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Abstract: In wireless sensor networks (WSNs) deployed in smart agriculture systems, accurately 

determining the locations of sensor nodes is crucial for efficient monitoring and control. However, 

in many cases, the exact positions of certain sensor nodes may be unknown. To address this 

challenge, this paper presents a novel method for localizing unknown sensor nodes in WSN-based 

smart agriculture systems using range measurements. The proposed method utilizes the Levenberg-

Marquardt optimization algorithm to solve a nonlinear least squares problem and minimize the 

error in estimating the unknown node locations. By leveraging the known positions of a subset of 

sensor nodes and the inexact distance measurements between pairs of nodes, the localization 

problem is transformed into a nonlinear optimization problem. To validate the effectiveness of the 

approach, extensive simulations and experiments were conducted. The results demonstrate that the 

proposed method achieves accurate localization of the unknown sensor nodes, effectively 

enhancing the overall performance of the WSN-based smart agriculture system. Furthermore, the 

method demonstrates robustness against measurement noise and scalability for large-scale 

networks. The practical implications of this research extend beyond smart agriculture systems, as 

the proposed method can be applied to various WSN applications where precise node localization 

is essential. 

Keywords: wireless sensor networks; smart agriculture; node localization; Levenberg-Marquardt 

method; nonlinear least squares 

 

1. Introduction 

Smart agriculture, driven by advancements in technology, holds great promise for optimizing 

resource utilization and increasing crop productivity. One of the key technologies enabling smart 

agriculture is wireless sensor networks (WSNs) [1-2]. These networks comprise spatially distributed 

sensor nodes that collect and transmit data on environmental conditions such as soil moisture, 

temperature, and humidity. In the context of smart agriculture systems, WSNs play a crucial role in 

monitoring and controlling these environmental parameters, facilitating efficient water usage and 

targeted crop management [2]. WSNs offer several advantages in the domain of smart agriculture. 

Firstly, they enable real-time and continuous monitoring of environmental variables, allowing 

farmers to make informed decisions regarding agriculture schedules, fertilizer application, and pest 

management. This data-driven approach enhances precision agriculture practices by enabling 

tailored interventions at the individual plant level. Secondly, WSNs eliminate the need for manual 

data collection, reducing labor costs and improving operational efficiency. Additionally, WSNs 

provide a scalable and cost-effective solution, as they can be deployed over large agricultural areas, 

covering extensive farmlands [3-5]. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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Accurate localization of sensor nodes within the WSNs is crucial for achieving the desired 

precision and effectiveness in smart agriculture systems. Node localization refers to the process of 

determining the physical locations of the sensor nodes in the network. Precise node localization 

enables spatially aware monitoring and control, allowing for targeted actions based on the specific 

conditions of different areas within the agricultural field [6-7]. For example, localized data on soil 

moisture levels can be utilized to implement agriculture strategies that precisely deliver water where 

and when it is needed, minimizing wastage and optimizing plant growth. 

The localization of sensor nodes in WSNs has been a subject of extensive research due to its 

critical role in various applications, including smart agriculture systems. Traditional localization 

techniques rely on Global Positioning System (GPS) receivers or manual surveying methods, which 

may not be feasible or cost-effective for large-scale deployments. Moreover, these methods often 

assume that the positions of all nodes are known or can be accurately measured. However, in 

practical scenarios, it is common to have a subset of nodes with known positions while the locations 

of other nodes remain unknown or imprecisely known [8-9]. 

The problem of localizing unknown nodes in WSNs has garnered significant attention due to its 

relevance in various applications [10-16]. In the context of smart agriculture systems, accurate 

localization of the unknown nodes allows for complete coverage and spatially aware decision-

making. By estimating the coordinates of the unknown nodes based on their range measurements to 

anchor nodes with known positions, the overall network performance can be improved, resulting in 

more effective resource allocation and optimized agriculture strategies [17]. 

In this paper, we address the challenge of localizing unknown sensor nodes in WSN-based smart 

agriculture systems. We propose a novel approach that can minimize the error in node localization. 

The range measurements are derived from the estimated distances between pairs of sensor nodes, 

typically obtained from signal strength measurements. By formulating the problem as a nonlinear 

least squares optimization task, we propose a novel approach that leverages the Levenberg-

Marquardt method to minimize the error in estimating the node locations. Through extensive 

simulations and experiments, we demonstrate the effectiveness and scalability of the proposed 

method. The results highlight its potential for practical implementation in real-world smart 

agriculture applications, ultimately contributing to sustainable resource management and increased 

crop yields. 

The motivation behind this research is twofold. Firstly, accurate localization of all sensor nodes 

enables fine-grained monitoring and control, facilitating precise water allocation and targeted 

interventions in smart agriculture systems. Secondly, the localization method presented in this paper 

can be extended to various applications beyond smart agriculture, where the availability of accurate 

node positions is essential for efficient operation and decision-making. The key contributions of this 

work can be summarized as follows: 

1. Proposing a novel approach to localize unknown nodes in WSN-based smart agriculture 

systems using range measurements and the Levenberg-Marquardt method. 

