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Abstract: Language bias stands as a noteworthy concern in Visual Question Answering (VQA),

wherein models tend to rely on spurious correlations between questions and answers for prediction.

This prevents the models from effectively generalizing, leading to a decrease in performance. To

address this bias, we propose a novel modality fusion collaborative de-biasing algorithm (CoD). In our

approach, bias is considered as the model’s neglect of information from a particular modality during

prediction. We employ a collaborative training approach to facilitate mutual modeling between

different modalities, achieving efficient feature fusion and enabling the model to fully leverage

multi-modal knowledge for prediction. Our experiments on various datasets, including VQA-CP

v2, VQA v2, and VQA-VS, using different validation strategies, demonstrate the effectiveness of

our approach. Notably, employing a basic baseline model resulted in an accuracy of 60.14% on

VQA-CP v2.

Keywords: visual question answering; collaborative learning; language bias

1. Introduction

Visual-language tasks typically necessitate models to comprehend features from different

modalities for knowledge reasoning. In practical applications such as intelligent service robotics,

visual-language tasks play a crucial role [14,21]. Visual Question Answering (VQA), as one of the tasks

within visual-language understanding, aims to answer textual questions based on provided images.

An ideal VQA model should possess the ability to comprehend and reason with image-textual data.

However, recent research [10] indicates that many VQA methods tend to rely on superficial

correlations between questions and answers, neglecting to extract accurate visual information from

images to answer questions. Furthermore, as highlighted in [22], similar bias issues are influenced

by visual modalities. These biases prevalent in the current VQA domain mainly involve inherent

language distribution biases in training and test sets, as well as incorrect visual grounding shortcuts

due to significant visual regions [13].

Currently, prominent techniques to address biases involve integration-based [10],

counterfactual-based [5], and contrast learning-based [24] methodologies. Notably, the

integration-based approach lessens bias effects by training two models comprehensively, where one of

them captures shallow or spurious associations, allowing the main model to concentrate on more

complex instances. Counterfactual-based techniques support training by producing counterfactual

samples and supplementary visual annotations. Contrastive learning-based techniques amplify

problem contribution by generating negative sample image-problem pairs with irrelevant images from

the training data.

However, certain studies [19] have observed that the effectiveness improvement of some methods

isn’t due to a reasonable visual basis but rather an undisclosed regularization effect. Current methods

focus on modeling dataset biases to mitigate their influence during de-biasing but overlook the model’s

ability for modal understanding and inference. Therefore, our approach aims to enhance the model’s

ability to comprehend multimodal information. We incorporate collaborative learning into multimodal

training [3] to address bias issues in VQA and reduce their impact.
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We classify VQA’s bias problem as a scenario where two parallel modalities are involved

in training, but one modality is absent or fails to fulfill its intended function. For instance, the

question-answer shortcut bias refers to the model relying solely on the shortcut between the question

and the answer for answering, disregarding the relevant visual region (visual bias refers to the same

phenomenon). We contend that this approach completely excludes the visual modality information

during the inference process. Despite modal feature fusion, the model still disregards the image

content for the final prediction and instead relies on the bias to answer the question.

Inspired by the concept of collaborative learning, we present an intuitive multimodal training

approach to enhance the model’s comprehension of visual text characteristics. Our approach entails

leveraging various modalities to reinforce one another during training, thereby mutually aiding the

training process. As illustrated in Figure 1, conventional VQA methods are susceptible to verbal and

visual biases during training. When confronted with biased questions, these methods usually answer

the questions directly based on the influence of bias. In the "CoD-VQA" approach, the model initially

identifies possible bias in the present example and its type. A cooperative learning methodology

integrates both modalities equally to support each other’s training. This implementation enables the

model to use multimodal knowledge thoroughly to make predictions and reduce bias.

Conventional VQA

Language Bias Training 

What color is the dog?

Vision Bias Training 

What color is the dog?

What color is the dog? Familiar question?

A : Gray A : Gray A : Gray A : Gray A : Gray

Must be gray

A dog?

