
Article

Not peer-reviewed version

A Review Study of Prime Period Perfect Gaussian Integer Sequences

[Ho-Hsuan Chang](#)*, Shiqi Guan, [Miaowang Zeng](#), Peiyao Chen

Posted Date: 16 January 2024

doi: 10.20944/preprints202401.1238.v1

Keywords: correlation function; degree; perfect sequence; PGIS

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

A Review Study of Prime Period Perfect Gaussian Integer Sequences

Ho-Hsuan Chang ^{*}, Shiqi Guan, Miaowang Zeng and Peiyao Chen

DGUT-CNAM Institute, Dongguan University of Technology, Dongguan City; 3500916355@qq.com

^{*} Correspondence: 3500916355@qq.com (H.-H. Chang)

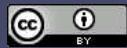
Abstract: Prime period sequences can serve as the fundamental tool to construct arbitrary composite period sequences. This is a review study of prime period perfect Gaussian integer sequence (PGIS). When cyclic group $\{1, 2, \dots, N-1\}$ can be partitioned into k cosets, where $N = kf + 1$ is an odd prime number, the construction of a degree- $(k+1)$ PGIS can be derived from either matching the flat magnitude spectrum criterion or making the sequence with ideal periodic autocorrelation function (PACF). This is a *systematic* approach of prime period $N = kf + 1$ PGIS construction, and is applied to construct PGISs with degrees 1, 2, 3 and 5. However, for degrees larger than 3, matching either the flat magnitude spectrum or achieving the ideal PACF encounters a great challenge of solving a system of nonlinear constraint equations. To deal with this problem, the correlation and convolution operations can be applied upon PGIS of lower degrees to generate new PGIS with degree-4 and other higher degrees, e.g., 6, 7, 10, 11, 12, 14, 20 and 21 in this paper. In this convolution based scheme, both *degree* and *pattern* of a PGIS vary and can be indeterminant, which is rather *nonsystematic* compared with the *systematic* approach. The combination of systematic and nonsystematic schemes contributes the great efficiency for constructing abundant PGISs with various degrees and patterns for the associated applications.

Keywords: correlation function; degree; perfect sequence; PGIS

1. Introduction

A Gaussian integer sequence (GIS) is a sequence with coefficients that are complex numbers $a + bj$, where $j = \sqrt{-1}$ and a and b are integers. The construction of perfect Gaussian integer sequence (PGIS) has become an important research topic [1–10] because integers require less memory; also, the implementation of a PGIS is simpler than those of other perfect sequences (PSs) with real or complex coefficients, in which a sequence is perfect if and only if it has an ideal periodic autocorrelation function (PACF).

By tracing the construction of PGISs, a general form of even-period PGISs was presented in [1], in which the PGISs were constructed by linearly combining four base sequences or their cyclic shift equivalents using Gaussian integer coefficients of equal magnitude. Yang *et al.* [2] constructed PGISs of odd prime period p by using cyclotomic classes with respect to the multiplicative group of $\text{GF}(p)$. Ma *et al.* [3] later presented PGISs with a period of $p(p+2)$ based on Whiteman's generalized cyclotomy of order two over $\mathbb{Z}_{p(p+2)}$, where p and $(p+2)$ are twin primes. In [4], Chang *et al.* introduced the concept of the degree of a sequence and constructed degree-2 and degree-3 PGISs of prime period p . Then, they up-sampled these PGISs by a factor of m and filled them with new coefficients to build degree-3 and degree-4 PGISs of arbitrary composite period $N = mp$. Lee *et al.* focused on constructing degree-2 PGISs of various periods using two-tuple-balanced sequences and cyclic difference sets [5,6]. Algorithms that could generate PGISs of arbitrary period were developed by Pei *et al.* [7], and one of these algorithms could be applied to construct degree-5 PGISs of prime period $p \equiv 1 \pmod{4}$ by applying the generalized Legendre sequences (GLS). A systematic method for constructing sparse PGISs in which most of the elements are zeros was proposed [8]. PGISs of period p^k with degrees equal to or less than $k+1$ and those of period qp with degrees equal to or larger than four were proposed in [9] and [10].



With the above mentioned significant results of theoretical PGIS study and matured construction techniques, exploring the application of PGIS gradually becomes a new research topic [11–17]. In [11], a PGIS was applied to OFDM systems for peak-to-average power ratio (PAPR) reduction. Subsequently, the PGIS was used to construct the transform matrix for the associated precoded OFDM systems to achieve full frequency diversity and obtain optimal bit-error rate [12]. A CDMA scheme based on PGIS, called PGIS-CDMA system, was developed by Chang [13], where a set of PGISs could substitute and outperform the PN codes (e.g., m -sequences, Gold sequences, Kasami sequences, and bent sequences) in a direct sequence (DS) CDMA system. Construction of circular convolution group based on perfect sequences for block data transmission with high diversity order appeared in [14]. New application of PGIS to cryptography refers to [15], which a hybrid public/private key cryptography scheme based on PGIS of period $N = pq$ was proposed. This hybrid cryptosystem can take the advantages of public and private-key systems, and it is with implementation simplicity for easy adaptation to an IoT platform. PGIS can also be applied to construct a set of zero circular convolution (ZCC) sequences [16], which ZCC sequences featured the advantage of possessing the desired PACF and the ideal periodic crosscorrelation function (PCCF) properties. ZCC sequences could be applied for multiuser channel estimation as well as the optimal joint symbol detection and channel estimation [16,17].

Different from that of binary sequence families, there are no upper bound the available numbers of PGISs, which one can construct as many different PGISs as one would expect. We can use degree, pattern and period as three parameters to uniquely define a PGIS. From the application point of view, the available numbers of degrees and patterns of a set of PGISs are desired when the period of a this set of PGISs is fixed. For example, the capacity of a PGIS-CDMA system is determined by the number of degrees and patterns [13]. In addition, prime period PGISs can serve as the fundamental tool for constructing arbitrary composite period PGISs [4]. These two reasons stimulate us to make a review and through study of constructing prime period PGIS from both degree and pattern points of view.

To construct more degrees and patterns of different PGISs is the goal of this study, which we conclude and group the construction approaches into *systematic* and *nonsystematic* two schemes. When perfect sequences are constructed by matching the flat magnitude spectrum or the ideal PACF criterion, the pattern and degree of a sequence are determined and known in advance. For example, the construction of degree-2 and degree-3 PGISs of prime period in [4] and the construction of degree-5 PGIS adopting from the generalized Legengre sequences(GLS) by Pei *et al.* [7]. This is the reason this approach can be called a *systematic* scheme. In this approach, when the cyclotomic order is greater than 3, solving constraint equations by matching flat magnitude spectrum criterion becomes a great challenge. With this aspect, we can apply correlation and convolution operations in this study to construct degree-4 and many other degrees which belong to the set {6, 7, 10, 11, 12, 14, 20, 21}. However, the degree, as well as the pattern, of a PGIS constructed from taking either correlation or convolution operation between two or more PGISs might vary, and is too complicated to be analyzed systematically, which is a case by case condition. This is rather a *nonsystematic* scheme of PGIS construction compared with the mentioned *systematic* scheme. One can apply systematic scheme to construct lower degree PGISs, and then these lower degree PGISs can be applied to construct many other higher degree PGISs using nonsystematic scheme. The proposed systematic and nonsystematic schemes can be combined to construct efficiently abundant PGISs with various degrees and patterns for the associated different applications.

The structure of this paper is briefly described. Followed by depicting the properties of PGISs in Section 2, Sections from 3 to 6 present a review study of the systematic construction of general prime period PGISs of degrees 1, 2, 3 and 5, respectively. New study of PGIS construction by correlation and convolution operations is addressed in Section 7, which there exist abundant degrees and patterns to those PGISs of particular prime periods, e.g., $N = 2^m - 1$ and $N = \frac{p^m - 1}{m - 1}$, where p is an odd prime. Conclusions are summarized in Section 8.

2. Definitions and PGIS Properties

2.1. Notations

$\delta[\tau]$ is the Kronecker delta sequence of period N . The boldface character \mathbf{s} denotes a sequence or a vector of period N which is expressed as $\mathbf{s} = \{s[n]\}_{n=0}^{N-1}$, and $\mathbf{s}_{-1}^* = \{s^*[(n-1)_N]\}_{n=0}^{N-1}$, where the superscript $*$ and $(\cdot)_N$ stand for complex conjugate and modulo N operation, respectively. Let $\mathbf{s}^{(-m)} = \{s[(n+m)_N]\}_{n=0}^{N-1}$ and $\mathbf{s}^{(m)} = \{s[(n-m)_N]\}_{n=0}^{N-1}$ denote the circular shift of \mathbf{s} to the left and right, respectively, by m places, where $0 \leq m \leq N-1$. A set of N different sequences is expressed as $\{\mathbf{s}_m\}_{m=0}^{N-1}$. $\mathbf{S}_1 \circ \mathbf{S}_2$ denotes component-wise product between \mathbf{S}_1 and \mathbf{S}_2 .

2.2. Definitions

2.2.1. Degree

The *degree* of a sequence is defined as the number of distinct non-zero elements within one period of the sequence.

2.2.2. Pattern

The *pattern* of a sequence is defined as the distribution of non-zero elements within one period of the sequence.

We can demonstrate two degree-6 PGISs of period 31, which are with different pattern, as follows:

$$(-3, 9, 9, 2, 9, -2, 2, 8, 9, -2, -2, 2, 2, 2, 8, -5, 9, 2, -2, 8, -2, 2, 2, -5, 2, 8, 2, -5, 8, -5, -5),$$

and

$$(-9, 0, 0, 1, 0, -1, 1, -2, 0, -1, -1, 5, 1, 5, -2, 2, 0, 1, -1, -2, -1, 5, 5, 2, 1, -2, 5, 2, -2, 2, 2).$$

Notice that since sequence and pattern are periodic with period N , thus sequence $\{s[n]\}$ and its circular shifts $\{s[(n \pm m)_N]\}$ in this paper are considered to be with the same pattern, so are both sequences $\{cs[n]\}$ and $\{s^*[n]\}$. However the pattern of sequence $\{s[(-n)_N]\}$ may not be the same as that of $\{s[n]\}$.

2.2.3. Circular convolution

The circular convolution between $\mathbf{s}_1 = \{s_1[n]\}_{n=0}^{N-1}$ and $\mathbf{s}_2 = \{s_2[n]\}_{n=0}^{N-1}$, denoted by $\mathbf{s}_1 \otimes \mathbf{s}_2 = \{s_{12}[n]\}_{n=0}^{N-1}$, where $s_{12}[n]$ is the n th component of $\mathbf{s}_1 \otimes \mathbf{s}_2$, is defined as

$$s_{12}[n] = \sum_{\tau=0}^{N-1} s_1[\tau]s_2[(n-\tau)_N],$$

where $(\cdot)_N$ denotes modulo N .

2.2.4. PACF

Let $\mathbf{s} = \{s[n]\}_{n=0}^{N-1}$ denote a sequence of period N , where $s[n]$ is the n th component of \mathbf{s} . $\mathbf{R}_s \equiv \mathbf{s} \otimes \mathbf{s}_{-1}^* = \{R[\tau]\}_{\tau=0}^{N-1}$ denote the periodic autocorrelation function (PACF) of \mathbf{s} , i.e.,

$$R[\tau] = \sum_{n=0}^{N-1} s[n]s^*[(n-\tau)_N],$$

where $\mathbf{s}_{-1} = \{s[(-n)_N]\}_{n=0}^{N-1}$. Let $\mathbf{S} = \{S[n]\}_{n=0}^{N-1}$ denote the discrete Fourier transform (DFT) of \mathbf{s} . Then, the DFT of \mathbf{R}_s is $\mathbf{S} \circ \mathbf{S}^* = |\mathbf{S}|^2$, where $|\cdot|$ denotes the Euclidean norm. The sequence \mathbf{s} is called

perfect if and only if $\mathbf{R}_s = E \cdot \delta[\tau]$, where E is energy of the sequence s . The DFT pair-relationship between $\mathbf{R}_s = E \cdot \delta[\tau]$ and $\mathbf{S} \circ \mathbf{S}^* = |\mathbf{S}|^2$ indicates that a sequence s is perfect if and only if the magnitude spectrum of s is flat, i.e., $|S[n]| = \sqrt{E}, \forall 0 \leq n \leq N-1$.

2.2.5. PCCF

The periodic crosscorrelation function (PCCF) between $s_1 = \{s_1[\tau]\}_{\tau=0}^{N-1}$ and $s_2 = \{s_2[\tau]\}_{\tau=0}^{N-1}$ is defined as

$$R_{1,2}[\tau] = \sum_{n=0}^{N-1} s_1[n]s_2^*[(n-\tau)_N].$$

2.2.6. Coset

Let $N = KM + 1$ be an odd prime number, thus $\mathbf{Z}_N = \{1, 2, \dots, N-1\}$ is both a multiplicative group and a cyclic group [22]. If $\alpha \in \mathbf{Z}_N$ is a primitive element, it follows that $\alpha^{N-1} = 1$. Let $\mathbf{H} \equiv \{\alpha^{m \cdot K}\}_{m=0}^{M-1}$ and $\gamma \in \mathbf{Z}_N$. The subset $\mathbf{H}\gamma \equiv \{h\gamma | h \in \mathbf{H}\}$ is called the right coset of subgroup \mathbf{H} generated by γ . Define

$$\mathbf{H}_k \equiv \mathbf{H}\alpha^k, k = 0, 1, \dots, K-1. \quad (1)$$

It is easy to shown that $\mathbf{H}_k, k = 0, 1, \dots, K-1$, are distinct right cosets of \mathbf{H} , where $\mathbf{H} = \mathbf{H}_0$. It can be further shown that $\mathbf{Z}_N = \mathbf{H}_0 \cup \mathbf{H}_1 \cup \dots \cup \mathbf{H}_{K-1}$ and $|\mathbf{Z}_N| = |\mathbf{H}_0| + |\mathbf{H}_1| + \dots + |\mathbf{H}_{K-1}| = KM$. It is noted that $\mathbf{H}_k = \mathbf{H}\alpha^k = \mathbf{H}\alpha^{(k+m \cdot K)}$, where $\alpha^{k+m \cdot K}, m = 0, 1, \dots, M-1$, belong to the same coset.