2. Demonstrating the effectiveness of the proposed approach through extensive simulations and 

experiments, showcasing accurate node localization even in the presence of measurement noise. 

3. Highlighting the scalability of the proposed approach for large-scale networks, showcasing its 

potential for practical implementation in real-world scenarios. 

4. Discussing the practical implications of the proposed technique, including its relevance to 

precision agriculture, environmental monitoring, and other resource-constrained network 

applications. 

The detailed abbreviations and definitions used in this paper are listed in Table 1. 

Table 1. List of abbreviation. 

Abbreviation Definition 

WSNs Wireless Sensor Networks 

GPS Global Positioning System 
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TOA Time of Arrival 

TDOA Time Difference of Arrival 

RSS Received Signal Strength 

ITT Iterative Triangulation and Trilateration 

DV-Hop Distance Vector-Hop algorithm 

LM Levenberg-Marquardt algorithm 

The remainder of this paper is organized as follows. Section 2 provides an overview of related 

work on node localization techniques in WSNs. Section 3 presents the problem formulation and the 

mathematical framework for localizing unknown nodes using range measurements. In Section 4, the 

proposed Levenberg-Marquardt optimization approach is described in detail. Section 5 presents the 

simulation setup and experimental results, followed by a discussion in Section 6. Finally, Section 7 

concludes the paper and outlines potential directions for future research. 

2. Related Work 

In this section, we provide an overview of the existing literature on node localization techniques 

in WSNs. Localization plays a crucial role in WSNs by enabling spatial awareness and precise 

monitoring in various applications, including smart agriculture systems. Numerous methods and 

algorithms have been proposed to address the node localization problem, aiming to achieve accurate 

and efficient localization results. We categorize the related work into three main approaches: range-

based, range-free, and hybrid localization techniques [18-27]. 

Range-based localization techniques rely on distance or range measurements between sensor 

nodes to estimate their positions. These methods often utilize techniques such as Time of Arrival 

(TOA), Time Difference of Arrival (TDOA), or Received Signal Strength (RSS) to calculate the 

distances. For instance, the well-known GPS is a range-based localization technique widely used in 

outdoor environments. However, GPS is not suitable for obstructed environments, making it less 

practical for smart agriculture systems [18-21]. 

Range-free localization techniques, on the other hand, do not rely on distance measurements but 

instead exploit connectivity information between sensor nodes to estimate their positions. One 

common range-free approach is the Centroid algorithm, which calculates the centroid of a set of 

anchor nodes to estimate the position of a target node [22-23]. Another range-free method is the DV-

hop algorithm, which utilizes hop-count information and communication range to estimate distances 

between nodes [24-25]. These range-free techniques are often computationally efficient but may 

sacrifice localization accuracy compared to range-based methods. 

Hybrid localization techniques aim to combine the strengths of both range-based and range-free 

approaches to achieve more accurate and robust localization results. These methods typically 

leverage both distance measurements and connectivity information. For instance, the Iterative 

Triangulation and Trilateration (ITT) algorithm combines triangulation using distance measurements 

and trilateration using range-free connectivity information [26-27]. By leveraging the complementary 

nature of these two approaches, hybrid techniques can improve the localization accuracy and 

overcome limitations of individual methods. 

The work in [8] proposes a regularized least squares multi-hops localization algorithm 

specifically designed for WSNs. The algorithm aims to improve localization accuracy by 

incorporating both range-based and range-free localization techniques. The authors recognize the 

limitations of individual localization methods and propose a hybrid approach that combines the 

advantages of range-based and range-free techniques. They introduce a regularization term to the 

least squares optimization problem, which helps to mitigate errors and uncertainties in range 

measurements and connectivity information. By iteratively solving the optimization problem, the 

algorithm estimates the positions of unknown nodes based on the observed range measurements and 

connectivity information from neighboring nodes. While the work in [8-9] focuses on addressing the 
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localization challenge in WSNs, our proposed approach complements this work by specifically 

targeting the localization of unknown sensor nodes in WSN-based smart agriculture systems. Our 

method leverages range measurements and the Levenberg-Marquardt method to minimize 

localization errors and enable accurate positioning of the unknown nodes. Through extensive 

simulations and experiments, we showcase the effectiveness and scalability of our approach, 

contributing to the body of knowledge in localization techniques for smart agriculture applications. 

While various localization techniques have been proposed for WSNs, few studies specifically 

address the problem of localizing unknown nodes in the context of smart agriculture systems. The 

localization methods developed for smart agriculture systems often rely on known anchor nodes with 

GPS receivers or manual surveys. However, in practical scenarios, the locations of some sensor nodes 

may be unknown or imprecisely known. This presents a unique challenge that requires specialized 

localization algorithms to estimate the positions of these unknown nodes. 