Must about color

Coordinate VQA

What color is the dog?

I need pitcure

I need question

Figure 1. Existing VQA models are impacted by biases originating from both linguistic and visual

domains. Our model forcibly discerns information from diverse modalities during training, maximizing

data utilization for predictions.

In our experiments, we categorize single visual and verbal modal information to enable the model

to make predictions. We then compare the unimodal prediction results with real results to identify

missing modalities in cooperative learning. Finally, we re-represent and integrate these missing

modalities to alleviate bias and enhance participation in prediction.

Overall, we propose a co-training debiasing method. In our approach, the issue of bias resulting

from visual and textual modalities is viewed as a common underlying problem, leading us to suggest a

new fusion technique that tackles this problem by focusing on the modal characteristics and adopting

the principle of collaborative learning. During the training phase, we assess the parallel visual textual
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modal data, identifying the "impoverished" and "enriched" modalities. We augment the role of the

"deprived" modality artificially to increase the model’s awareness of its presence and reduce bias.

2. Related Work

2.1. Language Bias

The bias problem in VQA has received a great deal of attention, and a lot of excellent work has

emerged from ongoing research. Firstly, the most straightforward way to mitigate the bias problem is to

construct balanced datasets, e.g., [1] adds complementary scenarios with opposing answers for binary

questions in the VQA v2 dataset. Second, the ensemble model-based regularization [4,7,9,11,12,15]

approach relies on two integrated learning models to deal with linguistic biases to improve the

robustness of the main model. Third, adversarial methods [17] such as using adversarial losses, use

to reduce known sources of bias by inducing errors in the model when it is presented with only

the question. Fourth, contrast learning-based methods [6,16,22] use to enhance the utilization of

information between the visual context and the question by constructing negative image-question

pairs. Fifth, an additional annotation-based approach, [18] aids training in mitigating linguistic bias

through pre-trained human attention maps or additional counterfactual samples. In this paper, we

approach multimodal reasoning from the perspective of feature fusion, which makes the model treat

the two modalities as equal "status" and strengthens the role of the deprived modality in training to

mitigate the bias problem.

2.2. Multimodal Fusion

In multimodal tasks, in addition to dealing with the relationship between data to alleviate the

bias problem, improving the model’s ability to understand the data is also one of the ways to deal

with the bias problem. Multimodal fusion methods are one of the very important topics in multimodal

deep learning, and the existing mainstream fusion methods can be categorized into early fusion, late

fusion and hybrid fusion. The proposed multimodal fusion [23] can provide more stable prediction for

multimodal prediction, and at the same time, it can supplement the information between multiple

modalities in case of missing modalities. In VQA, multimodal fusion methods can be classified

into simple fusion, attention-based fusion, and tensor-based fusion methods, the most important of

which is the fusion method based on bilinear pooling in attention and tensor. The multimodal fusion

methods are currently used for better feature representation in VQA and have not been applied to VQA

debiasing. The core idea of multimodal fusion is to obtain more significant feature representations

so that the model receives information from different modalities. Therefore, in our approach, we

reconsider how multimodal fusion methods can be useful in the VQA debiasing problem by playing

the role of each modality when the modalities are inferencing.

2.3. Collaborative Learning

Collaborative learning refers to helping model resource-poor modalities by leveraging knowledge

from a resource-rich modality. The classification of modal data defined in collaborative learning can

be categorized into parallel, non-parallel and hybrid data. In parallel data, [2] uses CAA to construct

acoustic features on acoustic and articulatory data, and constructs an unimodal representation of

the generated acoustic by using articulatory data. With non-parallel data dominated by transfer

learning, [8] uses text to improve image classification by combining CNN visual features with word2vec

textual features trained on large-scale datasets. With mixed data, [20] uses a large corpus of text to

guide image segmentation.