2.3. PGIS Properties

Only parts of PGIS properties, which are related to this study, are summarized to form the following Theorem. Especially the property 7 is applied for nonsystematic PGIS construction.

Theorem 1. Let $s = \{s[n]\}_{n=0}^{N-1}$, s_1 and s_2 be three PGISs of prime period N . The following sequences are also PGISs of period N

- 1) $\{s[(n \pm m)_N]\}$, where m is any integer;
- 2) $\{cs[n]\}$, where c is any nonzero Gaussian integer;
- 3) $\{s^*[n]\}$, where $s^*[n]$ denotes complex conjugation;
- 4) $\{S[k]\}$, the DFT of $\{s[n]\}$, given that $\{s[n]\}$ is with constant amplitude;
- 5) $\{s[(-n)_N]\}$;
- 6) $s_1 \otimes s_2$;
- 7) $\{R_{1,2}[\tau]\}_{\tau=0}^{N-1}, \{R_{2,1}[\tau]\}_{\tau=0}^{N-1}, \{R_{1,1}[\tau]\}_{\tau=0}^{N-1}$ and $\{R_{2,2}[\tau]\}_{\tau=0}^{N-1}$.

Proof. 1). The proof of properties 1) to 6) can refer to [21] and [13].

2). To prove property 7), at first $\{s_2^*[(-\tau)_N]\}$ is also a PGIS, and it has $\{R_{1,2}[\tau]\} = \{s_1[\tau]\} \otimes \{s_2^*[(-\tau)_N]\}$. The convolution between $\{s_1[\tau]\}$ and $\{s_2^*[(-\tau)_N]\}$ two PGISs yields that $\{R_{1,2}[\tau]\}$ is also a PGIS of period N by property 6). Similarly $\{R_{2,1}[\tau]\} = \{s_2[\tau]\} \otimes \{s_1^*[(-\tau)_N]\}$, $\{R_{1,1}[\tau]\} = \{s_1[\tau]\} \otimes \{s_1^*[(-\tau)_N]\}$ and $\{R_{2,2}[\tau]\} = \{s_2[\tau]\} \otimes \{s_2^*[(-\tau)_N]\}$ are also PGISs of period N as well. \square

When the degree of sequence is a great concern, one can apply the cyclotomic class for constructing systematically PS and PSIS according to following Theorem.

Theorem 2. Let a cyclic group $\mathbf{Z}_N = \{1, 2, \dots, N-1\}$ be partitioned into K cosets, where each coset contains M elements and $N = 1 + KM$. Let c_1, c_2, \dots, c_F be all the F positive factors of $N-1$. There exist $F+1$ classes of PSs of period N with degrees $1, 1 + \frac{N-1}{c_1}, 1 + \frac{N-1}{c_2}, \dots, 1 + \frac{N-1}{c_F}$, respectively. It is noted that $K \in \{\frac{N-1}{c_1}, \frac{N-1}{c_2}, \dots, \frac{N-1}{c_F}\}$.

Proof. Referred to [18]. \square

Consider the case of $N = 13$, where the six positive factors of $N - 1 = 12$ are 1, 2, 3, 4, 6 and 12, respectively. Therefore, the corresponding degrees of the PSs or PGISs are given by 13, 7, 5, 4, 3, and 2, respectively. We would like to mention that **Theorem 2** can ensure the existence of six patterns of PSs with period $N = 13$, however it is challenging to construct PGISs of these six patterns where the coefficients of these sequences should be Gaussian integer numbers.

3. Unique Degree-1 PGIS

To encompass a broader scope of sequence degree, a particular degree-1 PGIS, which is originated from Kronecker delta sequence $\delta[\tau]$, is addressed in this section.

Theorem 3. For any nonzero Gaussian integer a , sequence $\mathbf{s} = (\underbrace{a, 0, \dots, 0}_{N-1})$ and all $N - 1$ other circular shifts of \mathbf{s} , with notation $\mathbf{s}^{(n)}$, are the only existing degree-1 PGISs of period N . In other words, $(a, 0, \dots, 0)$ is the unique pattern of degree-1 PGIS.

Proof. At first, the number of different nonzero elements for degree-1 PGIS is one. The DFT of $\mathbf{s} = (\underbrace{a, 0, \dots, 0}_{N-1})$ is $\mathbf{S} = (\underbrace{a, a, \dots, a}_{N-1})$, which \mathbf{S} meets the flat magnitude spectrum criterion for sequence \mathbf{s}

to be a PGIS. Let $\mathbf{s}^{(n)} = (\underbrace{0, \dots, 0}_n, \underbrace{a, 0, \dots, 0}_{N-n-1})$ be the n -shift of \mathbf{s} . The DFT of $\mathbf{s}^{(n)}$ is $\mathbf{S}^{(n)} = \left\{ ae^{-j\frac{2\pi nm}{N}} \right\}_{m=0}^{N-1}$,

where $|ae^{-j\frac{2\pi nm}{N}}| = |a|, \forall m$. This infers that $\mathbf{s}^{(n)}$ is a degree-1 PGIS, and this is valid to all $n = 1, \dots, N - 1$.

When there exist 2 “ a ” elements in this sequence, e.g., $\mathbf{s} + \mathbf{s}^{(n)}$, the DFT of sequence $\mathbf{s} + \mathbf{s}^{(n)}$ becomes $\mathbf{S} + \mathbf{S}^{(n)} = \left\{ a(1 + e^{-j\frac{2\pi nm}{N}}) \right\}_{m=0}^{N-1}$, where $|a(1 + e^{-j\frac{2\pi nm}{N}})| \neq |a(1 + e^{-j\frac{2\pi nk}{N}})|, 0 \leq m, k \leq N - 1, m \neq k$. The flat magnitude spectrum criterion for a sequence to be perfect can not be maintained in this situation. By extending this result, when sequence exists more than two “ a ” elements, the DFT of this sequence becomes $\left\{ a(1 + \sum_{n \neq 0} e^{-j\frac{2\pi nm}{N}}) \right\}_{m=0}^{N-1}$ for some n , which it is straightforward that $|a(1 + \sum_{n \neq 0} e^{-j\frac{2\pi nm}{N}})| \neq |a(1 + \sum_{n \neq 0} e^{-j\frac{2\pi nk}{N}})|$ is true, $0 \leq m, k \leq N - 1, m \neq k$. This leads conclusion that the sequence can no longer be a degree-1 PGIS when there exist two or more “ a ” elements. \square

4. Degree-2 PGISs Construrction

Besides that of degree-2 PGISs that can be constructed using cyclotomic class the same as other degree PGISs do, many binary sequences, e.g., m -sequences and cyclic difference set, can also be adopted to construct degree-2 PGISs, where binary sequence construction is rather a matured topic with many construction schemes or algorithms [5,6,21]. This implies the more abundant patterns of degree-2 than other degrees. The significance of existence abundant sequence patterns of degree-2 PGISs has the merit that the more number of PGISs the more they can be applied to generate more new PGISs by means of taking convolution or correlation operation upon themselves. This topic of convolution technique on PGIS construction is addressed in the Section 7 of this paper.

4.1. Construction using cyclotomic class

4.1.1. Cyclotomic class of order 1

Let $N = kf + 1$ be an odd prime. When $k = 1$, there is no partition of the cyclic multiplicative group $Z_N = \{1, 2, \dots, N - 1\}$. In this situation, the pattern of degree-2 PGIS is

$$\mathbf{s} = (a, \underbrace{b, \dots, b}_{N-1}), \quad (2)$$

where a and b are two nonzero Gaussian integers.

The autocorrelation function of sequence $\mathbf{s} = (a, \underbrace{b, \dots, b}_{N-1})$ is

$$R[\tau] = \begin{cases} |a|^2 + (N-1)|b|^2, & \tau = 0 \\ ab^* + ba^* + (N-2)|b|^2, & \tau \neq 0. \end{cases}$$

Constraint equation $ab^* + ba^* + (N-2)|b|^2 = 0$ is the necessary as well as sufficient condition for sequence \mathbf{s} to be a degree-2 PGIS with nonzero Gaussian integers $a = x_1 + jy_1$ and $b = x_0 + jy_0$, which this equation can be further simplified as

$$2(x_0x_1 + y_0y_1) + (N-2)(x_0^2 + y_0^2) = 0. \quad (3)$$

Example 1. When $f = 4$ and $N = 4 + 1 = 5$, Gaussian integers $a = 9 + 2j$ and $b = -1 - 3j$ fulfill (3). A degree-2 PGIS of period 5 is given by

$$\mathbf{s} = (9 + 2j, -1 - 3j, -1 - 3j, -1 - 3j, -1 - 3j).$$

4.1.2. Cyclotomic class of order 2

When $k=2$ and $N = 2f + 1$ is an odd prime. The cyclic group $Z_N = \{1, 2, \dots, N - 1\}$ can be partitioned into two cosets $Z_N = Hb_0 \cup Hb_1$, where $\alpha^{2f} = 1$, $Hb_0 = \{\alpha^{2n}\}_{n=0}^{f-1}$ and $Hb_1 = \{\alpha^{2n+1}\}_{n=0}^{f-1}$. To construct PGIS, at first, three base sequences \mathbf{x}_δ and $\mathbf{x}_i = \{x_i[n]\}_{n=0}^{N-1}$, $i = 0, 1$, are defined as follows:

$$\mathbf{x}_\delta = (1, \underbrace{0, \dots, 0}_{N-1}),$$

$$x_i[n] = \begin{cases} 1, & n \in Hb_i \\ 0, & \text{otherwise.} \end{cases}$$

Theorem 4. Let $N = 2f + 1$ be an odd prime and f be an odd integer. The sequence $\mathbf{s} = a(\mathbf{x}_\delta + \mathbf{x}_0) + b\mathbf{x}_1$ with two nonzero Gaussian integers a and b is a degree-2 PGIS if the following constraint equation holds.

$$\begin{aligned} |a(f+1) + bf| &= \left| \frac{(a-b)(1+j\sqrt{N})}{2} \right| \\ &= \left| \frac{(a-b)(1-j\sqrt{N})}{2} \right|. \end{aligned} \quad (4)$$

Proof. Referred to [4]. \square

Corollary 1. Let $N = 2f + 1$ be an odd prime and f be an odd integer. The sequence $\mathbf{s} = b(\mathbf{x}_\delta + \mathbf{x}_1) + a\mathbf{x}_0$ with two nonzero Gaussian integers a and b is a degree-2 PGIS if

$$\begin{aligned} |b(f+1) + af| &= \left| \frac{(b-a)(1+j\sqrt{N})}{2} \right| \\ &= \left| \frac{(b-a)(1-j\sqrt{N})}{2} \right|. \end{aligned} \quad (5)$$

Proof. The flat magnitude spectrum criterion leads to the constraint equation (5). \square

Let $a = a_R + ja_I$ and $b = b_R + jb_I$. The constraint equation (4) infers that the following equation should be fulfilled:

$$\frac{b_R^2 + b_I^2}{(a_R + b_R)^2 + (a_I + b_I)^2} = \frac{f+1}{2}. \quad (6)$$

And (5) infers that

$$\frac{a_R^2 + a_I^2}{(a_R + b_R)^2 + (a_I + b_I)^2} = \frac{f+1}{2}. \quad (7)$$

Example 2. When $f = 15$ and $N = 2f + 1 = 31$, Gaussian integers $a = -5$ and $b = 6 + 2j$ fulfill (6). A degree-2 PGIS of period 31 is given by

$$\mathbf{s} = (a, a, a, b, a, a, b, a, a, a, a, b, b, b, b, a, b, a, b, a, a, a, b, b, b, b, a, b, a, b, b). \quad (8)$$

Example 3. Gaussian integers $a = 2 - 6j$ and $b = -3 + 4j$ can fulfill (7). A degree-2 PGIS of period 31, but with different pattern to that of (8), is

$$\mathbf{s} = (b, a, a, b, a, a, b, a, a, a, b, b, b, a, b, a, b, a, a, a, b, b, b, b, a, b, a, b, b). \quad (9)$$

However, there exists no degree-2 PGIS of prime period $N = 2f + 1$ when f is an even integer, if base sequences \mathbf{x}_δ , \mathbf{x}_0 and \mathbf{x}_1 are applied for sequence construction[4].

4.2. Degree-2 PGISs of arbitrary prime period

Let's define two base sequences \mathbf{x}_a , \mathbf{x}_b as follows:

$$\mathbf{x}_a = (1, \underbrace{1, \dots, 1}_{N-1}), \quad (10)$$

$$\mathbf{x}_b = (N-1, \underbrace{-1, \dots, -1}_{N-1}),$$

Base sequences \mathbf{x}_a and \mathbf{x}_b can be applied to construct degree-2 PGIS of prime period $N = 2f + 1$ for both even and odd f according to Theorem 5.

