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Abstract: Prime period sequences can serve as the fundamental tool to construct arbitrary composite
period sequences. This is a review study of prime period perfect Gaussian integer sequence (PGIS).
When cyclic group {1,2,...,N — 1} can be partitioned into k cosets, where N = kf + 1 is an odd
prime number, the construction of a degree-(k+1) PGIS can be derived from either matching the flat
magnitude spectrum criterion or making the sequence with ideal periodic autocorrelation function
(PACF). This is a systematic approach of prime period N = kf + 1 PGIS construction, and is applied to
construct PGISs with degrees 1, 2, 3 and 5. However, for degrees larger than 3, matching either the flat
magnitude spectrum or achieving the ideal PACF encounters a great challenge of solving a system of
nonlinear constraint equations. To deal with this problem, the correlation and convolution operations
can be applied upon PGIS of lower degrees to generate new PGIS with degree-4 and other higher
degrees, e.g., 6,7, 10, 11, 12, 14, 20 and 21 in this paper. In this convolution based scheme, both degree
and pattern of a PGIS vary and can be indeterminant, which is rather nonsystematic compared with
the systematic approach. The combination of systematic and nonsystematic schemes contributes the
great efficiency for constructing abundant PGISs with various degrees and patterns for the associated
applications.

Keywords: correlation function; degree; perfect sequence; PGIS

1. Introduction

A Gaussian integer sequence (GIS) is a sequence with coefficients that are complex numbers
a+ bj, where j = /—1 and a and b are integers. The construction of perfect Gaussian integer sequence
(PGIS) has become an important research topic [1-10] because integers require less memory; also, the
implementation of a PGIS is simpler than those of other perfect sequences (PSs) with real or complex
coefficients, in which a sequence is perfect if and only if it has an ideal periodic autocorrelation function
(PACEF).

By tracing the construction of PGISs, a general form of even-period PGISs was presented in [1],
in which the PGISs were constructed by linearly combining four base sequences or their cyclic shift
equivalents using Gaussian integer coefficients of equal magnitude. Yang ef al. [2] constructed PGISs of
odd prime period p by using cyclotomic classes with respect to the multiplicative group of GF(p). Ma
et al. [3] later presented PGISs with a period of p(p + 2) based on Whiteman'’s generalized cyclotomy
of order two over Z,(, ), where p and (p + 2) are twin primes. In [4], Chang et al. introduced the
concept of the degree of a sequence and constructed degree-2 and degree-3 PGISs of prime period p.
Then, they up-sampled these PGISs by a factor of m and filled them with new coefficients to build
degree-3 and degree-4 PGISs of arbitrary composite period N = mp. Lee et al. focused on constructing
degree-2 PGISs of various periods using two-tuple-balanced sequences and cyclic difference sets [5,6].
Algorithms that could generate PGISs of arbitrary period were developed by Pei et al. [7], and one
of these algorithms could be applied to construct degree-5 PGISs of prime period p = 1(mod 4) by
applying the generalized Legendre sequences (GLS). A systematic method for constructing sparse
PGISs in which most of the elements are zeros was proposed [8]. PGISs of period p* with degrees equal
to or less than k + 1 and those of period gp with degrees equal to or larger than four were proposed in
[9] and [10].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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With the above mentioned significant results of theoretical PGIS study and matured construction
techniques, exploring the application of PGIS gradually becomes a new research topic [11-17]. In [11],
a PGIS was applied to OFDM systems for peak-to-average power ratio (PAPR) reduction. Subsequently,
the PGIS was used to construct the transform matrix for the associated precoded OFDM systems to
achieve full frequency diversity and obtain optimal bit-error rate [12]. A CDMA scheme based on PGIS,
called PGIS-CDMA system, was developed by Chang [13], where a set of PGISs could substitute and
outperform the PN codes (e.g., m-sequences, Gold sequences, Kasami sequences, and bent sequences)
in a direct sequence (DS) CDMA system. Construction of circular convolution group based on perfect
sequences for block data transmission with high diversity order appeared in [14]. New application of
PGIS to cryptography refers to [15], which a hybrid public/private key cryptography scheme based
on PGIS of period N = pg was proposed. This hybrid cryptosystem can take the advantages of
public and private-key systems, and it is with implementation simplicity for easy adaptation to an IoT
platform. PGIS can also be applied to construct a set of zero circular convolution (ZCC) sequences [16],
which ZCC sequences featured the advantage of possessing the desired PACF and the ideal periodic
crosscorrelation function (PCCF) properties. ZCC sequences could be applied for multiuser channel
estimation as well as the optimal joint symbol detection and channel estimation [16,17].

Different from that of binary sequence families, there are no upper bound the available numbers
of PGISs, which one can construct as many different PGISs as one would expect. We can use degree,
pattern and period as three parameters to uniquely define a PGIS. From the application point of view,
the available numbers of degrees and patterns of a set of PGISs are desired when the period of a this
set of PGISs is fixed. For example, the capacity of a PGIS-CDMA system is determined by the number
of degrees and patterns [13]. In addition, prime period PGISs can serve as the fundamental tool for
constructing arbitrary composite period PGISs [4]. These two reasons stimulate us to make a review
and through study of constructing prime period PGIS from both degree and pattern points of view.

To construct more degrees and patterns of different PGISs is the goal of this study, which we
conclude and group the construction approaches into systematic and nonsystematic two schemes. When
perfect sequences are constructed by matching the flat magnitude spectrum or the ideal PACF criterion,
the pattern and degree of a sequence are determined and known in advance. For example, the
construction of degree-2 and degree-3 PGISs of prime period in [4] and the construction of degree-5
PGIS adopting from the generalized Legengre sequences(GLS) by Pei et al. [7]. This is the reason this
approach can be called a systematic scheme. In this approach, when the cyclotomic order is greater
than 3, solving constraint equations by matching flat magnitude spectrum criterion becomes a great
challenge. With this aspect, we can apply correlation and convolution operations in this study to
construct degree-4 and many other degrees which belong to the set {6,7,10,11,12,14,20,21}. However,
the degree, as well as the pattern, of a PGIS constructed from taking either correlation or convolution
operation between two or more PGISs might vary, and is too complicated to be analyzed systematically,
which is a case by case condition. This is rather a nonsystematic scheme of PGIS construction compared
with the mentioned systematic scheme. One can apply systematic scheme to construct lower degree
PGISs, and then these lower degree PGISs can be applied to construct many other higher degree PGISs
using nonsystematic scheme. The proposed systematic and nonsystematic schemes can be combined
to construct efficiently abundant PGISs with various degrees and patterns for the associated different
applications.

The structure of this paper is briefly described. Followed by depicting the properties of PGISs in
Section 2, Sections from 3 to 6 present a review study of the systematic construction of general prime
period PGISs of degrees 1, 2, 3 and 5, respectively. New study of PGIS construction by correlation and
convolution operations is addressed in Section 7, which there exist abundant degrees and patterns to
those PGISs of particular prime periods, e.g., N =2" —1land N = %, where p is an odd prime.
Conclusions are summarized in Section 8.
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2. Definitions and PGIS Properties

2.1. Notations

(7] is the Kronecker delta sequence of period N. The boldface character s denotes a sequence
or a vector of period N which is expressed as s = {s[n]}\" |, and s* | = {s*[(—n)n]}N=), where
the superscript * and (-)y stand for complex conjugate and modulo N operation, respectively. Let
s = {s[(n +m)N] N~ and st = {s[(n— m)n] - denote the circular shift of s to the left and

right, respectively, by m places, where 0 < m < N — 1. A set of N different sequences is expressed as
{sm}nl\{;é. S1 0 S, denotes component-wise product between S; and S.

2.2. Definitions

2.2.1. Degree

The degree of a sequence is defined as the number of distinct non-zero elements within one period
of the sequence.

2.2.2. Pattern

The pattern of a sequence is defined as the distribution of non-zero elements within one period of
the sequence.
We can demonstrate two degree-6 PGISs of period 31, which are with different pattern, as follows:

(_3/ 9/ 9/ 2/ 9/ _2/ 2/ 8/ 9/ _2/ _2/ 2/ 2/ 2/ 8/ _5/ 9/ 2/ _2/ 8/ _2/ 2/ 2/ _5/ 2/ 8/ 2/ _5/ 8/ _5/ _5)/
and
(-9,001,0,-1,1,-2,0,-1,-1,5,1,5,-2,2,0,1,-1,-2,-1,5,5,2,1,-2,5,2, —2,2,2).

Notice that since sequence and pattern are periodic with period N, thus sequence {s[n]} and
its circular shifts {s[(n £ m)y]} in this paper are considered to be with the same pattern, so are both
sequences {cs[n]} and {s*[n]}. However the pattern of sequence {s[(—n)y]} may not be the same as

that of {s[n]}.

2.2.3. Circular convolution

The circular convolution between s; = {s1[n] nN:_01 and s = {s [n]}nNz_Ol, denoted by s ®
so={s12[n]}\- ', where s [n] is the nth component of s; ® sy, is defined as
N-1
sio[n] = ) siltls2[(n — )N,
=0

where (-)n denotes modulo N.