In this paper, we consider visual textual modalities in VQA as parallel data, in determining rich

and scarce modalities, using the idea of collaborative learning to help link between modalities as well

as to help the model to understand the modalities, thus alleviating the bias problem.
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3. Methods

Figure 2 depicts an overview of our CoD-VQA, where we consider the relationship between

visual modality, textual modality, language bias, and visual bias to obtain more accurate modal

representations and model comprehension.

We specifically examine the impacts of visual bias and language bias separately within the model.

During training, we dynamically analyze sample pairs to identify the ’missing’ modality, aiding the

model in acknowledging and understanding the modality better, and increase the participation of that

modality in the model to remove the bias. The approach incorporates a ’bias detector’ to identify the

present bias. Upon determining the bias type, we identify the ’missing’ modality and incorporate it as

a ’third’ modality in the overall modal fusion. During actual training, the fusion process depicted on

the right side of Figure 2 will occur only on one side.

Vision modalLanguage modal

VQA Model

Current Model

Language Bias Vision Bias

Our Model

Language modal Vision modal

VQA ModelVision modal' Language modal'

Bias Detector Bias Detector

Figure 2. In the comparison between our method and previous VQA models, the Bias Detector signifies

a bias detector used to identify the type of bias present in the current sample. In our model, the modality

fusion process on the left and right sides only occurs unilaterally during a single training iteration.

3.1. Definition of Bias

For the VQA task, conventional methods typically approach it as a multi-class classification

problem. The model is focused on a provided triplets D = {vi, qi, ai}
N
i=1, in which the i-th image

vi ∈ V , the question qi ∈ Q, the answer ai ∈ A, primarily aiming to train a mapping that accurately

allocates responses across the answer set A. When a categorization layer with fixed parameters and

only one modality (either visual or textual) is given as input, the model predicts the answer distribution.

In our testing, we found that the model maintains a certain level of accuracy when solely provided

with either visual or question features, particularly when using UpDn as the baseline model. Alongside

insights from [22], we integrated the concept of visual bias into our approach. We defined this concept

in Equation (1):

Bv = cv(σ(vi)), (1)

where Bv denotes the distribution of answers with visual bias, vi denotes image vi ∈ V , and cv denotes

the only-visual classification network. We consider Bv as the bias on the image side of the model.

In summary, we consider visual bias in our approach as a complementary aspect to solve the bias

problem in VQA and treat it, together with linguistic bias, as a multimodal collaborative debiasing

problem to be solved.

3.2. Multimodal Collaborative Learning in VQA

In this section, we focus on the concepts related to collaborative learning.

In multimodal scenarios, especially when modal resources are limited, it becomes crucial to

accurately represent modal information as well as the multimodal knowledge required in the model

inference process. Collaborative learning aims to utilize the knowledge of a relatively resource-rich

modality to assist in modeling a resource-poor modality. Methods based on the concept of collaborative

learning can improve the representation performance of not only multimodal but also unimodal data.
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According to the difference of training resource categories in collaborative learning, collaborative

learning methods can be categorized into three types:

• Parallel data methods: in parallel data, the observation data of one modality in the dataset is

required to be directly associated with the observation data of another modality. For example,

in a video-audio dataset, it is required that the video and voice samples come from the same

speaker.
• Non-parallel data methods: in non-parallel data, methods do not require a direct correlation

between different modalities, and usually methods in this data context achieve co-learning

through overlap at the category level. For example, in OK-VQA, multimodal datasets are

combined with out-of-domain knowledge from Wikipedia to improve the generalization of

quizzes.
• Hybrid data approach: in hybrid data, different modalities are connected to each other through

shared modalities. For example, in the case of multilingual image captioning, the image modality

always matches the caption in any of the languages, and the role of intermediate modalities is to

establish correspondences between the different languages so that the images can be associated

to different languages.

Overall, collaborative learning aims to utilize complementary information across modalities so that

one modality can influence the other, thus creating better multimodal fusion models. In the next

section, we will further describe how collaborative learning can be combined with VQA.