Theorem 5. The sequence $\mathbf{s} = a\mathbf{x}_a + b\mathbf{x}_b$ with nonzero Gaussian integers a and b is a degree-2 PGIS if $|a| = |b|$.

Proof. Referred to [4]. \square

Above all, there exist three different sequence patterns to degree-2 PGISs of odd prime period $N = 2f + 1$ when f is odd, but there is only one pattern when f is even. However, note that any degree-2 PGISs constructed based on *Theorem 5* belong to the same sequence pattern as that of (2). To explain the reason, the two base sequences that span sequence pattern in (2) are \mathbf{x}_δ and $\mathbf{x}_c = (0, \underbrace{1, \dots, 1}_{N-1})$,

which $\{\mathbf{x}_\delta, \mathbf{x}_c\}$ and $\{\mathbf{x}_a, \mathbf{x}_b\}$ can span the same vector space.

From sequence application point of view, it is desirable to design as many distinct sequences as possible for a given period. There do exist many other sequence patterns to the degree-2 PGIS family of particular prime period, addressed in the following two subsections.

4.3. Degree-2 PGISs adopting from ternary perfect sequences

4.3.1. Construction based on ternary perfect sequences

Ipatov derived a large class of ternary PSs of period $N = \frac{q^m - 1}{q - 1}$, where m is an odd number and $q = p^s$, p is an odd prime and s is an integer [21,23,24]. Having with sequence elements belong to $\{0, +1, -1\}$, the ternary PSs can be adopted to obtain general degree-2 PGISs by replacing $+1$ and -1 with any nonzero Gaussian integers a and $-a$, respectively. The degree-2 PGISs derived from ternary PSs may contain many zero elements. Given $q = 3$ and $m = 3$, ternary PS of period $13 = \frac{3^3 - 1}{3 - 1}$ is $(0, 0, 1, 0, 1, 1, 1, -1, -1, 0, 1, -1, 1)$, and a degree-2 PGIS of period $N = 13$ is given by:

$$\mathbf{s} = (0, 0, a, 0, a, a, a, -a, -a, 0, a, -a, a). \quad (11)$$

4.3.2. Construction based on CIDTS

The second type degree-2 PGISs can be built adopting from the *correlation identity derived ternary sequences*(CIDTS) [21]. Momentarily we present only the construction of 12 different degree-2 PGISs of prime period $N = 2^5 - 1$ based on CIDTS, which are $\{\mathbf{t}_1, \dots, \mathbf{t}_{12}\}$, in Table 1. The detailed construction rules of this scheme can refer to Section 7.5.

4.4. Degree-2 PGISs of prime period $2^m - 1$

In the case of prime period $N = 2^m - 1$ family, there exists many sequence patterns of degree-2 PGISs. In [5], Lee *et al.* constructed four different kinds of degree-2 PGISs of period $N = 2^m - 1$ from the trace representations of Legendre sequences, Hall's sextic residue sequences, m -sequences, and GMW sequences, respectively. In addition, a new design degree-2 PGISs using cyclic difference sets can refer to [6]. Let's present *Theorem 6* before addressing the construction of degree-2 PGISs of prime period $N = 2^m - 1$.

Theorem 6. *For any prime number N , the set of quadratic residues of N forms a multiplicative group with cardinality $\frac{N-1}{2}$.*

Proof. There are $\frac{N-1}{2}$ quadratic residues of prime N , which are congruent to $1^2, 2^2, \dots, \frac{N-1}{2}$, respectively. The set $Z_N = \{1, 2, \dots, N-1\}$ is a cyclic group generated by a primitive root α modulo N , where $\alpha^{N-1} = 1$, and the set $\{\alpha^{2n}\}_{n=0}^{f-1}$ forms the subgroup of Z_N . According to *Euler's Criterion* [20], when $a \equiv \alpha^{2n} \pmod{N}$, an even power of a primitive root, $a^{\frac{N-1}{2}} \equiv 1 \pmod{N}$ is true. This implies a is a quadratic residue modulo N . The set $\{\alpha^{2n}\}_{n=0}^{f-1}$ and the quadratic residues of N are isomorphic between each other. This proves the quadratic residues of N forms a multiplicative group. \square

4.4.1. Degree-2 PGISs from Legendre sequences

According to *Theorem 6*, the set of quadratic residues of prime N is isomorphic to cyclotomic class of order 2. Thus, any degree-2 PGISs of prime period $2^m - 1$ constructed using the trace representations of Legendre sequences belong to the same sequence patterns built according to *Theorem 6*.

4.4.2. Degree-2 PGISs from Hall's sextic residue sequences

In the case of prime period $N = 4a^2 + 27 = 6f + 1 = 2^m - 1$, where a, f and m are positive integers, e.g., $N=31$ and $N=127$, there exist six different sequence patterns of degree-2 PGISs derived from the trace representation of Hall's sextic residue sequences [5].

4.4.3. Degree-2 PGISs from m -sequences

In the case of degree-2 PGISs derived from m -sequences of period $2^m - 1$, the number of distinct m -sequence is $\frac{\phi(2^m - 1)}{m}$, where $\phi(\cdot)$ is the *Euler's totient function*. For example, when $N=7$, there exist two patterns which are the same as that of the cyclotomic class of order 2. In case of $N=31$, the existing six sequence patterns are the same as that based on the Hall's sextic residue sequences [5]. There exist 18 different sequence patterns when $N=127$, which these patterns are different from both the Hall's sextic residue sequences and the cyclotomic class of order 2. The more details of this topic can refer to [5].

4.4.4. Degree-2 PGISs from cyclic difference set

The TABLE II in [6] presents the cyclic difference sets (ν, κ, λ) of order $(\kappa - \lambda) \leq 30$, among of which the two cyclic sets that belong to the family of prime period $N = 2^m - 1$ are $(31, 6, 1)$ and $(31, 15, 7)$. The degree-2 PGIS pattern constructed using $(31, 15, 7)$ belongs to one of six patterns derived from m -sequences of period $2^5 - 1$; while a new pattern can be generated using $(31, 6, 1)$, which when $a = -j$ and $b = 1 + 3j$ are applied, the degree-2 PGIS of period $N = 31$ is

$$\mathbf{s} = (a, b, a, a, a, b, a, a, a, a, a, b, a, b, b, a, b, a, a, a). \quad (12)$$

5. Degree-3 PGISs Construction

5.1. Construction using cyclotomic class of order 2

Let $N = 2f + 1$ be an odd prime. When f is odd, the autocorrelation function of sequence $\mathbf{s} = a_2 \mathbf{x}_\delta + a_0 \mathbf{x}_0 + a_1 \mathbf{x}_1$ can be expressed as follows:

$$R[\tau] = \begin{cases} |a_2|^2 + f \cdot (|a_0|^2 + |a_1|^2), & \tau = 0 \\ a_2 a_1^* + a_0 \sum_{n \in Hb_0} s^*[(n - \tau)_N] + a_1 \sum_{n \in Hb_1} s^*[(n - \tau)_N], & \tau \in Hb_0 \\ a_2 a_0^* + a_0 \sum_{n \in Hb_0} s^*[(n - \tau)_N] + a_1 \sum_{n \in Hb_1} s^*[(n - \tau)_N], & \tau \in Hb_1. \end{cases} \quad (13)$$

When f is even, the autocorrelation function becomes

$$R[\tau] = \begin{cases} |a_2|^2 + f \cdot (|a_0|^2 + |a_1|^2), & \tau = 0 \\ a_2 a_0^* + a_0 \sum_{n \in Hb_0} s^*[(n - \tau)_N] + a_1 \sum_{n \in Hb_1} s^*[(n - \tau)_N], & \tau \in Hb_0 \\ a_2 a_1^* + a_0 \sum_{n \in Hb_0} s^*[(n - \tau)_N] + a_1 \sum_{n \in Hb_1} s^*[(n - \tau)_N], & \tau \in Hb_1. \end{cases} \quad (14)$$

Let $a_i = x_i + jy_i$, $i = 0, 1, 2$, be three nonzero different Gaussian integers. For an odd f , the necessary and sufficient conditions for sequence \mathbf{s} , with its autocorrelation function defined in (13), to be a degree-3 PGIS of period $N = 2f + 1$ leads to the following linear system of two equations with

variables x_2 and y_2 . The same equations to that of (15) are shown in [2] and [4], where the derivation of (15) in [4] is based on the frequency-domain approach.

$$\begin{cases} y_0x_1 - y_1x_0 = y_2(x_1 - x_0) + x_2(y_0 - y_1) \\ -(\Delta + x_0x_1 + y_0y_1) = x_2(x_1 + x_0) + y_2(y_1 + y_0) \end{cases} \quad (15)$$

where $\Delta = \frac{f-1}{2}((x_0 + x_1)^2 + (y_0 + y_1)^2)$. For an even f , the requirement of $\{R[\tau]\}_{\tau=1}^{N-1} = 0$ in (14) leads to the following linear system of two equations with variables x_2 and y_2 . Chang *et al.* derived the same constraint equations as that of (16) in [4]. However, their derivation is from the frequency domain approach.

$$\begin{cases} \frac{(x_1^2 - x_0^2)}{2} + \frac{(y_1^2 - y_0^2)}{2} = x_2(x_1 - x_0) + y_2(y_1 - y_0) \\ \Delta_x + \Delta_y = -Nx_2(x_1 + x_0) - Ny_2(y_1 + y_0) \end{cases} \quad (16)$$

where $\Delta_x = (x_0 + x_1)^2 f^2 - x_0x_1 - \frac{(N+1)(x_0 - x_1)^2}{4}$ and $\Delta_y = (y_0 + y_1)^2 f^2 - y_0y_1 - \frac{(N+1)(y_0 - y_1)^2}{4}$.

In [7], Pei *et al.* applied Legendre sequence and Gauss sum to construct degree-3 PGISs. This approach is more efficient in deriving the coefficients of sequence to achieve ideal PACF than solving the constraint equations of (15) and (16). However, as described in *Theorem 5*, the sequence pattern constructed based on the Legendre sequences is the same as that based on the cyclotomic class of order 2.

5.2. Degree-3 PGISs of prime period $2^m - 1$

This subsection presents more sequence patterns of degree-3 PGIS of prime period $2^m - 1$, which are derived from taking circular convolution upon two degree-2 PGISs. We present 12 illustrative examples to demonstrate the results of circular convolution in Table 2, which the former 12 patterns are obtained from circular convolution applied to degree-2 PGISs from Table 1, and the bottom row pattern is constructed using cyclotomic class of order 2.

5.3. Construction from ternary perfect sequences

There exists also degree-3 PGIS constructed from taking circular convolution between ternary PS and degree-2 PGIS with sequence pattern $\mathbf{s} = (a, \underbrace{b, \dots, b}_{N-1})$. One more degree-3 PGIS example $\mathbf{s} = \mathbf{s}_{10} \otimes \mathbf{s}_{11}$ of period $N = 2^5 - 1$ is present in Table 2.

Table 1. 23 patterns of degree-2 PGISs of period 31

PGIS	sequence pattern	coefficients
s₁	(a, b, b, a, b, a, a, b, b, a, a, a, b, b, a, a, a, b, a, b, a, b, b, b, b)	$a = -1 + 3j, b = 4j$
s₂	(a, b, b, b, a, b, a, b, a, a, a, b, b, b, a, a, a, a, b, b, a, b, a, b, b)	s₁ to s₆
s₃	(a, b, b, a, b, b, a, a, b, b, b, a, b, a, a, b, b, b, a, a, a, b, a, a, a)	are derived from
s₄	(a, a, a, a, a, b, a, a, a, b, b, b, a, b, a, b, a, b, b, b, a, a, b, b, a, b)	<i>m</i> -sequences
s₅	(a, a, a, b, a, b, b, b, a, b, a, b, a, b, a, b, b, b, a, a, a, b, a, b, a, a)	
s₆	(a, a, a, b, a, a, b, b, a, a, a, b, b, b, a, b, a, b, a, b, b, a, b, a, b, a, a)	
s₇	(a, b, a, a, a, b, a, b, b, a, b, a, a, a)	$a = -j, b = 1 + 3j$
s₈	(b, a, a, b, a, a, a, b, a, a, a, b, b, a, b, a, b, a, a, b, b, b, a, b, a, b, b)	$a = 2 - 6j, b = -3 + 4j$
s₉	(a, a, a, b, a, a, a, b, a, a, a, b, b, b, a, b, a, a, b, b, b, a, b, b, a, b, b)	$a = -5, b = 6 + 2j$
s₁₀	(a, b, b)	$a = 88 + 63j, b = -5 + j$
s₁₁	(0, 0, a, 0, b, a, a, a, b, 0, a, b, b, 0, b, a, a, a, a, a, b, a, b, a, 0, a, a, b, a)	<i>a</i> is Gaussian integer and <i>b</i> = <i>a</i> ,
t₁	(b, b, b, a, b, 0, a, a, b, 0, 0, 0, a, 0, b, a, 0, a, 0, 0, 0, a, 0, 0, a, 0, 0)	s₁₁ is ternary sequence,
t₂	(b, 0, 0, a, 0, a, a, 0, 0, a, a, b, a, b, 0, 0, 0, a, a, 0, a, b, b, 0, a, 0, b, 0, 0, 0)	t₁ to t₁₂ are CIDTS
t₃	(b, 0, 0, b, 0, a, b, 0, 0, a, a, a, b, a, 0, 0, 0, b, a, 0, a, a, 0, b, 0, a, 0, 0, 0)	constructed based on <i>m</i> -sequences
t₄	(b, a, a, 0, a, 0, 0, a, 0, 0, a, 0, a, 0, b, a, 0, 0, 0, 0, a, a, b, 0, 0, a, b, 0, b, b)	
t₅	(b, 0, 0, 0, b, 0, a, 0, b, b, a, 0, a, 0, 0, b, a, b, a, a, 0, 0, a, a, 0, a, 0, 0)	
t₆	(b, 0, 0, a, 0, 0, a, a, 0, 0, 0, a, 0, a, b, 0, a, 0, a, 0, 0, b, a, a, 0, b, a, b, b)	
t₇	(b, b, b, 0, b, a, 0, 0, b, a, a, 0, 0, 0, a, b, 0, a, 0, a, 0, 0, a, 0, 0, a, 0, a, a)	
t₈	(b, 0, 0, 0, a, 0, b, 0, a, a, a, 0, a, b, 0, 0, 0, a, b, a, a, a, 0, 0, b, a, 0, b, 0)	
t₉	(b, a, a, 0, a, b, 0, a, b, b, 0, 0, 0, a, a, 0, b, 0, b, 0, 0, a, 0, 0, a, 0, a, a)	
t₁₀	(b, 0, 0, b, 0, 0, b, a, 0, 0, 0, b, 0, a, a, 0, b, 0, a, 0, 0, a, b, a, 0, a, a, a)	
t₁₁	(b, a, a, a, a, 0, a, b, a, 0, 0, a, 0, b, 0, a, a, 0, b, 0, 0, 0, a, b, 0, 0, b, 0, 0)	
t₁₂	(b, a, a, 0, a, 0, 0, a, 0, 0, b, 0, b, 0, a, a, 0, 0, 0, b, b, a, 0, 0, b, a, 0, a, a)	

