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Abstract: In wireless sensor networks (WSNs) deployed in smart agriculture systems, accurately
determining the locations of sensor nodes is crucial for efficient monitoring and control. However,
in many cases, the exact positions of certain sensor nodes may be unknown. To address this
challenge, this paper presents a novel method for localizing unknown sensor nodes in WSN-based
smart agriculture systems using range measurements. The proposed method utilizes the Levenberg-
Marquardt optimization algorithm to solve a nonlinear least squares problem and minimize the
error in estimating the unknown node locations. By leveraging the known positions of a subset of
sensor nodes and the inexact distance measurements between pairs of nodes, the localization
problem is transformed into a nonlinear optimization problem. To validate the effectiveness of the
approach, extensive simulations and experiments were conducted. The results demonstrate that the
proposed method achieves accurate localization of the unknown sensor nodes, effectively
enhancing the overall performance of the WSN-based smart agriculture system. Furthermore, the
method demonstrates robustness against measurement noise and scalability for large-scale
networks. The practical implications of this research extend beyond smart agriculture systems, as
the proposed method can be applied to various WSN applications where precise node localization
is essential.

Keywords: wireless sensor networks; smart agriculture; node localization; Levenberg-Marquardt
method; nonlinear least squares

1. Introduction

Smart agriculture, driven by advancements in technology, holds great promise for optimizing
resource utilization and increasing crop productivity. One of the key technologies enabling smart
agriculture is wireless sensor networks (WSNs) [1-2]. These networks comprise spatially distributed
sensor nodes that collect and transmit data on environmental conditions such as soil moisture,
temperature, and humidity. In the context of smart agriculture systems, WSNs play a crucial role in
monitoring and controlling these environmental parameters, facilitating efficient water usage and
targeted crop management [2]. WSNs offer several advantages in the domain of smart agriculture.
Firstly, they enable real-time and continuous monitoring of environmental variables, allowing
farmers to make informed decisions regarding agriculture schedules, fertilizer application, and pest
management. This data-driven approach enhances precision agriculture practices by enabling
tailored interventions at the individual plant level. Secondly, WSNs eliminate the need for manual
data collection, reducing labor costs and improving operational efficiency. Additionally, WSNs
provide a scalable and cost-effective solution, as they can be deployed over large agricultural areas,
covering extensive farmlands [3-5].
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Accurate localization of sensor nodes within the WSNs is crucial for achieving the desired
precision and effectiveness in smart agriculture systems. Node localization refers to the process of
determining the physical locations of the sensor nodes in the network. Precise node localization
enables spatially aware monitoring and control, allowing for targeted actions based on the specific
conditions of different areas within the agricultural field [6-7]. For example, localized data on soil
moisture levels can be utilized to implement agriculture strategies that precisely deliver water where
and when it is needed, minimizing wastage and optimizing plant growth.

The localization of sensor nodes in WSNs has been a subject of extensive research due to its
critical role in various applications, including smart agriculture systems. Traditional localization
techniques rely on Global Positioning System (GPS) receivers or manual surveying methods, which
may not be feasible or cost-effective for large-scale deployments. Moreover, these methods often
assume that the positions of all nodes are known or can be accurately measured. However, in
practical scenarios, it is common to have a subset of nodes with known positions while the locations
of other nodes remain unknown or imprecisely known [8-9].

The problem of localizing unknown nodes in WSNs has garnered significant attention due to its
relevance in various applications [10-16]. In the context of smart agriculture systems, accurate
localization of the unknown nodes allows for complete coverage and spatially aware decision-
making. By estimating the coordinates of the unknown nodes based on their range measurements to
anchor nodes with known positions, the overall network performance can be improved, resulting in
more effective resource allocation and optimized agriculture strategies [17].

In this paper, we address the challenge of localizing unknown sensor nodes in WSN-based smart
agriculture systems. We propose a novel approach that can minimize the error in node localization.
The range measurements are derived from the estimated distances between pairs of sensor nodes,
typically obtained from signal strength measurements. By formulating the problem as a nonlinear
least squares optimization task, we propose a novel approach that leverages the Levenberg-
Marquardt method to minimize the error in estimating the node locations. Through extensive
simulations and experiments, we demonstrate the effectiveness and scalability of the proposed
method. The results highlight its potential for practical implementation in real-world smart
agriculture applications, ultimately contributing to sustainable resource management and increased
crop yields.

