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Abstract: Using assembly theory, we investigate the assembly pathways of binary strings of length N formed
by joining bits present in the assembly pool and the strings that entered the pool as a result of previous joining
operations. We show that the string assembly index is bounded from below by the shortest addition chain for
N, and we conjecture about the form of the upper bound. We define the degree of causation for the minimum
assembly index and show that for certain N it features regularities that can be used to determine a shortest
addition chain. We show that a string with the smallest assembly index for N can be assembled by a binary
program of length equal to this index if the length of this string is expressible as a product of Fibonacci numbers.
We conjecture that there is no binary program that has a length shorter than the length of the string having the
largest assembly index for N that could assemble this string. The results confirm that four Planck areas provide a
minimum information capacity that corresponds to a minimum thermodynamic (Bekenstein-Hawking) entropy.
Knowing that the problem of determining the assembly index is at least NP-complete, we conjecture that this
problem is NP-complete, while the problem of creating the string so that it would have a predetermined largest
assembly index is NP-hard. The proof of this conjecture would imply P # NP, since every computable problem

and every computable solution can be encoded as a finite binary string.

Keywords: assembly theory; emergent dimensionality; shortest addition chains; P versus NP problem;

mathematical physics

1. Introduction

Assembly Theory (AT) [1-7] provides a distinctive complexity measure, superior to established
complexity measures used in information theory, such as Shannon entropy or Kolmogorov complex-
ity [1,5]. AT does not alter the fundamental laws of physics [6]. Instead, it redefines objects on which
these laws operate. In AT, objects are not considered sets of point particles (as in most physics), but
instead are defined by the histories of their formation (assembly pathways) as an intrinsic property,
where, in general, there are multiple assembly pathways to create a given object. Therefore, we use
the emphasis for object as this term, understood as a collection of matter, is a misnomer, as it neglects
the (quantum) nonlocality [8]. The nonlocality is independent of the entanglement among particles [9],
as well as the quantum contextuality [10], and increases as the number of particles [11] grows [12,13].
Furthermore, the ugly duckling theorem [14,15] asserts that every two objects we perceive are equally
similar (or equally dissimilar).

AT explains and quantifies selection and evolution, capturing the amount of memory necessary
to produce a given object [6] (this memory is the object [16]). This is because the more complex a given
object is, the less likely an identical copy can be observed without the selection of some information-
driven mechanism that generated that object. Formalizing assembly pathways as sequences of joining
operations, AT begins with basic units (such as chemical bonds) and ends with a final object. This
conceptual shift captures evidence of selection in objects [1,2,6].

The assembly index of an object corresponds to the smallest number of steps required to assemble
this object, and - in general - increases with the object’s size, but decreases with symmetry, so large objects
with repeating substructures may have a smaller assembly index than smaller objects with greater
heterogeneity [1]. The copy number specifies the observed number of copies of an object. Only these
two quantities describe the evolutionary concept of selection by showing how many alternatives were
excluded to assemble a given object [6,16].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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AT has been experimentally confirmed in the case of molecules and has been probed directly
experimentally with high accuracy with spectroscopy techniques, including mass spectroscopy, IR,
and NMR spectroscopy [6]. It is a versatile concept with applications in various domains. Beyond
its application in the field of biology and chemistry [7], its adaptability to different data structures,
such as text, graphs, groups, music notations, image files, compression algorithms, human languages,
memes, etc., showcases its potential in diverse fields [2].

In this study, we investigate the assembly pathways of binary strings by joining individual bits
present in the assembly pool [6] and strings that entered the pool as a result of previous joining
operations. It is bit that is the smallest amount and the quantum of information.

In particular, we investigate the assembly of black-body objects (BBs: black holes (BHs), white
dwarfs, and neutron stars) considered binary strings [17-19]. It is known [2,17-28] that information
in the universe evolves toward increased structural complexity, decreasing information entropy:.

This study extends the findings of previous research [11,17-19] within the framework of AT
and emergent dimensionality [8,11,17-19,24,26,27,29]. However, our results generally apply to
information theory. Therefore, we put the BB-related content in frames like this one. The reader
not interested in BBs may skip the text in these frames.

The paper is structured as follows. Section 2 introduces basic concepts and definitions used in
the paper. Section 3 shows that the assembly index of binary strings is bounded from below and
provides the form of this bound. Section 4 defines the degree of causation for strings with the smallest
assembly index. Section 5 shows that the assembly index of binary strings is bounded from above and
conjectures about the exact form of this bound. Section 6 introduces the concept of a binary assembling
program and shows that the trivial assembling program assembles binary strings that have the smallest
assembly index. Section 7 discusses and Section 8 concludes the findings of this study.

2. Preliminaries

For K subunits of an object O the assembly index ap of this object is bounded [1] from below by

min(ap) = log,(K), 1

and from above by
max(ap) = K—1, 2)

The lower bound (1) represents the fact that the simplest way to increase the size of a subunit in a
pathway is to take the largest subunit assembled so far and join it to itself [1] and, in the case of the
upper bound (2), subunits must be distinct so that they cannot be reused from the pool, decreasing the
index.

Here, we consider binary strings C,EN) containing bits {1,0}, with Ny zeros and Nj ones, having
length N = Np + Nj. Nj is called the binary Hamming weight or bit summation of a binary string.
Binary strings are our basis AT objects [2] and we consider the process of their formation within the AT
framework. Where the bit value can be either 1 or 0, we write * = {1,0} with * being the same within

the string C,EN). If we allow for the 2"d possibility that can be the same as or different from *, we write

* = {1,0}. Thus, C,Ez) = [*x], for example, is a placeholder for all four 2-bit strings.
We consider strings C,EN) to be messages transmitted through a communication channel between a
source and a receiver, similarly to the Claude Shannon approach [30] used in the derivation of binary

information entropy

H (Cim) = —polog,(po) — p1logy(p1), ()
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where
Ny

N’
are the ratios of occurrences of zeros and ones within the string CIEN) and the unit of entropy (3) is bit.