s₁₀, s₈ and s₉ are constructed using cyclotomic class of order 1,2,2, respectively, and **s₇** is from (12)

Table 2. 14 patterns of degree-3 PGISs of period 31

PGIS	sequence pattern	coefficients
s₁ \otimes s₃	(a, b, b, c, b, c, b, b, c, c, a, c, a, b, b, b, c, c, b, c, a, a, b, c, b, a, b, b, b, b)	$a = 112 - 44j, b = 16 - 16j,$
s₁ \otimes s₄	(a, a, a, c, a, b, c, c, a, b, b, b, c, b, c, b, a, c, b, c, b, b, b, c, b, c, b, b, b)	$c = -80 + 12j$
s₁ \otimes s₅	(a, c, c, b, c, b, b, c, b, c, b, a, c, b, b, b, b, c, c, a, b, c, a, b, a, a)	(all s_i are from Table 1)
s₁ \otimes s₆	(a, b, b, a, c, b, a, b, b, c, c, a, c, b, b, b, a, c, b, c, c, b, a, b, c, b, b, b)	
s₂ \otimes s₃	(a, b, b, c, b, c, c, b, b, b, c, b, c, a, b, c, b, b, b, a, c, c, b, a, c, a, c, a, a)	
s₂ \otimes s₄	(a, b, b, b, a, b, c, b, a, a, c, b, c, b, b, a, c, a, c, c, b, b, c, c, b, c, b, b)	
s₂ \otimes s₅	(a, b, b, b, c, b, a, b, c, c, c, b, c, a, b, c, b, c, b, a, c, b, a, b, a, b, b)	
s₂ \otimes s₆	(a, a, a, b, a, c, b, b, a, c, c, b, b, b, a, c, b, c, b, c, b, b, b, c, b, c, c)	
s₃ \otimes s₅	(a, b, b, a, b, b, a, c, b, b, b, a, b, c, b, a, b, c, b, b, c, a, c, b, c, c, c)	
s₃ \otimes s₆	(a, c, c, b, c, a, b, b, c, a, a, b, b, b, c, c, b, a, b, a, b, c, b, b, c, b, c, c)	
s₄ \otimes s₅	(a, c, c, b, c, b, b, c, b, a, b, a, b, c, c, b, b, b, a, a, c, b, b, a, c, b, c, c)	
s₄ \otimes s₆	(a, c, c, c, b, c, a, c, b, b, b, c, b, a, b, c, c, b, a, b, b, b, c, a, b, b, a, b, b)	
s₁₀ \otimes s₁₁	(a, a, b, a, c, b, b, b, c, c, a, b, c, c, b, b, b, b, c, b, a, b, b, c, b)	$a = -25 - 5j, b = 68 - 67j,$ $c = -118 - 57j$
s_{cy}	(a, b, b, c, b, b, c, b, b, c, c, b, c, b, c, b, b, c, c, b, c, c, b, c, c)	$a = -5 - 5j, b = 3 + 3j,$ $c = -4 - 4j$
	(construction using cyclotomic class of order 2)	

6. Degree-5 PGISs Construction

6.1. PGISs construction using GLS

Though the authors in [2] did not mention the *degree* concept of a sequence, they did make efforts on construction the degree-5 PGIS of prime period $N = 4f + 1$, which by using the cyclotomic class of order 4 and depending on either odd or even f , two systems of four equations were derived, respectively. However, it is still in pending situation to solve these two constraint equations from which

to show the existence of prime period degree-5 PGIS. Peiet *et al.* made a breakthrough of constructing successfully the prime period degree-5 PGIS from adopting the GLS in stead of using cyclomatic class of order 4, though they did not mention the degree-5 concept either [7]. The more detailed study of constructing degree-5 PGIS by adopting GLS is addressed in this subsection.

At first, the GLS, denoted by $\mathbf{g} = \{g[n]\}_{n=0}^{N-1}$, is defined [20] as follows:

$$g[n] = \begin{cases} 0, & n = 0, \\ \exp\left[\frac{j2\pi(\text{ind}_h n)}{N-1}\right], & n \neq 0 \pmod{N}. \end{cases} \quad (17)$$

In (17), $\text{ind}_h n$ is the index function defined by

$$h^{\text{ind}_h n} \equiv n \pmod{N}.$$

In a further generalization, a scaling factor, $r = 1, 2, \dots, N-2$, can be introduced in the definition (17), yielding

$$g[n] = \begin{cases} 0, & n = 0, \\ \exp\left[\frac{j2\pi r(\text{ind}_h n)}{N-1}\right], & n \neq 0 \pmod{N}. \end{cases} \quad (18)$$

Lemma 1. Let $N = 4f + 1$ be an prime number. In (18), when the scaling factor $r=f$, $g[n] \in \{1, j, -1, -j\}$, $n \neq 0$.

Proof. Inserting $r=f$ to (18) proves the result. \square

Let $\{G[n]\}_{n=0}^{N-1}$ be the DFT of GLS \mathbf{g} .

Lemma 2. Let $N = 4f + 1$ be an prime number. In (18), when the scaling factor $r=f$, the magnitude spectrum of $\mathbf{g} = \{g[n]\}_{n=0}^{N-1}$ is as follows:

$$|G[n]| = \begin{cases} 0, & n = 0, \\ \sqrt{N}, & n \neq 0 \pmod{N}. \end{cases} \quad (19)$$

Proof. Referred to [20]. \square

We can adopt the results of *Lemmas 1* and *2* and apply base sequence \mathbf{x}_a , defined in (10), and GLS \mathbf{g} to bound the coefficients of sequences in Gaussian integers, according to *Theorem 7*.

Theorem 7. Let $N = 4f + 1$ be an prime number and a is nonzero Gaussian integer. The sequence $\mathbf{s} = a \cdot \mathbf{x}_a + N \cdot \mathbf{g}$ is a degree-5 PGIS of period N given that $|a|^2 = N$.

Proof. When $|a|^2 = N$, the magnitude spectrum of $a \cdot \mathbf{x}_a$ is $N\sqrt{N}\delta[n]$. By applying the result of *Lemmas 1* and *2*, it is straightforward that the magnitude spectrum of $\mathbf{s} = a \cdot \mathbf{x}_a + N \cdot \mathbf{g}$ is flat, as well as, $g[n] \in \{1, j, -1, -j\}$ implies that the number of different Gaussian integers appeared in sequence \mathbf{s} is five. This proves that $\mathbf{s} = a \cdot \mathbf{x}_a + N \cdot \mathbf{g}$ is a degree-5 PGIS. \square

Example 4 and *5* present odd and even f examples of degree-5 PGIS of period $N = 4f + 1$, respectively.

Example 4. When $f = 3$, $N = 4 \cdot 3 + 1 = 13$. Let $a = 2 - 3j$, where $|a|^2 = 13$. The GLS $\mathbf{g} = (0, 1, j, 1, -1, j, j, -j, 1, -1, -j, -1)$. A degree-5 PGIS $\mathbf{s} = a \cdot \mathbf{x}_a + 13 \cdot \mathbf{g}$ of period 13 is given by

$$\mathbf{s} = (a, b, c, b, d, c, c, e, e, b, d, e, d), \quad (20)$$

where $a = 2 - 3j$, $b = 15 - 3j$, $c = 2 + 10j$, $d = -11 - 3j$, and $e = 2 - 16j$.

Example 5. When $f = 4$, $N = 4 \cdot 4 + 1 = 17$. Let $a = 4 + j$, where $|a|^2 = 17$. The GLS $g = (0, 1, -1, j, 1, j, -j, -j, -1, -j, -j, j, 1, j, -1, 1)$. A degree-5 PGIS $\mathbf{s} = a \cdot \mathbf{x}_a + 17 \cdot \mathbf{g}$ of period 17 is given by

$$\mathbf{s} = (a, b, c, d, b, d, e, e, c, c, e, e, d, b, d, c, b), \quad (21)$$

where $a = 4 + j$, $b = 21 + j$, $c = -13 + j$, $d = 4 + 18j$, and $e = 4 - 16j$.

6.2. Degree-5 PGISs of prime period $2^m - 1$

Addressed in the previous subsection, degree-5 PGIS of arbitrary prime period $N = 4f + 1$ can be constructed using the GLS, where for each $N = 4f + 1$ there exist two sequence patterns associated with even and odd f , respectively. This subsection presents the creation of more sequence patterns to the degree-5 PGIS family using the CIDTS scheme [21]. However, this scheme can be applied only to particular prime period, e.g., $N = 2^m - 1$. The principles of CIDTS scheme are summarized as follows:

Let $\mathbf{s}_b = \{s_b[n]\}_{n=0}^{N-1}$ and $\mathbf{s}_c = \{s_c[n]\}_{n=0}^{N-1}$ be two sequences with two-valued autocorrelation functions (ACFs), i.e.

$$R_b[\tau] = \begin{cases} A_b, & \tau = 0, \\ B_b, & n \neq 0 \end{cases}$$

$$R_c[\tau] = \begin{cases} A_c, & \tau = 0, \\ B_c, & n \neq 0 \end{cases}$$

The CCF between \mathbf{s}_b and \mathbf{s}_c is

$$R_{b,c}[\tau] = \sum_{n=0}^{N-1} s_b[n] s_c^*[(n - \tau)_N],$$

The following identity is true for periodic correlation functions

$$\sum_{n=0}^{N-1} R_{b,c}[n] R_{b,c}^*[(n - \tau)_N] = \sum_{n=0}^{N-1} R_b[n] R_c^*[(n - \tau)_N].$$

Let $s_a[n] = R_{b,c}[n]$, then $\mathbf{s}_a = \{s_a[n]\}_{n=0}^{N-1}$ is a periodic sequence with two-valued ACF given by [21]

$$R_a[\tau] = \sum_{n=0}^{N-1} R_{b,c}[n] R_{b,c}^*[(n - \tau)_N] = \begin{cases} A_b A_c + (N - 1) B_b B_c, & \tau = 0, \\ A_b B_c + A_c B_b + (N - 2) B_b B_c, & n \neq 0. \end{cases} \quad (22)$$

From (22), when both \mathbf{s}_b and \mathbf{s}_c are PSs, then \mathbf{s}_a does too. Otherwise, one can still do necessary adjustment and make \mathbf{s}_a a PS [21]. The result of (22) can be adopted to construct a degree-5 PGIS of particular prime period, e.g., $N = 2^m - 1$. For m -sequence of period $N = 2^5 - 1 = 31$, the six distinct m -sequences are $\{\mathbf{m}_1, \dots, \mathbf{m}_6\}$, which are obtained from $\{\mathbf{s}_1, \dots, \mathbf{s}_6\}$, listed in Table 1, after substituting $a = 1$ and $b = -1$, respectively. Let's make adjustment by setting $s_a[n] = R_{b,c}[n] + 1$ to construct three different degree-5 PGISs \mathbf{s}_a , presented in Example 6.