The motivation behind this research is twofold. Firstly, accurate localization of all sensor nodes
enables fine-grained monitoring and control, facilitating precise water allocation and targeted
interventions in smart agriculture systems. Secondly, the localization method presented in this paper
can be extended to various applications beyond smart agriculture, where the availability of accurate
node positions is essential for efficient operation and decision-making. The key contributions of this
work can be summarized as follows:

1. Proposing a novel approach to localize unknown nodes in WSN-based smart agriculture
systems using range measurements and the Levenberg-Marquardt method.

2. Demonstrating the effectiveness of the proposed approach through extensive simulations and
experiments, showcasing accurate node localization even in the presence of measurement noise.

3. Highlighting the scalability of the proposed approach for large-scale networks, showcasing its
potential for practical implementation in real-world scenarios.

4. Discussing the practical implications of the proposed technique, including its relevance to
precision agriculture, environmental monitoring, and other resource-constrained network
applications.

The detailed abbreviations and definitions used in this paper are listed in Table 1.

Table 1. List of abbreviation.

Abbreviation Definition
WSNs Wireless Sensor Networks
GPS Global Positioning System
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3
TOA Time of Arrival
TDOA Time Difference of Arrival
RSS Received Signal Strength
ITT Iterative Triangulation and Trilateration
DV-Hop Distance Vector-Hop algorithm
LM Levenberg-Marquardt algorithm

The remainder of this paper is organized as follows. Section 2 provides an overview of related
work on node localization techniques in WSNs. Section 3 presents the problem formulation and the
mathematical framework for localizing unknown nodes using range measurements. In Section 4, the
proposed Levenberg-Marquardt optimization approach is described in detail. Section 5 presents the
simulation setup and experimental results, followed by a discussion in Section 6. Finally, Section 7
concludes the paper and outlines potential directions for future research.

2. Related Work

In this section, we provide an overview of the existing literature on node localization techniques
in WSNs. Localization plays a crucial role in WSNs by enabling spatial awareness and precise
monitoring in various applications, including smart agriculture systems. Numerous methods and
algorithms have been proposed to address the node localization problem, aiming to achieve accurate
and efficient localization results. We categorize the related work into three main approaches: range-
based, range-free, and hybrid localization techniques [18-27].

Range-based localization techniques rely on distance or range measurements between sensor
nodes to estimate their positions. These methods often utilize techniques such as Time of Arrival
(TOA), Time Difference of Arrival (TDOA), or Received Signal Strength (RSS) to calculate the
distances. For instance, the well-known GPS is a range-based localization technique widely used in
outdoor environments. However, GPS is not suitable for obstructed environments, making it less
practical for smart agriculture systems [18-21].

Range-free localization techniques, on the other hand, do not rely on distance measurements but
instead exploit connectivity information between sensor nodes to estimate their positions. One
common range-free approach is the Centroid algorithm, which calculates the centroid of a set of
anchor nodes to estimate the position of a target node [22-23]. Another range-free method is the DV-
hop algorithm, which utilizes hop-count information and communication range to estimate distances
between nodes [24-25]. These range-free techniques are often computationally efficient but may
sacrifice localization accuracy compared to range-based methods.

Hybrid localization techniques aim to combine the strengths of both range-based and range-free
approaches to achieve more accurate and robust localization results. These methods typically
leverage both distance measurements and connectivity information. For instance, the Iterative
Triangulation and Trilateration (ITT) algorithm combines triangulation using distance measurements
and trilateration using range-free connectivity information [26-27]. By leveraging the complementary
nature of these two approaches, hybrid techniques can improve the localization accuracy and
overcome limitations of individual methods.

