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Abstract: Rapidly and accurately extracting tobacco plant information can facilitate tobacco planting man-
agement, precise fertilization and yield prediction. In karst plateau of southern China, tobacco plant
identification is affected by large ground undulations, fragmented planting areas, complex and diverse habitats
and uneven plant growth. This study took a tobacco planting area in Gui-zhou Province as the research object
and used DJI UAVs to collect UAV visible light images. Considering plot fragmentation, plant size, presence
of weeds and shadow masking, this area was classified into eight habitats. The datasets of different habitats
were constructed to train the U-Net model. The results show that (1) the overall precision, recall, F1-score and
IOU of tobacco plant information extraction were 0.68, 0.85, 0.75 and 0.60, respectively. (2) The precision was
the highest for the subsurface-fragmented and weed-free habitat and the lowest for the smooth-tectonics and
weed-infested habitat. (3) The weed-infested habitat with smaller tobacco plants can cause blurred images,
reducing the plant identification accuracy. This study verified the feasibility of the U-Net model for tobacco
single-plant identification in complex habitats. Decomposing complex habitats to establish the sample set
method is a new attempt to improve crop identification in complex habitats in karst mountainous areas.

Keywords: U-Net model; complex habitat; plant identification; UAV remote sensing; Karst
Mountainous

1. Introduction

Tobacco is one of the most important economic crops worldwide, mainly pro-duced in China,
the United States, India and Brazil [1,2]. Tobacco is important in China's national economy, with more
planting areas. Particularly, Guizhou is an important province for tobacco planting. Tobacco has a
long production cycle, high planting labor intensity and high technical requirements. Tobacco yield
is closely associated with the survival rate of tobacco seedlings after transplanting. Obtaining
accurate tobacco planting information is significant for the growth of tobacco seedlings after trans-
planting, tobacco fertilization and field management [3]. Currently, tobacco seedling counting mainly
relies on manual labor, which is time-consuming and labor-intensive. With the rapid development of
unmanned aerial vehicles (UAVs) in terms of light-weight and stability, UAV remote sensing
technology has been widely used in crop plant protection, fertilization and growth monitoring [4-6].
Using UAV remote sensing data to identify tobacco plants and monitor plant growth information
based on deep learning can save manpower and material resources and provide accurate information
for large-scale growth monitoring, fertilization and transplanting.This is applicable to the
management of high-value-added economic crop cultivation[7,8].Guizhou is located in the central
hinterland of one of the three major global karst regions, the Southwest China Karst Region. This
region also has the most typical karst landscapes in the world, accounting for 62% of the total national
land area.92.5% of Guizhou Province is moun-tainous and hilly[9]. Guizhou, as the only province in
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China without the support of plains, belongs to one of the regions with the most significant karst
landscape devel-opment in Southwest China. This province has high mountains, deep valleys and
fragmented surface due to topography and tectonics and is affected by cloudy, rainy and foggy
weather and environmental differences. Consequently, it is difficult to ob-tain low- and medium-
resolution satellite imagery data. The information on agricul-tural conditions cannot be rapidly and
efficiently acquired, failing to satisfy the need of agricultural monitoring[10].Using a UAV low-
altitude remote sensing platform to ob-tain data has the advantage of low cost, high security, high
mobility and customizabil-ity and effectively overcomes the defect that satellite remote sensing
cannot timely obtain high spatial resolution images. Thus, real-time, macroscopic and accurate mon-
itoring and assessment of the crop growth situation can be performed through the point-surface
fusion in order to formulate appropriate production and management measures according to local
conditions to improve crop quality and yield[11]. With the increasing maturity of UAV technology,
UAYV multispectral remote sensing has been widely used for crop growth monitoring in agriculture
due to its advantages of strong band continuity, large amount of spectral data, high centimeter-level
resolution and the ability to reach areas of interest in a short period. This facilitates easier and faster
Earth observation and monitoring [12-14].