Example 6. At first, when $s_b = \{m_1[n]\}_{n=0}^{N-1}$ and $s_c = \{m_2[n]\}_{n=0}^{N-1}$, by setting $\{t_{13}[n]\} = \{\frac{R_{b,c}[n]+1}{4}\}$, a degree-5 PGIS of period 31 is

$$\mathbf{t}_{13} = (3, 0, 0, 1, 0, -1, 1, -2, 0, -1, -1, 1, 1, 1, -2, 2, 0, 1, -1, -2, -1, 1, 1, 2, 1, -2, 1, 2, -2, 2, 2). \quad (23)$$

Secondly, when $s_b = \{m_3[n]\}_{n=0}^{N-1}$ and $s_c = \{m_4[n]\}_{n=0}^{N-1}$, $\{t_{14}[n]\} = \{\frac{R_{b,c}[n]+1}{4}\}$ obtains

$$\mathbf{t}_{14} = (3, -2, -2, 1, -2, 0, 1, -1, -2, 0, 0, 2, 1, 2, -1, 1, -2, 1, 0, -1, 0, 2, 2, 1, 1, -1, 2, 1, -1, 1, 1). \quad (24)$$

Finally, when $s_b = \{m_5[n]\}_{n=0}^{N-1}$ and $s_c = \{m_6[n]\}_{n=0}^{N-1}$ are applied, the third PGIS is

$$\mathbf{t}_{15} = (3, -1, -1, 2, -1, -2, 2, 0, -1, -2, -2, 1, 2, 1, 0, 1, -1, 2, -2, 0, -2, 1, 1, 1, 2, 0, 1, 1, 0, 1, 1). \quad (25)$$

Since $R_{c,b}[(-n)_N] = R_{b,c}[n]$, when $R_{c,b}[n] \neq R_{b,c}[n]$, setting $t_{-a}[n] = \frac{R_{c,b}[n]+1}{4}$ will generate distinct PSIS, where $\{t_{-a}[n]\} = \{t_a[(-n)_N]\}$. Consequently, there exist three other patterns associated with (23)-(25), respectively.

7. PGISs Construction from Convolution and Correlation Operations

Basically there are three parts in this section. The first part consists of subsections 7.1 and 7.2, which addresses the relationship between circulant matrix and circular convolution, and explores some properties of PGISs construction from convolution. Applying cascading convolution to construct successfully the degree-4 PGIS is discussed in subsection 7.3. The last part presents more higher degrees PGISs construction of different types, which includes subsections 7.4, 7.5 and 7.6.

7.1. Relationship between convolution and circulant matrix

Let's define a circulant matrix \mathbf{C} of size $N \times N$ based on sequence $\mathbf{c} = \{c[n]\}_{n=0}^{N-1}$, where the elements of \mathbf{c} form the first row of \mathbf{C} . With this definition, $\mathbf{C} = \{c[(k-n)_N]\}$, where the (n, k) entry of \mathbf{C} , denoted by $C_{n,k}$, is

$$C_{n,k} = c[(k-n)_N].$$

The eigenvalues of a circulant matrix comprise the DFT of the first row of the circulant matrix, and conversely first row of a circulant matrix is the inverse DFT of the eigenvalues. In particular all circulant matrices share the same eigenvectors, ([25] and p.267, [26])

$$\mathbf{y}_m = \frac{1}{\sqrt{N}} [1 \ e^{-j2\pi m/N} \ \dots \ e^{-j2\pi m(N-1)/N}]^T, \quad m = 0, 1, \dots, N-1, \quad (26)$$

where $[\cdot]^T$ denotes transpose. Let \mathbf{U} be matrix consisting of the eigenvectors \mathbf{y}_m as columns in order and $\Psi = \text{diag}(\psi_k)$ is the diagonal matrix with diagonal elements $\psi_0, \psi_1, \dots, \psi_{N-1}$. It is true that $\mathbf{U}\mathbf{U}^H = \mathbf{U}^H\mathbf{U} = \mathbf{I}_N$, where \mathbf{I}_N is an identity matrix.

Lemma 3. Let $\mathbf{C} = \{c[(k-n)_N]\}$ and $\mathbf{B} = \{b[(k-n)_N]\}$ be circulant $N \times N$ matrices with eigenvalues ψ_m and β_m , respectively, $m = 0, 1, \dots, N-1$, where

$$\psi_m = \sum_{k=0}^{N-1} c[k] e^{-j2\pi km/N},$$

$$\beta_m = \sum_{k=0}^{N-1} b[k] e^{-j2\pi km/N}.$$

Then \mathbf{C} and \mathbf{B} commute and

$$\mathbf{C}\mathbf{B} = \mathbf{B}\mathbf{C} = \mathbf{U}\Omega\mathbf{U}^H,$$

where $\Omega = \text{diag}(\psi_m \beta_m)$ is the diagonal matrix with diagonal elements $\psi_0 \beta_0, \psi_1 \beta_1, \dots, \psi_{N-1} \beta_{N-1}$, $[\cdot]^H$ denotes transpose and conjugate operation, and $\mathbf{C}\mathbf{B}$ is also a circulant matrix.

Proof. Referred to [25] and [26]. \square

Theorem 8. Let $\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_k$ be k distinct PGISs of period N . Then $\mathbf{s} = \mathbf{s}_1 \otimes \mathbf{s}_2 \otimes \dots \otimes \mathbf{s}_k$ is a PGIS of period N , where \otimes denotes circular convolution. In addition, \mathbf{s} is also a PGIS of period N , when any numbers of \mathbf{s}_i are substituted by $\mathbf{s}_{-i} = \{\mathbf{s}_i[(-n)_N]\}$ or $\mathbf{s}_{-i}^*, i = 1, \dots, k$.

Proof. At first, taking convolution upon two PGISs $\mathbf{s}_1 \otimes \mathbf{s}_2$ obtains a new PGIS, then the resultant PGIS can be convoluted with the third PGIS \mathbf{s}_3 to generate other new PGIS, etc. This leads \mathbf{s} a PGIS of period N . Next, when \mathbf{s}_i is a PGIS, both \mathbf{s}_{-i} and \mathbf{s}_{-i}^* are PGISs as well. This derives \mathbf{s} is also a PGIS of period N if \mathbf{s}_i is substituted by \mathbf{s}_{-i} or \mathbf{s}_{-i}^* . \square

With the defined circulant matrix $\mathbf{C}_{s_2} = \{s_2[(n-k)_N]\}$, which is formed based on sequence $\mathbf{s}_{-2} = \{s_2[(-n)_N]\}_{n=0}^{N-1}$, the evaluation of circular convolution between \mathbf{s}_1 and \mathbf{s}_2 , denoted by $\mathbf{s} = \mathbf{s}_1 \otimes \mathbf{s}_2$, can be obtained by taking the matrix multiplication operation $\mathbf{S} = \mathbf{C}_{s_2} \mathbf{S}_1$ instead, where $\mathbf{S}_1 = [s_1[0] \ s_1[1] \ \dots \ s_1[N-1]]^T$ is a $N \times 1$ vector consisting of N elements from $\mathbf{s}_1 = \{s_1[n]\}_{n=0}^{N-1}$. That is, the values of N components of PGIS $\mathbf{s} = \{s[n]\}_{n=0}^{N-1}$ can be derived from the N elements of a $N \times 1$ vector $\mathbf{S} = \mathbf{C}_{s_2} \mathbf{S}_1$.

When $\mathbf{s} = \mathbf{s}_1 \otimes \mathbf{s}_2 \otimes \dots \otimes \mathbf{s}_r$, \mathbf{s} can be derived from $\mathbf{S} = \mathbf{C}_a \mathbf{S}_1$. In this expression, circulant matrix $\mathbf{C}_a = \mathbf{C}_{s_2} \mathbf{C}_{s_3} \dots \mathbf{C}_{s_r} = \mathbf{U} \Omega \mathbf{U}^H$ and $\Omega = \text{diag}(\psi_m)$ is a diagonal matrix with diagonal elements $\psi_0, \psi_1, \dots, \psi_{N-1}$, which each eigenvalue $\psi_m = \psi_{m2} \psi_{m3} \dots \psi_{mr}$ is obtained from the product of eigenvalues ψ_{ml} of circulant matrices $\mathbf{C}_{s_l} = \{s_l[(n-k)_N]\}, l = 2, 3, \dots, r$, respectively. The properties of circulant matrix \mathbf{C}_a may bring insight to determine the degree and pattern of PSIS \mathbf{s} generated from convoluting many PGISs.

7.2. Effect of convolution on degree and pattern expansion

This subsection addresses the effectiveness of convolution operation upon two sequences can increase degree and create new pattern to the resultant sequence, which this property is described in **Theorem 10**. The derivation of **Theorem 10** is based on **Theorem 9** and **Lemmas 4** and **5**.

Let $\mathbf{Hb}_0 = \{\alpha^{kn}\}_{n=0}^{f-1}$ be a subgroup of cyclic group $Z_N = \{1, 2, \dots, N-1\}$ and $b_i \in Z_N$, where $N = fk + 1$. The subset $\mathbf{Hb}_i = \{ub_i | u \in \mathbf{Hb}_0\}$ is called the right coset of subgroup \mathbf{Hb}_0 generated by b_i . Let $\mathbf{Hb}_0, \mathbf{Hb}_1, \dots, \mathbf{Hb}_{k-1}$ be the distinct right cosets of \mathbf{Hb}_0 in Z_N . Then $Z_N = \mathbf{Hb}_0 \cup \mathbf{Hb}_1 \cup \dots \cup \mathbf{Hb}_{k-1}$, which is a disjoint union and $|Z_N| = |\mathbf{Hb}_0| + |\mathbf{Hb}_1| + \dots + |\mathbf{Hb}_{k-1}| = |\mathbf{Hb}_0| + |\mathbf{Hb}_0| + \dots + |\mathbf{Hb}_0| = k|\mathbf{Hb}_0| = kf$.

Lemma 4. Let $l, n \in Z_N$, which $l \neq n$. $\sum_{m \in \mathbf{Hb}_i} e^{-j2\pi mn/N} = \sum_{m \in \mathbf{Hb}_i} e^{-j2\pi ml/N} \Leftrightarrow l, n \in \mathbf{Hb}_a$, where $\mathbf{Hb}_a \subset \{\mathbf{Hb}_0, \mathbf{Hb}_1, \dots, \mathbf{Hb}_{k-1}\}$.

Proof. Let $\mathbf{Hb}_0n = \{un | u \in \mathbf{Hb}_0\}$ and $\mathbf{Hb}_0l = \{ul | u \in \mathbf{Hb}_0\}$ be two cosets of \mathbf{Hb}_0 generated by n and l , respectively. If l and n belong to the same coset, which means $\{ul | u \in \mathbf{Hb}_0\} = \{un | u \in \mathbf{Hb}_0\}$, then $ml \in \{b_i lu | u \in \mathbf{Hb}_0\}$ and $mn \in \{b_i lu | u \in \mathbf{Hb}_0\}$. This implies that ml and mn belong to the same coset of \mathbf{Hb}_0 generated by $b_i l$, denoted as $\mathbf{Hb}_i l$, where $\mathbf{Hb}_i l \subset \{\mathbf{Hb}_0, \mathbf{Hb}_1, \dots, \mathbf{Hb}_{k-1}\}$. The summation of $e^{-j2\pi mn/N}$ with respect to m , where m comes across the domain of one coset, results in

$$\sum_{m \in \mathbf{Hb}_i} e^{-j2\pi mn/N} = \sum_{m \in \mathbf{Hb}_i} e^{-j2\pi ml/N} = \sum_{m \in \mathbf{Hb}_i} e^{-j2\pi m l/N}.$$

Conversely, when $l, m, n \in Z_N$, it is obvious that $\text{gcd}(mn, N) = 1$ and $\text{gcd}(ml, N) = 1$. Since both $e^{-j2\pi ml/N}$ and $e^{-j2\pi mn/N} \in U_N$, where $U_N = \{e^{-j2\pi m/N} | m = 0, 1, \dots, N-1\}$ denotes the group of N th roots of unity, thus $l \neq n \Leftrightarrow e^{-j2\pi ml/N} \neq e^{-j2\pi mn/N}$ and $\sum_{m \in \mathbf{Hb}_i} e^{-j2\pi ml/N} = \sum_{m \in \mathbf{Hb}_i} e^{-j2\pi mn/N} \Rightarrow$

$\{ml(\text{mod } N) | m \in \text{Hb}_i\} = \{mn(\text{mod } N) | m \in \text{Hb}_i\}$. This infers that l and n belong to the same coset. \square

Let $N = kf + 1 = k'f' + 1$ be an odd prime. The cyclic group $Z_N = \{1, 2, \dots, N-1\}$ can be partitioned either into k cosets $\text{Hb}_i, i = 0, \dots, k-1$, or k' cosets $\text{Hb}'_i, i = 0, \dots, k'-1$, respectively, where both $\text{Hb}_0 = \{\alpha^{kn}\}_{n=0}^{f-1}$ and $\text{Hb}'_0 = \{\alpha^{k'n}\}_{n=0}^{f'-1}$ are subgroups of Z_N^* , $\text{Hb}_i = \alpha^i \text{Hb}_0 = \{\alpha^{kn+i}\}_{n=0}^{f-1}$, $\text{Hb}'_i = \alpha^i \text{Hb}'_0 = \{\alpha^{k'n+i}\}_{n=0}^{f'-1}$, and α is the generator of Z_N . When $k' = mk$ and $m \geq 2$ is an integer, each $\text{Hb}_i, i = 0, \dots, k-1$, can be further partitioned into m cosets, e.g., $\text{Hb}_i = \text{Hb}'_i \cup \text{Hb}'_{k+i} \cup \dots \cup \text{Hb}'_{(m-1)k+i}, i = 0, \dots, k-1$, where the cardinality of all $\text{Hb}_i, i = 0, \dots, k-1$, is f , and that of $\text{Hb}'_i, i = 0, \dots, (mk-1)$, is $f' = f/m$.

