb1

s∗[(n − τ)N ], τ ∈ Hb1.

(14)

Let ai = xi + jyi, i = 0, 1, 2, be three nonzero different Gaussian integers. For an odd f , the

necessary and sufficient conditions for sequence s, with its autocorrelation function defined in (13), to

be a degree-3 PGIS of period N = 2 f + 1 leads to the following linear system of two equations with
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variables x2 and y2. The same equations to that of (15) are shown in [2] and [4], where the derivation

of (15) in [4] is based on the frequency-domain approach.

{

y0x1 − y1x0 = y2(x1 − x0) + x2(y0 − y1)

−(∆ + x0x1 + y0y1) = x2(x1 + x0) + y2(y1 + y0)
(15)

where ∆ = f−1
2 ((x0 + x1)

2 + (y0 + y1)
2). For an even f , the requirement of {R[τ]}N−1

τ=1 = 0 in (14)

leads to the following linear system of two equations with variables x2 and y2. Chang et al. derived

the same constraint equations as that of (16) in [4]. However, their derivation is from the frequency

domain approach.

{
(x2

1−x2
0)

2 +
(y2

1−y2
0)

2 = x2(x1 − x0) + y2(y1 − y0)

∆x + ∆y = −Nx2(x1 + x0)− Ny2(y1 + y0)
(16)

where ∆x = (x0 + x1)
2 f 2 − x0x1 − (N+1)(x0−x1)

2

4 and ∆y = (y0 + y1)
2 f 2 − y0y1 − (N+1)(y0−y1)

2

4 .

In [7], Pei et al. applied Legendre sequence and Gauss sum to construct degree-3 PGISs. This

approach is more efficient in deriving the coefficients of sequence to achieve ideal PACF than solving

the constraint equations of (15) and (16). However, as described in Theorem 5, the sequence pattern

constructed based on the Legendre sequences is the same as that based on the cyclotomic class of order

2.

5.2. Degree-3 PGISs of prime period 2m − 1

This subsection presents more sequence patterns of degree-3 PGIS of prime period 2m − 1, which

are derived from taking circular convolution upon two degree-2 PGISs. We present 12 illustrative

examples to demonstrate the results of circular convolution in Table 2, which the former 12 patterns

are obtained from circular convolution applied to degree-2 PGISs from Table 1, and the bottom row

pattern is constructed using cyclotomic class of order 2.

5.3. Construction from ternary perfect sequences

There exists also degree-3 PGIS constructed from taking circular convolution between ternary

PS and degree-2 PGIS with sequence pattern s = (a, b, . . . , b
︸ ︷︷ ︸

N−1

). One more degree-3 PGIS example

s = s10 ⊗ s11 of period N = 25 − 1 is present in Table 2.
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Table 1. 23 patterns of degree-2 PGISs of period 31

PGIS sequence pattern coefficients

s1 (a, b, b, a, b, a, a, b, b, a, a, a, a, a, b, b, b, a, a, b, a, a, a, b, a, b, a, b, b, b, b) a = −1 + 3j, b = 4j
s2 (a, b, b, b, b, a, b, a, b, a, a, a, b, a, a, b, b, b, a, a, a, a, a, b, b, a, a, b, a, b, b) s1 to s6

s3 (a, b, b, a, b, b, a, a, b, b, b, b, a, b, a, a, b, a, b, a, b, b, b, a, a, a, b, a, a, a, a) are derived from
s4 (a, a, a, a, a, b, a, a, a, b, b, b, a, b, a, b, a, a, b, a, b, b, b, b, a, a, b, b, a, b, b) m-sequences
s5 (a, a, a, b, a, b, b, b, a, b, b, a, b, a, b, a, a, b, b, b, b, a, a, a, b, b, a, a, b, a, a)
s6 (a, a, a, b, a, a, b, b, a, a, a, b, b, b, b, a, a, b, a, b, a, b, b, a, b, b, b, a, b, a, a)
s7 (a, b, a, a, a, b, a, a, a, a, a, b, a, a, a, a, a, a, a, a, a, a, a, a, b, b, a, b, a, a, a) a = −j, b = 1 + 3j

s8 (b, a, a, b, a, a, b, a, a, a, a, b, b, b, a, b, a, b, a, a, a, b, b, b, b, a, b, b, a, b, b) a = 2 − 6j,b = −3 + 4j

s9 (a, a, a, b, a, a, b, a, a, a, a, b, b, b, a, b, a, b, a, a, a, b, b, b, b, a, b, b, a, b, b) a = −5,b = 6 + 2j

s10 (a, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b, b) a = 88 + 63j,b = −5 + j

s11 (0, 0, a, 0, b, a, a, a, b, b, 0, a, b, b, 0, b, b, a, a, a, a, a, b, a, b, a, 0, a, a, b, a) a is Gaussian integer and b = −a,
t1 (b, b, b, a, b, 0, a, a, b, 0, 0, 0, a, 0, a, 0, b, a, 0, a, 0, 0, 0, 0, a, a, 0, 0, a, 0, 0) s11 is ternary sequence,
t2 (b, 0, 0, a, 0, a, a, 0, 0, a, a, b, a, b, 0, 0, 0, a, a, 0, a, b, b, 0, a, 0, b, 0, 0, 0, 0) t1 to t12 are CIDTS
t3 (b, 0, 0, b, 0, a, b, 0, 0, a, a, a, b, a, 0, 0, 0, b, a, 0, a, a, a, 0, b, 0, a, 0, 0, 0, 0) constructed based on m-sequences
t4 (b, a, a, 0, a, 0, 0, 0, a, 0, 0, a, 0, a, 0, b, a, 0, 0, 0, 0, a, a, b, 0, 0, a, b, 0, b, b)
t5 (b, 0, 0, 0, 0, b, 0, a, 0, b, b, a, 0, a, a, 0, 0, 0, b, a, b, a, a, 0, 0, a, a, 0, a, 0, 0)
t6 (b, 0, 0, a, 0, 0, a, a, 0, 0, 0, 0, a, 0, a, b, 0, a, 0, a, 0, 0, 0, b, a, a, 0, b, a, b, b)
t7 (b, b, b, 0, b, a, 0, 0, b, a, a, 0, 0, 0, 0, a, b, 0, a, 0, a, 0, 0, a, 0, 0, 0, a, 0, a, a)
t8 (b, 0, 0, 0, 0, a, 0, b, 0, a, a, a, 0, a, b, 0, 0, 0, a, b, a, a, a, 0, 0, b, a, 0, b, 0, 0)
t9 (b, a, a, 0, a, b, 0, 0, a, b, b, 0, 0, 0, 0, a, a, 0, b, 0, b, 0, 0, a, 0, 0, 0, a, 0, a, a)
t10 (b, 0, 0, b, 0, 0, b, a, 0, 0, 0, 0, b, 0, a, a, 0, b, 0, a, 0, 0, 0, a, b, a, 0, a, a, a, a)
t11 (b, a, a, a, a, 0, a, b, a, 0, 0, 0, a, 0, b, 0, a, a, 0, b, 0, 0, 0, 0, a, b, 0, 0, b, 0, 0)
t12 (b, a, a, 0, a, 0, 0, 0, a, 0, 0, b, 0, b, 0, a, a, 0, 0, 0, 0, b, b, a, 0, 0, b, a, 0, a, a)

s10, s8 and s9 are constructed using cyclotomic class of order 1,2,2, respectively, and s7 is from (12)