Accurately extracting tobacco plant information in karst mountainous areas is challenging. Deep
neural network approaches have been used to identify tobacco plants in UAV visible light images.
Deep neural networks were proposed in 2006 and became a popular machine learning method[15].
Due to their robustness, deep neural networks have an impressive track record of applications in
image analysis and inter-pretation[16] , initially in biomedicine and later in agriculture[17,18] .
Compared with tra-ditional methods such as support vector machine[19,20], color space[21], random
forest[22], artificial neural network (ANN) [23,24] and hyperpixel space[25], deep learning methods
can overcome their shortcomings such as higher requirements for observer experience, higher labor
intensity and insufficient extraction accuracy for precision agriculture. Chen et al. [26] applied deep
neural networks to high-resolution images in order to identify strawberry yield, with an average
accuracy of 0.83 and 0.72 in identifying 2m and 3m aerial height. Oh et al. [27] used deep learning
target detection technology with UAV images for cotton seedling counting and analyzed plant
density and precision management. The target detection network identification method showed
higher ac-curacy than traditional methods. Wu et al. [28]used deep learning to extract apple tree
canopy information from remote images. This remote sensing technique had a preci-sion of 91.1%
and a recall of 94.1% for apple tree detection and counting, an overall precision of 97.1% for branch
segmentation and an overall precision of more than 92% for canopy parameter estimation. The deep
learning methods can achieve higher accu-racy than traditional methods. As the depth of deep
learning models continues to in-crease, their feature representation ability and segmentation
accuracy become increas-ingly higher. Despite these advantages, there are some shortcomings.
Deeper models are more complex and require more training samples, higher hardware and software
configuration for operation and longer training time.

However, The U-Net model can overcome these shortcomings. Freudenberg et al. [29] used
the U-Net neural network to identify palm satellite image maps with a resolu-tion of 40 cm and found
that the method was reliable even in shaded or urban areas, with the palm identification accuracy
ranging from 89% to 92%. Yang et al. [30Jused FCN-AlexNet and SegNet models to estimate rice fall
area in UAV imagery, and the F1-score reached 0.80 and 0.79, respectively. Using flue-cured cigar
tobacco plants as the research object, Rao et al. [31] proposed a new deep learning model to learn the
morphological features of the center of the tobacco through some key features. They adopted a
lightweight coder and decoder to rapidly identify the tobacco and locate the counts from UAV remote
sensing imagery, with an average accuracy of up to 99.6%. Li et al. [32] extracted dragon fruit plants
from UAV visible images of different complex habitat strains based on the U-Net model, with
identification accuracies of 85.06%, 98.83%, and 99.20% for the initial, supplementary and extended
datasets, respectively. Their experimental results show that increasing the type and number of
samples can improve the model's accuracy in identifying dragon fruit plants, and the accuracy of the
U-Net model was also verified. The applicability of the U-Net network model was verified in
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identifying features in plateau mountainous areas. Huang et al. [33] proposed an accurate extraction
method of flue-cured tobacco planting areas based on a deep semantic segmentation model for UAV
remote sensing images of plateau mountainous areas, and 71 scene recognition images were
semantically segmented using DeeplabV3+, PSPNet, SegNet and U-Net, with segmentation
accuracies of 0.9436, 0.9118, 0.9392, and 0.9473, respectively. Deep learning-based methods can
overcome the problem of insufficient characterization ability of traditional machine vision methods
but need a large amount of sample data for training. Under deeper model layers, these models also
require longer training time. In contrast, the U-Net model can obtain higher recognition results with
fewer training samples, needs less training time relative to CNN, FCN and other models and saves
experiment time with higher run-ning speed. Due to the complexity of the tobacco planting
environment, it is difficult for traditional methods to extract high-precision tobacco plant information
from UAV images. Thus, it is necessary to find a new method to decompose complex scenes into
multiple homogeneous scenes and then perform scene-by-scene identification to im-prove the overall
accuracy.

In summary, this study used the U-Net model as a binary semantic segmentation method for
UAV visible light images of tobacco plants at the root extension stage in complex habitats. According
to the tobacco planting environment in the study area, the complex habitat was divided into eight
tobacco plant recognition habitats by consider-ing four main factors (i.e., plot fragmentation, plant
size, presence of weeds and shadow masking). The accuracy of each scenario was evaluated to
analyze the influ-encing factors of the recognition accuracy. This can provide data and
methodological support for promoting the application of UAV remote sensing in agriculture and ac-
celerate agricultural dataset standardization and management refinement in the karst mountainous
areas.

2. Materials and Methods

2.1. Study area

The study area (Figure 1) is located in Beipanjiang Town, Zhenfeng County, Qi-anxinan
Prefecture, Guizhou Province (105°35'53"E, 25°36'08"N). Beipanjiang Town is a Kkarst
geomorphological area with rugged and fragmented surface. The terrain in the territory is high in the
south, low in the north, hilly in the northeast and smooth in the center with complicated topography
and a relative altitude of 1,475 m. The Beipanjiang River Valley slope area has a deep cut. The climate
is characterized as the subtropical monsoon humid climate, with four distinct seasons. The annual
average mild frost-free period, sunshine hours, number of precipitation days and precipitation are
300 days, 1549.2 h, 180 days and 1100 mm, respectively. Due to the mild summer and winter,
concurrent rain and heat are the most suitable for tobacco planting. However, the study area has
mountainous characteristics such as fragmented cropland, coexistence of regular and narrow
croplands, coexistence of clear-contour and fuzzy-boundary croplands, cropland patches with high
fragmentation and diverse farming methods. In 2023, more than 6,900 acres of tobacco were planted
in Beipanjiang Town, which is ex-pected to achieve an output value of more than 25 million Chinese
yuan.
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Figure 1. Location maps of the study area :(a) Map of China; (b) UAV image of the study area.