Let's define two sequence sets $\mathbf{x}_i = \{x_i[n]\}_{n=0}^{N-1}, i = 0, \dots, k-1$, and $\mathbf{x}'_i = \{x'_i[n]\}_{n=0}^{N-1}, i = 0, \dots, k'-1$, as follows:

$$x_i[n] = \begin{cases} 1, & n \in \text{Hb}_i \\ 0, & \text{otherwise.} \end{cases} \quad (27)$$

$$x'_i[n] = \begin{cases} 1, & n \in \text{Hb}'_i \\ 0, & \text{otherwise.} \end{cases} \quad (28)$$

The DFTs of \mathbf{x}_i and \mathbf{x}'_i are $\mathbf{X}_i = \{X_i[n]\}_{n=0}^{N-1}$ and $\mathbf{X}'_i = \{X'_i[n]\}_{n=0}^{N-1}$, respectively.

Theorem 9. All $\mathbf{X}_0, \mathbf{X}_1, \dots, \mathbf{X}_{k-1}$ are $(k+1)$ -valued, where the elements of these vectors belong to the following set

$$\left\{ f, \sum_{m \in \text{Hb}_0} e^{-j2\pi m/N}, \sum_{m \in \text{Hb}_1} e^{-j2\pi m/N}, \dots, \sum_{m \in \text{Hb}_{k-1}} e^{-j2\pi m/N} \right\}.$$

Proof. Since $x_i[n] = 1, n \in \text{Hb}_i$ and $x_i[n] = 0, n \notin \text{Hb}_i$, the n th element of $\mathbf{X}_i = \{X_i[n]\}_{n=0}^{N-1}$ is $X_i[n] = \sum_{m=0}^{N-1} x_i[m] e^{-j2\pi mn/N} = \sum_{m \in \text{Hb}_i} e^{-j2\pi mn/N}$. When $n = 0$,

$$X_i[0] = \sum_{m \in \text{Hb}_i} e^{-j2\pi mn/N}|_{n=0} = |\text{Hb}_i| = f.$$

Given that $m \in \text{Hb}_i$, it has $mZ_N = \{m, 2m, \dots, (N-1)m\}$ and $mZ_N \pmod{N} = Z_N$. In other words, $mZ_N = Z_N$ modulo N . Both mZ_N and Z_N have the same partition, which means $mZ_N = \{\text{Hb}_0 \cup \text{Hb}_1 \cup \dots \cup \text{Hb}_{k-1}\}$ modulo N . Based on the partition of mZ_N , the set $\{X_i[n]\}_{n=1}^{N-1}$ can be grouped into k subsets, i.e.,

$$\{X_i[n]\}_{n=1}^{N-1} = \{X_i[n]\}_{n \in \text{Hb}_0}^{N-1} \cup \{X_i[n]\}_{n \in \text{Hb}_1}^{N-1} \cup \dots \cup \{X_i[n]\}_{n \in \text{Hb}_{k-1}}^{N-1}.$$

According to Lemma 4, $\{X_i[n]\}_{n \in \text{Hb}_d}^{N-1} = \{X_i[m]\}_{m \in \text{Hb}_d}^{N-1}, d = 0, 1, \dots, k-1$. This concludes that for $i = 0, 1, \dots, k-1$, all $\mathbf{X}_i = \{X_i[n]\}_{n=0}^{N-1}$ are $(k+1)$ -valued which draw distinct $k+1$ values from the following set

$$\left\{ f, \sum_{m \in \text{Hb}_0} e^{-j2\pi m/N}, \sum_{m \in \text{Hb}_1} e^{-j2\pi m/N}, \dots, \sum_{m \in \text{Hb}_{k-1}} e^{-j2\pi m/N} \right\}.$$

\square

Let $N = kf + 1 = k'f' + 1$ be an odd prime, where $k' = mk$ and $m \geq 2$. The relationship between the DFTs of sequences defined in (27) and (28), which are $\mathbf{X}_i = \{X_i[n]\}_{n=0}^{N-1}$ and $\mathbf{X}'_i = \{X'_i[n]\}_{n=0}^{N-1}$, respectively, is governed by following lemma.

Lemma 5. $\mathbf{X}_i = \mathbf{X}'_i + \mathbf{X}'_{k+i} + \cdots + \mathbf{X}'_{(m-1)k+i}$, for all $i = 0, \dots, k-1$. In these vectors, $X_i[0] = mX'_i[0]$, and all elements in set $\{X_i[n]\}_{n \in \text{Hb}_i}$ are the same; however, the elements in set $\{X'_i[n]\}_{n \in \text{Hb}_i}$ have m different values, which $X_i[n] = X'_i[n] + X'_{k+i}[n] + \cdots + X'_{(m-1)k+i}[n]$, $n \in \text{Hb}_i$, for all $i = 0, \dots, k-1$.

Proof. Since $\text{Hb}_i = \text{Hb}'_i \cup \text{Hb}'_{k+i} \cup \cdots \cup \text{Hb}'_{(m-1)k+i}$, it results in $\mathbf{x}_i = \mathbf{x}'_i + \mathbf{x}'_{k+i} + \cdots + \mathbf{x}'_{(m-1)k+i}$ and derives that $\mathbf{X}_i = \mathbf{X}'_i + \mathbf{X}'_{k+i} + \cdots + \mathbf{X}'_{(m-1)k+i}$ is true, for $i = 0, \dots, k-1$. By Theorem 9, it is straightforward that $X_i[0] = mX'_i[0]$ and $X_i[n] = X'_i[n] + X'_{k+i}[n] + \cdots + X'_{(m-1)k+i}[n]$, $n \in \text{Hb}_i$. \square

Let $N = kf + 1 = k'f' + 1$ be an odd prime, where $k' = mk$ and $m \geq 2$. Let \mathbf{s}_k and $\mathbf{s}_{k'}$ be degree- $(k+1)$ and degree- $(k'+1)$ PGISs constructed using sequences $\{\mathbf{x}_i\}_{i=0}^k$ and $\{\mathbf{x}'_i\}_{i=0}^{k'}$, respectively. The following Theorem can be derived based on the results of Lemma 4 and Lemma 5.

Theorem 10. The degree and pattern of sequence $\mathbf{s} = \mathbf{s}_k \otimes \mathbf{s}_{k'}$ are the same as that of \mathbf{s} . However, when k' and k are relatively coprime, sequence $\mathbf{s} = \mathbf{s}_k \otimes \mathbf{s}_{k'}$ has new pattern and the degree of PGIS \mathbf{s} is larger than that of \mathbf{s}_k and $\mathbf{s}_{k'}$.

Proof. Let the DFTs of \mathbf{s}_k and $\mathbf{s}_{k'}$ be $\{X[n]\}$ and $\{X'[n]\}$, respectively. The DFT of $\mathbf{s}_k \otimes \mathbf{s}_{k'}$ is the component-wise product between $\{X[n]\}$ and $\{X'[n]\}$. Based on Lemma 4 and Lemma 5, when $k' = mk$, $\text{Hb}'_i \subset \text{Hb}_i$, the sequence pattern of $\mathbf{s}_k \otimes \mathbf{s}_{k'}$ is governed by $\mathbf{s}_{k'}$, because all elements in set $\{X_i[n]\}_{n \in \text{Hb}_i}$ is the same, but the elements in set $\{X'_i[n]\}_{n \in \text{Hb}_i}$ have m different values. When sequences are constructed using base sequences $\{\mathbf{x}_i\}_{i=0}^k$ and $\{\mathbf{x}'_i\}_{i=0}^{k'}$, the number of distinct elements of their DFTs determines the degree of the associated sequences according to Theorem 9. This is the reason the degree of $\mathbf{s} = \mathbf{s}_k \otimes \mathbf{s}_{k'}$ is determined also by $\mathbf{s}_{k'}$.

When k' and k are relatively coprime, $\text{Hb}'_i \not\subset \text{Hb}_i$, there exist different non-overlap components between $\{X[n]\}$ and $\{X'[n]\}$. In case of existing distinct non-overlap components between $\{X[n]\}$ and $\{X'[n]\}$, $\mathbf{s}_k \otimes \mathbf{s}_{k'}$ constructs new sequence pattern. Moreover, since both elements of $\{X[n]\}$ and $\{X'[n]\}$ are not zeros, the component-wise product between $\{X[n]\}$ and $\{X'[n]\}$ creates only nonzero elements as well, and the number of distinct elements from component-wise product between $\{X[n]\}$ and $\{X'[n]\}$ is larger than that of both $\{X[n]\}$ and $\{X'[n]\}$. This derives that the degree of $\mathbf{s}_k \otimes \mathbf{s}_{k'}$ is larger than both \mathbf{s}_k and $\mathbf{s}_{k'}$ two sequences. \square

7.3. Degree-4 PGISs construction from convolution

This subsection presents the construction of degree-4 PGIS of particular prime period $N = \frac{3^3-1}{3-1} = 13$ and $N = 2^5 - 1 = 31$ from convolution operation. At first, let's define three PGISs of period $N = 13$ as follows:

$$\mathbf{s}_t = (0, 0, 1, 0, 1, 1, 1, -1, -1, 0, 1, -1, 1),$$

$$\mathbf{s}_b = (a, \underbrace{b, \dots, b}_{12}),$$

$$\mathbf{s}_s = (c, d, e, d, d, e, e, e, d, d, e, d),$$

where $a = 1 + 2j$, $b = -2 + j$, $c = 5 + 5j$, $d = 10 - 6j$ and $e = -6 + 10j$.

Example 7. Sequence $\mathbf{s} = \mathbf{s}_t \otimes \mathbf{s}_b \otimes \mathbf{s}_s$ is a degree-4 PGIS of period $N = 13$, which is given by

$$\mathbf{s} = (a, a, b, a, c, b, b, d, d, a, c, d, c), \quad (29)$$

where $a = 684 + 198j$, $b = 333 + 211j$, $c = -1539 + 413j$ and $d = -837 + 439j$.

Let $\mathbf{s}_{-t} = \{s_t[(-n)_N]\}$. In (29), when \mathbf{s}_t is replaced by \mathbf{s}_{-t} , it constructs a new sequence $\mathbf{s}_{-} = \mathbf{s}_{-t} \otimes \mathbf{s}_b \otimes \mathbf{s}_s$ given by

$$\mathbf{s}_{-} = (a, c, d, c, a, d, d, b, b, c, a, b, a).$$

Example 8. Two construction examples of prime period $N = 2^5 - 1 = 31$ are $\mathbf{t}_1 \otimes \mathbf{t}_3$ and $\mathbf{t}_5 \otimes \mathbf{t}_{15}$, which are

$$\mathbf{t}_1 \otimes \mathbf{t}_3 = (a, b, b, 0, b, c, 0, d, b, c, c, 0, c, d, 0, b, 0, c, d, c, c, c, 0, 0, d, c, 0, d, 0, 0), \quad (30)$$

$$\mathbf{t}_5 \otimes \mathbf{t}_{15} = (e, f, f, 0, f, g, 0, h, f, g, g, 0, 0, 0, h, f, f, 0, g, h, g, 0, 0, f, 0, h, 0, f, h, f, f), \quad (31)$$

where $a = -2$, $b = 3$, $c = -1$, $d = 1$, $e = 2$, $f = -1$, $g = 1$ and $h = 3$.

7.4. Convolution derived PGISs based on m -sequences

There exists one-to-one mapping between distinct m -sequences and the pattern of degree-2 PGISs. Let's present PGISs of period $N = 2^5 - 1$ as the examples for demonstration, which the six degree-2 PGISs of period $N = 2^5 - 1$ derived from m -sequences are $\{\mathbf{s}_1, \dots, \mathbf{s}_6\}$, listed in Table 1. Note that the number of different combination of $\mathbf{s}_l, \mathbf{s}_k \in \{\mathbf{s}_1, \dots, \mathbf{s}_6\}$, $l \neq k$, is 15. We summarize the results of convolution upon two PGISs draw from the set $\{\mathbf{s}_1, \dots, \mathbf{s}_6\}$ as follows:

1). Sequences $\mathbf{s}_1 \otimes \mathbf{s}_2$, $\mathbf{s}_3 \otimes \mathbf{s}_4$ and $\mathbf{s}_5 \otimes \mathbf{s}_6$ are degree-2 PGISs, which the pattern of these three PGISs is the same as that of \mathbf{s}_{10} which is listed in Table 1.

2). The other 12 kinds of $\mathbf{s}_l \otimes \mathbf{s}_k$ PGISs are degree-3 PGISs, listed in Table 2.

3). The six sequences, $\mathbf{s}_m \otimes \mathbf{s}_m$, $m = 1, \dots, 6$, are degree-6 PGISs, which are listed in Table 3.

In Section 6.2, the CIDTS-based PGIS construction applies m -sequences, $\{\mathbf{m}_1, \dots, \mathbf{m}_6\}$, directly, which CCF $R_{b,c}[n]$ is created and then made adjustment by setting $\{\frac{R_{b,c}[n]+1}{4}\}$ to construct PGIS, where $1 \leq b, c \leq 6$. The results are summarized as follows:

1). Three CCFs, $\{m_1[n]\} \otimes \{m_2^*[(-n)_N]\}$, $\{m_3[n]\} \otimes \{m_4^*[(-n)_N]\}$ and $\{m_5[n]\} \otimes \{m_6^*[(-n)_N]\}$, can be adjusted to construct three degree-5 PGISs, which are $\{\mathbf{t}_{13}, \mathbf{t}_{14}, \mathbf{t}_{15}\}$, presented in (23)-(25). Similarly, the three sequences constructed from $\{m_2[n]\} \otimes \{m_1^*[(-n)_N]\}$, $\{m_4[n]\} \otimes \{m_3^*[(-n)_N]\}$ and $\{m_6[n]\} \otimes \{m_5^*[(-n)_N]\}$ are also degree-5 PGISs, denoted by $\{\mathbf{t}_{-13}, \mathbf{t}_{-14}, \mathbf{t}_{-15}\}$.