Table 2. 14 patterns of degree-3 PGISs of period 31

PGIS sequence pattern coefficients

s1 ⊗ s3 (a, b, b, c, b, c, c, b, b, c, c, a, c, a, b, b, b, c, c, b, c, a, a, b, c, b, a, b, b, b, b) a = 112 − 44j, b = 16 − 16j,
s1 ⊗ s4 (a, a, a, c, a, b, c, c, a, b, b, b, c, b, c, b, a, c, b, c, b, b, b, b, c, c, b, b, c, b, b) c = −80 + 12j
s1 ⊗ s5 (a, c, c, b, c, b, b, b, c, b, b, c, b, c, b, a, c, b, b, b, b, c, c, a, b, b, c, a, b, a, a) (all si are from Table 1)
s1 ⊗ s6 (a, b, b, a, c, b, a, b, b, c, c, c, a, c, b, b, b, a, c, b, c, c, c, b, a, b, c, b, b, b, b)
s2 ⊗ s3 (a, b, b, c, b, b, c, c, b, b, b, b, c, b, c, a, b, c, b, c, b, b, b, a, c, c, b, a, c, a, a)
s2 ⊗ s4 (a, b, b, b, b, a, b, c, b, a, a, c, b, c, c, b, b, b, a, c, a, c, c, b, b, c, c, b, c, b, b)
s2 ⊗ s5 (a, b, b, b, b, c, b, a, b, c, c, c, b, c, a, b, b, b, c, a, c, c, c, b, b, a, c, b, a, b, b)
s2 ⊗ s6 (a, a, a, b, a, c, b, b, a, c, c, b, b, b, b, c, a, b, c, b, c, b, b, c, b, b, b, c, b, c, c)
s3 ⊗ s5 (a, b, b, a, b, b, a, c, b, b, b, b, a, b, c, c, b, a, b, c, b, b, b, c, a, c, b, c, c, c, c)
s3 ⊗ s6 (a, c, c, b, c, a, b, b, c, a, a, b, b, b, b, c, c, b, a, b, a, b, b, c, b, b, b, c, b, c, c)
s4 ⊗ s5 (a, c, c, b, c, b, b, b, c, b, b, a, b, a, b, c, c, b, b, b, b, a, a, c, b, b, a, c, b, c, c)
s4 ⊗ s6 (a, c, c, c, c, b, c, a, c, b, b, b, c, b, a, b, c, c, b, a, b, b, b, b, c, a, b, b, a, b, b)

s10 ⊗ s11 (a, a, b, a, c, b, b, b, c, c, a, b, c, c, a, c, c, b, b, b, b, b, c, b, c, b, a, b, b, c, b) a = −25 − 5j, b = 68 − 67j,
c = −118 − 57j

scy (a, b, b, c, b, b, c, b, b, b, b, c, c, c, b, c, b, c, b, b, b, c, c, c, c, b, c, c, b, c, c) a = −5 − 5j, b = 3 + 3j,
(construction using cyclotomic class of order 2) c = −4 − 4j

6. Degree-5 PGISs Consturction

6.1. PGISs construction using GLS

Though the authors in [2] did not mention the degree concept of a sequence, they did make

efforts on construction the degree-5 PGIS of prime period N = 4 f + 1, which by using the cyclotomic

class of order 4 and depending on either odd or even f , two systems of four equations were derived,

respectively. However, it is still in pending situation to solve these two constraint equations from which
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to show the existence of prime period degree-5 PGIS. Peiet al. made a breakthrough of constructing

successfully the prime period degree-5 PGIS from adopting the GLS in stead of using cyclomotic class

of order 4, though they did not mention the degree-5 concept either [7]. The more detailed study of

constructing degree-5 PGIS by adopting GLS is addressed in this subsection.

At first, the GLS, denoted by g={g[n]}N−1
n=0 , is defined [20] as follows:

g[n] =







0, n = 0,

exp[ j2π(indhn)
N−1 ], n ̸= 0(mod N).

(17)

In (17), indhn is the index function defined by

hindhn ≡ n(mod N).

In a further generalization, a scaling factor, r = 1, 2, . . . , N − 2, can be introduced in the definition (17),

yielding

g[n] =







0, n = 0,

exp[ j2πr(indhn)
N−1 ], n ̸= 0(mod N).

(18)

Lemma 1. Let N = 4 f + 1 be an prime number. In (18), when the scaling factor r= f , g[n] ∈
{1, j,−1,−j}, n ̸= 0.

Proof. Inserting r= f to (18) proves the result.

Let {G[n]}N−1
n=0 be the DFT of GLS g.

Lemma 2. Let N = 4 f + 1 be an prime number. In (18), when the scaling factor r= f , the magnitude spectrum

of g = {g[n]}N−1
n=0 is as follows:

|G[n]| =
{

0, n = 0,√
N, n ̸= 0(mod N).

(19)

Proof. Referred to [20].

We can adopt the results of Lemmas 1 and 2 and apply base sequence xa, defined in (10), and GLS

g to bound the coefficients of sequences in Gaussian integers, according to Theorem 7.

Theorem 7. Let N = 4 f + 1 be an prime number and a is nonzero Gaussian integer. The sequence s =

a · xa + N · g is a degree-5 PGIS of period N given that |a|2 = N.

Proof. When |a|2 = N, the magnitude spectrum of a · xa is N
√

Nδ[n]. By applying the result of Lemmas

1 and 2, it is straightforward that the magnitude spectrum of s = a · xa + N · g is flat, as well as,

g[n] ∈ {1, j,−1,−j} implies that the number of different Gaussian integers appeared in sequence s is

five. This proves that s = a · xa + N · g is a degree-5 PGIS.

Example 4 and 5 present odd and even f examples of degree-5 PGIS of period N = 4 f + 1 ,

respectively.