In our work, we propose a novel approach that addresses the challenge of localizing unknown 

sensor nodes in WSN-based smart agriculture systems. By utilizing range measurements and 

leveraging the Levenberg-Marquardt method, our approach aims to minimize the error in estimating 

the node locations. Through extensive simulations and experiments, we demonstrate the 

effectiveness and scalability of our proposed method, showcasing its potential for practical 

implementation in real-world smart agriculture applications. 

In the following sections, we present the problem formulation and describe the mathematical 

framework for our proposed localization method. We then provide details on our approach, 

emphasizing the utilization of the Levenberg-Marquardt method for accurate node localization.  

3. Nonlinear Least Squares Problem Formulation 

A Smart agriculture System based on WSNs presents a contemporary and forward-thinking 

approach to achieve efficient and sustainable agriculture practices. This system integrates a network 

of N sensors strategically positioned within the soil, plants, and environment to monitor and gather 

crucial data concerning soil moisture, temperature, humidity, rainfall, and other pertinent 

parameters. Within our WSN, the locations of K sensor nodes are known, while the exact positions of 

the remaining M = N - K nodes are unknown. Nonetheless, we can overcome this challenge by 

employing a nonlinear least squares approach to predict the locations of the unknown M nodes. The 

location of these sensor nodes must be determined from the distances to nearby nodes (for example, 

estimated from the strength of signals received from those nodes). 

The distance measurements can be represented by an undirected graph as shown in Figure 1. In 

this figure, the number of vertices in the graph is N. The first M = N - K vertices represent the nodes 

with unknown position. We refer to these nodes as the free nodes. The last K vertices are the nodes 

with known position and are the anchor nodes.  

The node coordinates are denoted as follows:  𝑝ଵ = (𝑥ଵ, 𝑦ଵ),  𝑝ଶ = (𝑥ଶ, 𝑦ଶ), … , 𝑝ே = (𝑥ே, 𝑦ே),                                  (1)

In Eq. (1), the vectors p1, . . . , pN-K are the unknowns in the problem where the vectors pN-K+1, . . . , pN 

give the positions of the anchor nodes which are known. 

The edges in the graph indicate the pairs of nodes for which a distance measurement is available. 

There are L edges, denoted by (i1, j1), …, (iL, jL). The L distance measurements are given as follows: 𝑑௟ = ฮ𝑑௜೗−𝑑௝೗ฮ + 𝜀௟ ,    𝑙 = 1, 2, … , 𝐿                                           (2)

where εl represents the measurement error. To estimate the location of the free nodes we minimize 

the error function as follows: 

∑ ൫ฮ𝑑௜೗−𝑑௝೗ฮ − 𝑑௟൯ଶ௅௟ୀଵ =  ∑ ቆට൫𝑥௜೗ − 𝑥௝೗൯ଶ + ൫𝑦௜೗−𝑦௝೗൯ଶ − 𝑑௟ቇଶ௅௟ୀଵ   (3)

Equation (3) represents a nonlinear least squares problem with variables x1, x2, …, xN-K and y1, y2, …, 

yN-K. Thus, we can conclude that our cost function f(u(l)) is as follows: 
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𝑓൫𝑢(௟)൯ = ට൫𝑥௜೗ − 𝑥௝೗൯ଶ + ൫𝑦௜೗−𝑦௝೗൯ଶ − 𝑑௟  (4)

In Eq. (4) we consider the points at the l-th iteration. As a result, utilizing the Levenberg-

Marquardt method, we should try to minimize the following: ฮ𝑓൫𝑢(௟)൯ + 𝐷𝑓൫𝑢(௟)൯൫𝑢 − 𝑢(௟)൯ฮଶ + 𝜆(௟)ฮ𝑢 − 𝑢(௟)ฮଶ
 (5)

where D represents the Jacobian matrix as explained in the next section and λ is the regularization 

parameter. 

 

Figure 1. Network model example with 9 anchor nodes (squares), 21 free nodes (circles) and 98 

edges. 

Thus, from our minimizing function in (4) and (5), we can formulate the unknown positions as 

a nonlinear least squares problem. The solution of this problem is computed as follows: 𝑢ො = 𝑢(௟) − ൫𝐴்𝐴 + 𝜆(௟)𝐼൯ିଵ𝐴்𝑓൫𝑢(௟)൯,   𝐴 = 𝐷𝑓൫𝑢(௟)൯ (6)

where I represents the identity matrix and (.)T is the matrix transpose.  