The work in [8] proposes a regularized least squares multi-hops localization algorithm
specifically designed for WSNs. The algorithm aims to improve localization accuracy by
incorporating both range-based and range-free localization techniques. The authors recognize the
limitations of individual localization methods and propose a hybrid approach that combines the
advantages of range-based and range-free techniques. They introduce a regularization term to the
least squares optimization problem, which helps to mitigate errors and uncertainties in range
measurements and connectivity information. By iteratively solving the optimization problem, the
algorithm estimates the positions of unknown nodes based on the observed range measurements and
connectivity information from neighboring nodes. While the work in [8-9] focuses on addressing the
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localization challenge in WSNs, our proposed approach complements this work by specifically
targeting the localization of unknown sensor nodes in WSN-based smart agriculture systems. Our
method leverages range measurements and the Levenberg-Marquardt method to minimize
localization errors and enable accurate positioning of the unknown nodes. Through extensive
simulations and experiments, we showcase the effectiveness and scalability of our approach,
contributing to the body of knowledge in localization techniques for smart agriculture applications.

While various localization techniques have been proposed for WSNs, few studies specifically
address the problem of localizing unknown nodes in the context of smart agriculture systems. The
localization methods developed for smart agriculture systems often rely on known anchor nodes with
GPS receivers or manual surveys. However, in practical scenarios, the locations of some sensor nodes
may be unknown or imprecisely known. This presents a unique challenge that requires specialized
localization algorithms to estimate the positions of these unknown nodes.

In our work, we propose a novel approach that addresses the challenge of localizing unknown
sensor nodes in WSN-based smart agriculture systems. By utilizing range measurements and
leveraging the Levenberg-Marquardt method, our approach aims to minimize the error in estimating
the node locations. Through extensive simulations and experiments, we demonstrate the
effectiveness and scalability of our proposed method, showcasing its potential for practical
implementation in real-world smart agriculture applications.

In the following sections, we present the problem formulation and describe the mathematical
framework for our proposed localization method. We then provide details on our approach,
emphasizing the utilization of the Levenberg-Marquardt method for accurate node localization.

3. Nonlinear Least Squares Problem Formulation

A Smart agriculture System based on WSNs presents a contemporary and forward-thinking
approach to achieve efficient and sustainable agriculture practices. This system integrates a network
of N sensors strategically positioned within the soil, plants, and environment to monitor and gather
crucial data concerning soil moisture, temperature, humidity, rainfall, and other pertinent
parameters. Within our WSN, the locations of K sensor nodes are known, while the exact positions of
the remaining M = N - K nodes are unknown. Nonetheless, we can overcome this challenge by
employing a nonlinear least squares approach to predict the locations of the unknown M nodes. The
location of these sensor nodes must be determined from the distances to nearby nodes (for example,
estimated from the strength of signals received from those nodes).

The distance measurements can be represented by an undirected graph as shown in Figure 1. In
this figure, the number of vertices in the graph is N. The first M = N - K vertices represent the nodes
with unknown position. We refer to these nodes as the free nodes. The last K vertices are the nodes
with known position and are the anchor nodes.

The node coordinates are denoted as follows:

p1 = (x1,¥1), D2 = (X2, ¥2), o, v = Xy, Y, 1)

In Eq. (1), the vectors py, . . ., pn-kare the unknowns in the problem where the vectors pyk:1, . . ., pn
give the positions of the anchor nodes which are known.

The edges in the graph indicate the pairs of nodes for which a distance measurement is available.
There are L edges, denoted by (i, j1), ..., (i, jr). The L distance measurements are given as follows:

b= Nyl + e 1= 1,200 o

where ¢ represents the measurement error. To estimate the location of the free nodes we minimize
the error function as follows:

2
ol =l = 007 = Bt [l =57 + 01 - 1) ®

Equation (3) represents a nonlinear least squares problem with variables x1, x2, ..., xnxand y1, y2, ...,
ynk. Thus, we can conclude that our cost function f(u®) is as follows:
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F@®) = (= 5,) + 9’ — @

In Eq. (4) we consider the points at the [-th iteration. As a result, utilizing the Levenberg-
Marquardt method, we should try to minimize the following:

If (u®) + DF®) (= u®)|" + 20 = u®] ®)
where D represents the Jacobian matrix as explained in the next section and A is the regularization
parameter.

|
1 il
0.5
0 - —
]

Figure 1. Network model example with 9 anchor nodes (squares), 21 free nodes (circles) and 98
edges.