Example 4. When f = 3, N = 4 · 3 + 1 = 13. Let a = 2 − 3j, where |a|2 = 13. The GLS g =

(0, 1, j, 1,−1, j, j,−j,−j, 1,−1,−j,−1). A degree-5 PGIS s = a · xa + 13 · g of period 13 is given by

s = (a, b, c, b, d, c, c, e, e, b, d, e, d), (20)
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where a = 2 − 3j, b = 15 − 3j, c = 2 + 10j, d = −11 − 3j, and e = 2 − 16j.

Example 5. When f = 4, N = 4 · 4 + 1 = 17. Let a = 4 + j, where |a|2 = 17. The GLS

g = (0, 1,−1, j, 1, j,−j,−j,−1,−1,−j,−j, j, 1, j,−1, 1). A degree-5 PGIS s = a · xa + 17 · g of period

17 is given by

s = (a, b, c, d, b, d, e, e, c, c, e, e, d, b, d, c, b), (21)

where a = 4 + j, b = 21 + j, c = −13 + j, d = 4 + 18j, and e = 4 − 16j.

6.2. Degree-5 PGISs of prime period 2m − 1

Addressed in the previous subsection, degree-5 PGIS of arbitrary prime period N = 4 f + 1 can

be constructed using the GLS, where for each N = 4 f + 1 there exist two sequence patterns associated

with even and odd f , respectively. This subsection presents the creation of more sequence patterns to

the degree-5 PGIS family using the CIDTS scheme [21]. However, this scheme can be applied only to

particular prime period, e.g., N = 2m − 1. The principles of CIDTS scheme are summarized as follows:

Let sb = {sb[n]}N−1
n=0 and sc = {sc[n]}N−1

n=0 be two sequences with two-valued autocorrelation

functions (ACFs), i.e.

Rb[τ] =

{

Ab, τ = 0,

Bb, n ̸= 0

Rc[τ] =

{

Ac, τ = 0,

Bc, n ̸= 0

The CCF between sb and sc is

Rb,c[τ] =
N−1

∑
n=0

sb[n]s
∗
c [(n − τ)N ],

The following identity is true for periodic correlation functions

N−1

∑
n=0

Rb,c[n]R
∗
b,c[(n − τ)N ] =

N−1

∑
n=0

Rb[n]R
∗
c [(n − τ)N ].

Let sa[n] = Rb,c[n], then sa = {sa[n]}N−1
n=0 is a periodic sequence with two-valued ACF given by [21]

Ra[τ] =
N−1

∑
n=0

Rb,c[n]R
∗
b,c[(n − τ)N ] =

{

Ab Ac + (N − 1)BbBc, τ = 0,

AbBc + AcBb + (N − 2)BbBc, n ̸= 0.
(22)

From (22), when both sb and sc are PSs, then sa does too. Otherwise, one can still do necessary

adjustment and make sa a PS [21]. The result of (22) can be adopted to construct a degree-5 PGIS

of particular prime period, e.g., N = 2m − 1. For m−sequence of period N = 25 − 1 = 31, the six

distinct m−sequences are {m1, · · · , m6}, which are obtained from {s1, · · · , s6}, listed in Table 1, after

substituting a = 1 and b = −1, respectively. Let’s make adjustment by setting sa[n] = Rb,c[n] + 1 to

construct three different degree-5 PGISs sa, presented in Example 6.
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Example 6. At first, when sb = {m1[n]}N−1
n=0 and sc = {m2[n]}N−1

n=0 , by setting {t13[n]} = { Rb,c [n]+1
4 }, a

degree-5 PGIS of period 31 is

t13 = (3, 0, 0, 1, 0,−1, 1,−2, 0,−1,−1, 1, 1, 1,−2, 2, 0, 1,−1,−2,−1, 1, 1, 2, 1,−2, 1, 2,−2, 2, 2). (23)

Secondly, when sb = {m3[n]}N−1
n=0 and sc = {m4[n]}N−1

n=0 , {t14[n]} = { Rb,c [n]+1
4 } obtains

t14 = (3,−2,−2, 1,−2, 0, 1,−1,−2, 0, 0, 2, 1, 2,−1, 1,−2, 1, 0,−1, 0, 2, 2, 1, 1,−1, 2, 1,−1, 1, 1). (24)

Finally, when sb = {m5[n]}N−1
n=0 and sc = {m6[n]}N−1

n=0 are applied, the third PGIS is

t15 = (3,−1,−1, 2,−1,−2, 2, 0,−1,−2,−2, 1, 2, 1, 0, 1,−1, 2,−2, 0,−2, 1, 1, 1, 2, 0, 1, 1, 0, 1, 1). (25)

Since Rc,b[(−n)N ] = Rb,c[n], when Rc,b[n] ̸= Rb,c[n], setting t−a[n]=
Rc,b [n]+1

4 will generate distinct

PSIS, where {t−a[n]}={ta[(−n)N ]}. Consequently, there exist three other patterns associated with

(23)-(25), respectively.

7. PGISs Construction from Convolution and Correlation Operations

Basically there are three parts in this section. The first part consists of subsections 7.1 and 7.2,

which addresses the relationship between circulant matrix and circular convolution, and explores

some properties of PGISs construction from convolution. Applying cascading convolution to construct

successfully the degree-4 PGIS is discussed in subsection 7.3. The last part presents more higher

degrees PGISs construction of different types, which includes subsections 7.4, 7.5 and 7.6.

7.1. Relationship between convolution and circulant matrix

Let’s define a circulant matrix C of size N × N based on sequence c = {c[n]}N−1
n=0 , where the

elements of c form the first row of C. With this definition, C = {c[(k − n)N ]}, where the (n, k) entry of

C, denoted by Cn,k, is

Cn,k = c[(k − n)N ].

The eigenvalues of a circulant matrix comprise the DFT of the first row of the circulant matrix, and

conversely first row of a circulant matrix is the inverse DFT of the eigenvalues. In particular all

circulant matrices share the same eigenvectors, ([25] and p.267, [26])

ym =
1√
N
[1 e−j2πm/N · · · e−j2πm(N−1)/N ]T , m = 0, 1, . . . , N − 1, (26)

where [·]T denotes transpose. Let U be matrix consisting of the eigenvectors ym as columns in

order and Ψ=diag(ψk) is the diagonal matrix with diagonal elements ψ0, ψ1, · · · , ψN−1. It is true that

UUH=UHU = IN , where IN is an identity matrix.

Lemma 3. Let C = {c[(k − n)N ]} and B = {b[(k − n)N ]} be circulant N × N matrices with eigenvalues

ψm and βm, respectively, m = 0, 1, . . . , N − 1, where

ψm =
N−1

∑
k=0

c[k]e−j2πkm/N ,

βm =
N−1

∑
k=0

b[k]e−j2πkm/N .

Then C and B commute and

CB = BC = UΩUH ,
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where Ω=diag(ψmβm) is the diagonal matrix with diagonal elements ψ0β0, ψ1β1, · · · , ψN−1βN−1, [·]H denotes

transpose and conjugate operation, and CB is also a circulant matrix.