2.2. Data acquisition and preprocessing

To address the difficulty of satellite optical remote sensing data acquisition in karst mountainous
areas due to rainy and cloudy weather and rugged and fragmented terrain, this study used the DJI
Mavic2 Pro v2.0 UAV as the image data acquisition platform. This platform was equipped with a 1-
inch CMOS sensor Hasselblad camera with 20 million photo pixels, a resolution of 5,472x3684 pixels
and a maximum wind resistance level of 5. It is small, low-cost, mobile and flexible and does not
require a wide level site for take-off and landing. Thus, it is suitable for collecting data in moun-
tainous environments with steep terrain, fragmented land and difficulties in obtaining high-precision
satellite image data. The image was acquired between 15:00-16:00 on June 4, 2021, under clear weather
and wind force 2.5, meeting the requirements for safe UAV operation. In order to ensure the accuracy
and quality of remote sensing images during flight, the UAV captured images in the waypoint flight
mode, with a heading overlap rate of 80%, a side overlap rate of 75% and a flight altitude of 120 m.
This can facilitate clear images with good quality.

The UAV photos were processed using Pix4Dmapper4.0 software for initialization, feature point
matching, image stitching, correction (deformation, distortion, blurring and noise due to UAV
shaking), image enhancement, color smoothing, cropping and reconstruction to generate a high-
resolution orthophoto map (Digital Orthophoto Map, DOM). Finally, orthophotos with a spatial
resolution of 6.4 cm were obtained.3. Results.

2.3. Network modeling and model parameter selection

2.3.1. U-Net model

The U-Net model is a network structure based on convolutional neural networks (CNNs)
proposed by Ronneberger et al. [34] in 2015.This model was initially applied to the semantic
segmentation of medical images and achieved good performance in dif-ferent biomedical
segmentation applications [35].Then, the U-Net network model was applied to agriculture. In recent
years, the U-Net model has made great progress in ag-ricultural remote sensing crop recognition [36—
40].Its structure is shown in Figure 2, consisting of the Compressing Path in the left half and the
Expansive Path in the right half. The core idea of the model is the introduction of jump connections,
greatly im-proving the accuracy of image segmentation. In contrast to CNNs, U-Net uses feature
splicing to achieve feature fusion [41]. Due to the elastic deformation of data enhance-ment [42], U-
Net requires fewer training samples and less training time and can get higher accuracy. The U-Net
model has the advantage of "obtaining more accurate clas-sification results with fewer training
samples" and can extract local features while re-taining global information. Therefore, the U-Net
model is suitable for rapid crop clas-sification.


https://doi.org/10.20944/preprints202401.1192.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 January 2024 doi:10.20944/preprints202401.1192.v1

Images Segmetation mxp

ons%p oS,
v T
4‘. b

8y
R
.,‘ %, "'o.
>olo :.‘Q..‘ "
'?..‘cL
; I

—

|-I.l IOIOI =» conv 3x3, RelU

|
“
.

i copy and crop
[l e i S | § max pool 2x2
4 # up-conv 2x2
EZle e z—=

=» conv 1x1

Figure 2. U-Net modeling Figure.

2.3.2. Experimental environment

The experimental study was conducted on a professional imaging workstation equipped with
Windows 10 (ACPIx64 processor). The computer was powered by an NVIDIA GeForce RTX 2080 Ti
(GPU) and an Intel(R) Core(TM) i9-10980XE CPU to accelerate relevant operations. The study was
based on the Tensorflow-GPU version 2.0.0 deep learning framework and used the Adma optimizer
as the optimization function. Keras=2.4.3 is a WrapperAPI of Tensorflow, a layer of Tensorflow
wrapping that allows for simpler model building. The initial learning rate was set as 0.0001 for the
model training. The total number of iterations was 50. The training was performed on the
workstation. The model was constantly debugged to obtain optimal parameters, improving the
recognition accuracy of the U-Net model.