2.2.4. PACF

Let s = {s[n] }nN;()l denote a sequence of period N, where s[n] is the nth component of s. Ry =
s ®s*; = {R[7]}7} denote the periodic autocorrelation function (PACF) of s, i.e.,

N-1
R[] = ZO s[n]s*[(n = T)n],

wheres 1 = {s[(—n)n] }nNz_Ol. LetS = {S[n]}nN:_()l denote the discrete Fourier transform (DFT) of s.
Then, the DFT of Rs is S 0 $*=|S|?, where | - | denotes the Euclidean norm. The sequence s is called
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perfect if and only if Rs = E - §[7], where E is energy of the sequence s. The DFT pair-relationship
between Rg = E-d[7] and So S* = |S|2 indicates that a sequence s is perfect if and only if the
magnitude spectrum of s is flat, i.e., |S [n]| = VE, VO <n < N — 1.

2.2.5. PCCF

The periodic crosscorrelation function (PCCF) between s; = {s1[7] IT\];Ol and s; = {sp[7] f;ol is

defined as

N-1

Riplt] = ) si[n]s3[(n — T)n]-

n=0
2.2.6. Coset

Let N = KM + 1 be an odd prime number, thus Zy = {1,2,..., N — 1} is both a multiplicative
group and a cyclic group [22]. If # € Zy is a primitive element, it follows that aN=1 = 1. Let
H = {a™K %;01 and 7 € Zy. The subset Hy = {hy|h € H} is called the right coset of subgroup H
generated by 7. Define

H, =Hd" k=0,1,..., K—1. 1)

It is easy to shown that Hy, k = 0,1,...,K — 1, are distinct right cosets of H, where H = Hj. It can be
further shown that Zy = HUH; U---UHg_1 and |Zy| = [Ho| + |Hy| + - - - + |Hg_1| = KM. Itis
noted that Hy = Ha* = Ha(k+"K) where ak*mK 1 =0,1,..., M —1, belong to the same coset.

2.3. PGIS Properties

Only parts of PGIS properties, which are related to this study, are summarized to form the
following Theorem. Especially the property 7 is applied for nonsystematic PGIS construction.

Theorem 1. Let s = {s[n] nNgol, s and sy be three PGISs of prime period N. The following sequences are also
PGISs of period N

1) {s[(n £ m)N|}, where m is any integer;

2) {cs[n]}, where c is any nonzero Gaussian integer;

3) {s*[n]}, where s*n] denotes complex conjugation;

4) {S[k]}, the DFT of {s[n]}, given that {s[n]} is with constant amplitude;

5 {sl(=n)nl};

6) S1 X Sy,

7 {Ri [T {Roa [T1150, {Rua[T]}5) and {Rop[7] o

Proof. 1). The proof of properties 1) to 6) can refer to [21] and [13].

2). To prove property 7), at first {s3[(—7)n]} is also a PGIS, and it has {R1[7]}={s1[1]} ®
{s3[(—=7)n]}. The convolution between {s;[7]} and {s;[(—T)n]} two PGISs yields that { Ry »[7] } is also
a PGIS of period N by property 6). Similarly {Ry1[7]}={s2[7]} ® {s7[(=T)n]}, {R11[7]}={s1[7]} ®
{s7[(=7)n]} and {Rop[T]}={s2[7]} ® {s5[(—T)n]} are also PGISs of period N as well. []

When the degree of sequence is a great concern, one can apply the cyclotomic class for constructing
systematically PS and PSIS according to following Theorem.

Theorem 2. Let a cyclic group Zy = {1,2,..., N — 1} be partitioned into K cosets, where each coset contains
M elements and N = 14 KM. Let c1, ¢a, ..., cr be all the F positive factors of N — 1. There exist F 41

classes of PSs of period N with degrees 1, 1+ X :1, 1+ Nc—zl a1 Ncgl, respectively. It is noted that

C
N-1 N-1 N-1
Ke{ G G

doi:10.20944/preprints202401.1238.v1
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Proof. Referred to [18]. [

Consider the case of N = 13, where the six positive factors of N —1 =12 are 1,2, 3, 4, 6 and 12,
respectively. Therefore, the corresponding degrees of the PSs or PGISs are given by 13,7, 5, 4, 3, and
2, respectively. We would like to mention that Theorem 2 can ensure the existence of six patterns of
PSs with period N = 13, however it is challenging to construct PGISs of these six patterns where the
coefficients of these sequences should be Gaussian integer numbers.

3. Unique Degree-1 PGIS

To encompass a broader scope of sequence degree, a particular degree-1 PGIS, which is originated
from Kronecker delta sequence (7], is addressed in this section.

Theorem 3. For any nonzero Gaussian integer a, sequence s = (a,0,...,0) and all N — 1 other circular shifts
N’

N-1
of s, with notation s("), are the only existing degree-1 PGISs of period N. In other words, (a,0,...,0) is the
unique pattern of degree-1 PGIS.

Proof. At first, the number of different nonzero elements for degree-1 PGIS is one. The DFT of
s =(a,0,...,0)isS = (a,a,...,a), which S meets the flat magnitude spectrum criterion for sequence s
S—— S——

N-1 N-1
- 27T N-1
tobe a PGIS. Let s(") = (0,...,0,4,0,...,0) be the n-shift of s. The DFT of s(m) ig§(n) — {ae‘JT} ,
—— N——— m=0
n N—n-1
where]\Jae_j zn%‘ = |a|,Vm. This infers that s(") is a degree-1 PGIS, and this is valid to all n =
1,...,N—1.

When there exist 2 “a" elements in this sequence, e.g., s + s("), the DFT of sequence s + s
F 27Tnm F 27Tnm : 27tnk

becomes S + S = {a (1+e_7T)}Z;s, where ’a(l—i—e‘f N # ’a(l—ke‘f N, 0 < mk <

N —1,m # k. The flat magnitude spectrum criterion for a sequence to be perfect can not be maintained

“uo_n

in this situation. By extending this result, when sequence exists more than two “a" elements, the

: 2mnim

DEFT of this sequence becomes {a(l +Ypzoe N

2mtnm

a(l+ Y0 /"N )| # )a(l + Y0 e‘jznT;’k)’ is true, 0 < m, k < N —1,m # k. This leads conclusion
that the sequence can no longer be a degree-1 PGIS when there exist two or more “a" elements. [

N-1
)} o for some n, which it is straightforward that
m=

4. Degree-2 PGISs Consturction

Besides that of degree-2 PGISs that can be constructed using cyclotomic class the same as other
degree PGISs do, many binary sequences, e.g., m-sequences and cyclic difference set, can also be
adopted to construct degree-2 PGISs, where binary sequence construction is rather a matured topic
with many construction schemes or algorithms [5,6,21]. This implies the more abundant patterns of
degree-2 than other degrees. The significance of existence abundant sequence patterns of degree-2
PGISs has the merit that the more number of PGISs the more they can be applied to generate more
new PGISs by means of taking convolution or correlation operation upon themselves. This topic of
convolution technique on PGIS construction is addressed in the Section 7 of this paper.
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4.1. Construction using cyclotomic class

4.1.1. Cyclotomic class of order 1

Let N = kf + 1be a odd prime. When k = 1, there is no partition the cyclic multiplicative group
Zy ={1,2,...,N —1}. In this situation, the pattern of degree-2 PGIS is

s=(ab,...,b), )

——r

N-1

where a and b are two nonzero Gaussian integers.

The autocorrelation function of sequence s = (a,b,...,b) is
——
N-1

R[r] = jal* + (N = 1)[b]?, 7= 0
| ab*+baj+ (N —2)|b]?, T #0.

Constraint equation ab* + ba* + (N — 2)|b|?> = 0 is the necessary as well as sufficient condition for
sequence s to be a degree-2 PGIS with nonzero Gaussian integers a = x; + jy; and b = xq + jiyo, which
this equation can be further simplified as

2(xpx1 +yoy1) + (N —2)(x3 +y3) = 0. (3)

Example 1. When f = 4and N = 4+ 1 = 5, Gaussian integers a = 9 + 2j and b = —1 — 3j fulfill (3). A
degree-2 PGIS of period 5 is given by

s = (942j,—1—3j,—1—3j,—1—3j,—1—3j).

4.1.2. Cyclotomic class of order 2

When k=2 and N = 2f + 1 is an odd prime. The cyclic group Zy = {1,2,...,N — 1} can be
partitioned into two cosets Zy = Hbg U Hby, where a?/ = 1, Hby = {a>" }J;;é and Hb; = {a?"*! }{Z;(l)

To construct PGIS, at first, three base sequences xs and x; = {x;[n]}V- !

n—o L = 0,1, are defined as follows:

xs = (1,0,...,0),
h\/d
N-1

] = 1, n € Hp;
"1 0, otherwise.