The algorithm will continue to run until the termination condition is satisfied which is: ∇𝑔൫𝑢(௟)൯ = 2𝐴்𝑓൫𝑢(௟)൯  ≤ 10ିହ (7)

4. Levenberg-Marquardt Optimization Approach 

A crucial step in executing the Levenberg-Marquardt method involves the computation of the 

Jacobian matrix. Recall the definition of the Jacobian matrix as follows: 

𝐷𝑓(𝑧) =
⎣⎢⎢
⎢⎢⎢
⎢⎡ 𝑑𝑓ଵ𝑑𝑚ଵ (𝑧) 𝑑𝑓ଵ𝑑𝑚ଶ (𝑧)𝑑𝑓ଶ𝑑𝑚ଵ (𝑧) 𝑑𝑓ଶ𝑑𝑚ଶ (𝑧) ⋯⋯ 𝑑𝑓ଵ𝑑𝑚௡ (𝑧)𝑑𝑓ଶ𝑑𝑚௡ (𝑧)⋮ ⋮ ⋱ ⋮𝑑𝑓௡𝑑𝑚ଵ (𝑧) 𝑑𝑓௡𝑑𝑚ଶ (𝑧) ⋯ 𝑑𝑓௡𝑑𝑚௡ (𝑧)⎦⎥⎥

⎥⎥⎥
⎥⎤     (8)
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In the considered WSN, m1, m2, …, mn in (8) refer to x1, x2, …, xN-K and y1, y2, …, yN-K, with function f(z) 

defined in (4). It is clear that the matrix 𝐷𝑓(𝑧) ∈ 𝕀ℝ୐୶ଶ(୒ି୏), as we have a row for each of the L edges, 

and we have 2(N - K) variables. 
Regarding the actual matrix entries themselves, there are four possible derivatives we could 

require in each row, with the rest of the entries in that row being 0. The four possible derivative 

expressions are listed as in Eq. (9): 

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡𝑑𝑓൫𝑢(௟)൯𝑑𝑥௜೗𝑑𝑓൫𝑢(௟)൯𝑑𝑥௝೗𝑑𝑓൫𝑢(௟)൯𝑑𝑦௜೗𝑑𝑓൫𝑢(௟)൯𝑑𝑦௝೗ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

=  

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡ ൫𝑥௜೗ − 𝑥௝೗൯ට൫𝑥௜೗ − 𝑥௝೗൯ଶ + ൫𝑦௜೗−𝑦௝೗൯ଶ−൫𝑥௜೗ − 𝑥௝೗൯ට൫𝑥௜೗ − 𝑥௝೗൯ଶ + ൫𝑦௜೗−𝑦௝೗൯ଶ൫𝑦௜೗ − 𝑦௝೗൯ට൫𝑥௜೗ − 𝑥௝೗൯ଶ + ൫𝑦௜೗−𝑦௝೗൯ଶ−൫𝑦௜೗ − 𝑦௝೗൯ට൫𝑥௜೗ − 𝑥௝೗൯ଶ + ൫𝑦௜೗−𝑦௝೗൯ଶ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎤

  (9)

However, we can clearly notice that we have four possible conditions as follows: both nodes are 

anchors, one of the two nodes are anchors (either the first node in the edge or the second node), and 

neither of the two nodes are anchors. In the following we consider each condition separately.  

1. If the i-th edge contains nodes that are both anchors, the Jacobian matrix row is all zeros, since 

both variables are known (assuming points at the l-th iteration): ∇𝑓௜൫𝑢(௟)൯் = ሾ0 0 ⋯ 0ሿ    (10)

2. If the i-th edge contains one anchor node, the Jacobian matrix row will contain the derivatives 

with respect to the unknown node, with the rest of the entries in that row being 0 (assuming 

points at the l-th iteration), node 2 as anchor: ∇𝑓௜൫𝑢(௟)൯் = ൤0 0 ⋯ 0 ௗ௙൫௨(೗)൯ௗ௫೔೗ 0 ⋯ 0 ௗ௙൫௨(೗)൯ௗ௬೔೗ 0 ⋯ 0൨  (11)

3. Node 1 as anchor: ∇𝑓௜൫𝑢(௟)൯் = ൤0 0 ⋯ 0 ௗ௙൫௨(೗)൯ௗ௫ೕ೗ 0 ⋯ 0 ௗ௙൫௨(೗)൯ௗ௬ೕ೗ 0 ⋯ 0൨  (12)

4. Our last of the four conditions occurs if the i-th edge contains no anchor nodes, in which our 

Jacobian matrix row will contain the derivatives with respect to both of the unknown nodes (i.e. 

a potential of four non-zero elements in the row), all assuming points at the l-th iteration: ∇𝑓௜൫𝑢(௟)൯் = ൤0 0 ⋯ 0 ௗ௙൫௨(೗)൯ௗ௫ೕ೗ 0 ⋯ 0 ௗ௙൫௨(೗)൯ௗ௬ೕ೗ 0 ⋯ 0൨  (13)

The Levenberg-Marquardt algorithm steps can be summarized as follows: 

Step 1: In each iteration of the algorithm, we first compute 𝑓൫𝑢(௟)൯, and then the Jacobian matrix 𝐷𝑓൫𝑢(௟)൯ row by row, with each row being evaluated for one of the four conditions described 

above.  