2.3.3. Model parameter selection

In order to study the influencing factors of complex habitats of tobacco in the karst mountainous
area on identifying extracted tobacco using the U-Net model, two groups of training samples were
preset for model training. The first set of the experiments was to train the model with all the training
samples and labels, and the second set was to train the model with eight habitats: smooth tectonics
and weed-free ( [ ); smooth tectonics and unevenly growing (Il ); smooth tectonics and weed-infested
(III); smooth tectonics and planted with smaller seedlings (IV); subsurface fragmented and weed-free
(V); surface fragmented and shadow-masked (VI); subsurface fragmented and weed-infested (VII);
surface fragmented and planted with smaller seedlings (VII).

In order to obtain the optimal tobacco identification model parameters, multiple parameters can
be set to compare the model training when performing model training. Figure 3 presents the accuracy
and loss changing curves of the model trained with different parameters. The parameter changes
included the learning rate and the number of iterations. There were some differences in the trend of
the loss and accuracy curves of the model trained with different parameters. In order to explore more
suitable model parameters for flue-cured tobacco identification, all the samples and labels of eight
habitats were used for model training together, with a ratio of 8:2 for the training set and the test set.
Firstly, the number of iterations was set as 50, and the learning rate was 0.0001 (Figure 3a,b) and 0.001
(Figure 3c,d), respectively. It can be concluded from the experiments that the learning rate of 0.0001
was more suitable for the flue-cured tobacco identification model. Secondly, the learning rate was set
as 0.0001, and the number of iterations was set as 100 and 50. When the number of iterations was set
as 50, the loss and the accuracy curves in Figure 3e,f were more fitted. The loss and accuracy curves
under 100 iterations are shown in Figure 3g,h. After many rounds of model training, the comparative
analysis shows that when the learning rate and the number of iterations were set as 0.0001 and 50,
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respectively, the model was more robust. Therefore, the model parameter setting with a learning rate
of 0.0001 and 50 iterations in the whole model training can meet the research needs.
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Figure 3. U-Net modeling accuracy and loss curves.
2.4. Dataset construction

2.4.1. Classification of complex habitat for tobacco

The dataset used for model training is also known as the training sample, which is the basis of
the whole model classification algorithm. The quality of the training samples directly affects
classification results. Therefore, representative and typical samples with the completeness of regional
sample points should be selected. In order to better extract information on complex habitats of
tobacco, the UAYV visible light images in June 2021 were selected to extract tobacco plants according
to the complexity of the planting habitat of tobacco in the study area. The tobacco plants were at the
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rooting stage, with nonuniform growth and size. In order to better analyze the model recognition
accuracy under the complex habitat of crop growth and explore the suitability of different habitats,
four main factors were considered, i.e., plot fragmentation, plant size, the presence of weeds and
shadow masking according to the tobacco planting habitat in the study area. Then, the eight habitats
were classified, as shown in Figure 4: smooth tectonics and weed-free (I ); smooth tectonics and
unevenly growing (II); smooth tectonics and weed-infested (III); smooth tectonics and planted with
smaller seedlings (IV); subsurface fragmented and weed-free (V); surface fragmented and shadow-
masked (VI); subsurface fragmented and weed-infested (VII); surface fragmented and planted with
smaller seedlings (VI). In this scene classification system, training samples were constructed based
on the UAYV visible light images.

(VIH)

Figure 4. Study area habitat Delineation Map.

2.4.2 Construction of sample datasets

The ROI tool of ENVI5.3 was used to manually annotate the outline of the tobacco plants to
generate .xml files. These files were then converted to .shp files. The pixels of tobacco plants were
labeled as black (pixel value was 0), and the pixels of non-tobacco plants were labeled as white (pixel
value was 255) using the ArcMap tool. The binary mapping of labels was used to evaluate the
segmentation and the information extraction of the tobacco. A total of 6,617 plants were labeled. Since
the whole UAV image was directly used as a sample, the data volume was too large, and the
performance requirements for the computer were high. This was not conducive to model training.
Thus, the images and the corresponding labeled tobacco plants were randomly cut into samples with
a size of 224 x 224 pixels. The randomly cut samples have cross overlapping parts with random sizes,
inducing different samples and enhancing the randomness of the samples. The information in the
UAV visible light images can be fully utilized. Finally, 2300 samples were obtained to constitute the
tobacco dataset. The tobacco dataset included a sample image folder and a manually labeled label
folder. The sample image folder corresponded to the sample images, which were named and
arranged in numerical order; the label file contained the manually labeled data corresponding to the
sample images. Some captured tobacco plant images and corresponding labels are shown in Figure
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Figure 5. Images of tobacco with manual annotation labels: subsurface fragmented and weed-infested
(4.png, 5.png, 6.png); surface fragmented and shadow-masked (7.png, 8.png, 9.png); surface
fragmented and planted with smaller seedlings (10.png, 11.png, 12.png); smooth tectonics and weed-
free (13, 14, 15); smooth tectonic and weed-infested (16.png, 17.png, 18.png); smooth tectonics and
unevenly growing (19.png, 20.png, 21.png); smooth tectonics and planted with smaller seedlings
(22.png, 23.png, 24.png).