Theorem 4. Let N = 2f + 1 be an odd prime and f be an odd integer. The sequence s = a(xs + xo) + bx;
with two nonzero Gaussian integers a and b is a degree-2 PGIS if the following constraint equation holds.

a— ivVN

o+ )bl = | b’@“ )

(a—b)(1—-jVN
_|emn=a)| “

Proof. Referred to [4]. O
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Corollary 1. Let N = 2f + 1 be an odd prime and f be an odd integer. The sequence s = b(xs + x1) + axg
with two nonzero Gaussian integers a and b is a degree-2 PGIS if

g g = 20 L)
(b—a)(1—jVN
| C=ivm)| 5

Proof. The flat magnitude spectrum criterion leads to the constraint equation (5). O

Leta = ag + ja; and b = br + jb;. The constraint equation (4) infers that the following equation
should be fulfilled:

b% + b? f+1 ©)
(ﬂR+bR)2+(ﬂ[+b1)2 2
And (5) infers that
a% + a2 _f+1 ”
(ag +br)* + (a; + by)* 2

Example 2. When f = 15and N = 2f + 1 = 31, Gaussian integers a = =5 and b = 6 + 2j fulfill (6). A
degree-2 PGIS of period 31 is given by

s = (a,a,a,b,a,a,b,a,a,a,a,b,b,b,a,b,a,b,a,a,a,b,b,b,b,a,b,b,a,b,b). 8)

Example 3. Gaussian integers a = 2 — 6j and b = —3 + 4j can fulfill (7). A degree-2 PGIS of period 31, but
with different pattern to that of (8), is

s=(b,a,a,b,a,a,b,a,a,a,a,b,b,b,a,b,a,b,a,a,a,b,b,b,b,a,b,b,a,b,b). 9)

However, there exists no degree-2 PGIS of prime period N = 2f + 1 when f is an even integer, if
base sequences x;, xp and x; are applied for sequence construction[4].

4.2. Degree-2 PGISs of arbitrary prime period

Let’s define two base sequences x;, x;, as follows:

x=(1,1...,1), (10)
N-1

xp=(N—1,-1,...,—1),
—_———

N-1

Base sequences x; and x; can be applied to construct degree-2 PGIS of prime period N = 2f + 1 for
both even and odd f according to Theorem 5.

Theorem 5. The sequence s = ax, + bx, with nonzero Gaussian integers a and b is a degree-2 PGIS if
la = [b].

Proof. Referred to [4]. [

doi:10.20944/preprints202401.1238.v1
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Above all, there exist three different sequence patterns to degree-2 PGISs of odd prime period
N = 2f +1 when f is odd, but there is only one pattern when f is even. However, note that any
degree-2 PGISs constructed based on Theorem 5 belong to the same sequence pattern as that of (2). To
explain the reason, the two base sequences that span sequence pattern in (2) are x; and x. = (0,1,...,1),

N-1

which {x;,x.} and {x,,x; } can span the same vector space.

From sequence application point of view, it is desirable to design as many distinct sequences as
possible for a given period. There do exist many other sequence patterns to the degree-2 PGIS family
of particular prime period, addressed in the following two subsections.

4.3. Degree-2 PGISs adopting from ternary perfect sequences

4.3.1. Construction based on ternary perfect sequences

Ipatov derived a large class of ternary PSs of period N = %, where m is an odd number and
q = p°, pis an odd prime and s is an integer [21,23,24]. Having with sequence elements belong to
{0,41, —1}, the ternary PSs can be adopted to obtain general degree-2 PGISs by replacing +1 and —1
with any nonzero Gaussian integers a and —a, respectively. The degree-2 PGISs derived from ternary
PSs may contain many zero elements. Given g4 = 3 and m = 3, ternary PS of period 13 = % is
(0,0,1,0,1,1,1,—1,-1,0,1,—1,1), and a degree-2 PGIS of period N = 13 is given by:

s =(0,0,4,0,a,a,a,—a,—a,0,a,—a,a). (11)

4.3.2. Construction based on CIDTS

The second type degree-2 PGISs can be built adopting from the correlation identity derived ternary
sequences(CIDTS) [21]. Momentarily we present only the construction of 12 different degree-2 PGISs of
prime period N = 25 — 1 based on CIDTS, which are {t, - ,t12}, in Table 1. The detailed construction
rules of this scheme can refer to Section 7.5.

4.4. Degree-2 PGISs of prime period 2" — 1

In the case of prime period N = 2" — 1 family, there exists many sequence patterns of degree-2
PGISs. In [5], Lee et al. constructed four different kinds of degree-2 PGISs of period N = 2™ — 1 from
the trace representations of Legendre sequences, Hall’s sextic residue sequences, m-sequences, and
GMW sequences, respectively. In addition, a new design degree-2 PGISs using cyclic difference sets
can refer to [6]. Let’s present Theorem 6 before addressing the construction of degree-2 PGISs of prime
period N = 2" — 1.

Theorem 6. For any prime number N, the set of quadratic residues of N forms a multiplicative group with
cardinality %

Proof. There are % quadratic residues of prime N, which are congruent to 12,22,..., %,
respectively. The set Zy = {1,2,..., N — 1} is a cyclic group generated by a primitive root « modulo

N, where aV~1 = 1, and the set {a*" }ﬁ;é forms the subgroup of Zy. According to Euler’s Criterion [20],
when a = #?"( mod N), an even power of a primitive root, T = 1( mod N) is true. This implies
a is a quadratic residue modulo N. The set {#?" }J;;é

between each other. This proves the quadratic residues of N forms a multiplicative group. O

and the quadratic residues of N are isomorphic
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4.4.1. Degree-2 PGISs from Legendre sequences

According to Theorem 6, the set of quadratic residues of prime N is isomorphic to cyclotomic class
of order 2. Thus, any degree-2 PGISs of prime period 2" — 1 constructed using the trace representations
of Legendre sequences belong to the same sequence patterns built according to Theorem 6.

4.4.2. Degree-2 PGISs from Hall’s sextic residue sequences

In the case of prime period N = 4a®> +27 = 6f +1 = 2™ — 1, where 4, f and m are positive
integers, e.g., N=31 and N=127, there exist six different sequence patterns of degree-2 PGISs derived
from the trace representation of Hall’s sextic residue sequences [5].

4.4.3. Degree-2 PGISs from m-sequences

In the case of degree-2 PGISs derived from m-sequences of period 2" — 1, the number of distinct
w, where ¢(-) is the Euler’s totient function. For example, when N=7, there exist
two patterns which are the same as that of the cyclotomic class of order 2. In case of N=31, the existing
six sequence patterns are the same as that based on the Hall’s sextic residue sequences [5]. There exist
18 different sequence patterns when N=127, which these patterns are different from both the Hall’s
sextic residue sequences and the cyclotomic class of order 2. The more details of this topic can refer to

[5].

m—sequence is

4.4.4. Degree-2 PGISs from cyclic difference set

The TABLE 1II in [6] presents the cyclic difference sets (v, %, A) of order (x — A) < 30, among
of which the two cyclic sets that belong to the family of prime period N = 2" — 1 are (31,6,1) and
(31,15,7). The degree-2 PGIS pattern constructed using (31,15,7) belongs to one of six patterns
derived from m-sequences of period 2° — 1; while a new pattern can be generated using (31,6,1),
which when a = —j and b = 1 4 3j are applied, the degree-2 PGIS of period N = 31 is

s=(a,b,a,a,a,b,a,a,a,a,a,b,a,a,a,a,a,a,a,a,a,a,a,a,b,b,a,b,a,a,a). (12)

5. Degree-3 PGISs Consturction

5.1. Construction using cyclotomic class of order 2

Let N = 2f + 1 be an odd prime. When f is odd, the autocorrelation function of sequence
s = apXs + apXo + a1x1 can be expressed as follows:

a2 + f - (lao]* + a1 ), T=0
aal +ag Y, s*(m—1t)ny]+a1 X s*[(n—1)N], T € Hb
R[T] = ! neHby [( ) ] neHb; [( ) ] (13)
aal+ag L s [(n—7)n]+ar L s*[(n—1)n], T €HD.
neHby neHb,

When f is even, the autocorrelation function becomes

a2 + f - (lao]* + [a1]?), T=0
aal+ag Y, s*(mn—1)ny]+a1 X s*[(n—1)N], T € Hb
R[T] = 0 n€Hby [( ) ] neHb; [( ) ] (14)
aai +ag L s [(n—7)n]+ar L s*[(n—1)n], T €HD.
neHby neHb,

Let a; = x; +jy;, i = 0,1,2, be three nonzero different Gaussian integers. For an odd f, the
necessary and sufficient conditions for sequence s, with its autocorrelation function defined in (13), to
be a degree-3 PGIS of period N = 2f + 1 leads to the following linear system of two equations with
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variables x; and y,. The same equations to that of (15) are shown in [2] and [4], where the derivation
of (15) in [4] is based on the frequency-domain approach.

Yox1 — y1xo = y2(x1 — xo) + x2(yo — y1) (15)
— (A + xox1 + yoy1) = x2(x1 + x0) + y2(y1 + Yo)
where A = f%l((xo +x1)% + (Yo +y1)?). For an even f, the requirement of {R[t]}N_! = 0in (14)

leads to the following linear system of two equations with variables x; and y,. Chang et al. derived
the same constraint equations as that of (16) in [4]. However, their derivation is from the frequency
domain approach.