_ Mo and p; =

Po=5 4)

(N)

Definition 1. A string assembly index a\") is the smallest number of steps s required to assemble a binary

string CIEN) of length N by joining two distinct bits contained in the initial assembly pool P = {1,0} and
strings assembled in previous steps that were added to the assembly pool. Therefore, the assembly index atN) (Cy)

is a function of the string CIEN).

For example, the 8-bit string
c® — [01010101] )

can be assembled in at most seven steps:

1. join 0 with 1 to form C!?) = [01], adding [01] to P = {1,0,01},
2. join C{?) = [01] with 0 to form C\*) = [010], adding [010] to P = {1,0,01,010},

3. .
7. join C”) = [0101010] with 1 to form C*) = [01010101]
(i.e. not using the assembly pool P), six, five, or four steps:

1. join 0 with 1 to form C\?) = [01], adding [01] to P,

2. join C\) = [01] with [01] taken from P to form C\*) = [0101], adding [0101] to P,

3. join o _ [0101] with [01] taken from P to form C\” = [010101], adding [010101] to P,
4. join C\*) = [010101] with [01] taken from P to form C\*’ = [01010101],

or at least three steps:

1. join 0 with 1 to form C\*) = [01], adding [01] to P,
2. join C\) = [01] with [01] taken from P to form C\*) = [0101], adding [0101] to P,
3. join C]E4) = [0101] with [0101] taken from P to form CIES) = [01010101],

while the 8-bit string

c® = [00010111] ©6)
can be assembled in at least six steps:

. join 0 with 1 to form Cl(z) = [01], adding [01] to P,

. join Cl(z) = [01] with [01] taken from P to form Cl(4) = [0101], adding [0101] to P,

. join 0 with 0 adding [00] to P,

. join Cl(4) = [0101] with [00] taken from P to form Cl(6) = [000101], adding [000101] to P,
- join C'®) = [000101] with 1 to form C” = [0001011], adding [0001011] to P,

. join C”) = [0001011] with 1 to form C'¥) = [00010111],

N Q1 = WOIDN -

as only the doublet [01] can be reused from the pool. Therefore, strings (5) and (6), despite having the
same length N = 8, Hamming weight N; = 4, and Shannon entropy (3), have respective assembly
indices a® (C;) = 3 and a(®) (C;) = 6 that represent the lengths of their shortest assembly pathways,
which in turn ensures that their assembly pools P are distinct sets for a given assembly pathway.

Tables 1 and A6-A13 (Appendix D) show the distributions of the assembly indices among 2N
strings for 4 < N < 12 taking into account the number of ones Nj. The sums of each column form
Pascal’s triangle read by rows (OEIS sequence A007318).
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Table 1. Distribution of the assembly indices for N = 4.

Ny
a®@©) | a®@©) o 1 2 3 4
2 41 2 1
3 12 4 4 4
61 4 |BW =6 4 1

The following definition is commonly known, but we provide it here for clarity.
Definition 2. A string B,EN) is a balanced string if its Himming weight Ny = [N /2| or Ny = [N/2].

Without loss of generality, we shall assume that if N is odd, N; < Ny (e.g., for N =5, N = 2,
and Ny = 3). However, our results are equivalently applicable if we assume the opposite (i.e. a larger
number of ones for an odd N). The number |B(N)| of balanced strings among all 2N strings is'

591~ (yay) = (pwvar) = Ve ?

This is the OEIS A001405 sequence, the maximal number of subsets of an N-set such that no one
contains another, as asserted by Sperner’s theorem, and approximated using Stirling’s approximation

for large N. Balanced and even length strings B]EN) have natural binary entropies (3) H (BIEN)) ={0,1}.

Conversely, non-balanced and/or odd-length strings C]EN) have binary entropies 0 < H (C,(CN)) <L

BBs emit Hawking black-body radiation having a continuous spectrum that depends only
on one factor, the BB temperature | Tgg| = Tp/ (27tdpp) corresponding to the BB diameter Dpp :=
dpplp,dpp € R, where ¢p and Tp denotes respectively the Planck length and temperature [17].

Triangulated BB surfaces contain a balanced number of Planck area triangles, each hav-
ing binary potential 69 = —c? - {0,1}, where ¢ denotes speed of light in vacuum, as has been
shown [17,19], based on the Bekenstein-Hawking entropy [31-33] Spg = kg Npp /4. Here kg is the
Boltzmann constant and Ngp := 71D3; /(3 = md3; is the information capacity of the BB surface,
i.e., the | Npg| € N Planck triangles corresponding to bits of information [17-19,32,34,35], and the
fractional part triangle(s) having the area {Ngp }¢2 = (Npp — | Npg | )6123 too small to carry a single
bit of information [17,18].

Therefore, a balanced string By represents a BB surface comprising N7 = | Npp] /2 active
Planck triangles (APTs) with binary potential apr = —c? and energy Egg = +Mggc? [18].

Theorem 1. A string having length N = 4 is the shortest string having more than one string assembly index 1.