3.3. CoD-VQA

In VQA, the question-image pairs in the dataset used for training tend to be strongly correlated,

i.e., the entity words in the questions tend to have corresponding detection regions in the images,

which suggests that there is the same semantics between the images and the questions, and that the

model can only make correct predictions when the semantics contained in the two are unified. In our

approach, we view the bias problem as both visual and linguistic modalities, which are independent

of each other, and all existing bias problems can be viewed as caused by the model ignoring the role of

a particular modality in the prediction.

In this context, when the semantics in the data is relatively simple, the semantics between multiple

modalities can be represented by a single modality, and the model can make a correct answer simply

based on the semantics of the single modality. And when the semantics in the data need to be combined

with both image and text, if the semantics of one modality is lost, even if the model makes a correct

answer, it can still be considered that the model does not have the ability to understand the multimodal

knowledge. Therefore, we regard image and text as parallel data under collaborative learning, and

they are directly related in training, unified through semantics, and assist each other to supplement

information for each other.

For example, under the condition of linguistic bias, we can assume that the model gets the answer

directly through the question, ignoring the language of visual modality. In collaborative learning, the

textual modality is used as the "rich" modality and the visual modality as the "scarce" modality in

this training. Similarly, in the visual shortcut condition, the textual modality can be regarded as the

"scarce" modality and the visual modality as the "rich" modality. The CoD-VQA algorithm consists of

three steps:

1. Bias prediction: single branch prediction of instances Q and V in the training dataset to obtain

unimodal predictions Bq and Bv.
2. Modality selection: based on the Bq and Bv obtained in the previous step, binary cross-entropy

calculation is performed with labels to obtain the corresponding bias loss in different modalities.

Then according to the size of the loss and the result of the bias detector, we determine which

modality in the image and text is the "deprived" modality.
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3. Modal Fusion: After determining which modality is "deprived", we fix the "enriched" modality

and use modal fusion to get a new modal representation, which enhances the "deprived" modality

in the joint representation. We use modal fusion to obtain a new modal representation, which

enhances the participation of the "scarcity" modality in the joint representation.

3.4. Reducing Bias

In this section, we describe how we apply collaborative learning to the VQA debiasing problem

in the context of the Algorithm 1.

Algorithm 1: CoD-VQA

Input : Image coded representation:V ; Text coded representation:Q.

Output : Fusion Modal:Joint_modal.

Initialize:Coorv ← 0, Coorq ← 0.

Function CoD(V , Q):
Bv, Bq ← Cls(V ,Q)

Lv ← L(Bv, labels)

Lq ← L(Bq, labels)

ifM(Bq) ∗ Lq ≤M(Bv) ∗ Lv then

Coorv ← 1;

else

Coorq ← 1;

Joint_modal = [Coorv ∗ Z(V) + Coorq ∗ Z(Q)] ∗ (V ∗ Q)

return Joint_modal

3.4.1. Bias Prediction

Similar to previous research, the most straightforward way to capture VQA bias is to train a

model that accepts only one modal input and use it as a bias-capturing branch in the overall model.

Specifically, the unimodal bias branch can be represented as Equation (2):

{

Bv = cv(σ(vi))

Bq = cq(σ(qi)),
(2)

where B∗ (∗ ∈ {v, q}) denotes the bias under unimodal branching. c∗ (∗ ∈ {v, q}) denotes the

classification prediction layer, which is used to obtain the prediction results. vi denotes image vi ∈ V

and qi denotes question qi ∈ Q.

3.4.2. Selecting the “Scarce” Modality

The key step in our approach is to determine which modality is missing in the bias condition,

and we define the missing modality as the "scarce" modality. To be clear, we believe that the cause of

the bias problem can be explained in terms of missing modalities, which are generated by the model

when processing the biased samples, and that it is not reasonable to identify "scarce" modalities in

training by artificial definitions. Therefore, in our approach, we utilize the bias prediction defined in

the previous subsection to assist in the judgment. Specifically, after obtaining the biases, we calculate

the cross-entropy loss between them and the correct answers, and determine which modality should

be used as the "scarce" modality based on the size of the resulting loss. The specific process is defined

in Algorithm 1 as Equations (3) and (4):