2.5. Evaluation index

Multiple metrics are usually used in image segmentation to evaluate algorithm precision. In this
study, four quantitative metrics, namely, Precision, Recall, F1-score and Intersection-over-Union
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(IOU), were used to quantitatively evaluate the model recognition results and the segmentation
precision of the tobacco plants in each scene of the UAV remote sensing images.
Precision indicates the probability of actually being a positive sample out of all samples
identified as positive:
TP )
+FP
Recall is used to find how many samples that are actually positive are identified as positive:

TP
Recall=——(2)
TP +FN

The Fl-score is a common measure for classification problems and is a harmonic mean of
precision and recall ranging from 0 to 1. The closer the F1-score is to 1, the more robust the model is:

precision =

2 Precise ? Recall
F1-score = =2 3

1 N 1 Precise + Recall

Precise Recall
IOU is a commonly used evaluation method in semantic segmentation and can measure the
degree of overlap between the target detection frame and the true frame. Thus, IOU can be used as a

criterion to determine whether the detection frame is a positive sample or not. Comparison with the
threshold can help to determine whether it is a positive or negative sample. Generally, when the
identified frame and the real frame IOU >= 0.5, it is considered to be a positive sample:
TP
IOU=—— (4)
TP +FP +FN

Where TP indicates that a tobacco sample is correctly identified as tobacco;FN indicates that a

tobacco sample is incorrectly identified as non-tobacco;FP indicates that a non-tobacco sample is

incorrectly identified as tobacco.
3. Results

3.1. Quantitative analysis of plant extraction precision

Using the U-Net model to identify UAV remote sensing visible flue-cured tobacco images, the
accuracy of the segmentation results is shown in Table 1. Table 1 shows that the recognition
accuracies of the eight habitats were in the following order: subsurface fragmented and weed-free
(V) > surface fragmented and planted with smaller seedlings (VIl) > subsurface fragmented and weed-
infested (VIl) > smooth tectonics and weed-free ( [ ) > smooth tectonics and unevenly growing (1) >
surface fragmented and shadow-masked (VI) > smooth tectonics and planted with smaller seedlings
(IV) > smooth tectonics and weed-infested (III). Comparing the whole image with the recognition
results of eight scenes, Scenes III and IV showed lower accuracy.Then, the other scenes were
compared with the whole image of the study area, and the overall accuracy of the whole image was
lower, with a Precision of 0.68, a Recall of 0.85, an F1-score of 0.75 and an IOU of 0.60. Maize, which
is the same green crop as tobacco, was incorrectly identified as tobacco by the U-Net model due to
the fragmented surface, complex planting structure, mixed cultivation of tobacco and maize plots
and more bushes and weeds along the cultivated soil canals. Thus, the accuracy of the whole image

was low.
Table 1. Identification results for different scenes.
Scenes Precision Recall Fl-score IOU
Smooth tectonics and weed-free (1) 0.76 0.86 0.81 0.67
Smooth tectonics and unevenly growing (II) 0.74 0.89 0.81 0.67
Smooth tectonics and weed-infested (III) 0.49 0.69 0.57 0.40
Smooth tectonics and planted with smaller 0.58 0.79 0.67 0.50

seedlings (IV)
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10
Subsurface fragmented and weed-free (V) 0.85 0.84 0.84 0.73
Surface fragmented and shadow-masked (VI) 0.73 0.87 0.79 0.66
Subsurface fragmented and weed-infested (VII) 0.77 0.88 0.82 0.69
Surface fragmented and planted with smaller 0.77 0.79 0.78 0.64
seedlings (VI
The whole image 0.68 0.85 0.75 0.60

Subsection Scene recognition accuracy is shown in Figure 6, with some differences. The factors
affecting the recognition accuracy in each scene were also different. The scene of “subsurface
fragmented and weed-free (V)” had the highest accuracy (Preci-sion=0.85), followed by “surface
fragmented and planted with smaller seedlings (VIII)” (Precision=0.77).The scene of “smooth
tectonics and weed-infested (III)” had the low-est recognition accuracy (Precision=0.49).

[ ] Precision

1.0 q

0.85

0.8
0.76 74 0.73 0.77 0.77

0.6 1 0.58
0.49

Precision

0.2 1

0.0 I I 1 I I I I I
II 111 1\Y \Y% VI Vil VIII

—

Complex scenes
Figure 6. Complex identification precision histogram.