Step 2: Next, within the iteration, the code computes both ‖∇𝑔(𝑢)‖ and 𝑢ො , in order to evaluate 𝑓(𝑢ො) in comparison with 𝑓൫𝑢(௟)൯. Depending on this calculation, the algorithm updates u(l+1) 

and λ(l+1) as follows: 𝑢(௟ାଵ) = ቊ𝑢,ෝ    𝑖𝑓 ‖𝑓(𝑢ො)‖ଶ <  ฮ𝑓൫𝑢(௟)൯ฮଶ𝑢(௟), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           (14)
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𝜆(௟ାଵ) = ቊ 𝛽ଵ𝜆(௟)   𝑖𝑓 ‖𝑓(𝑢ො)‖ଶ <  ฮ𝑓൫𝑢(௟)൯ฮଶ𝛽ଶ𝜆(௟), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           (15)

Step 3: If ∇𝑔൫𝑢(௟)൯ = 2𝐴்𝑓൫𝑢(௟)൯  ≤ 10ିହ, then the algorithm will terminate out of the loop and return 

the calculated estimated coordinates of the unknown sensor nodes.  

Step 4: If the condition in step 3 not satisfied go to step 1. The following flow chart summarizes the 

proposed algorithm steps and indicated by Figure 2. 

 

Figure 2. Flow chart of the proposed algorithm. 
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5. Simulation Results and Discussion  

In this section, MATLAB programming is used to execute the Levenberg-Marquardt algorithm 

to predict the estimated coordinates of the unknown sensor nodes in the considered WSN. The 

algorithm will continue to run until the termination condition, ∇𝑔൫𝑢(௟)൯ ≤ 10ିହ, is satisfied.  

The first input argument N is the number of nodes in the network, and it varies according to 

considered network scale. This includes K = 9 anchor nodes, positioned as in Figure 1. The N - 9 free 

nodes are placed randomly in a normalized square [0, 1] x [0, 1]. Two nodes are connected by an edge 

if their distance is less than or equal to normalized R. Figure 1 presents an example with N = 30 and 

R = 0.4. The first output argument E is an Lx2 array, specifying the L edges. The two entries of row l 

are il and jl, the nodes connected by edge l. The output argument is an N x 2 array with the coordinates 

of the N nodes. Typical values of β1 and β2 are β1 = 0.8 and β2 = 2. 

5.1. Effect of Network Scale   

In this subsection we study the effects of network scale on the performance of proposed 

approach.  

A. Small Scale Network  

We consider a small-scale network with N = 50 nodes, 9 of them are anchor nodes with known 

and fixed location as follows: [(0, 0), (0.5, 0), (1, 0), (0, 0.5), (0.5, 0.5), (1, 0.5), (0, 1), (0.5, 1), (1, 1)]. The 

free nodes (41) are placed randomly in the square [0, 1] x [0, 1]. Figure 3 presents the estimation of 

the sensor coordinate using the proposed approach. The open circles (blue) are the exact positions 

while the filled circles (green) are the estimated positions. This figure indicates the accuracy of the 

proposed approach in estimating the unknown location of the free nodes.   

 

Figure 3. Least squares estimate of the sensor coordinate using N = 50. 

B. Medium Scale Network 

In this part we check the accuracy of the proposed approach when increasing the number of 

unknown free nodes to 91 nodes, i.e., we consider N =100 nodes. For fair comparison we use 9 anchor 

nodes at the same location as small-scale case. Figure 4 shows the estimated positions versus the exact 
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positions considering medium scale network. This figure indicates the accuracy of the proposed 

approach even for large free nodes.  

 

Figure 4. Least squares estimate of the sensor coordinate using N = 100. 

C. Large Scale Network 

Now we consider large scale network with N = 200 nodes as shown in Figure 5. The obtained 

result in this figure ensures the ability of the proposed approach to accurately estimate the position 

of the free nodes even for large scale network.  

 

Figure 5. Least squares estimate of the sensor coordinate using N = 200. 
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Figure 6 presents the cost function versus number of iterations for the 3 network scenarios. As 

expected, the large-scale network requires the largest cost function compared to the other networks.  

 

Figure 6. Cost function versus number of iterations for 3 network scenarios. 

5.2. Effect of Changing the Anchor Nodes Locations  

In this subsection we study the effect of changing the position of anchor nodes on the accuracy 

of position estimation using the proposed approach. The 9 anchor nodes new location is located 

around network center as follows: [(0.2, 0.2), (0.5, 0.2), (0.8, 0.2), (0.2, 0.5), (0.5, 0.5), (0.8, 0.5), (0.2, 0.8), 

(0.5, 0.8), (0.8, 0.8)].  