(x2—x3) + i) _ xo(x1 — _
) - 2(x1 — x0) +¥2(y1 — o) (16)
Ay + Ay = —Nxa(x1 +x0) — Ny2(y1 + o)

o2
where Ay = (xg + x1)%f? — x0x1 — 7(1\]“)(2‘0 )" and Ay = (yo+y1)* 2 —yonr —

In [7], Pei et al. applied Legendre sequence and Gauss sum to construct degree-3 PGISs. This
approach is more efficient in deriving the coefficients of sequence to achieve ideal PACF than solving
the constraint equations of (15) and (16). However, as described in Theorem 5, the sequence pattern
constructed based on the Legendre sequences is the same as that based on the cyclotomic class of order
2.

5.2. Degree-3 PGISs of prime period 2" — 1

This subsection presents more sequence patterns of degree-3 PGIS of prime period 2" — 1, which
are derived from taking circular convolution upon two degree-2 PGISs. We present 12 illustrative
examples to demonstrate the results of circular convolution in Table 2, which the former 12 patterns
are obtained from circular convolution applied to degree-2 PGISs from Table 1, and the bottom row
pattern is constructed using cyclotomic class of order 2.

5.3. Construction from ternary perfect sequences

There exists also degree-3 PGIS constructed from taking circular convolution between ternary
PS and degree-2 PGIS with sequence pattern s = (a,b,...,b). One more degree-3 PGIS example
——
N-1
s = s19 ® sq1 of period N = 25 —1is present in Table 2.
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Table 1. 23 patterns of degree-2 PGISs of period 31

PGIS sequence pattern coefficients

s1 (a,b,b,a,b,a,a,b,b,a,a,a,a,a,b,b,b,a,a,b,a,a,a,b,a,b,a,b,b,b,b) a=-14+3j,b=4j
Sy (a,b,b,b,b,a,b,a,b,a,a,a,b,a,a,b,b,b,a,a,a,a,a,b,b,a,a,b,a,b,b) s to sg
s3 (a,b,b,a,b,b,a,a,b,b,b,b,a,b,a,a,b,a,b,a,b,b,b,a,a,a,b,a,a,a,a) are derived from
Sy (a,a,a,a,a,b,a,a,a,b,b,b,a,b,a,b,a,a,b,a,b,b,b,b,a,a,b,b,a,b,b) m-sequences
S5 (a,a,a,b,a,b,b,b,a,b,b,a,b,a,b,a,a,b,b,b,b,a,a,a,b,b,a,a,b,a,a)
Sg (a,a,a,b,a,a,b,b,a,a,a,b,b,b,b,a,a,b,a,b,a,b,b,a,b,b,b,a,b,a,a)
sy (a,b,a,a,a,b,a,a,a,a,a,b,a,a,a,a,a,a,a,a,a,a,a,a,b,b,a,b,a,a,a) a=—jb=1+3j
Sg (b,a,a,b,a,a,b,a,a,a,a,b,b,b,a,b,a,b,a,a,a,b,b,b,b,a,b,b,a,b,b) a=2—6jb=—-3+4j
Sg (a,a,a,b,a,a,b,a,a,a,a,b,b,b,a,b,a,b,a,a,a,b,b,b,b,a,b,b,a,b,b) a=-5b=6+2j
S10 (a,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b) a=88+63j,b=—-5+]j
S11 (0,0,a4,0,b,a,a,a,b,b,0,a,b,b,0,b,b,a,a,a,a,a,b,a,b,a,0,a,a,b,a) | aisGaussian integer and b = —q,
t (b,b,b,a,b,0,a,a,b,0,0,0,a,0,a,0,b,4,0,a,0,0,0,0,a,4,0,0,a,0,0) s11 is ternary sequence,
t (6,0,0,4,0,4,a,0,0,a,a,b,a,b,0,0,0,a,a,0,a,b,b,0,a,0,b,0,0,0,0) t; to tp are CIDTS
t3 (b,0,0,b,0,4,0,0,0,a,a,a,b,a,0,0,0,b,a,0,a,a,a,0,b,0,4,0,0,0,0) | constructed based on m-sequences
ty (b,a,a,0,4,0,0,0,4,0,0,4,0,4,0,b,a,0,0,0,0,a,a,b,0,0,a,b,0,b,b)
ts (6,0,0,0,0,b,0,a,0,b,b,4,0,a,4,0,0,0,b,a,b,a,a,0,0,a,a,0,a,0,0)
ts (b,0,0,4,0,0,4,4,0,0,0,0,4,0,4,b,0,4,0,a,0,0,0,b,a,a,0,b,a,b, b)
ty (b,b,b,0,b,a,0,0,b,a,4,0,0,0,0,a,b,0,4,0,a,0,0,a,0,0,0,4,0,a,a)
tg (6,0,0,0,0,4,0,b,0,a,a,a,0,a,b,0,0,0,a,b,a,a,a,0,0,b,4,0,b,0,0)
to (b,a,a,0,a,b,0,0,a,b,b,0,0,0,0,a,a,0,b,0,b,0,0,a,0,0,0,4,0,a,a)
t1o (b,0,0,0,0,0,b,4,0,0,0,0,0,0,4,4,0,b,0,a,0,0,0,a,b,a,0,a,a,a,a)
t11 (b,a,a,a,a,0,a,b,a,0,0,0,a,0,b,0,4,a,0,b,0,0,0,0,a,b,0,0,b,0,0)

)

tn (b,a,a,0,4,0,0,0,a,0,0,b,0,b,0,a,a,0,0,0,0,b,b,a,0,0,b,a,0,a,a

s10, sg and sg are constructed using cyclotomic class of order 1,2,2, respectively, and sy is from (12)

Table 2. 14 patterns of degree-3 PGISs of period 31

PGIS sequence pattern coefficients
s1 ® 83 (a,b,b,c,b,c,c,b,b,cca,ca,bbb,ccbcaabcbabbbb) | a=112—44jb=16 — 16j,
51 @ Sy (a,a,a,c,a,b,c,c,a,b,b,b,c,b,c,b,a,¢c,b,c,b,b,b,b,¢c,¢,b,b,c,b,b) c=—80+12j
s1 ®s5 (a,c,c,b,c,b,b,b,c,b,b,c,b,c,b,a,cb,bbb,ccabb,cab,aa) (all s; are from Table 1)
s1 ® sg (a,b,b,a,c,b,a,b,b,c,c,c,a,c,b,b,b,a,cb,cc,cb,ab,cbbb,b)
Sy 83 (a,b,b,¢,b,b,¢c,c,b,b,b,b,¢,b,c,a,b,¢,b,¢,b,b,b,a,c,c,b,a,c,a,a)
Sy ® Sy (a,b,b,b,b,a,b,c,b,a,a,c,b,¢,c,b,b,b,a,c,a,c,¢,b,b,c,¢,b,c,b,b)
Sy ® 85 (a,b,b,b,b,c,b,a,b,c,c,c,b,ca,b,b,b,ca,ccchbbachbab,b)
Sy D Sg (a,a,a,b,a,c,b,b,a,c,¢,b,b,b,b,c,a,b,¢,b,¢,b,b,¢,b,b,b,¢,b,c,c)
s3 ® 85 (a,b,b,a,b,b,a,c,b,b,b,b,a,b,c,c,b,a,b,c,b,b,b,c,a,cb,c,cc,c)
s3 ® sg (a,c,c,b,c,a,b,b,c,a,a,b,b,b,b,c,c,b,ab,ab,b,cb,bb,cb,cc)
S4 @ s5 (a,c,c,b,c,b,b,b,c,b,b,a,b,a,b,c,c,b,b,b,b,a,a,c,b,b,a,c,b,c,c)
sS4 ® sg (a,c,c,cc,b,ca,¢,b,b,b,¢,b,a,b,c,c,b,a,b,b,b,b,c,a,b,b,a,b,b)
sjo®sn | (a,a,b,a,c,b,b,b,c,c,a,b,¢,c,a,¢c,c,b,b,b,b,b,¢,b,¢c,b,a,b,b,¢,b) | a=—-25—5j,b=68—67],
c = —118 — 57
Scy (a,b,b,¢,b,b,c,b,b,b,b,c,c,¢,b,c,b,c,b,b,b,c,c,.c0cb,ccb,cc) a=-5-5/,b=3+3j,
(construction using cyclotomic class of order 2) c=—4-14j

6. Degree-5 PGISs Consturction

6.1. PGISs construction using GLS

Though the authors in [2] did not mention the degree concept of a sequence, they did make
efforts on construction the degree-5 PGIS of prime period N = 4f + 1, which by using the cyclotomic
class of order 4 and depending on either odd or even f, two systems of four equations were derived,
respectively. However, it is still in pending situation to solve these two constraint equations from which
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to show the existence of prime period degree-5 PGIS. Peiet al. made a breakthrough of constructing
successfully the prime period degree-5 PGIS from adopting the GLS in stead of using cyclomotic class
of order 4, though they did not mention the degree-5 concept either [7]. The more detailed study of
constructing degree-5 PGIS by adopting GLS is addressed in this subsection.