Based on Figure 6 and Table 1, the significant decrease in the accuracy of Scenes III and IV
may be because: (1) weeds and tobacco both are green vegetation with similar shape, spectral, and
texture features, and the U-Net model may incorrectly identify weeds as tobacco during tobacco
identification; (2) the tobacco plants are smaller and fuzzy in the training samples. The contours of
the tobacco are unclear, and the model would omit smaller tobacco plants, leading to a lower accuracy
in recognizing Scene V.

Comparative analysis reveals that the recognition accuracy of Scene VIl was better than that of
Scene IV. This is mainly attributed to the relatively homogeneous planting habitat in Scene VI, with
more bare rock on the fragmented surface, fewer weeds and other green vegetation and significant
differences between the tobacco plants and the background texture features in the images. Thus, the
U-Net model was less affected in tobacco identification, resulting in higher identification accuracy of
tobacco plants.

3.2. Visual analysis of tobacco plant extraction

doi:10.20944/preprints202401.1192.v1
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In Figure 7, based on the model, sample quality and quantity and complex habitat dataset
recognition results, the red contour represents the identified tobacco plants. Scenes [ and Vscene
were taken as the control. Scene [ had regular tobacco planting and connected tobacco leaves, with
overall even recognition accuracy. Scene V had irregular tobacco planting, and tobacco plants were
smaller due to the water and fertilizer conditions. Its single-plant recognition accuracy was high.

Scene Il had regular tobacco planting and good plant growth. The model identi-fied non-
tobacco parts as tobacco plants during continuous plant identification. Weeds and tobacco plants are
both green vegetation and have similar spectral features and texture features. These were the main
reasons for the low recognition accuracy of Sce-ne III. Scene VIl had irregular tobacco planting.
There was weed confusion to some extent. Compared with Scene III, Scene VI had less continuous
tobacco planting. Thus, the recognition accuracy of Scene VI was 0.28 higher than that of Scene III.

Scenes [V and VIl were taken as the control. Tobacco plants in Scene IV were affected by the
transplanting time sequence, and the tobacco plant seedlings were smaller than those in Scene VII.
Thus, the tobacco feature information of the training samples was insignificant. The U-Net model
may omit smaller tobacco plants during training, resulting in a lower identification accuracy of Scene
IV than that of Scene VIl by 0.19.
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Figure 7. Identification results of the U-Net model.

3.3. Optimization sample

In order to improve the generalization ability and segmentation accuracy of the U-Net model,
the samples in the datasets were optimized. The optimized datasets can pro-vide samples closer to
real tobacco plants (such as geometric morphological features) for model training. Particularly, some
samples were interfered by environmental fac-tors such as light, shadow and ground reflection. To
accommodate these interferences, the effects of sample quantity and quality on model accuracy were
explored. The ArcGIS software was used to optimize the sample dataset and enhance the tobacco
plants. The following four aspects were mainly addressed and improved: (1) Boundary accuracy for
samples with smaller plants. (2) Difficulties in distinguishing tobacco plants accompanied by weeds.
(3) Weak ground reflections and shadow interference. The interference of incorrectly labeling
shadows as tobacco samples can be excluded. (4) Strong ground reflection and indistinct tobacco
plant information characteristics; con-sequently, tobacco plant samples are missed. Partial samples
and optimized samples are shown in Figure 8, where blue color indicates original samples and yellow
color in-dicates optimized samples. In addition, since the samples were randomly split, the number
of training samples was increased to 9500 in order to enrich the content and diversity of the samples.

The U-Net model is trained using the optimized sample dataset, and the results show that the
recognition accuracy of the eight complex scenes is generally improved, and the results are shown in
Figure 9. Among them, the scene broken surface with weeds (V) has the highest recognition
accuracy, followed by broken surface shadow masking (VI) with 0.92 and 0.90, respectively. The
optimized samples are targeted at the scene with broken surface with weeds, so that the boundaries
of tobacco and weeds in the training samples are more clear, and tobacco plants on the broken surface
are distinguished from bare rocks, etc., and the characteristics of tobacco plants are obvious, and the
model has strong generalization ability with high recognition accuracy; the broken surface Shadow
blocking (VI), for the area without tobacco blocked by trees is regarded as a non-tobacco area,
combining the pictures taken by the UAV with the analysis of synthetic images to improve the
recognition accuracy. Scene plot leveling with weeds (III) has the lowest accuracy rate, followed by
plot leveling with uneven growth (II'), with accuracy rates of 0.74 and 0.78, respectively; plot leveling
with weeds (III) has a relatively flat ground; the drone acquires the image in the afternoon, and the
shadow of the weeds and tobacco plants has a greater impact on the recognition accuracy of the
tobacco plants and reduces the model's recognition accuracy of the tobacco.
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Figure 8. Comparison between partial samples and optimized samples.