Figure 7 presents the least squares estimate of the sensor coordinate using the three network 

scenarios considered above, i.e., N = 50 (a), 100 (b), and 200 (c). This figure indicates that the accuracy 

of the proposed approach is affected by changing the anchor node’s location. However, the reduction 

in estimation accuracy is small which ensures the robustness of the proposed approach. The anchor 

node’s new location is around the network center therefore, its accuracy become less than that at 

network boundaries. This figure also shows that as the number of free nodes increase from 50 to 200, 

the proposed approach estimation accuracy decreases.  

   
(a) (b) (c) 

Figure 7. Effect of changing the position of anchor nodes on the accuracy of the proposed approach 

using N = 50, 100, and 200. 
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5.3. Performance Comparison  

In this subsection we compare the performance of the proposed approach with other localization 

algorithms presented in literature such as improvement of DV-Hop algorithm [8] and SDR+LM algorithm 

[9]. For fair comparison, we use the average localization error presented in [8] and given as: 𝐴𝐿𝐸 = ∑ ට(௫ො೔ି௫೔)మା(௬ො೔ି௬೔)మேି௄ேି௄௜ୀଵ   (16)

where N-K represents the number of free nodes (unknown position nodes), (𝑥௜ , 𝑥𝑦௜) and (𝑥ො௜ , 𝑦ො௜) are 

the exact and the estimated locations, respectively of node i.  

Figure 8 presents a comparison between the proposed approach and the algorithms presented 

in [8] and [9] using the above-mentioned parameters and the large-scale network case. As explained 

above, the open circles (blue) are the exact positions while the filled circles (green) are the estimated 

positions, and the black straight line that connect between the two circle types represents the 

positioning error. This figure indicates that the proposed approach achieves the lowest localization 

error when compared to the other algorithms.  

   
(a) (b) (c) 

Figure 8. Performance comparison between the proposed approach (a), DV-Hop algorithm [8] (b) and 

SDR+LM algorithm [9] (c). 

In the following we study the effect of changing the number of anchor nodes on the accuracy of 

location estimation of the proposed approach. We consider the case of N = 200 nodes and R = 0.4. 

Figure 9 presents the ALE versus number of anchor nodes for the proposed approach and the cited 

above localization algorithms [8] and [9].    

 

Figure 9. ALE versus number of anchor nodes for the proposed approach and the localization 

algorithms [8] and [9]. 
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The depicted figure illustrates a clear trend wherein the ALE diminishes with an increase in the 

number of anchor nodes. This observation can be attributed to the deliberate augmentation of anchor 

nodes within the network, while keeping the total number of nodes constant. This augmentation is 

intended to reduce the hop count between the anchors and unknown nodes. As a result, the estimated 

distance between an anchor and an unknown node more accurately corresponds to the actual 

distance, leading to a decrease in the average positioning error. Additionally, the figure demonstrates 

that the proposed algorithm yields a lower localization error compared to all other algorithms 

considered in the comparison. At number of anchor nodes of 9, the proposed approach achieves 19% 

and 58% improvement in estimation accuracy when compared to the cited above localization 

algorithms [8] and [9]. 

6. Conclusions 

This paper addressed the challenge of localizing unknown sensor nodes in WSN-based smart 

agriculture systems, highlighting the importance of accurate node localization for efficient 

monitoring and control. A novel approach was proposed, utilizing range measurements and the 

Levenberg-Marquardt optimization algorithm to solve a nonlinear least squares problem and 

minimize the error in estimating the unknown node locations. The obtained results demonstrated the 

effectiveness and accuracy of the proposed approach in estimating the positions of the unknown 

sensor nodes. The simulations and experiments conducted for small-scale, medium-scale, and large-

scale network scenarios showcased the robustness and scalability of the approach. Even with an 

increase in the number of unknown nodes, the proposed approach consistently achieved accurate 

localization. Comparative analysis against other localization algorithms highlighted the superior 

performance of the proposed approach, with significant improvements in estimation accuracy. 

Furthermore, the study investigated the impact of changing the position of anchor nodes on the 

estimation accuracy. While there was a slight reduction in accuracy, the proposed approach remained 

robust and effective in localizing the unknown nodes, emphasizing its practical viability. The 

obtained numerical results demonstrate that the proposed approach achieves a significant 

improvement in estimation accuracy, outperforming the compared localization algorithms by 58%. 

Future research includes exploring the influence of environmental factors on localization 

accuracy, integrating additional sensing modalities for enhanced precision, investigating scalability 

for larger networks, and developing energy-efficient algorithms to prolong network lifespan.  