Thus, from our minimizing function in (4) and (5), we can formulate the unknown positions as
a nonlinear least squares problem. The solution of this problem is computed as follows:

2 =u® - (ATA+ 201 ATF(u®), A= Df(u®) (6)

where I represents the identity matrix and (.)7 is the matrix transpose.
The algorithm will continue to run until the termination condition is satisfied which is:

Vg(u®) =247f(u®) <1075 )

4. Levenberg-Marquardt Optimization Approach

A crucial step in executing the Levenberg-Marquardt method involves the computation of the
Jacobian matrix. Recall the definition of the Jacobian matrix as follows:

[ df; df df i
am, (2) am, (@) am., (2)
df, df, codfy
pfF@ =|am;® am, @ am, P ®)
af, | df . df,
Ll dm, ) dm, @) - dm, (Z)_
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In the considered WSN, mz1, mz, ..., mx in (8) refer to x1, x2, ..., xn-kand y1, y2, ..., ynk, with function f(z)
defined in (4). It is clear that the matrix Df(z) € IR™*?(N~K) a5 we have a row for each of the L edges,
and we have 2(N - K) variables.

Regarding the actual matrix entries themselves, there are four possible derivatives we could
require in each row, with the rest of the entries in that row being 0. The four possible derivative
expressions are listed as in Eq. (9):

(xil _le)

_df(u(l))_ \/(xil - le)z + (yil_yjl)z

i — (i, — x5,)
4 () —

dx, |_ J (e, = )" + (=93 o)
df(u(l)) - (yiz — yfz)

d}’il
df (u®) \/(xil —x,)" + =)’

del | _(yil - yiz)

2 2
,\/(xiz — %)+ =)

However, we can clearly notice that we have four possible conditions as follows: both nodes are
anchors, one of the two nodes are anchors (either the first node in the edge or the second node), and
neither of the two nodes are anchors. In the following we consider each condition separately.

1. If the i-th edge contains nodes that are both anchors, the Jacobian matrix row is all zeros, since
both variables are known (assuming points at the [-th iteration):

Vﬁ-(u(l))T =[0 0 -- 0] (10)

2. If the i-th edge contains one anchor node, the Jacobian matrix row will contain the derivatives

with respect to the unknown node, with the rest of the entries in that row being 0 (assuming
points at the I-th iteration), node 2 as anchor:

Vfi(u(’))Tz[O 0 w0 YO o g gD o] 11)

dx; ayy,
3. Node 1 as anchor:

®
(1, OV = ar®) A )
Vi (u®) [o 0 0 ax 0 o, 0 (12)
4. Our last of the four conditions occurs if the i-th edge contains no anchor nodes, in which our
Jacobian matrix row will contain the derivatives with respect to both of the unknown nodes (i.e.
a potential of four non-zero elements in the row), all assuming points at the I-th iteration:

DY = y® oo ZED) o
vfi(u®) _[o 0 = 0 =0 0 = 0 0 (13)

The Levenberg-Marquardt algorithm steps can be summarized as follows:

Step 1: In each iteration of the algorithm, we first compute f(u"), and then the Jacobian matrix
Df(u®) row by row, with each row being evaluated for one of the four conditions described
above.

Step 2: Next, within the iteration, the code computes both [[Vg(u)|| and #@, in order to evaluate
f(@) in comparison with f(u®). Depending on this calculation, the algorithm updates (1)
and A® as follows:

L+ = {ﬁ if IF@I7 < [|F(u®)] (14)

u®, otherwise
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o ={ BAD if IF @I < [[f w®)|’ (15)

B£,A0,  otherwise

Step 3: If Vg(uW) = 24Tf(uV) < 1075, then the algorithm will terminate out of the loop and return
the calculated estimated coordinates of the unknown sensor nodes.

Step 4: If the condition in step 3 not satisfied go to step 1. The following flow chart summarizes the
proposed algorithm steps and indicated by Figure 2.