At first, the GLS, denoted by g={g[n]})\- !, is defined [20] as follows:

n=0"~
] 0’ "y (17)
nl = . .
8 exp[]z%—lfih”)], n # 0(modN).

In (17), indyn is the index function defined by
B9 = 41(mod N).

In a further generalization, a scaling factor, r = 1,2,..., N — 2, can be introduced in the definition (17),
yielding

0 n=020,

r

) 0, 18
o {expvz”#—“?h’”], n # 0(modN). "

Lemma 1. Let N = 4f + 1 be an prime number. In (18), when the scaling factor r=f, g[n| €
{1,j,-1,—j},n #0.

Proof. Inserting r=f to (18) proves the result. O

Let {G[n]}| be the DFT of GLS g.

Lemma 2. Let N = 4f + 1 be an prime number. In (18), when the scaling factor r=f, the magnitude spectrum
of g = {g[n|}"= is as follows:

el ={ b "o (19
VN, n #0(modN).
Proof. Referred to [20]. [

We can adopt the results of Lemmas 1 and 2 and apply base sequence x,, defined in (10), and GLS
g to bound the coefficients of sequences in Gaussian integers, according to Theorem 7.

Theorem 7. Let N = 4f + 1 be an prime number and a is nonzero Gaussian integer. The sequence s =
a-Xa+ N - g is a degree-5 PGIS of period N given that |a|*> = N.

Proof. When |a|> = N, the magnitude spectrum of a - x, is Nv/Né[n]. By applying the result of Lemmas
1 and 2, it is straightforward that the magnitude spectrum of s = a-x, + N - g is flat, as well as,
gln] € {1,j, —1, —j} implies that the number of different Gaussian integers appeared in sequence s is
five. This proves thats = a-x; + N - g is a degree-5 PGIS. O

Example 4 and 5 present odd and even f examples of degree-5 PGIS of period N = 4f +1,
respectively.

Example 4. When f = 3, N = 4-3+1 = 13. Let a = 2 — 3j, where |a|> = 13. The GLS g =
0,1,7,1,-1,j,j,—j,—j,1,=1,—j,—1). A degree-5 PGIS s = a - x5 + 13 - g of period 13 is given by

s =(a,b,c,b,d,c,ceeb,ded), (20)

doi:10.20944/preprints202401.1238.v1
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wherea =2—3j,b=15-3j,c =2+10j,d = =11 — 3j,and e = 2 — 16j.

Example 5. When f = 4, N = 4-4+1 = 17. Let a = 4+ j, where [a|> = 17. The GLS
g=(01-141j,—j—j-1,-1,—j,—j,j,1,j,—1,1). A degree-5 PGISs = a-x,+ 17 - g of period
17 is given by

s =(a,b,c,d,b,d,eecceedb,dc,b), (21)
wherea =4+j,b=21+4+j,c=—-13+j,d=4+18j,and e = 4 — 16;.

6.2. Degree-5 PGISs of prime period 2™ —

Addressed in the previous subsection, degree-5 PGIS of arbitrary prime period N = 4f + 1 can
be constructed using the GLS, where for each N = 4f 4 1 there exist two sequence patterns associated
with even and odd f, respectively. This subsection presents the creation of more sequence patterns to
the degree-5 PGIS family using the CIDTS scheme [21]. However, this scheme can be applied only to
particular prime period, e.g., N = 2" — 1. The principles of CIDTS scheme are summarized as follows:

Let s, = {sy[n]} N 1 and s, = {s;[n ]}111\]:—01 be two sequences with two-valued autocorrelation
functions (ACFs), i.e.

Ab/ TZO,
Ry[7] = By, 140

R.[7] = A, T=0,
“ 7l B, n#0

The CCF between s, and s, is

The following identity is true for periodic correlation functions
ZRbC Rbc n—T ZR;, n—T)N]

Let sq[n] = Ry [n], then s, = {sq[n]}_ | is a periodic sequence with two-valued ACF given by [21]

AbAc + (N — 1)BbBC, T= O,
Z Rpelm]Rpl(n = T)n] = { ApBe+ AcBy+ (N —2)ByB., n #0. @2)
From (22), when both s, and s, are PSs, then s, does too. Otherwise, one can still do necessary
adjustment and make s; a PS [21]. The result of (22) can be adopted to construct a degree-5 PGIS
of particular prime period, e.g., N = 2" — 1. For m—sequence of period N = 2° — 1 = 31, the six
distinct m—sequences are {my, - - - ,m¢}, which are obtained from {s, - - - ,s¢}, listed in Table 1, after
substituting 4 = 1 and b = —1, respectively. Let’s make adjustment by setting s,[n] = R}, .[n] + 1 to
construct three different degree-5 PGISs s,, presented in Example 6.
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Example 6. At first, when s, = {my[n]}\" and sc = {my[n]}\=, by setting {t13[n]} = {W}, a

degree-5 PGIS of period 31 is
t3 =(3,0,0,1,0,-1,1,-2,0,-1,-1,1,1,1,-2,2,0,1,-1,-2,-1,1,1,2,1,-2,1,2,-2,2,2).  (23)

Rb,c [n]+1
4

Secondly, when s, = {m3[n]}N"J and sc = {my[n]}N"1, {t14[n]} = { } obtains

t14 = (3/ _2/ _2/ 1/ _2/ 0/ 1/ _1/ _2/ 0/ 0/ 2/ 1/ 2/ _1/ 1/ _2/ 1/ Or _1/ 0/ 2/ 2/ 1/ 1/ _1’ 2’ 1’ _1’ 1’ l) (24)
Finally, when s, = {ms|n] 2]:_01 and s, = {mg|n| 111\1=—01 are applied, the third PGIS is

ti5=(3,-1,-1,2,-1,-2,2,0,-1,-2,-2,1,2,1,0,1,-1,2,-2,0,-2,1,1,1,2,0,1,1,0,1,1).  (25)

W will generate distinct

Since R, ,[(—n)n] = Rpc[n], when R ,[n] # Ry, [n], setting t_,[n]=
PSIS, where {t_,[n]}={ts[(—n)n]}. Consequently, there exist three other patterns associated with
(23)-(25), respectively.

7. PGISs Construction from Convolution and Correlation Operations

Basically there are three parts in this section. The first part consists of subsections 7.1 and 7.2,
which addresses the relationship between circulant matrix and circular convolution, and explores
some properties of PGISs construction from convolution. Applying cascading convolution to construct
successfully the degree-4 PGIS is discussed in subsection 7.3. The last part presents more higher
degrees PGISs construction of different types, which includes subsections 7.4, 7.5 and 7.6.

7.1. Relationship between convolution and circulant matrix

Let’s define a circulant matrix C of size N x N based on sequence ¢ = {c[n] nN;[)l,

elements of ¢ form the first row of C. With this definition, C = {c[(k — n)y]}, where the (1, k) entry of
C, denoted by C,x, is

where the

Che = c[(k —n)n].
The eigenvalues of a circulant matrix comprise the DFT of the first row of the circulant matrix, and
conversely first row of a circulant matrix is the inverse DFT of the eigenvalues. In particular all
circulant matrices share the same eigenvectors, ([25] and p.267, [26])

[1 e f2mm/N e 2mm(N=U/NTT oy — 0,1, ,N — 1, (26)

1
Ym = \/N
where [-]T denotes transpose. Let U be matrix consisting of the eigenvectors y,, as columns in
order and Y=diag(i) is the diagonal matrix with diagonal elements g, ¢1, - - - , n_1. It is true that
UUH=U"U = I, where Iy is an identity matrix.

Lemma 3. Let C = {c[(k —n)n]} and B = {b[(k — n)N]} be circulant N x N matrices with eigenvalues
Yy and By, respectively, m = 0,1,..., N — 1, where

N-1 )
wm _ 2 C[k]efﬂnkm/Nl
k=0

N-1 '
ﬁm — Z b[k]e_ﬂﬂkm/N.
k=0

Then C and B commute and
CB = BC = UQUu”,
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where Q=diag(\y, B) is the diagonal matrix with diagonal elements oBo, 181, -+ , Pn_1BN_1, [-]T denotes
transpose and conjugate operation, and CB is also a circulant matrix.

Proof. Referred to [25] and [26]. O

Theorem 8. Let s1,sp,- -, sy be k distinct PGISs of period N. Then s = s1 @ sp @ - - - ® s is a PGIS of
period N, where & denotes circular convolution. In addition, s is also a PGIS of period N, when any numbers of
s; are substituted by s_; = {s;[(—n)n]}ors*;,i=1,...,k

Proof. At first, taking convolution upon two PGISs s; ® s, obtains a new PGIS, then the resultant
PGIS can be convoluted with the third PGIS s3 to generate other new PGIS, etc. This leads s a PGIS of
period N. Next, when s; is a PGIS, both s_; and s* ; are PGISs as well. This derives s is also a PGIS of
period N if s; is substituted by s_; or s* ;. [

With the defined circulant matrix C;, = {sz[(n — k)n]}, which is formed based on sequence

s_» = {s2[(—n)n] nNgol, the evaluation of circular convolution between s; and sp, denoted by
s = 51 ® sy, can be obtained by taking the matrix multiplication operation S = C;,S; instead, where
S1 = [s1[0] s1[1] -+ 1[N —1]]Tisa N x 1 vector consisting of N elements from s; = {s;[n]}N_/.