Proof. The proof is trivial. For N = 1 the assembly index a!)(C) = 0, as all basis objects have a
pathway assembly index of 0 [2] (they are not assembled). N = 2 provides four available strings with
a?(C) = 1. N = 3 provides eight available strings with a(3)(C) = 2. Only N = 4 provides 16 strings
that include four stings with 2¥)(C) = 2 and twelve strings with 2 (C) = 3 including |[B¥)| = 6
balanced strings, as shown in Tables 1 and 2. For example, to assemble the string B; = [0101], we need
to assemble the string [01] and reuse it. Therefore, aN) (C;) = N —1for0 < N < 4,Vk = {1,2,...,2N}

and mkin({a(N) (Ck)}) < N —1for N > 4, where {a(N)(C;)} denotes a set of assembly indices of all
|2N] strings. O

T "|x]" is the floor function that yields the greatest integer less than or equal to x and "[x]" is the ceiling function that yields

the least integer greater than or equal to x.

d0i:10.20944/preprints202401.1113.v9
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Table 2. |B(*)| = 6 balanced strings B,£4).

k B 2™ (By)
1[0 D © 1 2
2@ 0 a o 2
300 1 1 0 3
401 1 0 o0 3
501 0 0 1 3
60 0 1 1 3

Interestingly, Theorem 1 strengthens the meaning of N = 4 as the minimum information capacity
that provides a minimum thermodynamic black hole entropy [31-33]. There is no disorder or uncertainty
in an object that can be assembled in the same number of steps s < 2.

The following definition, taking into account the cyclic order of binary strings, is also provided
for the sake of clarity.

Definition 3. A string R,({N) is a ringed string if a ring formed with this string by joining its beginning with
its end is unique among the rings formed from the other ringed strings RI(N),Z # k.

There are at least two and at most N forms of a ringed string R]((N) that differ in the position of
the starting bit. For example for |B(#)| = 6 balanced strings, shown in Table 2, two augmented strings
with a®) = 2 correspond to each other if we change the starting bit

[...1]0101|0101|01...] =

(8)
[...10]1010]1010|1...].
Similarly, four augmented strings with a(*) = 3 correspond to each other
. 101100110 | 011...] =
.0]1100]1100 | 11...] =
©)

[.. ]
.. ]
[...01] 1001|1001 |1...]
[...011]0011 | 0011 | ...]

4

)

after a change in the position of the starting bit. Thus, there are only two balanced ringed strings E,E4 .

The number of ringed strings |R(N)| among all 2N strings is given by the OEIS sequence A000031.
In general (for N > 3), the number |R™N)| of ringed strings is much lower than the number |[BN)| of
balanced strings.

As asserted by the no-hair theorem [36], BH is characterized only by three parameters: mass,
electric charge, and angular momentum.

However, BHs are fundamentally uncharged and non-rotating, since the parameters of any
conceivable BH, that is, charged (Reissner-Nordstrom), rotating (Kerr) and charged rotating (Kerr-
Newman), can be arbitrarily altered, provided that the area of a BH surface does not decrease [37]
using Penrose processes [38,39] to extract electrostatic and/or rotational energy of a BH [40].

Thus, a BH is defined by a single real number, and no Planck triangle is distinct on a BH
surface. We can define neither a beginning nor an end of a balanced ringed string E,gNBH) that
represents a given BH.

By neglecting the notion of the beginning and end of a string, we focus on its length and content.
In Yoda’s language,
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"complete, no matter where it begins. A message is".

The numbers of the balanced | By, ringed |Ry|, and balanced ringed” |Ey| strings are shown in Table 3
and Figure 1. The formula for |E;| remains to be researched.

Table 3. String length N, number of all strings 2N number of balanced strings B (N ), number of ringed
strings RN), and number of balanced ringed strings EXN).

N N \B(N>| |R(N)| |E(N)| \B(N)|/|E(N)\
1 2 1 2 1 1
2 4 2 3 1 2
3 8 3 4 1 3
4 16 6 6 2 3
5 32 10 8 2 5
6 64 20 14 4 5
7 128 35 20 5 7
8 256 70 36 10 7
9 512 126 60 14 9
10 1024 252 108 26 9.6923 ...
11 2048 462 188 42 11
12 4096 924 352 80 11.55
13 8192 1716 632 132 13
14 | 16384 3432 1182 246 13.9512...
15 | 32768 6435 2192 429 15
100
90
80
— 70
%
. 60
S
=50
£
40
o
N30
20
10
O' i i i
8 9 10

Figure 1. Numbers of all 2N strings (red), balanced strings |B(N)| (green), ringed strings |[R(N)| (cyan),
and balanced ringed strings |E (N)| (blue) as a function of the string length N.

We note that, in general, the starting bit is relevant for the assembly index. Thus, different forms of
a ringed string may have different assembly indices. For example, for N = 7 balanced strings B34 and
B3s, shown in Table A16 have a7) = 6. However, these strings are not ringed, since they correspond to
each other and to the balanced strings B13, B1g, Bao, B2g, and B3y with a”) =5, They all have the same
triplet of adjoining ones.

2 |E| is close to OEIS A000014 up to the eleventh term.
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Definition 4. The assembly index of a ringed string R,EN) is the smallest assembly index among all forms of

this string.

Thus, if different forms of a ringed string have different assembly indices, we assign the smallest
assembly index to this string. In other words, we assume that the smallest number of steps

a™ (Re) = min({a™ (R)1}), (R € Ry, (10)

where (Ry); denotes a particular I form of a ringed string Ry, is the string assembly index of this
ringed string. We assume that if an object that can be represented by a ringed string can be assembled
in fewer steps, this procedure will be preferred by nature.

The distribution of the assembly indices of the balanced ringed strings Ej is shown in Table 4.

Table 4. Distribution of assembly indices among balanced ringed strings E(N) for 4 < N < 11.

N |E(N)| a(N):z a(N):3 a(N) =4 a(N):S a(N) =6 a(N):7 g(N) =8
4 2 1 1

5 2 1 1

6 4 1 2 1

7 5 2 3

8 10 1 1 6 2

9 14 1 4 7 2

10 26 1 6 9 10

11 42 2 14 20 6

3. Minimum Assembly Index

In the following, we derive the tight lower bound of the set of different string assembly indices 1.