< Start )

A 4

Compute f(u®) and Df(ul)

!

Select the suitable condition

!

computes both [|[Vg(u)|| and &

evaluate f(#)in comparison
with f{u®)
v

II updates u*Vand At

u@ — ® g 30+ = g [ NO

Yes

u(l+1) =1 & A([Jrl) — ﬂlll(l)

Termination condition is satisfied

v

calculated estimated coordinates

of the unknown sensor nodes

v

End

Figure 2. Flow chart of the proposed algorithm.
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5. Simulation Results and Discussion

In this section, MATLAB programming is used to execute the Levenberg-Marquardt algorithm
to predict the estimated coordinates of the unknown sensor nodes in the considered WSN. The
algorithm will continue to run until the termination condition, Vg (u(l)) < 1075, is satisfied.

The first input argument N is the number of nodes in the network, and it varies according to
considered network scale. This includes K = 9 anchor nodes, positioned as in Figure 1. The N - 9 free
nodes are placed randomly in a normalized square [0, 1] x [0, 1]. Two nodes are connected by an edge
if their distance is less than or equal to normalized R. Figure 1 presents an example with N =30 and
R =0.4. The first output argument E is an Lx2 array, specifying the L edges. The two entries of row [
are irand ji, the nodes connected by edge I. The output argument is an N x 2 array with the coordinates
of the N nodes. Typical values of f1 and 2 are f1=0.8 and f2=2.

5.1. Effect of Network Scale

In this subsection we study the effects of network scale on the performance of proposed
approach.

A. Small Scale Network

We consider a small-scale network with N =50 nodes, 9 of them are anchor nodes with known
and fixed location as follows: [(0, 0), (0.5, 0), (1, 0), (0, 0.5), (0.5, 0.5), (1, 0.5), (0, 1), (0.5, 1), (1, 1)]. The
free nodes (41) are placed randomly in the square [0, 1] x [0, 1]. Figure 3 presents the estimation of
the sensor coordinate using the proposed approach. The open circles (blue) are the exact positions
while the filled circles (green) are the estimated positions. This figure indicates the accuracy of the
proposed approach in estimating the unknown location of the free nodes.
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Figure 3. Least squares estimate of the sensor coordinate using N = 50.

B. Medium Scale Network

In this part we check the accuracy of the proposed approach when increasing the number of
unknown free nodes to 91 nodes, i.e., we consider N =100 nodes. For fair comparison we use 9 anchor
nodes at the same location as small-scale case. Figure 4 shows the estimated positions versus the exact
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positions considering medium scale network. This figure indicates the accuracy of the proposed
approach even for large free nodes.
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Figure 4. Least squares estimate of the sensor coordinate using N = 100.

C. Large Scale Network

Now we consider large scale network with N =200 nodes as shown in Figure 5. The obtained
result in this figure ensures the ability of the proposed approach to accurately estimate the position
of the free nodes even for large scale network.
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Figure 5. Least squares estimate of the sensor coordinate using N =200.
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Figure 6 presents the cost function versus number of iterations for the 3 network scenarios. As
expected, the large-scale network requires the largest cost function compared to the other networks.

1000 T | |
3 Large scale network
900 = = = Medium scale network |

: Small scale network
800 i

700 i 1
600 | H |

500 & :

Cost Function

400 : ]
300 H |
200 -

100

0

Iteration Number

Figure 6. Cost function versus number of iterations for 3 network scenarios.

5.2. Effect of Changing the Anchor Nodes Locations

In this subsection we study the effect of changing the position of anchor nodes on the accuracy
of position estimation using the proposed approach. The 9 anchor nodes new location is located
around network center as follows: [(0.2, 0.2), (0.5, 0.2), (0.8, 0.2), (0.2, 0.5), (0.5, 0.5), (0.8, 0.5), (0.2, 0.8),
(0.5,0.8), (0.8, 0.8)].