2). The 12 distinct CIDTS-based sequences constructed by other 12 kinds of CCFs $\{m_l[n]\} \otimes \{m_k^*[(-n)_N]\}$, $l \neq k$, are all with degree-2, which are denoted by $\{\mathbf{t}_1, \dots, \mathbf{t}_{12}\}$, listed in Table 1. In addition, 12 kinds of CCFs $\{m_k[n]\} \otimes \{s_l^*[(-n)_N]\}$ will construct other 12 different degree-2 PGISs, which are $\{\mathbf{t}_{-1}, \dots, \mathbf{t}_{-12}\}$.

7.5. Convolution derived PGISs based on CIDTS

In the previous subsection, the number of CIDTS-based PGISs of period $N = 2^5 - 1$ is 30, which are $\{\mathbf{t}_{13}, \mathbf{t}_{14}, \mathbf{t}_{15}\} \cup \{\mathbf{t}_{-13}, \mathbf{t}_{-14}, \mathbf{t}_{-15}\} \cup \{\mathbf{t}_1, \dots, \mathbf{t}_{12}\} \cup \{\mathbf{t}_{-1}, \dots, \mathbf{t}_{-12}\}$. By taking convolution operation $\mathbf{t}_m \otimes \mathbf{t}_k$ upon any two sequences over these 30 PGISs, where the number of different convolution combination of \mathbf{t}_m and \mathbf{t}_k is $\frac{30!}{28! \cdot 2!} = 435$, for $m \neq k$, the number of different degrees and patterns of new generated PGISs can be abundant. The detailed analysis and categorization of these PGISs are not the purpose of this study. For brevity reason, we present only two results.

1). The 12 different sequences built from $\mathbf{t}_m \otimes \mathbf{t}_m$, $m = 1, \dots, 12$, are PGISs of degree-6, listed in Table 3; while three $\mathbf{t}_k \otimes \mathbf{t}_k$, $k = 13, 14, 15$ construct three different PGISs of degree-7, but belong to the

same pattern, which the pattern of $\mathbf{t}_{13} \otimes \mathbf{t}_{13}$ is listed in Table 4.

2). When $m \neq k$, some PGISs generated by $\mathbf{t}_m \otimes \mathbf{t}_k$ are provided for comparison, where the degrees of these examples belong to the set $\{1, 2, 4, 5, 6\}$. The degree of PGISs $\mathbf{t}_{13} \otimes \mathbf{t}_{14}$, $\mathbf{t}_{13} \otimes \mathbf{t}_{15}$ and $\mathbf{t}_{15} \otimes \mathbf{t}_{14}$ is 6. The degree of $\mathbf{t}_1 \otimes \mathbf{t}_2$, $\mathbf{t}_1 \otimes \mathbf{t}_4$, $\mathbf{t}_1 \otimes \mathbf{t}_5$, $\mathbf{t}_2 \otimes \mathbf{t}_3$, $\mathbf{t}_2 \otimes \mathbf{t}_4$, $\mathbf{t}_2 \otimes \mathbf{t}_6$, $\mathbf{t}_3 \otimes \mathbf{t}_4$ and $\mathbf{t}_5 \otimes \mathbf{t}_6$ is 5. The degree of $\mathbf{t}_3 \otimes \mathbf{t}_5$, $\mathbf{t}_3 \otimes \mathbf{t}_6$, $\mathbf{t}_4 \otimes \mathbf{t}_5$ and $\mathbf{t}_4 \otimes \mathbf{t}_6$ is 2. The two PGISs of degree-1 are $\mathbf{t}_1 \otimes \mathbf{t}_6$ and $\mathbf{t}_2 \otimes \mathbf{t}_5$. We do not make a pattern list of these PGISs for brevity. Finally, two degree-4 examples are $\mathbf{t}_1 \otimes \mathbf{t}_3$ and $\mathbf{t}_5 \otimes \mathbf{t}_{15}$, which are (30) and (31), respectively.

7.6. Convolution between different types of PGISs

This study addresses different construction of PGISs. Therefore, there exist various many different convolution operation applied across different type PGISs. This subsection presents only some examples for the purpose of demonstration the versatile of convolution-derived PGISs.

7.6.1. Convolution between ternary sequence and CIDTS derived PGISs

Table 5 presents 7 kinds of PGISs obtained from convolution between perfect ternary sequence and CIDTS derived PGISs, which are $\mathbf{s}_{11} \otimes \mathbf{t}_{15}$, $\mathbf{s}_{11} \otimes \mathbf{t}_{14}$, $\mathbf{s}_{-11} \otimes \mathbf{t}_{14}$, $\mathbf{s}_{11} \otimes \mathbf{t}_1$, $\mathbf{s}_{-11} \otimes \mathbf{t}_1$, $\mathbf{s}_{11} \otimes \mathbf{t}_5$ and $\mathbf{s}_{-11} \otimes \mathbf{t}_5$ for comparison. The patterns are all different and the degrees of these PGISs are 20, 20, 20, 14, 12, 12 and 12, respectively.

7.6.2. Convolution between ternary sequence and m -sequences derived PGISs

Table 5 presents 2 kinds of PGISs obtained from convolution between perfect ternary sequence and m -sequences derived PGISs, which are $\mathbf{s}_1 \otimes \mathbf{s}_1 \otimes \mathbf{s}_{11}$ and $\mathbf{s}_2 \otimes \mathbf{s}_2 \otimes \mathbf{s}_{11}$. The degrees are 21 and 20 respectively.

7.6.3. Convolution between ternary sequence and cyclotomic class PGIS

Table 5 presents also one PGIS obtained from convolution between perfect ternary sequence and degree-3 PGIS using cyclotomic class of order2, which is $\mathbf{s}_{cy} \otimes \mathbf{s}_{11}$ and the degree is 11.

7.6.4. Convolution between CIDTS derived and cyclotomic class PGIS

The 15 different PGISs obtained from convolution between CIDTS derived PGISs, which are $\{\mathbf{t}_1, \dots, \mathbf{t}_{15}\}$, and degree-3 PGIS using cyclotomic class of order2 \mathbf{s}_{cy} can be distributed into degree-7 and degree-6 two groups, which 6 PGISs belong to set $\{\mathbf{s}_{cy} \otimes \mathbf{t}_m, m = 2, 4, 5, 7, 10, 11\}$ are degree-6 and the rest of other 9 PGISs are degree-7. The patterns of these PGISs belong to those patterns listed in Table 3.

Table 3. 14 patterns of degree-6 and -7 PGISs of period 31

PGIS	sequence pattern	coefficients
$s_1 \otimes s_1$	(a, b, b, c, b, d, c, e, b, d, d, c, c, e, f, b, c, d, e, d, c, c, f, c, e, c, f, e, f, f)	$a = -128 - 26j, b = 16 + 16j,$ $c = -32 + 2j, d = 64 + 30j,$ $e = 112 + 44j, f = -80 - 12j$
$s_2 \otimes s_2$	(a, f, f, e, f, c, e, c, f, c, c, d, e, d, c, b, f, e, c, c, c, d, d, b, e, c, d, b, c, b, b)	
$s_3 \otimes s_3$	(a, e, e, c, e, b, c, d, e, b, b, f, c, f, d, c, e, c, b, d, b, f, f, c, c, d, f, c, d, c, c)	
$s_4 \otimes s_4$	(a, c, c, d, c, f, d, c, c, f, f, b, d, b, c, e, c, d, f, c, f, b, b, e, d, c, b, e, c, e, e)	
$s_5 \otimes s_5$	(a, d, d, f, d, e, f, b, d, e, e, c, f, c, b, c, d, f, e, b, e, c, c, c, f, b, c, c, b, c, c)	
$s_6 \otimes s_6$	(a, c, c, b, c, c, b, f, c, c, c, e, b, e, f, d, c, b, c, f, c, e, e, d, b, f, e, d, f, d, d)	
$t_4 \otimes t_{15}$	(a, b, b, c, b, d, c, e, b, d, d, f, c, f, e, f, b, c, d, e, d, f, f, f, c, e, f, f, e, f, f)	$a = -3, b = 9, c = 2,$ $d = -2, e = 8, f = -5$
$t_1 \otimes t_1$	(a, b, b, c, b, d, c, e, b, d, d, 0, c, 0, e, f, b, c, d, e, d, 0, 0, f, c, e, 0, f, e, f, f)	$a = 11, b = 1, c = 3,$ $d = 2, e = -3, f = -2$
$t_2 \otimes t_2$	(a, 0, 0, b, 0, c, b, d, 0, c, c, e, b, e, d, f, 0, b, c, d, c, e, e, f, b, d, e, f, d, f, f)	$a = -9, b = 1, c = -1,$ $d = -2, e = 5, f = 2$
$t_3 \otimes t_3$	(a, 0, 0, b, 0, c, b, d, 0, c, c, e, b, e, d, f, 0, b, c, d, c, e, e, f, b, d, e, f, d, f, f)	$a = 11, b = 1, c = 3,$ $d = -2, e = 3, f = 2$
$t_4 \otimes t_4$	(a, b, b, c, b, d, c, 0, b, d, d, e, c, e, 0, f, b, c, d, 0, d, e, e, f, c, 0, e, f, 0, f, f)	$a = -9, b = -1, c = 2,$ $d = -2, e = 1, f = 5$
$t_5 \otimes t_5$	(a, b, b, c, b, d, c, e, b, d, d, f, c, f, e, 0, b, c, d, e, d, f, f, 0, c, e, f, 0, e, 0, 0)	$a = -9, b = 2, c = -2,$ $d = 5, e = 1, f = -1$
$t_6 \otimes t_6$	(a, b, b, c, b, 0, c, d, b, 0, 0, e, c, e, d, f, b, c, 0, d, 0, e, e, f, c, d, e, f, d, f, f)	$a = 11, b = -2, c = -3,$ $d = 3, e = 2, f = 1$
$t_7 \otimes t_7$	(a, b, b, 0, b, c, 0, d, b, c, c, e, 0, e, d, f, b, 0, c, d, c, e, e, f, 0, d, e, f, d, f, f)	$a = -9, b = 5, c = 1,$ $d = 2, e = -2, f = -1$
$t_8 \otimes t_8$	(a, b, b, c, b, d, c, e, b, d, d, f, c, f, e, 0, b, c, d, e, d, f, f, 0, c, e, f, 0, e, 0, 0)	$a = 11, b = 2, c = -2,$ $d = -3, e = 1, f = 3$
$t_9 \otimes t_9$	(a, b, b, 0, b, c, 0, d, b, c, c, e, 0, e, d, f, b, 0, c, d, c, e, e, f, 0, d, e, f, d, f, f)	$a = 11, b = -3, c = 1,$ $d = 2, e = -2, f = 3$
$t_{10} \otimes t_{10}$	(a, b, b, c, b, 0, c, d, b, 0, 0, e, c, e, d, f, b, c, 0, d, 0, e, e, f, c, d, e, f, d, f, f)	$a = -9, b = -2, c = 5,$ $d = -1, e = 2, f = 1$
$t_{11} \otimes t_{11}$	(a, b, b, c, b, d, c, e, b, d, d, 0, c, 0, e, f, b, c, d, e, d, 0, 0, f, c, e, 0, f, e, f, f)	$a = -9, b = 1, c = -1,$ $d = 2, e = 5, f = -2$
$t_{12} \otimes t_{12}$	(a, b, b, c, b, d, c, 0, b, d, d, e, c, e, 0, f, b, c, d, 0, d, e, e, f, c, 0, e, f, 0, f, f)	$a = 11, b = 3, c = 2,$ $d = -2, e = 1, f = -3$
$t_{13} \otimes t_{13}$	(a, b, b, c, b, d, c, e, b, d, d, f, c, f, e, g, b, c, d, e, d, f, f, g, c, e, f, g, e, g, g) (degree-7)	$a = -21, b = 8, c = -3, d = -17$ $e = 2, f = 13, g = 14$
$s_{11} \otimes t_{13}$	(a, b, b, c, b, d, e, f, b, d, d, g, e, g, f, g, b, e, d, f, d, g, g, g, e, f, g, g, f, g, g) (degree-7)	$a = -11, b = 4, c = -2, d = -9$ $e = -1, f = 1, g = 7$

Note that the following pairs have the same sequence pattern:

$(s_5 \otimes s_5, t_4 \otimes t_{15}), (t_1 \otimes t_1, t_{11} \otimes t_{11}), (t_2 \otimes t_2, t_3 \otimes t_3), (t_4 \otimes t_4, t_{12} \otimes t_{12}), (t_5 \otimes t_5, t_8 \otimes t_8), (t_6 \otimes t_6, t_{10} \otimes t_{10}), (t_7 \otimes t_7, t_9 \otimes t_9)$