That is, the values of N components of PGIS s = {s[n] 2];01 can be derived from the N elements of a

N x 1vector § = Cs,S;.

Whens = 51 ®sp ® -+ @5, s can be derived from S = C;S;. In this expression, circulant
matrix C; = C,Cs, - - -Cs,:UQUH and O=diag(y;) is a diagonal matrix with diagonal elements
Yo, Y1, -+ ,PN—1, which each eigenvalue ¢, = Pp2Py3 - - Pmr is obtained from the product of
eigenvalues ,,,; of circulant matrices Cs, = {s;[(n —k)n]},! = 2,3,...,r, respectively. The properties
of circulant matrix C, may bring insight to determine the degree and pattern of PSIS s generated from
convoluting many PGISs.

7.2. Effect of convolution on degree and pattern expansion

This subsection addresses the effectiveness of convolution operation upon two sequences can
increase degree and create new pattern to the resultant sequence, which this property is described in
Theorem 10. The derivation of Theorem 10 is based on Theorem 9 and Lemmas 4 and 5.

Let Hby = {zxk”}’;;é be a subgroup of cyclic group Zy = {1,2,...,N — 1} and
bj € Zn, where N = fk+ 1. The subset H); = {ubjju € Hby} is called the right
coset of subgroup Hby generated by b;.  Let Hby, Hby,...,Hbr_1 be the distinct right
cosets of Hby in Zy. Then Zy = Hby UHb; U --- UHb;_1, which is a disjoint union and
|Zn| = [Hbol| + [Hby | + - - - + [Hb_ | = [Hbo| + [Hbo| + - - - + [Hbo| = k|Hbo| = kf.

Lemma 4. Let I,n € Zy, whichl # n. Y e /Zmmn/N — y e=j2mml/N o |y ¢ Hb,, where
meHb; meHb;
Hb, C {Hbo,Hbl,. . .,ku,l}.

Proof. Let Hbyn = {un|u € Hby} and Hbyl = {ul|u € Hby} be two cosets of Hby generated by n
and [, respectively. If I and n belong to the same coset, which means {ul|u € Hby} = {un|u € Hby},
then ml € {b;lulu € Hby} and mn € {bjlulu € Hby}. This implies that ml and mn belong to the
same coset of Hby generated by b;l, denoted as Hb;l, where Hb;l C {Hby, Hby,... ,Hb;_1}. The
summation of e /27TM1/N with respect to m, where m comes across the domain of one coset, results in
Z eijTrmn/N _ Z efj27rml/N — Z efj27'(m/N.

meHb; meHb; meHb;1

Conversely, when I,m,n € Zy, it is obvious that ged(mn, N) = 1 and ged(ml, N) = 1. Since both
e /2mml/N and e—i2mmn/N < 11y, where Uy = {e_fz’"”/N|m =0,1,...,N — 1} denotes the group of

Nth roots of unity, thus [ # n < e /2TM/N oL p=j2mmn/N gng  y=  p=/2oml/N —  y» p=j2mmn/N —
mEHbi mEHbi


https://doi.org/10.20944/preprints202401.1238.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 January 2024

16 of 23

{ml(modN)|m € Hb;} = {mn(modN)|m € Hb;}. This infers that | and n belong to the same
coset. [J

Let N = kf + 1=k’ f + 1 be an odd prime. The cyclic group Zy = {1,2,. ..,N —1} can be
partitioned either into k cosets Hb;,i = 0,...,k — 1, or k' cosets HV';,i = 0,...,k' — 1, respectively,
where both Hbg={ak" }ﬁ; and Hb(= ={a¥ ”}f _o are subgroups of Zj, Hb=a'Hbo= {ak”+l}n —o

Hblf:ociHb(’):{ak/””}i:ol, and « is the generator of Zy. When k' = mk and m > 2 is an integer, each

Hb;,i =0,...,k — 1, can be further partitioned into m cosets, e.g., Hb;=Hb; UHb, ;U --- U HbEm_l)k_H.,

i=0,...,k—1, where the cardinality of all Hb;,i = 0,...,k—1,is f, andthatobei,z =0,...,(mk—1),
is f = f/m.

Let’s define two sequence sets x;, = {x;[n]})-}, i = 0,...,k—1, and x} = {x/[n]}N"],
i=0,...,kK —1,as follows:

1, n € Hp;

Tn] = 27

xi[n] { 0, otherwise. 27)
1, neHY

! = 4 i 28

xi[n] { 0, otherwise. (28)

The DFTs of x; and x} are X; = {X;[n]}N" and X| = {X![n]}\, respectively.

Theorem 9. All Xo, X, ..., Xx_1 are (k+ 1)-valued, where the elements of these vectors belong to the following
set

f/ Z e—jan/N’ Z e—j2nm/N’”', Z e—j2nm/N

mGHbO mEHbl mGku,l

Proof. Since x;[n] = 1,n € Hb; and x;[n] = 0,n ¢ Hb;, the nth element of X; = {X;[n]}N-] is

N-1 , .
Xin] = ¥ xi[mle 2mm/N =y e=j2mmn/N When n = 0,
m=0 meHb;

Xj0]= Y e 2mm/N| o= |Hb| = f.
mEHbi

Given that m € Hb;, ithas mZy = {m,2m, ..., (N — 1)m} and mZy(modN) = Zy, In other words,
mZy = Zy modulo N. Both mZy and Zy have the same partition, which means mZy = {Hby U

Hb; U - - UHb;_;} modulo N. Based on the partition of mZy, the set {X;[n]}"! can be grouped into
k subsets, ie.,

{Xiln 5 = (X}, VXl o, U VX o, -

According to Lemma 4, {X;[n]}N nGHbd = {X;[m] %e}llbd d =0,1,...,k— 1. This concludes that for

i=0,1,....k—1,allX; = {X;[n]}N-] are (k + 1)-valued which draw distinct k + 1 values from the
following set

f/ Z efj27rm/N, Z efj27tm/N,“‘, Z e—J2m/N

meHby meHby meHby_

doi:10.20944/preprints202401.1238.v1
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Let N = kf + 1=k'f" + 1 be an odd prime, where k' = mk and m > 2. The relationship between
the DFTs of sequences defined in (27) and (28), which are X; = {X;[n] nN;01 and X; = {X![n] nNgol,
respectively, is governed by following lemma.

Lemma 5. X;=X; +X) ,+---+ X’(m_l)k+i,for alli =0,...,k—1. In these vectors, X;[0] = mX/[0], and

all elements in set { X;[n] },cp, are the same; however, the elements in set { X/ [n]},cpp, have m different values,

which X;[n]=Xj[n] + Xj_;[n] +-- + XEm_l)kH[n], n € Hb;, foralli=0,...,k—1.

Proof. Since Hb;=Hb; UHb;_;U---UHD| and derives

(m—1)k+i’ m—1)k+i
that X,'=X§ + X,’<+l- +- 1t X’(mfl)kﬂ istrue, fori =0, ...,k — 1. By Theorem 9, it is straightforward that

X;[0] = mX;[0] and X;[n]=Xi[n] + X ;[n] +--- + sz—l)k—i—i[n]’ ne€Hy. O

it results in x;=x; +x_; +- -+ x’(

Let N = kf +1=k'f’ + 1 be an odd prime, where k' = mk and m > 2. Let s; and sy be
degree-(k + 1) and degree-(k’ + 1) PGISs constructed using sequences {x;}X_; and {xg}flzo, respectively.
The following Theorem can be derived based on the results of Lemma 4 and Lemma 5.

Theorem 10. The degree and pattern of sequence s = sy ® sy are the same as that of s. However, when k" and
k are relatively coprime, sequence s = sy @ sy has new pattern and the degree of PGIS s is larger than that of s
and Sy .

Proof. Let the DFTs of s; and sy be {X[n]} and {X'[n]}, respectively. The DFT of s; ® sy is the
component-wise product between {X[n]} and { X’[n]}. Based on Lemma 4 and Lemma 5, when k' = mk,
Hb; C Hb;, the sequence pattern of sy @ sy is governed by sy/, because all elements in set { X;[1] } ,cpi, is
the same, but the elements in set { X;[n] },cpp, have m different values. When sequences are constructed
using base sequences {x;}¥_ and {x/ i'(/:or the number of distinct elements of their DFTs determines the
degree of the associated sequences according to Theorem 9. This is the reason the degree of s = s @ sy
is determined also by s;.