Figure 7 presents the least squares estimate of the sensor coordinate using the three network
scenarios considered above, i.e., N =50 (a), 100 (b), and 200 (c). This figure indicates that the accuracy
of the proposed approach is affected by changing the anchor node’s location. However, the reduction
in estimation accuracy is small which ensures the robustness of the proposed approach. The anchor
node’s new location is around the network center therefore, its accuracy become less than that at
network boundaries. This figure also shows that as the number of free nodes increase from 50 to 200,
the proposed approach estimation accuracy decreases.
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Figure 7. Effect of changing the position of anchor nodes on the accuracy of the proposed approach
using N =50, 100, and 200.
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5.3. Performance Comparison

In this subsection we compare the performance of the proposed approach with other localization
algorithms presented in literature such as improvement of DV-Hop algorithm [8] and SDR+LM algorithm
[9]. For fair comparison, we use the average localization error presented in [8] and given as:

ALE = N K /W (16)

where N-K represents the number of free nodes (unknown position nodes), (x;, xy;) and (X;,9;) are
the exact and the estimated locations, respectively of node i.

Figure 8 presents a comparison between the proposed approach and the algorithms presented
in [8] and [9] using the above-mentioned parameters and the large-scale network case. As explained
above, the open circles (blue) are the exact positions while the filled circles (green) are the estimated
positions, and the black straight line that connect between the two circle types represents the

positioning error. This figure indicates that the proposed approach achieves the lowest localization
error when compared to the other algorithms.
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Figure 8. Performance comparison between the proposed approach (a), DV-Hop algorithm [8] (b) and
SDR+LM algorithm [9] (c).

In the following we study the effect of changing the number of anchor nodes on the accuracy of
location estimation of the proposed approach. We consider the case of N = 200 nodes and R = 0.4.
Figure 9 presents the ALE versus number of anchor nodes for the proposed approach and the cited
above localization algorithms [8] and [9].

10 T T T T T T T T
=——©— Proposed appraoch
=—8— DV-Hop algorithm [8] ||
=t SDR+LM algorithm [9]

Average localization error, ALE

4 6 8 10 12 14 16 18 20
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Figure 9. ALE versus number of anchor nodes for the proposed approach and the localization
algorithms [8] and [9].
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The depicted figure illustrates a clear trend wherein the ALE diminishes with an increase in the
number of anchor nodes. This observation can be attributed to the deliberate augmentation of anchor
nodes within the network, while keeping the total number of nodes constant. This augmentation is
intended to reduce the hop count between the anchors and unknown nodes. As a result, the estimated
distance between an anchor and an unknown node more accurately corresponds to the actual
distance, leading to a decrease in the average positioning error. Additionally, the figure demonstrates
that the proposed algorithm yields a lower localization error compared to all other algorithms
considered in the comparison. At number of anchor nodes of 9, the proposed approach achieves 19%
and 58% improvement in estimation accuracy when compared to the cited above localization
algorithms [8] and [9].

6. Conclusions

This paper addressed the challenge of localizing unknown sensor nodes in WSN-based smart
agriculture systems, highlighting the importance of accurate node localization for efficient
monitoring and control. A novel approach was proposed, utilizing range measurements and the
Levenberg-Marquardt optimization algorithm to solve a nonlinear least squares problem and
minimize the error in estimating the unknown node locations. The obtained results demonstrated the
effectiveness and accuracy of the proposed approach in estimating the positions of the unknown
sensor nodes. The simulations and experiments conducted for small-scale, medium-scale, and large-
scale network scenarios showcased the robustness and scalability of the approach. Even with an
increase in the number of unknown nodes, the proposed approach consistently achieved accurate
localization. Comparative analysis against other localization algorithms highlighted the superior
performance of the proposed approach, with significant improvements in estimation accuracy.
Furthermore, the study investigated the impact of changing the position of anchor nodes on the
estimation accuracy. While there was a slight reduction in accuracy, the proposed approach remained
robust and effective in localizing the unknown nodes, emphasizing its practical viability. The
obtained numerical results demonstrate that the proposed approach achieves a significant
improvement in estimation accuracy, outperforming the compared localization algorithms by 58%.

Future research includes exploring the influence of environmental factors on localization
accuracy, integrating additional sensing modalities for enhanced precision, investigating scalability
for larger networks, and developing energy-efficient algorithms to prolong network lifespan.
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