Proof. Referred to [25] and [26].

Theorem 8. Let s1, s2, · · · , sk be k distinct PGISs of period N. Then s = s1 ⊗ s2 ⊗ · · · ⊗ sk is a PGIS of

period N, where ⊗ denotes circular convolution. In addition, s is also a PGIS of period N, when any numbers of

si are substituted by s−i = {si[(−n)N ]} or s∗−i, i = 1, . . . , k.

Proof. At first, taking convolution upon two PGISs s1 ⊗ s2 obtains a new PGIS, then the resultant

PGIS can be convoluted with the third PGIS s3 to generate other new PGIS, etc. This leads s a PGIS of

period N. Next, when si is a PGIS, both s−i and s∗−i are PGISs as well. This derives s is also a PGIS of

period N if si is substituted by s−i or s∗−i.

With the defined circulant matrix Cs2 = {s2[(n − k)N ]}, which is formed based on sequence

s−2 = {s2[(−n)N ]}N−1
n=0 , the evaluation of circular convolution between s1 and s2, denoted by

s = s1 ⊗ s2, can be obtained by taking the matrix multiplication operation S = Cs2 S1 instead, where

S1 = [s1[0] s1[1] · · · s1[N − 1]]T is a N × 1 vector consisting of N elements from s1 = {s1[n]}N−1
n=0 .

That is, the values of N components of PGIS s = {s[n]}N−1
n=0 can be derived from the N elements of a

N × 1 vector S = Cs2 S1.

When s = s1 ⊗ s2 ⊗ · · · ⊗ sr, s can be derived from S = CaS1. In this expression, circulant

matrix Ca = Cs2 Cs3 · · ·Csr =UΩUH and Ω=diag(ψm) is a diagonal matrix with diagonal elements

ψ0, ψ1, · · · , ψN−1, which each eigenvalue ψm = ψm2ψm3 · · ·ψmr is obtained from the product of

eigenvalues ψml of circulant matrices Csl
= {sl [(n − k)N ]}, l = 2, 3, . . . , r, respectively. The properties

of circulant matrix Ca may bring insight to determine the degree and pattern of PSIS s generated from

convoluting many PGISs.

7.2. Effect of convolution on degree and pattern expansion

This subsection addresses the effectiveness of convolution operation upon two sequences can

increase degree and create new pattern to the resultant sequence, which this property is described in

Theorem 10. The derivation of Theorem 10 is based on Theorem 9 and Lemmas 4 and 5.

Let Hb0 = {αkn} f−1
n=0 be a subgroup of cyclic group ZN = {1, 2, . . . , N − 1} and

bi ∈ ZN , where N = f k + 1. The subset Hbi = {ubi|u ∈ Hb0} is called the right

coset of subgroup Hb0 generated by bi. Let Hb0, Hb1, . . . , Hbk−1 be the distinct right

cosets of Hb0 in ZN . Then ZN = Hb0 ∪ Hb1 ∪ · · · ∪ Hbk−1, which is a disjoint union and

|ZN | = |Hb0|+ |Hb1|+ · · ·+ |Hbk−1| = |Hb0|+ |Hb0|+ · · ·+ |Hb0| = k|Hb0| = k f .

Lemma 4. Let l, n ∈ ZN , which l ̸= n. ∑
m∈Hbi

e−j2πmn/N = ∑
m∈Hbi

e−j2πml/N ⇔ l, n ∈ Hba, where

Hba ⊂ {Hb0, Hb1, . . . , Hbk−1}.

Proof. Let Hb0n = {un|u ∈ Hb0} and Hb0l = {ul|u ∈ Hb0} be two cosets of Hb0 generated by n

and l, respectively. If l and n belong to the same coset, which means {ul|u ∈ Hb0} = {un|u ∈ Hb0},

then ml ∈ {bilu|u ∈ Hb0} and mn ∈ {bilu|u ∈ Hb0}. This implies that ml and mn belong to the

same coset of Hb0 generated by bil, denoted as Hbil, where Hbil ⊂ {Hb0, Hb1, . . . , Hbk−1}. The

summation of e−j2πmn/N with respect to m, where m comes across the domain of one coset, results in

∑
m∈Hbi

e−j2πmn/N = ∑
m∈Hbi

e−j2πml/N = ∑
m∈Hbi l

e−j2πm/N .

Conversely, when l, m, n ∈ ZN , it is obvious that gcd(mn, N) = 1 and gcd(ml, N) = 1. Since both

e−j2πml/N and e−j2πmn/N ∈ UN , where UN = {e−j2πm/N |m = 0, 1, . . . , N − 1} denotes the group of

Nth roots of unity, thus l ̸= n ⇔ e−j2πml/N ̸= e−j2πmn/N and ∑
m∈Hbi

e−j2πml/N = ∑
m∈Hbi

e−j2πmn/N ⇒
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{ml(modN)|m ∈ Hbi} = {mn(modN)|m ∈ Hbi}. This infers that l and n belong to the same

coset.

Let N = k f + 1=k
′
f ′ + 1 be an odd prime. The cyclic group ZN = {1, 2, . . . , N − 1} can be

partitioned either into k cosets Hbi, i = 0, . . . , k − 1, or k′ cosets Hb′ i, i = 0, . . . , k′ − 1, respectively,

where both Hb0={αkn} f−1
n=0 and Hb′0={αk′n} f ′−1

n=0 are subgroups of Z∗
N , Hbi=αiHb0={αkn+i} f−1

n=0,

Hb′i=αiHb′0={αk′n+i} f ′−1
n=0 , and α is the generator of ZN . When k′ = mk and m ≥ 2 is an integer, each

Hbi, i = 0, . . . , k − 1, can be further partitioned into m cosets, e.g., Hbi=Hb′i ∪ Hb′k+i ∪ · · · ∪ Hb′(m−1)k+i
,

i = 0, . . . , k− 1, where the cardinality of all Hbi, i = 0, . . . , k− 1, is f , and that of Hb
′
i , i = 0, . . . , (mk− 1),

is f
′
= f /m.

Let’s define two sequence sets xi = {xi[n]}N−1
n=0 , i = 0, . . . , k − 1, and x′i = {x′i [n]}N−1

n=0 ,

i = 0, . . . , k′ − 1, as follows:

xi[n] =

{

1, n ∈ Hbi

0, otherwise.
(27)

x′i [n] =

{

1, n ∈ Hb′i
0, otherwise.

(28)

The DFTs of xi and x′i are Xi = {Xi[n]}N−1
n=0 and X′

i = {X′
i [n]}N−1

n=0 , respectively.