When k' and k are relatively coprime, Hb! ¢ Hb;, there exist different non-overlap components
between {X[n]} and {X'[n]}. In case of existing distinct non-overlap components between {X[n]}
and {X'[n]}, sy ® sy constructs new sequence pattern. Moreover, since both elements of {X[n]} and
{X’[n]} are not zeros, the component-wise product between {X[n]} and {X’[n]} creates only nonzero
elements as well, and the number of distinct elements from component-wise product between {X[n]}
and {X'[n]} is larger than that of both {X[n]} and {X’[n]}. This derives that the degree of s; ® sy is
larger than both sy and sy two sequences. [

7.3. Degree-4 PGISs construction from convolution
This subsection presents the construction of degree-4 PGIS of particular prime period N = 333%11 =
13 and N = 2° — 1 = 31 from convolution operation. At first, let’s define three PGISs of period N = 13

as follows:

st =(0,0,1,0,1,1,1,-1,-1,0,1,-1,1),

Sy = (a,b,...,b),
N——
12

ss = (c,d,e,d,d,eeeed,de,d),

wherea =142j,b=-2+j,c=5+5j,d =10 —6jand e = —6 + 10j.
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Example 7. Sequence s=s; ® sy, ® s; is a degree-4 PGIS of period N = 13, which is given by
s=(a,a,b,a,cbb,dda.c.dc), (29)
where a = 684 4+ 198j, b = 333 4- 211j, c = —1539 4 413j and d = —837 + 439;.

Let s_;={s:[(—n)n]}. In (29), when s; is replaced by s_,, it constructs a new sequence s_=s_; ®
sp ® ss given by

s_ = (a,c,d,c,a,d,d,b,b,c,a,b,a).
Example 8. Two construction examples of prime period N = 25 — 1 = 31 are t| ® t3 and t5 @ t15, which are

ty ®t3 = (a,b,b,0,b,¢,0,d,b,¢,c,¢,0,c,d,0,b,0,¢,d,¢,¢,¢c,0,0,d,¢,0,d,0,0), (30)

t5®t]5 = (e/f/f/Olf/glolh/f/g/glololO/h/f/frorg/h/groiolfrorh/Olf/h/f/f)/ (31)
wherea = -2,b=3,c=-1,d=1e=2f=—-1,g=1andh =3.

7.4. Convolution derived PGISs based on m-sequences

There exists one-to-one mapping between distinct m—sequences and the pattern of degree-2
PGISs. Let’s present PGISs of period N = 2° — 1 as the examples for demonstration, which the six
degree-2 PGISs of period N = 25 — 1 derived from m-sequences are {sy, .. .,ss}, listed in Table 1. Note
that the number of different combination of s;, s; € {s1,...,8¢},! # k, is 15. We summarize the results
of convolution upon two PGISs draw from the set {sq, ..., s¢} as follows:

1). Sequences s1 ® s, s3 ® s4 and s5 ® s¢ are degree-2 PGISs, which the pattern of these three
PGISs is the same as that of s1y which is listed in Table 1.

2). The other 12 kinds of s; ® sy PGISs are degree-3 PGISs, listed in Table 2.

3). The six sequences, s;; ® s, m = 1,. .., 6, are degree-6 PGISs, which are listed in Table 3.

In Section 6.2, the CIDTS-based PGIS construction applies m—sequences, {mj, ..., mg}, directly, which

Rb,c

CCF Ry[n] is created and then made adjustment by setting {#} to construct PGIS, where

1 < b,c < 6. The results are summarized as follows:

1). Three CCFs, {m1[n]} @ {m3[(—n)]}, {ms[n]} @ {mj[(—n)n]} and {ms[n]} @ {mg ()]},
can be adjusted to construct three degree-5 PGISs, which are {t;3, t14, t15}, presented in (23)-(25).
Similarly, the three sequences constructed from {m;[n]} @ {m;[(—n)n]}, {ma[n]} @ {m}[(—n)n]} and
{me[n]} @ {mi[(—n)N]} are also degree-5 PGISs, denoted by {t_13,t_14,t_15}.

2). The 12 distinct CIDTS-based sequences constructed by other 12 kinds of CCFs {m;[n]} ®
{m{[(—=n)N]}, I # k, are all with degree-2, which are denoted by {t,--- ,t2}, listed in Table 1. In
addition, 12 kinds of CCFs {my[n]} ® {s;[(—n)n]} will construct other 12 different degree-2 PGISs,
which are {t_1, -+ ,t_12}.

7.5. Convolution derived PGISs based on CIDTS

In the previous subsection, he number of CIDTS-based PGISs of period N = 25 —1is 30, which
are {ti3, t14, tj5 JU{t 13, t 14, t 15 }U{ts, - - -, t1pJU{t_1,- - - ,t_1p}. By taking convolution operation
t ® t upon any two sequences over these 30 PGISs, where the number of different convolution
combination of t, and t; is % = 435, for m # k, the number of different degrees and patterns of
new generated PGISs can be abundant. The detailed analysis and categorization of these PGISs are not
the purpose of this study. For brevity reason, we present only two results.

1). The 12 different sequences built from t,, @ t,,, m = 1,...,12, are PGISs of degree-6, listed in
Table 3; while three t; ® t;, k = 13, 14, 15 construct three different PGISs of degree-7, but belong to the
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same pattern, which the pattern of t13 ® t;3 is listed in Table 4.

2). When m # k, some PGISs generated by t,,; ® t; are provided for comparison, where the degrees
of these examples belong to the set {1,2,4,5,6}. The degree of PGISs t13 ® t14, t13 ® t15 and t;5 @ t14
is 6. The degree of t] @ tp, t] Qty, ) D t5, th D3, 1L D by, tr D t, t3 @ 4 and t5 @ tg is 5. The degree of
b Rts5, t3 Vg, ty ®ts and ty ® te is 2. The two PGISs of degree-1 are t; ® tg and t, ® t5. We do not
make a pattern list of these PGISs for brevity. Finally, two degree-4 examples are t; ® t3 and t5 @ t;5,
which are (30) and (31), respectively.

7.6. Convolution between different types of PGISs

This study addresses different construction of PGISs. Therefore, their exist various many different
convolution operation applied across different type PGISs. This subsection presents only some
examples for the purpose of demonstration the versatile of convolution-derived PGISs.

7.6.1. Convolution between ternary sequence and CIDTS derived PGISs

Table 5 presents 7 kinds of PGISs obtained from convolution between perfect ternary sequence
and CIDTS derived PGISs, which are s11 ® t15, 811 ® t14, $_11 ® t14, $11 @ t1, s_11 ® t1, 511 ® t5 and
s_11 ® t5 for comparison. The patterns are all different and the degrees of these PGISs are 20, 20, 20, 14,
12,12 and 12, respectively.

7.6.2. Convolution between ternary sequence and m-sequences derived PGISs

Table 5 presents 2 kinds of PGISs obtained from convolution between perfect ternary sequence
and m-sequences derived PGISs, which are s; ® s; ® 511 and sp ® sp ® s11. The degrees are 21 and 20
respectively.

7.6.3. Convolution between ternary sequence and cyclotomic class PGIS

Table 5 presents also one PGIS obtained from convolution between perfect ternary sequence and
degree-3 PGIS using cyclotomic class of order2, which is s¢, ® s11 and the degree is 11.