{

Lv = L(Bv, labels)

Lq = L(Bq, labels),
(3)
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{

Coorv = 1 ifM(Bq) ∗ Lq ≤M(Bv) ∗ Lv

Coorq = 1 ifM(Bq) ∗ Lq >M(Bv) ∗ Lv,
(4)

where L∗ (∗ ∈ {v, q}) denotes the loss of the corresponding single-branch bias after cross-entropy

computation with the true prediction, respectively, and Coor∗ (∗ ∈ {v, q}) denotes the "scarce" modality

identified in the methodology, which has an initial value of 0. mathcalM represents the bias detection

classifier, which is used to detect whether the prediction corresponding to the current unimodal

mode can be considered as biased. In our approach, we intuitively determine the "rich" modality

by comparing the loss corresponding to the bias: a biased pair of samples usually corresponds to a

prediction that is initially closer to the true result, which corresponds to a lower loss, whereas the

other modality can be considered as a "scarce" modality. " modality. However, this approach is based

on the assumption that all samples of the training data are biased, whereas in reality, not all samples

are biased or the presence of bias in the samples does not always have a negative impact on training.

Therefore, we introduce theM classifier as a bias detector for determining the degree of bias in the

current sample.

3.4.3. Modality Fusion

After identifying the "scarce" modality, we perform a re-mapping and fusion of the modalities.

Inspired by the work of CF-VQA [15], we consider the bias induced by each single modality and the

direct impact on the model as mutually independent. Consequently, we re-map the features of the

"scarce" modality and fuse them with the original modality, represented as Equation (5):

Joint_modal = [Coorv ∗ Z(V) + Coorq ∗ Z(Q)] ∗ (V ∗ Q), (5)

where Joint_modal denotes the newly fused mixed modality, and Z represents the mapping layer used

for feature handling.

During the training process, we adopt a two-stage training approach to update the different

phases of the algorithm, as illustrated in Figure 3. In the first training phase, we determine the

"scarce" and "rich" modalities during training based on modeled biases and the bias detector, updating

the relevant parameters of the bias detector. In the second training phase, based on the identified

modalities, we proceed with a new round of modality fusion to ensure the model can recognize and

predict from different modality sources, updating the classification layers used for prediction.

Fisrt Phase Second Phase

Question

Image

Bias
Detector

Deficient 
Modal

Deficient 
Modal

Question

Image

VQA 
 

Model

GT

Loss

Figure 3. Two-stage training process in our approach: the first stage focuses on bias identification and

modality determination, while the second stage re-fuses the "scarce" modality and predicts answers.

4. Experiments

In this section, we present the experimental results of our method on different datasets to validate

its effectiveness.
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4.1. Datasets and Evaluation

Our experiments are mainly tested on the VQA v2 and VQA-CP v2 datasets, where the VQA-CP

v2 dataset is composed by reorganizing the VQA v2 dataset with the aim of making the answers under

the same question word exactly opposite in the training and test sets. In addition, the VQA-VS dataset,

which is a new benchmark proposed in a recent study for the bias assessment benchmark problem,

is similarly constituted by re-slicing the VQA v2 dataset and by setting a shortcut based on different

elements as a bias selection. For the evaluation of the results, we use the standard VQA evaluation

metrics: answer prediction accuracy, and the CGD criterion, which is used to assess whether visual

information is employed in answer decision making.

4.2. Results on the VQA-CP v2 and VQA v2 Datasets

4.2.1. Quantitative Results

We compare our CoD-VQA method with state-of-the-art methods on VQA-CP v2 and VQA

v2 using the evaluation metric of answer prediction accuracy, as shown in Table 1. From the table,

we observe:

1. Comparing to the backbone models used, our method demonstrates a significant improvement

over the UpDn baseline model, achieving an approximate 20% performance boost, showcasing

the effectiveness of our approach in reducing language bias.
2. Our method also exhibits considerable performance gains compared to other debiasing methods.