Theorem 9. All X0, X1, . . . , Xk−1 are (k+ 1)-valued, where the elements of these vectors belong to the following

set





f , ∑

m∈Hb0

e−j2πm/N , ∑
m∈Hb1

e−j2πm/N , . . . , ∑
m∈Hbk−1

e−j2πm/N






.

Proof. Since xi[n] = 1, n ∈ Hbi and xi[n] = 0, n /∈ Hbi, the nth element of Xi = {Xi[n]}N−1
n=0 is

Xi[n] =
N−1

∑
m=0

xi[m]e−j2πmn/N = ∑
m∈Hbi

e−j2πmn/N . When n = 0,

Xi[0] = ∑
m∈Hbi

e−j2πmn/N |n=0 = |Hbi| = f .

Given that m ∈ Hbi, it has mZN = {m, 2m, . . . , (N − 1)m} and mZN(modN) = ZN , In other words,

mZN = ZN modulo N. Both mZN and ZN have the same partition, which means mZN = {Hb0 ∪
Hb1 ∪ · · · ∪ Hbk−1} modulo N. Based on the partition of mZN , the set {Xi[n]}N−1

n=1 can be grouped into

k subsets, i.e.,

{Xi[n]}N−1
n=1 = {Xi[n]}N−1

n∈Hb0
∪ {Xi[n]}N−1

n∈Hb1
∪ · · · ∪ {Xi[n]}N−1

n∈Hbk−1
.

According to Lemma 4, {Xi[n]}N−1
n∈Hbd

= {Xi[m]}N−1
m∈Hbd

, d = 0, 1, . . . , k − 1. This concludes that for

i = 0, 1, . . . , k − 1, all Xi = {Xi[n]}N−1
n=0 are (k + 1)-valued which draw distinct k + 1 values from the

following set






f , ∑

m∈Hb0

e−j2πm/N , ∑
m∈Hb1

e−j2πm/N , . . . , ∑
m∈Hbk−1

e−j2πm/N






.
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Let N = k f + 1=k′ f ′ + 1 be an odd prime, where k′ = mk and m ≥ 2. The relationship between

the DFTs of sequences defined in (27) and (28), which are Xi = {Xi[n]}N−1
n=0 and X′

i = {X′
i [n]}N−1

n=0 ,

respectively, is governed by following lemma.

Lemma 5. Xi=X′
i + X′

k+i + · · ·+ X′
(m−1)k+i, for all i = 0, . . . , k − 1. In these vectors, Xi[0] = mX′

i [0], and

all elements in set {Xi[n]}n∈Hbi
are the same; however, the elements in set {X′

i [n]}n∈Hbi
have m different values,

which Xi[n]=X′
i [n] + X′

k+i[n] + · · ·+ X′
(m−1)k+i

[n], n ∈ Hbi, for all i = 0, . . . , k − 1.

Proof. Since Hbi=Hb′i ∪Hb′k+i ∪ · · · ∪Hb′(m−1)k+i
, it results in xi=x′i + x′k+i + · · ·+ x′(m−1)k+i

and derives

that Xi=X′
i + X′

k+i + · · ·+ X′
(m−1)k+i is true, for i = 0, . . . , k − 1. By Theorem 9, it is straightforward that

Xi[0] = mX′
i [0] and Xi[n]=X′

i [n] + X′
k+i[n] + · · ·+ X′

(m−1)k+i
[n], n ∈ Hbi.

Let N = k f + 1=k′ f ′ + 1 be an odd prime, where k′ = mk and m ≥ 2. Let sk and sk′ be

degree-(k+ 1) and degree-(k′ + 1) PGISs constructed using sequences {xi}k
i=0 and {x′i}k′

i=0, respectively.

The following Theorem can be derived based on the results of Lemma 4 and Lemma 5.

Theorem 10. The degree and pattern of sequence s = sk ⊗ sk′ are the same as that of s. However, when k′ and

k are relatively coprime, sequence s = sk ⊗ sk′ has new pattern and the degree of PGIS s is larger than that of sk

and sk′ .

Proof. Let the DFTs of sk and sk′ be {X[n]} and {X′[n]}, respectively. The DFT of sk ⊗ sk′ is the

component-wise product between {X[n]} and {X′[n]}. Based on Lemma 4 and Lemma 5, when k′ = mk,

Hb′i ⊂ Hbi, the sequence pattern of sk ⊗ sk′ is governed by sk′ , because all elements in set {Xi[n]}n∈Hbi
is

the same, but the elements in set {X′
i [n]}n∈Hbi

have m different values. When sequences are constructed

using base sequences {xi}k
i=0 and {x′i}k′

i=0, the number of distinct elements of their DFTs determines the

degree of the associated sequences according to Theorem 9. This is the reason the degree of s = sk ⊗ sk′

is determined also by sk′ .

When k′ and k are relatively coprime, Hb′i ⊈ Hbi, there exist different non-overlap components

between {X[n]} and {X′[n]}. In case of existing distinct non-overlap components between {X[n]}
and {X′[n]}, sk ⊗ sk′ constructs new sequence pattern. Moreover, since both elements of {X[n]} and

{X′[n]} are not zeros, the component-wise product between {X[n]} and {X′[n]} creates only nonzero

elements as well, and the number of distinct elements from component-wise product between {X[n]}
and {X′[n]} is larger than that of both {X[n]} and {X′[n]}. This derives that the degree of sk ⊗ sk′ is

larger than both sk and sk′ two sequences.

7.3. Degree-4 PGISs construction from convolution

This subsection presents the construction of degree-4 PGIS of particular prime period N = 33−1
3−1 =

13 and N = 25 − 1 = 31 from convolution operation. At first, let’s define three PGISs of period N = 13

as follows:

st = (0, 0, 1, 0, 1, 1, 1,−1,−1, 0, 1,−1, 1),

sb = (a, b, . . . , b
︸ ︷︷ ︸

12

),

ss = (c, d, e, d, d, e, e, e, e, d, d, e, d),

where a = 1 + 2j, b = −2 + j, c = 5 + 5j, d = 10 − 6j and e = −6 + 10j.
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Example 7. Sequence s=st ⊗ sb ⊗ ss is a degree-4 PGIS of period N = 13, which is given by

s = (a, a, b, a, c, b, b, d, d, a, c, d, c), (29)

where a = 684 + 198j, b = 333 + 211j, c = −1539 + 413j and d = −837 + 439j.

Let s−t={st[(−n)N ]}. In (29), when st is replaced by s−t, it constructs a new sequence s−=s−t ⊗
sb ⊗ ss given by

s− = (a, c, d, c, a, d, d, b, b, c, a, b, a).