Theorem 2 (Tight lower bound on the string assembly index). The smallest string assembly index
aN)(C,in) as a function of N corresponds to the shortest addition chain for N (OEIS sequence A003313).

Proof. Strings Cpin for which a(N) (Cpin) = rr}cin({u(N) (Ck)}>, Vk = {1,2,...,2N} can be formed in
subsequent steps s by joining the longest string assembled so far with itself until N = 2° is reached [1].
Therefore, if N = 2%, then m}(in({a(zs) (Ck)}) =5 = log,(N). Only four strings

can =00...], ¢ =n1...], CZ) =[0101...], and C3) =[1010...]  (11)

ming minp ming min

have such an assembly index in this case.

An addition chain for N € N having the shortest length s € N (commonly denoted as I(N)) is
defined as a sequence 1 = by < b; < --- < bs = N of integers such that for each j > 1, b; = by + by
for I < k < j. The first step in creating an addition chain for N is always b; = 1+ 1 = 2 and this
corresponds to assembling a doublet [+*] from the initial assembly pool P. Thus, the lower bound for s
of the addition chain for N, s > log, (N is achieved for N = 2°. In our case, this bound is achieved by
the strings (11). The second step in creating an addition chaincanbe b, =1+1=2o0rb; =1+2 = 3.

Thus, finding the shortest addition chain for N corresponds to finding an assembly index of a
string containing bits and/or doublets and/or triplets generated by these doublets for N # 2° since
due to Theorem 1 only they provide the same assembly indices {0,1,2}. Such strings correspond to
linear molecules made of carbons Supplementary Materials, S3.2 in [4]. O

(N)

The smallest assembly indices a ./ are shown in Table 5 for 1 < N < 21. Calculating the minimum
length of the addition chain for N, as well as finding the shortest assembly pathway for a chemical
molecule, have been shown to be at least as hard as NP-complete [4,41].
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Table 5. The lower bound on the binary string assembly index (OEIS A003313).

N |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
WM 1To 1 2 2 3 3 4 3 4 4 5 4 5 5 5 4 5 5 6 5 6

min

a

Interestingly, if a binary string C(N) were to encode four DNA /RNA nucleobases (for example as,
A= 00, C= 01, G= 10, and T= 11), then strings with the smallest assembly indices (as well as strings
generated by trivial assembly programs Q according to Definition 6) would not encode all nucleobases.

For example, the string clo — [1001010010] with a'"Y = 4 does not encode T= 11.

min min
4. Degree of Causation for Minimum Asembly Index Strigs

Using the difference between the general AT lower bound (1) and the smallest assembly index
(OEIS A003313) we can define the quantity

(N) (N)

DC(N) = 2<10g2(N)7ﬂmi“) = N2 "min, (12)

capturing a degree of causation [6] of assembling the strings of length N with the smallest assembly
index, as shown in Figure 2. For N = 2, the degree of causation D¢ (N) = 1, as all strings (11) can
be assembled along a single pathway only; their assembly is entirely causal. However, for N # 2°,

D¢ (N) < 1, since some strings Cr(nl\ljr)1 can be assembled along different pathways. For example, there
are two pathways for the string [001]: (a) [00] + 1 and (b) 0 + [01] leaving different subunits ([00] and

[01]) in their assembly pools and resulting in lower values of D¢ (N).

0 1 1 1 1 J
0 2 4 6 8 10

X 104

Figure 2. Degree of causation as a functionof 1 < N < 10°.

Equation (12) features regularities that for certain values of N can be used to determine the
" = logy(N) — log, (Dc(N)). For

smallest assembly index (i.e. the shortest addition chain for N) as a,
= s and for each N being the sum of two powers of 2 (OEIS

@)

example, foreach N =2°,s e N a
A048645)

. : o 1
Ni=241-2, 1=01..,s-1 & afj=s+1 lm(minDc(N) =7  (19)
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while for the remaining N not being the sum of two powers of 2 (OEIS A072823)
P<N<2, N£2K & a™ =54k k>2  lim(maxDc(N)) = = (14)
7 min 4 —_— 4 S*}OO C 32’

where k = 2 for N = {7,11,13 — 15,19,21 — 23,25 — 28,... }, while some N’s are exceptions to
this general rule. For example, k = 3 for N = {29,31,47,53,55,57 — 59,61 — 63,...}, k = 4 for
N = {127,191,235,237,239,247,251,253,254, . .. }, etc. The first exception, k = 3 is for Niz = 29. The
first double exception, k = 4 is for Ng3 = 127. However, in particular, for

Ny=2432, 1=01,...,5-2 « a =512 and (15)
Npe3=2+7-23={1530,60,...}, s>3 <« a3 —s542 (16)

Table 6. List of the shortest addition chain sequence generating factors for 1 < s <5.

s | 2° The shortest addition chain sequence generating factors

1121

214 | 1|3

318|133 |5 71

4116 |14 |33 |5 7|9 117 13; 15

5032 (15|34 |55 73|9 11, 13, 15 | 17; 19; 21; 23; 25 27, 29, 31

The shortest addition chain sequence generating factors for 1 <s <5 are listed in Table 7. The
numbers of the form mj mean that they generate sequences N = 2° 4 m - 2! wherel =0,1,--- ,k—1,
while the numbers in red indicate that certain numbers within the sequences they generate are
(N)

exceptions to the general a_ ;| = s + 2 rule. For example, if s = 4 then

N=2%+1.2' ={17,18,20,24}, o) =44+1=5,

min

Ny =24 +3.20 = {19,22,28}, o™ —412—p¢

min

Ns=241+5.2 = (21,26}, a™) —442—5,

min
Ny =2t 47.2 = (23,30}, o) =442=5, -
No=2t49.2l =25 4™ _4 10—,

min

Ny =2t411.20 =27, o) —4yo—

min

Ni=2+13-2' =29, /M) —413-7,

min

Nis=24+15.2 =31, o9 —443=7,
where the last two values agl\i]r)l are higher than those given by the general rule. The exceptional N
values bear similarity to the atomic numbers of chemical elements that violate the Aufbau rule that
predicts the electron configurations of most of the elements. Only about twenty chemical elements
within 24 < Z < 103 (with only two non-doubleton sets of consecutive ones) violate the Aufbau rule.