Funding: This research was funded by Deputyship for Research& Innovation, Ministry of Education in Saudi 

Arabia, grant number ISP23-56.  

Data Availability Statement: No Data Availability Statements are available. 

Acknowledgments: The authors extend their appreciation to the Deputyship for Research& Innovation, 

Ministry of Education in Saudi Arabia for funding this research work through the project number ISP23-56. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. R. Deepa, M. Sankar, R. R, C. Sankari, Venkatasubramanian and R. Kalaivani, "IoT based Energy Efficient 

using Wireless Sensor Network Application to Smart Agriculture," 2023 International Conference on Intelligent 

Data Communication Technologies and Internet of Things (IDCIoT), Bengaluru, India, 2023, pp. 90-95, doi: 

10.1109/IDCIoT56793.2023.10053446.  

2. Hassan, E.S. Energy-Efficient Resource Allocation Algorithm for CR-WSN-Based Smart Irrigation System 

under Realistic Scenarios. Agriculture 2023, 13, 1149. https://doi.org/10.3390/agriculture13061149. 

3. N. Shanmugasundaram, G. Santhip Kumar, S. Sankaralingam, S. Vishal and N. Kamaleswaran, "Smart 

Agriculture Using Modern Technologies," 2023 9th International Conference on Advanced Computing and 

Communication Systems (ICACCS), Coimbatore, India, 2023, pp. 2025-2030, doi: 

10.1109/ICACCS57279.2023.10113059. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 January 2024                   doi:10.20944/preprints202401.1152.v1

https://doi.org/10.20944/preprints202401.1152.v1


 13 

 

4. A. Pagano, D. Croce, I. Tinnirello and G. Vitale, "A Survey on LoRa for Smart Agriculture: Current Trends 

and Future Perspectives," in IEEE Internet of Things Journal, vol. 10, no. 4, pp. 3664-3679, 15 Feb.15, 2023, doi: 

10.1109/JIOT.2022.3230505. 

5. F. K. Shaikh, S. Karim, S. Zeadally and J. Nebhen, "Recent Trends in Internet-of-Things-Enabled Sensor 

Technologies for Smart Agriculture," in IEEE Internet of Things Journal, vol. 9, no. 23, pp. 23583-23598, 1 Dec.1, 

2022, doi: 10.1109/JIOT.2022.3210154. 

6. Yaping Zhu, Feng Yan, Shengjie Zhao, Song Xing, Lianfeng Shen, “On improving the cooperative localization 

performance for IoT WSNs,” Ad Hoc Networks, vol. 118, 2021, https://doi.org/10.1016/j.adhoc.2021.102504. 

7. Prabhjot Singh, Parulpreet Singh, Nitin Mittal, Urvinder Singh, Supreet Singh, “An optimum localization 

approach using hybrid TSNMRA in 2D WSNs,” Computer Networks, vol. 226, 2023, 

https://doi.org/10.1016/j.comnet.2023.109682. 

8. H. Liouane, S. Messous, O. Cheikhrouhou, M. Baz and H. Hamam, "Regularized Least Square Multi-Hops 

Localization Algorithm for Wireless Sensor Networks," in IEEE Access, vol. 9, pp. 136406-136418, 2021, doi: 

10.1109/ACCESS.2021.3116767. 

9. D. E. Badawy, V. Larsson, M. Pollefeys and I. Dokmanić, "Localizing Unsynchronized Sensors With 

Unknown Sources," in IEEE Transactions on Signal Processing, vol. 71, pp. 641-654, 2023, doi: 

10.1109/TSP.2023.3245284. 

10. X. Zhao, X. Zhang, Z. Sun and P. Wang, "New Wireless Sensor Network Localization Algorithm for Outdoor 

Adventure," in IEEE Access, vol. 6, pp. 13191-13199, 2018, doi: 10.1109/ACCESS.2018.2813082. 

11. Khan AU, Khan ME, Hasan M, Zakri W, Alhazmi W, Islam T. An Efficient Wireless Sensor Network Based 

on the ESP-MESH Protocol for Indoor and Outdoor Air Quality Monitoring. Sustainability. 2022; 14(24):16630. 

https://doi.org/10.3390/su142416630 

12. Alam S, Shuaib M, Ahmad S, Jayakody DNK, Muthanna A, Bharany S, Elgendy IA. Blockchain-Based 

Solutions Supporting Reliable Healthcare for Fog Computing and Internet of Medical Things (IoMT) 

Integration. Sustainability. 2022; 14(22):15312. https://doi.org/10.3390/su142215312 

13. Ali Hakami N, Hosni Mahmoud HA, AlArfaj AA. An Intelligent Tracking System for Moving Objects in 

Dynamic Environments. Actuators. 2022; 11(10):274. https://doi.org/10.3390/act11100274 