CoD-VQA achieves state-of-the-art performance without using additional annotations, obtaining

the best overall accuracy in the "All" category. In specific question types, the CF-VQA variant

performs best in "Y/N" questions, while CoD shows better performance in question types

requiring more visual content, labeled as "Other."
3. Comparing with methods employing data augmentation and additional annotations, our

approach similarly demonstrates competitive performance. When using the same UpDn

baseline model, our method exhibits approximately 1.8% improvement over the latest

feature-enhancement method, D-VQA. Additionally, CoD outperforms in the "Other" question

category, strongly validating the efficacy of our debiasing approach.
4. On the VQA v2 dataset, our method displays robust generalization capabilities, overcoming the

constraints of unknown regularization effects present in the v2 dataset.
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Table 1. The results of VQA-CP v2 test set and VQA v2 validation set are presented in the following

table. Each column illustrates the Best performances of each method, excluding data augmentation

techniques. Our CoD method has been compared with state-of-the-art methods on both datasets.

Data Set VQA-CP v2 Test VQA v2 val

Method Base All Y/N Num. Other All Y/N Num. Other

GVQA - 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65
SAN - 24.96 38.35 11.14 21.74 52.41 70.06 39.28 47.84
UpDn - 39.96 43.01 12.07 45.82 63.48 81.18 42.14 55.66
S-MRL - 38.46 42.85 12.81 43.20 63.10 - - -

HINT UpDn 46.73 67.27 10.61 45.88 63.38 81.18 42.99 55.56
SCR UpDn 49.45 72.36 10.93 48.02 62.2 78.8 41.6 54.5
AdvReg UpDn 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16
RUBi UpDn 44.23 67.05 17.48 39.61 - - - -
RUBi S-MRL 47.11 68.65 20.28 43.18 61.16 - - -
LM UpDn 48.78 72.78 14.61 45.58 63.26 81.16 42.22 55.22
LMH UpDn 52.01 72.58 31.12 46.97 56.35 65.06 37.63 54.69
DLP UpDn 48.87 70.99 18.72 45.57 57.96 76.82 39.33 48.54
DLR UpDn 48.87 70.99 18.72 45.57 57.96 76.82 39.33 48.54
AttAlign UpDn 39.37 43.02 11.89 45.00 63.24 80.99 42.55 55.22
CF-VQA(SUM) UpDn 53.55 91.15 13.03 44.97 63.54 82.51 43.96 54.30
Removing Bias LMH 54.55 74.03 49.16 45.82 - - - -
CF-VQA(SUM) S-MRL 55.05 90.61 21.50 45.61 60.94 81.13 43.86 50.11
GGE-DQ-iter UpDn 57.12 87.35 26.16 49.77 59.30 73.63 40.30 54.29
GGE-DQ-tog UpDn 57.32 87.04 27.75 49.59 59.11 73.27 39.99 54.39
AdaVQA UpDn 54.67 72.47 53.81 45.58 - - - -
CoD(Ours) UpDn 60.14 85.66 39.08 52.54 62.86 78.65 45.01 54.13

Methods of data augmentation and additional annotation:

AttReg LMH 59.92 87.28 52.39 47.65 62.74 79.71 41.68 55.42
CSS UpDn 58.95 84.37 49.42 48.24 59.91 7.25 39.77 55.11
CSS+CL UpDn 59.18 86.99 49.89 47.16 57.29 67.27 38.40 54.71
Mutant UpDn 61.72 88.90 49.68 50.78 62.56 82.07 42.52 53.28
D-VQA UpDn 61.91 88.93 52.32 50.39 64.96 82.18 44.05 57.54
KDDAug UpDn 60.24 86.13 55.08 48.08 62.86 80.55 41.05 55.18
OLP UpDn 57.59 86.53 29.87 50.03 - - - -

4.2.2. Qualitative Results

To further demonstrate the effectiveness of our method on the dataset, we present visual cases in

Figure 4. The first row illustrates examples of visual shortcut biases. Under the prediction of the UpDn

model, it misidentifies the correct region, despite covering a part related to the question, resulting in

an incorrect answer. Our model accurately localizes the image region and provides the correct answer.