There are two major classes of orbits of dynamical systems: periodic and chaotic ones. For the
shortest addition chains, N (OEIS A048645) and at least N3 (15) and N7 53 (16) represent periodic
orbits, while the remaining numbers, which are not the sums of two powers of 2, chaotic ones. Only
living systems have been found to be capable of producing abundant molecules with an assembly
index greater than an experimentally determined value of 15 steps. The cut-off between 13 and
15 is sharp, which means that molecules made by random processes cannot have assembly indices
exceeding 13 steps [3,16]. In particular, N = 15 is the length of the shortest addition chain for N which
is smaller than the number of multiplications to compute N power by the Chandah-sutra method
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(OEIS A014701). Furthermore, Nag14701 > Naoossiz (OEIS A371894) for numbers that are not sums of
two powers of 2 (OEIS A072823) and are not given by equation (15) but equation (16) provides their
subset.

5. Maximum Assembly Index

In the following, we conjecture the form of the upper bound of the set of different binary string
assembly indices. In general, of all strings Cy having a given assembly index, shown in Tables 1 and
A6-A13 (Appendix D), most have Ny = | N/2], though we have found a few exceptions, mostly for
non-maximal assembly indices, namely for a®) =4 (4 < 8) and for a® = 6 (24 < 26), for a(10) = 4
(2 < 5) and for a(19) = 5 (32 < 33), and for (! = 4 (2 < 3). These observations allow us to
restrict the search space of possible strings with the largest assembly indices to balanced strings only:
with the exception of N = 8, of all strings C,(CN) having a largest assembly index, most are balanced.
We can further restrict the search space to ringed strings (Definition 3). If a string Cyi, for which

aN) (Cpin) = mkin ({a(N )(C) }) is constructed from repeating patterns, then a string Cmax for which
aN) (Crax) = max({aN) Cy must be the most patternless. The string assembly index must be
p p g y

bounded from above and a(N) (Cmax) must be a monotonically nondecreasing function of N that can
increase at most by one between N and N + 1. Certain heuristic rules apply in our binary case. For
example,

e for N = 7 we cannot avoid two doublets (e.g. 2 x [00]) within a ringed string Eg) = [0011100]
and thus a(7) (Cmax) =5 <6,

e for N = 8 we cannot avoid two pairs of doublets (e.g. 2 x [00] and 2 x [11]) within a ringed
string E{¥) = [00001111] and thus a(®) (Cpmax) = 5 < 6,

e for N = 12 we cannot avoid three pairs of doublets (e.g. 2 x [00], 2 x [10], and 2 x [11]) within a
ringed string E\'”) = [111000101100] and thus 212 (Cpax) = 8 < 9,

e for N = 14 we cannot avoid two pairs of doublets and one doublet three times (e.g. 2 x [00],
2 x [11], and 3 x [01], and thus 2 (Cpax) = 9 < 10,

* etc.

Table 7 shows the exemplary balanced strings Bmax having the largest assembly indices that we
assembled (cf. also Appendix B). To determine the assembly index a(1®) = 11 of the string

EU® — [1(001)(11)(110)(110)(00) (001)0], (18)

for example, we look for the longest patterns that appear at least twice within the string, and we look
for the largest number of these patterns. Here, we find that each of the two triplets [001] and [110]
appear twice in E}Elg) and are based on the doublets [00] and [11] also appearing in E}Els)' Thus, we
start with the assembly pool {1,0, [00], [001], [11], [110] } made in four steps and join the elements of
the pool in the following seven steps to arrive at a(18) (E;) = 11. On the other hand, another form of

this balanced ringed string
EM® = [(01)(11)(110)(110)00(001) (01)0], (19)

has a18) (E;) = 12.

d0i:10.20944/preprints202401.1113.v9
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(N)

Table 7. Exemplary balanced strings Byx that have a largest assembly index. Conjectured (a(N>

Corlj) form

of the largest assembly index and its factual values for ringed (al(rf:]g) ) and non-ringed (ar(llr\Qg) strings (red
if below the conjectured value, green if above).

N Bl Alon | Mng | Abme
110 0 0 0
2|1 0 1 1 1
310 0 1 2 2 2
4 10 0 1 1 3 3 3
510 0 0 1 1 4 4 4
6 |0 0 0 1 1 1 5 5 5
710 0 1 1 1 0 O 5 5 6
8§10 0 0 1 0 1 1 1 6 6 6
910 0 0 0 1 1 1 0 1 7 7 7
(0 0 0 01 1 1 1 0 1 7 7 8
1/0 0 0 0 0 1 0 1 1 1 1 8 8 8
211 1 1 0 0 0 1 0 1 1 0 O 9 8 8
30 0 0 00 01 01 1 1 1 1 9 9 9
40 0 0 0 01 01 0 1 1 1 1 1 9 9 9
0 0 0 001 01 0 1 1 1 1 1 O 10 10 10
%1 0 0 0 0O 001 0 1 0 1 1 1 1 1 11 10 10
710 0 0 0 0 01 01 01 1 1 1 1 1 O 11 11 11
%1 0 0 1 1 1 1 1 0 1 1 O O O O O 1 O 11 11 12
%91 o 0 0 01 01 01 0 0 1 1 1 1 1 0 1 12 11 12
(17 0 10 0 1 1 1 1 1 0 1 1 0 0 O O 0O 1 O 13 12 13

These results allow us to formulate the following conjecture.