Example 8. Two construction examples of prime period N = 25 − 1 = 31 are t1 ⊗ t3 and t5 ⊗ t15, which are

t1 ⊗ t3 = (a, b, b, 0, b, c, 0, d, b, c, c, c, 0, c, d, 0, b, 0, c, d, c, c, c, 0, 0, d, c, 0, d, 0, 0), (30)

t5 ⊗ t15 = (e, f , f , 0, f , g, 0, h, f , g, g, 0, 0, 0, h, f , f , 0, g, h, g, 0, 0, f , 0, h, 0, f , h, f , f ), (31)

where a = −2, b = 3, c = −1, d = 1, e = 2, f = −1, g = 1 and h = 3.

7.4. Convolution derived PGISs based on m-sequences

There exists one-to-one mapping between distinct m−sequences and the pattern of degree-2

PGISs. Let’s present PGISs of period N = 25 − 1 as the examples for demonstration, which the six

degree-2 PGISs of period N = 25 − 1 derived from m-sequences are {s1, . . . , s6}, listed in Table 1. Note

that the number of different combination of sl , sk ∈ {s1, . . . , s6}, l ̸= k, is 15. We summarize the results

of convolution upon two PGISs draw from the set {s1, . . . , s6} as follows:

1). Sequences s1 ⊗ s2, s3 ⊗ s4 and s5 ⊗ s6 are degree-2 PGISs, which the pattern of these three

PGISs is the same as that of s10 which is listed in Table 1.

2). The other 12 kinds of sl ⊗ sk PGISs are degree-3 PGISs, listed in Table 2.

3). The six sequences, sm ⊗ sm, m = 1, . . . , 6, are degree-6 PGISs, which are listed in Table 3.

In Section 6.2, the CIDTS-based PGIS construction applies m−sequences, {m1, . . . , m6}, directly, which

CCF Rb,c[n] is created and then made adjustment by setting { Rb,c [n]+1
4 } to construct PGIS, where

1 ≤ b, c ≤ 6. The results are summarized as follows:

1). Three CCFs, {m1[n]} ⊗ {m∗
2 [(−n)N ]}, {m3[n]} ⊗ {m∗

4 [(−n)N ]} and {m5[n]} ⊗ {m∗
6 [(−n)N ]},

can be adjusted to construct three degree-5 PGISs, which are {t13, t14, t15}, presented in (23)-(25).

Similarly, the three sequences constructed from {m2[n]} ⊗ {m∗
1 [(−n)N ]}, {m4[n]} ⊗ {m∗

3 [(−n)N ]} and

{m6[n]} ⊗ {m∗
5 [(−n)N ]} are also degree-5 PGISs, denoted by {t−13, t−14, t−15}.

2). The 12 distinct CIDTS-based sequences constructed by other 12 kinds of CCFs {ml [n]} ⊗
{m∗

k [(−n)N ]}, l ̸= k, are all with degree-2, which are denoted by {t1, · · · , t12}, listed in Table 1. In

addition, 12 kinds of CCFs {mk[n]} ⊗ {s∗l [(−n)N ]} will construct other 12 different degree-2 PGISs,

which are {t−1, · · · , t−12}.

7.5. Convolution derived PGISs based on CIDTS

In the previous subsection, he number of CIDTS-based PGISs of period N = 25 − 1 is 30, which

are {t13, t14, t15}∪{t−13, t−14, t−15}∪{t1, · · · , t12}∪{t−1, · · · , t−12}. By taking convolution operation

tm ⊗ tk upon any two sequences over these 30 PGISs, where the number of different convolution

combination of tm and tk is 30!
28!·2! = 435, for m ̸= k, the number of different degrees and patterns of

new generated PGISs can be abundant. The detailed analysis and categorization of these PGISs are not

the purpose of this study. For brevity reason, we present only two results.

1). The 12 different sequences built from tm ⊗ tm, m = 1, . . . , 12, are PGISs of degree-6, listed in

Table 3; while three tk ⊗ tk, k = 13, 14, 15 construct three different PGISs of degree-7, but belong to the
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same pattern, which the pattern of t13 ⊗ t13 is listed in Table 4.

2). When m ̸= k, some PGISs generated by tm ⊗ tk are provided for comparison, where the degrees

of these examples belong to the set {1, 2, 4, 5, 6}. The degree of PGISs t13 ⊗ t14, t13 ⊗ t15 and t15 ⊗ t14

is 6. The degree of t1 ⊗ t2, t1 ⊗ t4, t1 ⊗ t5, t2 ⊗ t3, t2 ⊗ t4, t2 ⊗ t6, t3 ⊗ t4 and t5 ⊗ t6 is 5. The degree of

t3 ⊗ t5, t3 ⊗ t6, t4 ⊗ t5 and t4 ⊗ t6 is 2. The two PGISs of degree-1 are t1 ⊗ t6 and t2 ⊗ t5. We do not

make a pattern list of these PGISs for brevity. Finally, two degree-4 examples are t1 ⊗ t3 and t5 ⊗ t15,

which are (30) and (31), respectively.

7.6. Convolution between different types of PGISs

This study addresses different construction of PGISs. Therefore, their exist various many different

convolution operation applied across different type PGISs. This subsection presents only some

examples for the purpose of demonstration the versatile of convolution-derived PGISs.

7.6.1. Convolution between ternary sequence and CIDTS derived PGISs

Table 5 presents 7 kinds of PGISs obtained from convolution between perfect ternary sequence

and CIDTS derived PGISs, which are s11 ⊗ t15, s11 ⊗ t14, s−11 ⊗ t14, s11 ⊗ t1, s−11 ⊗ t1, s11 ⊗ t5 and

s−11 ⊗ t5 for comparison. The patterns are all different and the degrees of these PGISs are 20, 20, 20, 14,

12, 12 and 12, respectively.

7.6.2. Convolution between ternary sequence and m-sequences derived PGISs

Table 5 presents 2 kinds of PGISs obtained from convolution between perfect ternary sequence

and m-sequences derived PGISs, which are s1 ⊗ s1 ⊗ s11 and s2 ⊗ s2 ⊗ s11. The degrees are 21 and 20

respectively.

7.6.3. Convolution between ternary sequence and cyclotomic class PGIS

Table 5 presents also one PGIS obtained from convolution between perfect ternary sequence and

degree-3 PGIS using cyclotomic class of order2, which is scy ⊗ s11 and the degree is 11.