14. Alharbi F, Zakariah M, Alshahrani R, Albakri A, Viriyasitavat W, Alghamdi AA. Intelligent Transportation 

Using Wireless Sensor Networks Blockchain and License Plate Recognition. Sensors. 2023; 23(5):2670. 

https://doi.org/10.3390/s23052670 

15. Bharany S, Sharma S, Frnda J, Shuaib M, Khalid MI, Hussain S, Iqbal J, Ullah SS. Wildfire Monitoring Based 

on Energy Efficient Clustering Approach for FANETS. Drones. 2022; 6(8):193. 

https://doi.org/10.3390/drones6080193 

16. Prashar D, Rashid M, Siddiqui ST, Kumar D, Nagpal A, AlGhamdi AS, Alshamrani SS. SDSWSN—A Secure 

Approach for a Hop-Based Localization Algorithm Using a Digital Signature in the Wireless Sensor 

Network. Electronics. 2021; 10(24):3074. https://doi.org/10.3390/electronics10243074 

17. V. Annepu et al., "Review on Unmanned Aerial Vehicle Assisted Sensor Node Localization in Wireless 

Networks: Soft Computing Approaches," in IEEE Access, vol. 10, pp. 132875-132894, 2022, doi: 

10.1109/ACCESS.2022.3230661. 

18. S. Sinha and R. P. M, "Range based improved localization scheme in densely populated wireless sensor 

network," 2021 6th International Conference on Communication and Electronics Systems (ICCES), Coimbatre, 

India, 2021, pp. 792-797, doi: 10.1109/ICCES51350.2021.9489164. 

19. B. K. Madagouda and R. Sumathi, "Range Based Localization using Least Square Method in WSN," 2022 10th 

International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing 

(ICETET-SIP-22), Nagpur, India, 2022, pp. 1-4, doi: 10.1109/ICETET-SIP-2254415.2022.9791708. 

20. M. K. Kumar and V. K. Prasad, "TASLT: Triangular Area Segmentation based Localization Technique for 

Wireless Sensor Networks using AoA and RSSI Measures – A New Approach," 2021 IEEE 18th International 

Conference on Mobile Ad Hoc and Smart Systems (MASS), Denver, CO, USA, 2021, pp. 585-590, doi: 

10.1109/MASS52906.2021.00083. 

21. Y. Venkata Lakshmi, P. Singh, M. Abouhawwash, S. Mahajan, A. K. Pandit and A. B. Ahmed, "Improved 

Chan Algorithm Based Optimum UWB Sensor Node Localization Using Hybrid Particle Swarm 

Optimization," in IEEE Access, vol. 10, pp. 32546-32565, 2022, doi: 10.1109/ACCESS.2022.3157719. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 January 2024                   doi:10.20944/preprints202401.1152.v1

https://doi.org/10.20944/preprints202401.1152.v1


 14 

 

22. L. Hai, Z. Yang, Z. Cao and M. Yaug, "An improved weighted centroid localization algorithm based on 

Zigbee," 2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering 

(AEMCSE), Wuhan, China, 2022, pp. 634-637, doi: 10.1109/AEMCSE55572.2022.00129. 

23. V. Gupta, A. Gupta and M. Kaur, "Performance Investigation of Centroid Based Localization Algorithm and 

Comparison of Improvement Achieved in Localization Error using Optimization Techniques in WSN," 2021 

2nd International Conference on Computational Methods in Science & Technology (ICCMST), Mohali, India, 2021, 

pp. 147-151, doi: 10.1109/ICCMST54943.2021.00040. 

24. G. Liu, Z. Qian and X. Wang, "An improved DV-Hop localization algorithm based on hop distances 

correction," in China Communications, vol. 16, no. 6, pp. 200-214, June 2019, doi: 10.23919/JCC.2019.06.016. 

25. B. Chen, X. Guo, Y. Huang and M. Yang, "Improved DV-Hop Node location Optimization Algorithm Based 

on Adaptive Particle Swarm," 2021 2nd International Conference on Artificial Intelligence and Computer 

Engineering (ICAICE), Hangzhou, China, 2021, pp. 11-17, doi: 10.1109/ICAICE54393.2021.00010. 

26. S. Safavi, U. A. Khan, S. Kar and J. M. F. Moura, "Distributed Localization: A Linear Theory," in Proceedings 

of the IEEE, vol. 106, no. 7, pp. 1204-1223, July 2018, doi: 10.1109/JPROC.2018.2823638. 

27. Bochem and H. Zhang, "Robustness Enhanced Sensor Assisted Monte Carlo Localization for Wireless Sensor 

Networks and the Internet of Things," in IEEE Access, vol. 10, pp. 33408-33420, 2022, doi: 

10.1109/ACCESS.2022.3162288. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 January 2024                   doi:10.20944/preprints202401.1152.v1

https://doi.org/10.20944/preprints202401.1152.v1