7.6.4. Convolution between CIDTS derived and cyclotomic class PGIS

The 15 different PGISs obtained from convolution between CIDTS derived PGISs, which are
{t1,--- ,t15}, and degree-3 PGIS using cyclotomic class of order2 s, can be distributed into degree-7
and degree-6 two groups, which 6 PGISs belong to set {scy ®t,,m=2,4,5,7,10, 11} are degree-6 and
the rest of other 9 PGISs are degree-7. The patterns of these PGISs belong to those patterns listed in
Table 3.
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Table 3. 14 patterns of degree-6 and -7 PGISs of period 31
PGIS sequence pattern coefficients
$1 ® 81 (a,b,b,c,b,d,c e b,d,d,cc,ce f,bcdedccfcecfeff) a=—128—26j,b =16 + 16/,
S) ® Sy (a,f, f,e f,cec f,ccdedcb,f,ecccddbecdbcbb) c=—32+2j,d=64+30j,
s3 @ S3 (a,ee,ceb,c,debb, f,c f,dcechbdbf fccdfcdcc) e=112+44j, f = —80 — 12j
Sy ® 84 (a,c,c,d,c f,dcoc f,f,bdbcecdfcfbbedcbec.e,.e)
S5 @ S5 (a,d,d,f,def,bdeecfcbcdfebecccfbeccbcc)
s6 D Sg (a,c,c,b,c,c,b, f,cccebe f,dcbc f,ceedb,fedfdd)
ty @ t5 (a,b,b,c,b,d,ceb,d,d, f,cfef,bcdedf,f fcef fef,f) a=-3,b=9,c=2,
d=-2e=8f=-5
oy (a,b,b,c,b,d,ceb,d,d0,c0,¢f,bcded00,f,ce0feff) a=11,b=1,c =3,
d=2e=-3f=-2
bRt (a4,0,0,0,0,¢,b,d,0,c,c,e,b,e,d,f,0,b,c,d,c,e,e, f,b,de f,df, f) a=-9b=1,c= -1,
d=—-2e=5f=2
t3 ®t3 (a4,0,0,0,0,¢,b,d,0,c,c,e,b,e,d,f,0,b,c,d,c,ee, f,b,de f,df,f) a=11,b=1,c =3,
d=—-2e=3f=2
Rty (a,b,b,c,b,d,c,0,b,d,d,ece0,f,bcd0,deefcO0.e¢fO0,°ff) a=-9b=—-1,c=2,
d=-2e=1,f=5
ts Rts (a,b,b,c,b,d,ceb,d,d,f,c fe0,b,cdedf, f0ce,f06e0,0) a=-9b=2,c= -2,
d=5e=1f=-1
te Rt (a,b,b,¢,b,0,¢,d,b,0,0,¢,c,e,d,f,b,c,0,d,0,e,e,f,c,de f,df,f) a=11,b= —2,c = -3,
d=3,e=2/f=1
Rty (a,b,b,0,b,¢,0,d,b,¢,c,e,0,e,d,f,0,0,¢c,d,c,ee f,0,d,ef,d,f,f) a=-9,b=5,c=1,
d=2e=-2,f=-1
tg ® tg (a,b,b,c,b,d,c,e,b,d,d, f,c f,e0,b,.cdedf, f0cef06e00) a=11,b=2,c = -2,
d=-3,e=1,f=3
to ®tg (a,b,b,0,b,¢,0,d,b,¢,c,e,0,e,d, f,b,0,¢c,d,c,ee f,0,def,df,f) a=11,b= -3,c =1,
d=2e=-2,f=3
tio ® tyo (a,b,b,¢,0,0,¢,d,b,0,0,¢,¢c,e,d, f,b,c,0,d,0,e,¢,f,c,def,d,f,f) a=-9b=-2,c=5,
d=-1le=2,f=1
t11 @ tg (a,b,b,¢c,b,d,c,e,b,d,d,0,c,0,e, f,b,c,ded0,0,f,ceO0f,ef,f) a=-9b=1,c= -1,
d=2e=5f=-2
tio @ tp (a,b,b,¢,b,d,c,0,b,d,d,e,ce0,f,bcdO0,deef,cO0e°fO0°f,f) a=11,b=3,c =2,
d=—-2,e=1f=-3
ti3 @ t13 (a,b,b,c,b,d,ceb,d,d, f,cfegbrcdedffgcefgeg8) a=-21,b=8,c=-3,d=—17
(degree-7) e=2,f=13,g=14
s11®t3 | (a,bb,c b, de f,b,ddgeq fgbedfdgg8¢ef88f88) a=-11,b=4,c= —-2,d = -9
(degree-7) e=—-1,f=1¢g=7

Note that the following pairs have the same sequence pattern:
(s5 @85, t4 @ ti5), (h @t @ tn), (R O t3 O t3), (b @ tatin D t12), (5 D ts,ts D tg), (t6 @ te, 10 @ to), (7 D 7.t @ 1)

Table 4. 6 patterns of degree-10 PGISs of period 31

PGIS sequence pattern coefficients
s1®s11 | (a,b,b,cdeefegq feahfdfgbieddkhdhbfbg)|a=—-6+22j,b=-2—6j,
sa®s11 | (b f,bc,dbeeahegehf fag¢giebddgfdealf) c=2-234j,d=1-27],
s3®s11 | (bbe f,eb,b,d dgc f,d,f f,dbkgeeghbaeadihf)|e=—-4+8jf=-5+15],
s4®s11 | (f.def,abeb, fhcadaedldggbfggeebfihe) | g=-3+jh=-1-13j,
ss®s11 | (haee f,dedgdg f,ihbcehbkfbfagdbbee,fd i=—20j,k = —8+36j,
ss®s11 | (d,bbe fef fdhfiglcahgdabeegdefegab) I =3—-41j



https://doi.org/10.20944/preprints202401.1238.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 January 2024

Table 5. Period 31 PGISs of various degrees

doi:10.20944/preprints202401.1238.v1

21 0f23

PGIS

sequence pattern

coefficients

81 ® 81 ® S

(a,b,c,c,d,e f,8h,i,ik1,mmndmp,qebgr,sttuvrwn)
(degree-21)

4= —8+26],b = —56+12j,
c = —104 — 2j,d = 256 + 103j,
e = —152 — 16, f = 184 + 82j,
g =16+ 33j,h = 424 + 152j,

i = —80 + 5j,k = 40 + 40j,

| = 88 4 54j,m = 64 + 47],

n =160 + 75, p = —224 — 37j,
g = —248 — 44j,r = —32 4+ 19j,
s = —344 — 72j,t = 208 + 89,
u = —128 —9j,v = 136 + 68;,
w = —200 — 30;

S2 ® Sy ® 811

(c,g,a,b,u,a,w,e,a,d,a,muv,dt fcnhekqrdnlmp,bhi
(degree-20)

4= —8+26j,b = —56+ 12j,
¢ =232+ 96j,d = 256 + 103],

e = —152 — 16, f = —272 — 51j,
g =16+33j,h = 112 + 61],

i = —80 + 5j,k = 40 + 40j,

I = —320 — 65/, m = 64 + 47],

n =160+ 75j, p = —296 — 58,
g = —248 — 44j,r = —32 4+ 19,
w = —200 — 30j,t = 208 + 89,
u = —128 — 9j,0 = 136 + 68]

511 @ b5

(a,b,c,dye f,g,hedhcgijklmnp,jqrsptfu0lq)
(degree-20)

a=7,b=2,c=8,d =25,
e=-9f=49=-7h=-5,
i=10,j=6k=-16,1 = -1,
m=12,n=16,p=3,q=1,
r=-2,s=11,t=—-4,u= -6

511 ® b4

(a,b,a,c,de, f,g,h,1,¢ej,jkih 1l mmn0p,cqrstuqgpkg)
(degree-20)

a=4,b=7,c=-5,d = —16,
e=6f=—-49=1h=-9,
i=5j=3k=-1,1=10,

m=16,n=11,p =8, = -7,
r=12,s = -2,t=—-6,u =2

S-11 @ t1g

(a,b,c,b,de f,g,h,i,jk]1ichmkenppecqrsttu0l)
(degree-20)

a=1,b=8,c=-9,d =15,
e=-8,f=10,g=—4h=-3,
i=-5j=5k=21=-1,
m=7n=3,p=4,q=13,
r=12,s=14,t =2,u = -7

S11 @t

(a,b,0,b,¢,d,0,¢,f,f,e,8h,i,jk1,1,b,mec,mmb,j0cndmg)
(degree-14)

a=3b=-1,c=2,d= -2,
e=—-4f=39g=4h=1,
i=6j=8k=-31=5,
m=—-3,n=-5

s_11®h

(alblcld/e/dlolaIOIfIfIOlg/f/glolclh/hlelilgleljlflkldll/flolc)
(degree-12)

a=6b=3,c=-3,d=-2,
e=1f=-1,g=—-4h=7,
i=5j=9k=21=4

S$11 @ ts

(a/ b/u/alcld/e/f/g/h/d/i/d/]'/h/ i/a/k/]'/dlola/h/l/b/ilclololC/k)
(degree-12)

a=2,b=5,c=-3,d=-2,
e=—6f=—-4,9=4h=3,
i=1,j=9k=—-11=-5

S_11®ts

al /C/ /e/ 4 4 /CI 7 7 1l Illl/ 7Yy /C/al Il/a/l/ 7 My vy /e/
b,c,d g,b,¢,4,4,0,0,h,i,1,4,0, g g,1,a,1,7,0,k,0,e,1
(degree-12)

a=2,b=3,c=4,d = -3,
e=—-2,f=5g=-1h=-10,
i=1j=6k=91=-6

Scy ® 811

(a,a,b,c,d,b,e, f,d,g,¢c,hikcdkmmhb,f,imieaehk,f)
(degree-11)

1= —13—13j,b = —14— 14j,
c= —6—6j,d =30 +30j,
e=21+421j,f =7+7j,
g=-19-19,h=—7—7],
i=242j,k=—-12-12j,

m = —35 — 35
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8. Conclusions

Prime period sequences can serve as the fundamental tool to construct arbitrary composite
period sequences. The construction of prime period PGISs becomes an important research topic.
This paper provides systematic and nonsystematic two different approaches for construction prime
period PGISs. Systematic approach encounters difficulty to solve constraint equations when the
degree of sequence is lager than 3, however the merit of this approach is that both degree and
pattern of a sequence are known, and PGISs of degrees 1, 2, 3 and 5 examples are presented for
demonstration. The nonsystematic approach can contribute abundant numbers of degrees and patterns
to the constructed PGISs, but both degree and pattern might vary. We provide PGISs of different
patterns and degree-4 and other higher degrees of 6, 7, 10, 11, 12, 14, 20 and 21 examples to show
the results of nonsystematic approach. The proposed systematic and nonsystematic schemes can be
combined to construct efficiently abundant PGISs with various degrees and patterns for the associated
different applications.
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