—4— Samples

1.0 —e— Optimization Samples
0.92
0.90
0.9 F
0.81

0.8
£ 0.77
2 .
Q
2071
&

0.6

0.5

I 1l 11 A% \Y% VI Vil VI

Scenes

Figure 9. Recognition precision for the original sample and optimized sample datasets.


https://doi.org/10.20944/preprints202401.1192.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 January 2024 doi:10.20944/preprints202401.1192.v1

14

4. Discussion

To address the problems of fragile natural environment, fragmented plots and complex planting
stru ctures in the karst mountains areas of southern China, we constructed eight sample datasets of
tobacco plants in complex scenes to train the U-Net model. Accurate extraction of tobacco information
from UAV remote sensing imagery in complex scenes was obtained. The factors affecting the
recognition accuracy of the U-Net model in different complex scenes were discussed in two aspects:
tobacco plant omission and wrong extraction.

4.1. Analysis of omitted factors

In order to investigate the factors affecting the U-Net model on the segmentation of tobacco
plants in different complex habitats, we analyzed the influencing factors through the segmentation
results of eight habitats. The segmentation accuracy of Sce-ne Il was the lowest, with a Precision of
0.49 and a Recall of 0.69. A total of 410 plants were omitted, including 95 whole plants (23%) and 315
incomplete plants (77%). The omission of complete plants mainly included two factors, namely, weed
cover and small saplings of tobacco plants. For incomplete tobacco plants, the omission mainly
resulted from the small size of tobacco plants covered by weeds. Weeds and tobacco plants had
similar texture and spectral features. The soil background had low reflec-tance. These factors affected
the recognition accuracy of the scene with smooth tecton-ics and weed cover. Overall, the omission
of the tobacco plant in this scene was mainly attributed to weed cover.

For tobacco images in Scene [V, 420 plants were missed, including 187 whole plants (45%) and
233 incomplete tobacco plants (55%). The omission of the whole to-bacco plants was mainly because
the tobacco plant sapling was smaller, and larger UAV flight height reduced the UAV image
resolution, resulting in low identification accuracy of the tobacco. In the low-altitude remote sensing
multi-scale recognition of complex habitats in karst mountainous areas, Li [4] found that the accuracy
of UAV im-ages for tobacco plant recognition decreased with increasing height. In this study, the
UAV flight altitude was 120 m. The tobacco plants at the rooting stage were small. Thus, the image
resolution was low, and some tobacco plant features were lost. This resulted in the low accuracy of
the U-Net model in segmenting the tobacco plant scene.

4.2. Analysis of erroneous factors

Further detailed analysis was conducted to reveal the factors affecting the recog-nition accuracy
of the model incorrectly identifying non-target features as target fea-tures (tobacco). The model
incorrectly identifying non-target features as target features was referred to as misidentification. The
six main factors that caused misidentification were identified using overlay analysis of the
experimental results (Table 2), i.e., the edge of tobacco plants, maize plants, bushes, white mulch,
bare rocks and weeds. Par-ticularly, the edge of the tobacco plants was the most mislabeled,
accounting for 67.21% of the whole image mislabeled. This is mainly because the segmentation level
of the U-Net model was at the pixel level. In addition, the data was collected between 15:00-16:00.
The sun altitude angle varied. There was a shadow on the leaves of the to-bacco plants, and the model
incorrectly identified the shadow of the tobacco leaves as the real tobacco leaves. Thus, there was a
discrepancy between the validation labels and the manually drawn ones in identifying the contour
of the tobacco plants.

Table 2. Statistics of factors influencing misidentification.

Factor Tobacco Maize Weeds Shrub Bare rock White
plastic
o=

Typical incorrect

recognition

patches
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Misidentificatio 100807252 367544 110935 7643 3204 2574
n
Percentage 67.21% 24.50% 7.40% 0.51% 0.21% 0.17%

! The red color in the map above indicates misidentified non-target features.

The second was the misidentification caused by the confusion of maize plants and weeds,
accounting for 24.50% of the misidentification of the whole image, and weeds accounted for 7.40%.
The karst mountainous area had fragmented surfaces, scattered cultivated plots and complex
planting structures. The tobacco plots were adjacent to the maize plots and covered with weeds, and
they were all green vegetation with sim-ilar shape features, texture features and spectral features.
Thus, the model incorrectly identified maize and weeds as tobacco, leading to more misidentification
in the U-Net model and lower recognition accuracy.