Table 4. 6 patterns of degree-10 PGISs of period 31

PGIS	sequence pattern	coefficients
$s_1 \otimes s_{11}$	(a, b, b, c, d, e, e, f, e, g, f, e, a, h, f, d, f, g, b, i, e, d, d, k, h, d, h, b, f, b, g)	$a = -6 + 22j, b = -2 - 6j,$ $c = 2 - 34j, d = 1 - 27j,$ $e = -4 + 8j, f = -5 + 15j,$ $g = -3 + j, h = -1 - 13j,$ $i = -20j, k = -8 + 36j,$ $l = 3 - 41j$
$s_2 \otimes s_{11}$	(b, f, b, c, d, b, e, e, a, h, e, g, e, h, f, f, a, g, g, i, e, b, d, d, g, f, d, e, a, l, f)	
$s_3 \otimes s_{11}$	(b, b, e, f, e, b, b, d, d, g, c, f, d, f, f, d, b, k, g, e, e, g, h, b, a, e, a, d, i, h, f)	
$s_4 \otimes s_{11}$	(f, d, e, f, a, b, e, b, f, h, c, a, d, a, e, d, l, d, g, g, b, f, g, g, e, e, b, f, i, h, e)	
$s_5 \otimes s_{11}$	(h, a, e, f, d, e, d, g, d, g, f, i, h, b, c, e, h, b, k, f, b, f, a, g, d, b, b, e, e, f, d)	
$s_6 \otimes s_{11}$	(d, b, b, e, f, e, f, f, d, h, f, i, g, l, c, a, h, g, d, a, b, e, e, g, d, e, f, e, g, a, b)	

Table 5. Period 31 PGISs of various degrees

PGIS	sequence pattern	coefficients
$\mathbf{s}_1 \otimes \mathbf{s}_1 \otimes \mathbf{s}_{11}$	$(a, b, c, c, d, e, f, g, h, i, i, k, l, m, n, d, m, p, q, e, b, g, r, s, t, t, u, v, r, w, n)$ (degree-21)	$a = -8 + 26j, b = -56 + 12j,$ $c = -104 - 2j, d = 256 + 103j,$ $e = -152 - 16j, f = 184 + 82j,$ $g = 16 + 33j, h = 424 + 152j,$ $i = -80 + 5j, k = 40 + 40j,$ $l = 88 + 54j, m = 64 + 47j,$ $n = 160 + 75j, p = -224 - 37j,$ $q = -248 - 44j, r = -32 + 19j,$ $s = -344 - 72j, t = 208 + 89j,$ $u = -128 - 9j, v = 136 + 68j,$ $w = -200 - 30j$
$\mathbf{s}_2 \otimes \mathbf{s}_2 \otimes \mathbf{s}_{11}$	$(c, g, a, b, u, a, w, e, a, d, a, m, v, d, t, f, c, n, h, e, k, q, r, d, n, l, m, p, b, h, i)$ (degree-20)	$a = -8 + 26j, b = -56 + 12j,$ $c = 232 + 96j, d = 256 + 103j,$ $e = -152 - 16j, f = -272 - 51j,$ $g = 16 + 33j, h = 112 + 61j,$ $i = -80 + 5j, k = 40 + 40j,$ $l = -320 - 65j, m = 64 + 47j,$ $n = 160 + 75j, p = -296 - 58j,$ $q = -248 - 44j, r = -32 + 19j,$ $w = -200 - 30j, t = 208 + 89j,$ $u = -128 - 9j, v = 136 + 68j$
$\mathbf{s}_{11} \otimes \mathbf{t}_{15}$	$(a, b, c, d, e, f, g, h, e, d, h, c, g, i, j, k, l, m, n, p, j, q, r, s, p, t, f, u, 0, l, q)$ (degree-20)	$a = 7, b = 2, c = 8, d = 5,$ $e = -9, f = 4, g = -7, h = -5,$ $i = 10, j = 6, k = -16, l = -1,$ $m = 12, n = 16, p = 3, q = 1,$ $r = -2, s = 11, t = -4, u = -6$
$\mathbf{s}_{11} \otimes \mathbf{t}_{14}$	$(a, b, a, c, d, e, f, g, h, i, e, j, j, k, i, h, l, m, n, 0, p, c, q, r, s, t, u, q, p, k, g)$ (degree-20)	$a = 4, b = 7, c = -5, d = -16,$ $e = 6, f = -4, g = 1, h = -9,$ $i = 5, j = 3, k = -1, l = 10,$ $m = 16, n = 11, p = 8, q = -7,$ $r = 12, s = -2, t = -6, u = 2$
$\mathbf{s}_{-11} \otimes \mathbf{t}_{14}$	$(a, b, c, b, d, e, f, g, h, i, j, k, l, i, c, h, m, k, e, n, p, p, c, q, r, s, t, t, u, 0, l)$ (degree-20)	$a = 1, b = 8, c = -9, d = 15,$ $e = -8, f = 10, g = -4, h = -3,$ $i = -5, j = 5, k = 2, l = -1,$ $m = 7, n = 3, p = 4, q = 13,$ $r = 12, s = 14, t = 2, u = -7$
$\mathbf{s}_{11} \otimes \mathbf{t}_1$	$(a, b, 0, b, c, d, 0, e, f, f, e, g, h, i, j, k, l, l, b, m, c, m, m, b, j, 0, c, n, d, m, g)$ (degree-14)	$a = 3, b = -1, c = 2, d = -2,$ $e = -4, f = 3, g = 4, h = 1,$ $i = 6, j = 8, k = -3, l = 5,$ $m = -3, n = -5$
$\mathbf{s}_{-11} \otimes \mathbf{t}_1$	$(a, b, c, d, e, d, 0, a, 0, f, f, 0, g, f, g, 0, c, h, h, e, i, g, e, j, f, k, d, l, f, 0, c)$ (degree-12)	$a = 6, b = 3, c = -3, d = -2,$ $e = 1, f = -1, g = -4, h = 7,$ $i = 5, j = 9, k = 2, l = 4$
$\mathbf{s}_{11} \otimes \mathbf{t}_5$	$(a, b, a, a, c, d, e, f, g, h, d, i, d, j, h, i, a, k, j, d, 0, a, h, l, b, i, c, 0, 0, c, k)$ (degree-12)	$a = 2, b = 5, c = -3, d = -2,$ $e = -6, f = -4, g = 4, h = 3,$ $i = 1, j = 9, k = -1, l = -5$
$\mathbf{s}_{-11} \otimes \mathbf{t}_5$	$(a, b, c, d, e, f, g, b, c, g, d, 0, 0, h, i, i, g, b, g, c, a, g, i, a, i, j, 0, k, 0, e, l)$ (degree-12)	$a = 2, b = 3, c = 4, d = -3,$ $e = -2, f = 5, g = -1, h = -10,$ $i = 1, j = 6, k = 9, l = -6$
$\mathbf{s}_{cy} \otimes \mathbf{s}_{11}$	$(a, a, b, c, d, b, e, f, d, g, c, h, i, k, c, d, k, m, m, h, b, f, i, m, i, e, a, e, h, k, f)$ (degree-11)	$a = -13 - 13j, b = -14 - 14j,$ $c = -6 - 6j, d = 30 + 30j,$ $e = 21 + 21j, f = 7 + 7j,$ $g = -19 - 19j, h = -7 - 7j,$ $i = 2 + 2j, k = -12 - 12j,$ $m = -35 - 35j$

8. Conclusions

Prime period sequences can serve as the fundamental tool to construct arbitrary composite period sequences. The construction of prime period PGISs becomes an important research topic. This paper provides systematic and nonsystematic two different approaches for construction prime period PGISs. Systematic approach encounters difficulty to solve constraint equations when the degree of sequence is larger than 3, however the merit of this approach is that both degree and pattern of a sequence are known, and PGISs of degrees 1, 2, 3 and 5 examples are presented for demonstration. The nonsystematic approach can contribute abundant numbers of degrees and patterns to the constructed PGISs, but both degree and pattern might vary. We provide PGISs of different patterns and degree-4 and other higher degrees of 6, 7, 10, 11, 12, 14, 20 and 21 examples to show the results of nonsystematic approach. The proposed systematic and nonsystematic schemes can be combined to construct efficiently abundant PGISs with various degrees and patterns for the associated different applications.

References

1. W.-W. Hu, S.-H. Wang, and C.-P. Li, "Gaussian integer sequences with ideal periodic autocorrelation functions," *IEEE Trans. Signal Process.*, vol. 60, no. 11, pp. 6074–6079, Nov. 2012.
2. Y. Yang, X. Tang, and Z. Zhou, "Perfect Gaussian integer sequences of odd prime length," *IEEE Signal Process. Letters.*, vol. 19, no. 10, pp. 615–618, Oct. 2012.
3. X. Ma, Q. Wen, J. Zhang, and H. Zuo, "New perfect Gaussian integer sequences of period pq ," *IEICE Trans. Fundam.*, vol. E96-A, no. 11, pp. 2290–2293, Nov. 2013.
4. H.-H. Chang, C.-P. Li, C.-D. Lee, S.-H. Wang, and T.-C. Wu, "Perfect Gaussian integer sequences of arbitrary composite length," *IEEE Trans. Inf. Theory*, vol. 61, no. 7, pp. 4107–4115, Jul. 2015.
5. Chong-Dao Lee, Yu-Pei Huang, Yaotsu Chang, and Ho-Hsuan Chang, "Perfect Gaussian integer sequences of odd period $2^m - 1$," *IEEE Signal Process. Letters*, vol. 12, no. 7, pp. 881–885, July, 2015.
6. C.-D. Lee, C.-P. Li, H.-H. Chang, and S.-H. Wang, "Further results on degree-2 Perfect Gaussian integer sequences," *IET Commun.*, Vol. 10, no. 12, pp. 1542–1552, 2016.
7. Soo-Chang Pei and Kuo-Wei Chang, "Perfect Gaussian Integer Sequences of Arbitrary Length," *IEEE Signal Process. Letters*, vol. 22, no. 8, pp. 1040–1044, July, 2015.
8. S.-H. Wang, C.-P. Li, H.-H. Chang, and C.-D. Lee, "A systematic method for constructing sparse Gaussian integer sequences with ideal periodic autocorrelation functions," *IEEE Trans. Communications*, vol. 64, no. 1, pp. 365–376, Jan. 2016.
9. K.-J. Chang and H.-H. Chang, "Perfect Gaussian integer sequences of period p^k with degrees equal to or less than $k + 1$," *IEEE Trans. Communications*, vol. 65, no. 9, pp. 3723–3733, Sep. 2017.
10. H.-H. Chang, K.-J. Chang and C.-P. Li, "Construction of Period qp PGISs With Degrees Equal To or Larger Than Four," *IEEE Access*, vol. 65, no. 9, pp. 3723–3733, Sep. 2018.
11. C.-P. Li, S.-H. Wang, and C.-L. Wang, "Novel low-complexity SLM schemes for PAPR reduction in OFDM systems," *IEEE Trans. Signal Process.*, vol. 58, no. 5, pp. 2916–2921, May 2010.
12. S.-H. Wang, C.-P. Li, K.-C. Lee and H.-J. Su, "A novel low-complexity precoded OFDM system with reduced PAPR," *IEEE Trans. Signal Process.*, vol. 63, no. 6, pp. 1368–1376, Mar., 2015.
13. H.-H. Chang, S.-C. Lin, and C.-D. Lee, "A CDMA scheme based on perfect Gaussian integer sequences," *AEÜ International Journal of Electronics and Communications*, vol. 75, pp. 70–81, May 2017.
14. H.-H. Chang, C. Li, D. Xuan, and H. Liang, "Construction of Circular Convolution Group for Block Data Transmission with High Diversity Order," *Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)*, 7–8 October 2021, Mauritius.
15. C.-H. Hsia, S.-J. Lou, H.-H. Chang, and D. Xuan, "Novel Hybrid Public/Private Key Cryptography Based on Perfect Gaussian Integer Sequences," *IEEE Access*, vol. 9, pp. 145045–145059, Oct. 2021.
16. D. Xuan, H.-H. Chang, C. Li, and W. Xie, "Construction of Zero Circular Convolution Sequences," *Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)*, 16–18 November, 2022, Maldives.

17. D. Xuan, H.-H. Chang, and G. Huang, "Novel Zero Circular Convolution Sequences for Detection and Channel Estimations," *IEEE Access*, vol. 11, pp. 48276–48291, May. 2023.
18. C.-P. Li, K.-J. Chang, H.-H. Chang, and Y.-M. Chen, "Perfect Sequences of Odd Prime Length," *IEEE Signal Processing Letters*, vol. 25, no.7, pp 966–969, July 2018.
19. W. K. Nicholson, *Introduction to Abstract Algebra*. 2nd Edition, John Wiley & Sons, Inc. 1999.
20. M. R. Schroeder, *Number Theory in Science and Communications*. Berlin, Germany: Springer-Verlag, 1997.
21. P. Z. Fan and M. Darnell, *Sequences Design for Communications Applications*. New York: Wiley, 1996.
22. J. M. Howie, *Fields and Galois Theory*. London: Springer, 2006.
23. V.P. Ipatov, "Ternary sequences with ideal autocorrelation properties," *radio Eng. Electron. Phys.*, vol 24, pp. 75–79, Oct. 1979.
24. V.P. Ipatov, "Contribution to the theory of sequences with perfect period autocorrelation properties," *radio Eng. Electron. Phys.*, vol 24, pp. 31–34, Apr. 1980.
25. P. Lancaster, *Theory of Matrices*. NY: Academic Press, 1969.
26. P. J. Davis, *Circulant Matrices*. NY: Wiley-Interscience, 1979.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.