7.6.4. Convolution between CIDTS derived and cyclotomic class PGIS

The 15 different PGISs obtained from convolution between CIDTS derived PGISs, which are

{t1, · · · , t15}, and degree-3 PGIS using cyclotomic class of order2 scy can be distributed into degree-7

and degree-6 two groups, which 6 PGISs belong to set {scy ⊗ tm, m = 2, 4, 5, 7, 10, 11} are degree-6 and

the rest of other 9 PGISs are degree-7. The patterns of these PGISs belong to those patterns listed in

Table 3.
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Table 3. 14 patterns of degree-6 and -7 PGISs of period 31

PGIS sequence pattern coefficients

s1 ⊗ s1 (a, b, b, c, b, d, c, e, b, d, d, c, c, c, e, f , b, c, d, e, d, c, c, f , c, e, c, f , e, f , f ) a = −128 − 26j, b = 16 + 16j,
s2 ⊗ s2 (a, f , f , e, f , c, e, c, f , c, c, d, e, d, c, b, f , e, c, c, c, d, d, b, e, c, d, b, c, b, b) c = −32 + 2j, d = 64 + 30j,
s3 ⊗ s3 (a, e, e, c, e, b, c, d, e, b, b, f , c, f , d, c, e, c, b, d, b, f , f , c, c, d, f , c, d, c, c) e = 112 + 44j, f = −80 − 12j
s4 ⊗ s4 (a, c, c, d, c, f , d, c, c, f , f , b, d, b, c, e, c, d, f , c, f , b, b, e, d, c, b, e, c, e, e)
s5 ⊗ s5 (a, d, d, f , d, e, f , b, d, e, e, c, f , c, b, c, d, f , e, b, e, c, c, c, f , b, c, c, b, c, c)
s6 ⊗ s6 (a, c, c, b, c, c, b, f , c, c, c, e, b, e, f , d, c, b, c, f , c, e, e, d, b, f , e, d, f , d, d)
t4 ⊗ t15 (a, b, b, c, b, d, c, e, b, d, d, f , c, f , e, f , b, c, d, e, d, f , f , f , c, e, f , f , e, f , f ) a = −3, b = 9, c = 2,

d = −2, e = 8, f = −5

t1 ⊗ t1 (a, b, b, c, b, d, c, e, b, d, d, 0, c, 0, e, f , b, c, d, e, d, 0, 0, f , c, e, 0, f , e, f , f ) a = 11, b = 1, c = 3,
d = 2, e = −3, f = −2

t2 ⊗ t2 (a, 0, 0, b, 0, c, b, d, 0, c, c, e, b, e, d, f , 0, b, c, d, c, e, e, f , b, d, e, f , d, f , f ) a = −9, b = 1, c = −1,
d = −2, e = 5, f = 2

t3 ⊗ t3 (a, 0, 0, b, 0, c, b, d, 0, c, c, e, b, e, d, f , 0, b, c, d, c, e, e, f , b, d, e, f , d, f , f ) a = 11, b = 1, c = 3,
d = −2, e = 3, f = 2

t4 ⊗ t4 (a, b, b, c, b, d, c, 0, b, d, d, e, c, e, 0, f , b, c, d, 0, d, e, e, f , c, 0, e, f , 0, f , f ) a = −9, b = −1, c = 2,
d = −2, e = 1, f = 5

t5 ⊗ t5 (a, b, b, c, b, d, c, e, b, d, d, f , c, f , e, 0, b, c, d, e, d, f , f , 0, c, e, f , 0, e, 0, 0) a = −9, b = 2, c = −2,
d = 5, e = 1, f = −1

t6 ⊗ t6 (a, b, b, c, b, 0, c, d, b, 0, 0, e, c, e, d, f , b, c, 0, d, 0, e, e, f , c, d, e, f , d, f , f ) a = 11, b = −2, c = −3,
d = 3, e = 2, f = 1

t7 ⊗ t7 (a, b, b, 0, b, c, 0, d, b, c, c, e, 0, e, d, f , b, 0, c, d, c, e, e, f , 0, d, e, f , d, f , f ) a = −9, b = 5, c = 1,
d = 2, e = −2, f = −1

t8 ⊗ t8 (a, b, b, c, b, d, c, e, b, d, d, f , c, f , e, 0, b, c, d, e, d, f , f , 0, c, e, f , 0, e, 0, 0) a = 11, b = 2, c = −2,
d = −3, e = 1, f = 3

t9 ⊗ t9 (a, b, b, 0, b, c, 0, d, b, c, c, e, 0, e, d, f , b, 0, c, d, c, e, e, f , 0, d, e, f , d, f , f ) a = 11, b = −3, c = 1,
d = 2, e = −2, f = 3

t10 ⊗ t10 (a, b, b, c, b, 0, c, d, b, 0, 0, e, c, e, d, f , b, c, 0, d, 0, e, e, f , c, d, e, f , d, f , f ) a = −9, b = −2, c = 5,
d = −1, e = 2, f = 1

t11 ⊗ t11 (a, b, b, c, b, d, c, e, b, d, d, 0, c, 0, e, f , b, c, d, e, d, 0, 0, f , c, e, 0, f , e, f , f ) a = −9, b = 1, c = −1,
d = 2, e = 5, f = −2

t12 ⊗ t12 (a, b, b, c, b, d, c, 0, b, d, d, e, c, e, 0, f , b, c, d, 0, d, e, e, f , c, 0, e, f , 0, f , f ) a = 11, b = 3, c = 2,
d = −2, e = 1, f = −3

t13 ⊗ t13 (a, b, b, c, b, d, c, e, b, d, d, f , c, f , e, g, b, c, d, e, d, f , f , g, c, e, f , g, e, g, g) a = −21, b = 8, c = −3, d = −17
(degree-7) e = 2, f = 13, g = 14

s11 ⊗ t13 (a, b, b, c, b, d, e, f , b, d, d, g, e, g, f , g, b, e, d, f , d, g, g, g, e, f , g, g, f , g, g) a = −11, b = 4, c = −2, d = −9
(degree-7) e = −1, f = 1, g = 7

Note that the following pairs have the same sequence pattern:
(s5 ⊗ s5, t4 ⊗ t15), (t1 ⊗ t1,t11 ⊗ t11), (t2 ⊗ t2,t3 ⊗ t3), (t4 ⊗ t4,t12 ⊗ t12), (t5 ⊗ t5,t8 ⊗ t8), (t6 ⊗ t6,t10 ⊗ t10), (t7 ⊗ t7,t9 ⊗ t9)