4.3. Analysis of the impact of optimized samples on the accuracy of the model in identifying tobacco plants

Figure 10 and Table 3 indicates that the sample quality had a certain impact on the recognition
accuracy of the U-Net model. In this experiment, the recognition accuracy of the model trained by
the optimized samples were higher than that by the original samples. The recognized tobacco plants
were closer to the real tobacco plants. The recognization accurarcy of Scene III increased by 25.31%.
In order to better evaluate the impact of the sample on the model, the results from the scene with
smooth tectonics were used as the evaluation indicator of the model trained by the two dataset
samples. The calculation results were analyzed to reveal their differences. Positive values indicate
that the accuracy is improved, and negative values indicate that the accuracy is reduced. Regarding
the accurarcy, Scene [V showed the highest increase (22.81%). Scene V showed the lowest increase
(0.78%), followed by Scene Il (3.82%).

Scenes (III) Scenes (IV) Scenes (V) Scenes (V)

Figure 10. Recognition results of training the U-Net model with original and optimized samples
(Note: blue color indicates original sample training results and yellow color indicates optimized
sample training results).


https://doi.org/10.20944/preprints202401.1192.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 January 2024 doi:10.20944/preprints202401.1192.v1

16

The optimization samples were optimized for the situation that the boundary feature
information of the original tobacco and weed samples was insignificant in the scene of fragemented
surface and weeds. Thus, the boundary information of tobacco and weeds in the training sample can
be more distinct. The generalization ability of the model can be enhanced, thus improving the model
recognition accuracy. Tobacco planting has a time sequence. The late planted tobacco plant is smaller.
At the same flight altitude, the feature information of smaller tobacco plants is not prominent, which
affects the recognition accuracy. Therefore, during the sample optimization, the morphological
features of the smaller tobacco plants in the training samples were optimized. Then, the labeled plants
can be closer to the real tobacco plants, improving the model recognition accuracy.

Table 3. Differences between the evaluation indexes of the original and optimized samples for
training the U-Net model.

Scenes Precision Recall F1-score Iou
Smooth tectonics and weed-free (1) 10.93% 0.77% 6.16% 9.10%
Smooth tectonics and unevenly growing(1l) 3.82% -9.35% -2.08% -2.87%
Smooth tectonics and weed-infested(III) 25.31% 7.68% 18.10% 20.34%
Smooth tectonics and planted with smaller seedlings(IV) 22.81% -7.81% 8.92% 10.74%
Subsurface fragmented and weed-free (V) 0.78% -4.17% -1.80% -2.65%
Surface fragmented and shadow-masked (VI) 16.92% -8.65% 4.29% 6.10%
Subsurface fragmented and weed-infested (VII) 15.72% -6.97% 4.34% 6.44%

Surface fragmented and planted with smaller seedlings
(VII) 4.59% -25.21% -13.18% -15.93%

5. Conclusions

The experimental results proved that the sample datasets from UAYV visible imag-es to train the
U-Net model had a certain degree of effectiveness and applicability in identifying tobacco plants in
UAV visible images under different planting environ-ments. Scene segmentation reduced the
interference of the complexity of plots, plant-ing structure and other factors on the identification
accuracy of tobacco plants. This is a new attempt to improve the classification of crop recognition in
complex habitats in the karst mountainous areas (particularly habitats with fragmented surfaces).

The findings also reveal that the U-net model showed different abilities in identi-fying features
in different habitats due to the influence of some main factors such as plot fragmentation, plant size,
presence of weeds and shadow masking. Thus, it is necessary to construct the datasets by scene,
increase samples and eliminate interfer-ences in a targeted manner according to the complexity of
different scenes and the main factors affecting the model in order to improve the accuracy of the
model in clas-sifying complex scenes.

It is found that tobacco plant contour was the most significant influencing factor of the U-Net
model in identifying tobacco plants in complex habitats in karst moun-tainous areas. This is related
to the sample preparation error, followed by the accom-panying interference of maize and weed.
Maize, weeds and tobacco are all green vege-tation and have similar shapes and spectral and texture
features, leading to the misi-dentification of the U-Net model. In order to address this problem, the
next step of the study is to increase the image bands and spectral information of the ground and use
"shape-spectrum” joint features to eliminate different spectra, or to improve the identi-fication
accuracy by removing the influence of noise such as weeds through morpho-logical erosion and
dilation operation.

The generalization ability and robustness of the U-Net model were strongly influenced by the
quality and quantity of samples. The optimized sample dataset was used to train the model, which
improved the sample profile, quality and quantity. The accuracy of each scene was higher than the
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original sample. Therefore, in future research, we can further improve the quantity and quality of
samples to improve the model performance.
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