Conjecture 1 (Tight upper bound on a string assembly index). With exceptions for small N the largest
string assembly index a'N)(Cyuay) of a binary string as a function of N is given by a sequence formed by
{+1,+1,k x0,+1,+1,k x 0} strings for k € Ny, where +1 denotes increasing a(N)(Cmax) by one, and 0
denotes maintaining it at the same level, and a(®) = —1.

However, at this moment, we cannot state whether this conjecture applies to ringed or non-ringed
strings. The assembly indices for N < 3 are the same for a given N, whereas the assembly indices for
4 < N <10 were discussed above and are calculated in Appendix D for balanced and balanced ringed

strings.
The conjectured sequence is shown in Figures 3 and 4 starting with () = —1 (we note in passing
that n = —1 is a dimension of the void, the empty set @, or (-1)-simplex). Subsequent terms are

given by {0,1,2,3,4,5,5,6,7,7,8,9,9,9,10, ... }, which is periodic for N = k(k + 3) and flattens at
aN) (Conax) = 4k — 3,and aM) (Cpax) = 4k — 1,k € N, k > 1.
This sequence can be generated using the following procedure

step=1; % step flag

run =1; % run flag
flat=0; % flat counter

Nk = 0;

aub= -1; % the upper bound

while Nk < N
if step < 3

Nk = Nk+1; % next Nk
aub= aub + 1; % increment the bound
else % step==3

for k=1:flat
if flat > O
Nk = Nk+1; % next Nk
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end
end
run = run+1l; % increment run flag
if run > 2
run = 1; % reset run flag
flat = flat+1; % increment flat counter
end
end
step = step+il; % increment step flag
if step > 3
step=1; % reset step flag
end

end

We note the similarity of this bound to the monotonically nondecreasing Shannon entropy
of chemical elements, including observable ones [11]. Perhaps the exceptions in the sequence of
Conjecture 1 vanish as N increases.

6. Binputation

So far we have assembled binary strings "manually". Now we shall automatize this process using
other binary strings as assembling programs.

Definition 5. The binary assembling program Qp is a binary string of length s that acts on the assembly pool
P and outputs the assembled strings, adding them to the pool.

Definition 6. The trivial assembling program Q is a binary assembling program with consecutive bits denoting
the following commands:

0 & take the last element from P, join it with itself, and output,
1 < take the last two elements from P, join them with each other, and output.

As the assembly pool P is a distinct set to which strings are added in subsequent assembly steps,
only these two commands are applicable to the initial assembly pool P = {1,0} containing only two
bits.

Theorem 3. Ifastring C, ; (N ) can be assembled by an elegant trivial program of length sg = aN)(Cypiy) then
N is expressible as a product of Fibonacci numbers (OEIS A065108) and the length sg of any trivial program Q
is not shorter than the assembly index of the string that this trivial assembling program assembles.

Proof. An elegant program is the shortest program that produces a given output [42,43]. Furthermore,
no program P shorter than an elegant program Q can find this elegant program Q [42]. If it could, it
could also generate the Q’s output. But if P is shorter than Q, then Q would not be elegant, which
leads to a contradiction.

The 15! bit of the trivial assembling program Q is irrelevant as Q = 0 assembles Cr(m)n [00] and
Q = 1 assembles C( 4) = [10], so Q = * assembles Cr(m)n = [*0]. Then the programs Q = *0...0
assemble the 2°Q-bit strings Cr(mrz = [¥*0 % 0...] having the assembly index aﬁ:f ) = sq, while strings

tming 3 (2 %) = = s can be assembled with the same two programs
starting with the reversed assembly pool P {0 1}.
The remaining 2°¢ ! — 2 programs will assemble some of the shorter strings with the assembly

index ag\i]r)l = 5. In general, all programs Q assemble strings having lengths expressible as a product
of Fibonacci numbers (OEIS A065108) as shown in Table A2 (Appendix C), wherein out of 2501

programs (cf. Tables A5 and A2):

CZ9 with the smallest assembly index a ;)
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e 25072 programs Q = *0 x ... assemble even length balanced strings B = [%0 % 0...] having
(2°Q) (11)

min

e 25073 programs Q = 10 x ... assemble [0% 00 % 0. ..] strings haviflg lengths divisible by three
and entropies H(C) ~ {0,0.9183},

o 25074 programs Q = *110 x ... assemble [*00 * 0 % 00 ¥ 0...] strings having lengths divisible by
five and entropies H(C) =~ {0,0.9710},

e 2075 programs Q = *1110 ... assemble [0 % 0 x 00 % 0. . .] strings having lengths divisible by

eight, entropies H(C) ~ {0,0.9544}, and assembly indices alN) = so—lifx =1,

natural binary entropies (3) H(C) = {0,1}, including strings C

¢ the program Q = *1...0 joins two shortest strings assembled in a previous step into a string of
length being twice the Fibonacci sequence (OEIS A055389), and finally

¢ the program Q = *1...1 assembles the shortest string that has length belonging to the set of
Fibonacci numbers.