The second row showcases instances of language bias. Both UpDn and our model correctly identify

relevant image regions. However, UpDn tends to utilize distribution bias to answer questions, whereas

our model leverages visual information to provide the correct answer.
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Our : gray UpDn : tanWhat color is the rug on the floor?

Our : 1 UpDn : 2What color is the rug on the floor?

Figure 4. Qualitative comparison of our CoD-VQA with UpDn on the VQA-CP v2 test set, focusing on

language and visual biases.

4.3. Ablation Studies

4.3.1. Modality Selection Evaluation

Within the initial phase of our method’s training process, we establish a modality selection module

to identify the "scanty modality." To assess the efficacy of this modality, we conduct experiments on

the VQA-CP v2 dataset by excluding the modality selection module and employing a fixed "scanty"

modality instead. The experimental results are shown in Table 2:

Table 2. Effect of different "scanty" modalities on model accuracy.

Language Vision Both VQA-CP Test

1 ✓ 54.72
2 ✓ 56.36
3 ✓ 60.14

From Table 2, the following conclusions can be drawn:

1. Distinguishing different scanty modalities within samples has a beneficial impact on model

performance.
2. Language modality biases are more challenging in the overall bias problem in VQA compared

to visual modality biases. When we default the "scanty" modality to the visual modality, the

model’s performance improves slightly compared to when fixed as the language modality.

These results indicate that determining the "scanty" modality contributes to enhancing model

performance.

4.3.2. Comparison of Other Baseline Models

In this subsection, we examine the effectiveness of our method by utilizing pre-trained models

and other baseline models. We test our approach on the VQA-CP v2 dataset, and the results are shown

in Table 3.
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Table 3. CoD-VQA experimental results on pre-trained models and performance on different

baseline models.

Model Yes/No Num. Other Overall

SAN 39.44 12.91 46.65 39.11
+CoD 81.81 47.46 38.20 52.56
UpDn 43.01 12.07 45.82 39.96
+CoD 85.66 39.08 52.54 60.14
RuBi 67.05 17.48 39.61 44.23
+CoD 79.93 45.78 46.04 55.87

LXMERT 42.84 18.91 55.51 46.23
+CoD 82.51 57.84 58.64 65.47

+D-VQA 80.43 58.57 67.23 69.75

Table 3 presents our CoD method’s results on the LXMERT pre-trained model. It’s evident

that our method exhibits more significant performance improvements when using LXMERT as the

baseline model. Our primary objective is to facilitate modalities "aiding" each other in information

acquisition, leading to better fusion between different modalities. The modality encoders obtained by

large-scale pre-trained models are more effective in representing features for the same samples. Hence,

we employ the feature extractor from the LXMERT encoder layer in our method for efficient feature

representation. Results indicate some performance gains on top of LXMERT. Additionally, compared

to other LXMERT-based D-VQA versions, CoD demonstrates competitive performance. Meanwhile,

our approach exhibited a certain degree of performance enhancement when combined with other

baseline models.

4.3.3. VQA-VS

Recent studies highlight that the composition of the VQA-CP v2 dataset considers only one type

of shortcut, i.e., shortcut between question types and answers, while VQA-VS reconstructs the VQA v2

dataset, considering three different shortcut categories to include various false associations. Therefore,

we conducted experiments of CoD on the VQA-VS benchmark, and the experimental results are shown

in Table 4.

Table 4. Experimental Results of CoD-VQA on the VQA-VS dataset, showcasing relevant experimental

report findings from this dataset. Each column displays the corresponding Best and second

performance results.