Table 4. 6 patterns of degree-10 PGISs of period 31

PGIS sequence pattern coefficients

s1 ⊗ s11 (a, b, b, c, d, e, e, f , e, g, f , e, a, h, f , d, f , g, b, i, e, d, d, k, h, d, h, b, f , b, g) a = −6 + 22j, b = −2 − 6j,
s2 ⊗ s11 (b, f , b, c, d, b, e, e, a, h, e, g, e, h, f , f , a, g, g, i, e, b, d, d, g, f , d, e, a, l, f ) c = 2 − 34j, d = 1 − 27j,
s3 ⊗ s11 (b, b, e, f , e, b, b, d, d, g, c, f , d, f , f , d, b, k, g, e, e, g, h, b, a, e, a, d, i, h, f ) e = −4 + 8j, f = −5 + 15j,
s4 ⊗ s11 ( f , d, e, f , a, b, e, b, f , h, c, a, d, a, e, d, l, d, g, g, b, f , g, g, e, e, b, f , i, h, e) g = −3 + j, h = −1 − 13j,
s5 ⊗ s11 (h, a, e, f , d, e, d, g, d, g, f , i, h, b, c, e, h, b, k, f , b, f , a, g, d, b, b, e, e, f , d) i = −20j, k = −8 + 36j,
s6 ⊗ s11 (d, b, b, e, f , e, f , f , d, h, f , i, g, l, c, a, h, g, d, a, b, e, e, g, d, e, f , e, g, a, b) l = 3 − 41j
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Table 5. Period 31 PGISs of various degrees

PGIS sequence pattern coefficients

s1 ⊗ s1 ⊗ s11 (a, b, c, c, d, e, f , g, h, i, i, k, l, m, n, d, m, p, q, e, b, g, r, s, t, t, u, v, r, w, n) a = −8 + 26j, b = −56 + 12j,
(degree-21) c = −104 − 2j, d = 256 + 103j,

e = −152 − 16j, f = 184 + 82j,
g = 16 + 33j, h = 424 + 152j,
i = −80 + 5j, k = 40 + 40j,
l = 88 + 54j, m = 64 + 47j,
n = 160 + 75j, p = −224 − 37j,
q = −248 − 44j, r = −32 + 19j,
s = −344 − 72j, t = 208 + 89j,
u = −128 − 9j, v = 136 + 68j,
w = −200 − 30j

s2 ⊗ s2 ⊗ s11 (c, g, a, b, u, a, w, e, a, d, a, m, v, d, t, f , c, n, h, e, k, q, r, d, n, l, m, p, b, h, i) a = −8 + 26j, b = −56 + 12j,
(degree-20) c = 232 + 96j, d = 256 + 103j,

e = −152 − 16j, f = −272 − 51j,
g = 16 + 33j, h = 112 + 61j,
i = −80 + 5j, k = 40 + 40j,
l = −320 − 65j, m = 64 + 47j,
n = 160 + 75j, p = −296 − 58j,
q = −248 − 44j, r = −32 + 19j,
w = −200 − 30j, t = 208 + 89j,
u = −128 − 9j, v = 136 + 68j

s11 ⊗ t15 (a, b, c, d, e, f , g, h, e, d, h, c, g, i, j, k, l, m, n, p, j, q, r, s, p, t, f , u, 0, l, q) a = 7, b = 2, c = 8, d = 5,
(degree-20) e = −9, f = 4, g = −7, h = −5,

i = 10, j = 6, k = −16, l = −1,
m = 12, n = 16, p = 3, q = 1,
r = −2, s = 11, t = −4, u = −6

s11 ⊗ t14 (a, b, a, c, d, e, f , g, h, i, e, j, j, k, i, h, l, m, n, 0, p, c, q, r, s, t, u, q, p, k, g) a = 4, b = 7, c = −5, d = −16,
(degree-20) e = 6, f = −4, g = 1, h = −9,

i = 5, j = 3, k = −1, l = 10,
m = 16, n = 11, p = 8, q = −7,
r = 12, s = −2, t = −6, u = 2

s−11 ⊗ t14 (a, b, c, b, d, e, f , g, h, i, j, k, l, i, c, h, m, k, e, n, p, p, c, q, r, s, t, t, u, 0, l) a = 1, b = 8, c = −9, d = 15,
(degree-20) e = −8, f = 10, g = −4, h = −3,

i = −5, j = 5, k = 2, l = −1,
m = 7, n = 3, p = 4, q = 13,
r = 12, s = 14, t = 2, u = −7

s11 ⊗ t1 (a, b, 0, b, c, d, 0, e, f , f , e, g, h, i, j, k, l, l, b, m, c, m, m, b, j, 0, c, n, d, m, g) a = 3, b = −1, c = 2, d = −2,
(degree-14) e = −4, f = 3, g = 4, h = 1,

i = 6, j = 8, k = −3, l = 5,
m = −3, n = −5

s−11 ⊗ t1 (a, b, c, d, e, d, 0, a, 0, f , f , 0, g, f , g, 0, c, h, h, e, i, g, e, j, f , k, d, l, f , 0, c) a = 6, b = 3, c = −3, d = −2,
(degree-12) e = 1, f = −1, g = −4, h = 7,

i = 5, j = 9, k = 2, l = 4

s11 ⊗ t5 (a, b, a, a, c, d, e, f , g, h, d, i, d, j, h, i, a, k, j, d, 0, a, h, l, b, i, c, 0, 0, c, k) a = 2, b = 5, c = −3, d = −2,
(degree-12) e = −6, f = −4, g = 4, h = 3,

i = 1, j = 9, k = −1, l = −5

s−11 ⊗ t5 (a, b, c, d, e, f , g, b, c, g, d, 0, 0, h, i, i, g, b, g, c, a, g, i, a, i, j, 0, k, 0, e, l) a = 2, b = 3, c = 4, d = −3,
(degree-12) e = −2, f = 5, g = −1, h = −10,

i = 1, j = 6, k = 9, l = −6

scy ⊗ s11 (a, a, b, c, d, b, e, f , d, g, c, h, i, k, c, d, k, m, m, h, b, f , i, m, i, e, a, e, h, k, f ) a = −13 − 13j, b = −14 − 14j,
(degree-11) c = −6 − 6j, d = 30 + 30j,

e = 21 + 21j, f = 7 + 7j,
g = −19 − 19j, h = −7 − 7j,
i = 2 + 2j, k = −12 − 12j,
m = −35 − 35j
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8. Conclusions

Prime period sequences can serve as the fundamental tool to construct arbitrary composite

period sequences. The construction of prime period PGISs becomes an important research topic.

This paper provides systematic and nonsystematic two different approaches for construction prime

period PGISs. Systematic approach encounters difficulty to solve constraint equations when the

degree of sequence is lager than 3, however the merit of this approach is that both degree and

pattern of a sequence are known, and PGISs of degrees 1, 2, 3 and 5 examples are presented for

demonstration. The nonsystematic approach can contribute abundant numbers of degrees and patterns

to the constructed PGISs, but both degree and pattern might vary. We provide PGISs of different

patterns and degree-4 and other higher degrees of 6, 7, 10, 11, 12, 14, 20 and 21 examples to show

the results of nonsystematic approach. The proposed systematic and nonsystematic schemes can be

combined to construct efficiently abundant PGISs with various degrees and patterns for the associated

different applications.
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