Thus, for * = 1, binary assembling programs Q assemble subsequent 2501 = 250=2 4 2%0~3 4
-+ + 29 + 1 Fibonacci words and their concatenations having entropies (3) with ratios (4)

and pom = @ (20)

7
Fm+2

pl,m N E m-+2
where m = {1,2,...5q}, and F is the Fibonacci sequence starting from 1. Ratios (20) rapidly converge
to
lim pom = ¢ —1~0.618033989 and lim p;,, =2 — ¢ ~ 0.381966011 (21)
SQ—)OO SQ—}OO

where ¢ is the golden ratio. Therefore, lims,—c0 Hn &~ 0.9594 is the binary entropy of the Fibonacci
word limit. The Fibonacci sequence can be expressed through the golden ratio, which corresponds to
the smallest Pythagorean triple {—3,4,5} [29,44].

However, for sg > 4, some of the programs are no longer elegant if * = 0 and some of the
assembled strings are not Cpip, if ¥ = 1.

Forsg >4, Q = 111100. .. assembles a string

25Q71) -

cl = [01010010. .. ] (22)

non-min
with an assembly index a9 = sg which is not the minimum for this length of the string. For
example, the 4-bit program Q = %111 assembles the string C(8) = [0 % 0 % 00 * 0], but if * = 0 this
string can be assembled by a shorter 3-bit program Q = *00, and if * = 1 this string does not have the
smallest assembly index 1®) (Cpin) = 3 but a® (Cpon-min) = 4.

Forsg = {4,7} and sg > 10 and for the shortest string assembled by the program Q the program
Q is not elegant for * = 0 and the shortest string assembled by the program is not Cyjn for * = 1.

However, the length sg of any program Q is not shorter than the assembly index of the string that
this program assembles. [

Theorem 3 would be violated if in Definition 6 we specified the command "0" e.g. as "take the last
element from the assembly pool, join it with itself, join with what you have already assembled (say
at "the right"), and output". Then the 2-bit program "00" would produce [000000] with the assembly
index a(®) = 3. However, such a one-step command would violate the axioms of assembly theory,
since it would perform two assembly steps in one program step. An elegant program to output the
gigabyte binary string of all zeros would take a few bits of code and would have a low Kolmogorov
complexity [45]. However, such a string would be outputted, not assembled. Furthermore, the length of
such a program that outputs the string [0...] would be shorter than the length of the program that
outputs the string [10...], while in AT, the lengths of these programs must be the same if the strings

d0i:10.20944/preprints202401.1113.v9
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have the same assembly indices. Definitions 5, 6 and Theorem 3 are about binputation®, about binary
strings assembling other binary strings.

The trivial assembly programs Q and the strings they assemble are listed in Tables 8 and A3-A5
(Appendix C) for one version of the assembly pool and for 1 < sg < 6.

Table 8. 3-bit elegant programs assembling strings with alN) = 3,

Q | C(s=1) C(s=2) C(sp=3) |N
x11 *0 0x0 *00 %0 5
x10 *0 0x0 0x00x0 6
%01 *0 %0 %0 *0x0x0 6
x00 *0 %00 *0x0x0x0 | 8

We note in passing that there are other mathematical results on binary strings and the Fibonacci
sequence. For example, it was shown [46] that having two concentric circles with radii {F,, F,4+»} and
drawing two pairs of parallel lines orthogonal to each other and tangent to the inner circle, one obtains
an octagon defined by the points of intersection of those lines with the outer circle, which comes very
close to the regular octagon with n — co. Furthermore, each of these octagons defines a Sturmian
binary word (a cutting sequence for lines of irrational slope) except in the case of n = 5 [46].

Perhaps the smallest assembly index given by Theorem 2 and the strings of Theorem 3 are related
to the Collatz conjecture, as the lengths of the strings (11) for N = 2% correspond to the numbers to
which the Collatz conjecture converges, from N = (22 —1)/3, k € N (OEIS A002450).

Theorem 3 is also related to Godel’s incompleteness theorems and the halting problem. N cases
of the halting problem correspond only to log,(N), not to N bits of information [47] and therefore,
complexity is more fundamental to incompleteness than self-reference of Godel’s sentence [48]. Any
formal axiomatic system only enables provable theorems to be proved. If a theorem can be proved by
an automatic theorem prover, the prover will halt after proving this theorem. Thus, proving a theorem
equals halting. If we assume that the axioms of the trivial program given by Definition 6 define the
formal axiomatic system, then the strings having lengths expressible as a product of Fibonacci numbers
assembled by this program would represent provable theorems.

Using the binary assembling program Qp that were to use strings other than the last or two last
strings in the assembly pool we would have to index the strings in the pool. However, at the beginning
of the assembly process, we cannot predict in advance how many strings will enter the assembly pool.
Thus, we do not know how many bits will be needed to encode the indices of the strings in the pool.
Therefore, we state the following conjecture.

Conjecture 2. There is no binary assembling program (Definition 5) that has a length shorter than the length of
the string having the largest assembly index that could assemble this string.

7. Discussion

The bounds of Theorem 2 and Conjecture 1 are shown in Tables 5 and 7 and illustrated in Figures 3
and 4. No binary string can be assembled in a smaller number of steps than given by a lower bound of
Theorem 2. On the other hand, some strings cannot be assembled in a smaller number of steps than
given by an upper bound (which for large N, as we suppose, has the form presented in Conjecture 1).
Since one bit is the smallest amount and the quantum of information, the lower bound and the upper
bound of the string assembly index define the allowed region of the assembly indices.

3 Asan analog to chemputation, where assembly theory is applied in digital chemistry.
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11r

a(N)

/

0123456 72 8910111213141
N

Figure 3. Lower bound on the binary string assembly index 2 (red) and log,(N) (red, dash-dot),

1 1 1 J

_1 1 1
516 17 18 19 20

conjectured upper bound on the binary string assembly index ?? (green), factual values of the string
assembly index (blue) and the ringed string assembly index (cyan) and N — 1 (green, dash-dot), for the
string length 0 < N < 20.
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a(N)

40f d
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0 10 20 30 40 50 60 70 8 90 100
N

Figure 4. Lower bound on the binary string assembly index (red) and log,(N) (red, dash-dot),
conjectured upper bound on the string assembly index (green) and N — 1 (green, dash-dot), for the
binary string length 0 < N < 100.