VQA-VS OOD Test Sets

Model Base
Language-Based Visual-Based Multi-Modality

Mean
QT KW KWP QT+KW KO KOP QT+KO KW+KO QT+KW+KO

S-MRL - 27.33 39.80 53.03 51.96 27.74 35.55 42.17 50.79 55.47 42.65
UpDn 32.43 45.10 56.06 55.29 33.39 41.31 46.45 54.29 56.92 46.80
+LMH UpDn 33.36 43.97 54.76 53.23 33.72 41.39 46.15 51.14 54.97 45.85
+SSL UpDn 31.41 43.97 54.74 53.81 32.45 40.41 45.53 52.89 55.42 45.62
BAN - 33.75 46.64 58.36 57.11 34.56 42.45 47.92 56.26 59.77 48.53

LXMERT - 36.46 51.95 64.17 64.22 37.69 46.40 53.54 62.46 67.44 53.70

CoD-VQA(Ours) UpDn 32.91 49.65 62.65 61.51 34.46 43.58 51.47 60.84 66.35 51.49

In Table 4, we report the performance of CoD-VQA under various shortcuts in the

VQA-VS benchmark. In Table 4, various evaluation metrics can be categorized into language

modality-based shortcuts: QT (Question Type), KW (Keyword), KWP (Keyword Pair), QTKW

(Question Type+Keyword); visual modality-based shortcuts: KO (Key Object), KOP (Key Object

Pair); and cross-modal shortcuts: QTKO (Question Type+Key Object), KWKO (Keyword and Key

Object), QTKWKO (Question Type, Keyword, and Key Object).
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Our method exhibits competitive performance when addressing specific shortcut issues in the

VQA-VS dataset using the same baseline model. In cases of language modality shortcuts, our method

notably improves performance regarding biases induced by Keywords. Similarly, our approach shows

some enhancement in the visual modality aspect. This demonstrates the effectiveness of our method

in mitigating biases from a modality perspective.

4.4. Analysis of Other Metrics

In our approach, we enable collaborative training among different modalities by identifying the

"scarce" modality. To validate whether this "scarce" modality is involved in the model’s final reasoning

process, we used additional evaluation standards on the VQA-CP v2 dataset to assess the involvement

of the "visual modality" in our method.

For a detailed understanding of CGD, please refer to the papers [11,19]. Here, we provide a

brief overview. The core idea behind CGD is that during inference, the model’s utilization of visual

information should not only contribute to correct predictions based on appropriate visual evidence

but also highlight incorrect answers resulting from inappropriate visual cues.

In Table 5, we present a comparison between our method and others in terms of CGD. Compared

to GGE [11], our approach reduces the rate of the model using incorrect visual regions to answer

questions, thereby achieving a certain level of accuracy in the overall CGD standard, akin to the GGE

method. The enhancement in CGD performance indicates an improvement in our method’s ability to

leverage visual information for answer prediction.

Table 5. Experiment on the evaluation metric CGD using the CoD-VQA method on the VQA-CP v2

dataset. Best results are displayed in each column.

Method CGR CGW CGD

UpDn 44.27 40.63 3.91
HINT 45.21 34.87 10.34
RUBi 39.60 33.33 6.27
LMH 46.44 35.84 10.60
CSS 46.70 37.89 8.87

GGE-DQ-iter 44.35 27.91 16.44
GGE-DQ-tog 42.74 27.47 15.27
CoD (Ours) 37.50 21.46 16.04

5. Conclusions

In this paper, we have introduced a de-biasing model for Visual Question Answering (VQA) based

on multimodal collaborative training. Our approach considers image and text features in VQA as

equally important modalities and employs the concept of collaborative learning to assist each other in

training, mitigating bias issues from a modality feature perspective. Specifically, within the de-biasing

process, we defined symmetrical language and visual biases, categorizing the reasons behind biases

as attentional deficits of modality information during model predictions. Subsequently, we further

utilized the concept of collaborative learning to define the missing "scarce" modality during training.

Leveraging mutual assistance among modalities in training, we aimed to achieve better modal fusion

and feature representation, thereby addressing bias issues. Our extensive experiments conducted on

benchmark datasets, VQA-CP v2, VQA v2, and the novel de-biased dataset VQA-VS, demonstrate the

effectiveness of our CoD-VQA method in tackling bias-related problems.
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