We found it much easier to determine an assembly index of a given binary string C,EN) than to

assemble a string so that it would have a largest assembly index. Similarly, a trivial string with the
(N)

smallest assembly index for N can have the form C;\ |

= [*x...] (11) or the form of a Fibonacci
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word generated by the trivial assembling program (Definition 6). Therefore, we state the following
conjecture.

Conjecture 3. The problem of determining the assembly index of any binary string C,EN) and the problem
of assembling a non-trivial string so that it would have a smallest assembly index (Theorem 2) for N are
NP-complete. The problem of assembling the string so that it would have a largest assembly index for N is
NP-hard.

A proof of conjecture 3 would also be the proof of the following conjecture.
Conjecture 4. P # NP

Every computable problem and every computable solution can be encoded as a finite binary
string. Here, determining whether the assembly index of a given string has its known maximal value
corresponds to checking the solution to a problem for correctness, whereas assembling such a string
corresponds to solving the problem. Thus, AT would solve the P versus NP problem in theoretical
computer science. There is ample pragmatic justification for adding P # NP as a new axiom [47].

Consider the SARS-CoV-2 genome sequence containing 29903 nucleobases {A, C, G, T}, its initial
version MN908947* collected in December 2019 in Wuhan (CN) and its sample OL351370° collected
in Egypt nearly two years after the Wuhan outbreak, on October 23, 2021. In the MN version, the
nucleobases are distributed as |A| = 8954, |C| = 5492, |G| = 5863, and |T| = 9594 and in the OL
version as |A| = 8954, |C| = 5470, |G| = 5856, and |T| = 9623, following Chargaff’s parity rules with
the same count of adenines. We can convert these sequences into binary strings by assigning two
bits per nucleobase. For such N = 59806, not being the sum of two powers of 2, with the degree of
causation [6] given by equation (14), the assembly index is bounded by

21 < a®%%) () < 971. (23)

We increased the lower bound (23), given by Theorem 2, by one since strings with the smallest assembly
indices cannot encode all nucleobases. The upper bound (23) was estimated by finding the smallest k
that satisfies k(k + 3) > N and using the relation (V) (Cmax) = 4[k] — 1 of Conjecture 1. We do not
know the actual assembly indices of the MN and OL sequences. Their determination is an NP-complete
problem, as we conjecture. There are twelve possible assignments of two bits per one nucleobase with
twelve different Hamming weights and six different Shannon entropies (3)

N (RN ) = {25801, 26172, 26441, 26812, 29263, 29532, 30274, 30543, 32994, 33365, 33634, 34005 },

N (C57™) = {25750, 26136, 26419, 26805, 29234, 29517, 30289, 30572, 33001, 33367, 33670, 34056

(24)
H(CIN™) = {0.9864,09887,0.9903,0.9923,0.9997, 0.99989}

H(C5**) = {0.9860,0.9885,0.9902, 0.9922, 0.9996, 0.99988}.
All sequences (24) are almost balanced (N/2 = 29903). However, the later OL versions are less
balanced, producing lower Shannon entropies and showcasing the existence of an entopic force that
governs genetic mutations [25]. We conjecture that the assembly index of the OL sequence is higher
than that of the MN one. The evolution of information tends to increase the assembly index.
The bounds given by Theorem 2 and Conjecture 1, and the general bounds (1), and (2) on the
assembly index are shown also in Figure 5 (adopted from [1] and modified). According to the authors

4
5

Available online at https:/ /www.ncbi.nlm.nih.gov/nuccore/ MN908947.
Available online at https:/ /www.ncbi.nlm.nih.gov /nuccore/OL351370.
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of [1], the green region is illustrative of the location in the complexity space where life might reasonably
be found. Yellow region below can be thought of as being potentially naturally occurring, and red
region above being so complex that even living systems might have been unlikely to create them. This
is because they represent structures with limited internal structure and symmetries, which would
require vast amounts of effort to faithfully reproduce [1].

impossible
5
]
g
2
o
=i
2
<
in equilibrium
- impossible
Big Bang N, information capacity (time)

Figure 5. An illustrative graph of complexity against information capacity: orange regions are
impossible, as they are above or below the assembly bounds; yellow region contains structures
optimally assembled (in equilibrium); green region contains dissipative structures; and red region is
the region of human creativity (figure not to scale).

We disagree with this statement.

Perceivable information about any object can be encoded by a binary string [14,15]. This does not
imply that a binary string defines an object. Information that defines a chemical compound, a virus, a
computer program, etc. can be encoded by a binary string. However, a dissipative structure [21] such
as a living biological cell (or its conglomerate such as a human, for example) cannot be represented by
a binary string (even if its genome can). This information can only be perceived (so this is not an object
defining information). Each of us is given to ourselves as a mystery [49].

Furthermore, a binary string itself is neither dissipative nor creative. It is its assembly process
that can be dissipative or creative. The [perceivable] universe is not big enough to contain the future; it
is deterministic going back in time and non-deterministic going forward in time [50]. But we know
[2,17-28] that it has evolved to the present since the Big Bang. Evolution is about assembling new
information and optimizing its assembly process until it reaches the assembly index. Once the new
information is assembled (by a dissipative structure operating far from thermodynamic equilibrium,
or created by humans), it enters the realm of the 2nd Jaw of thermodynamics, and nature seeks how to
optimize its assembly pathway.

Only humans are gifted with creativity. Any creation is required to be shaped by the unique
personality of the creator to such an extent that it is statistically one-time in nature [51]; it is an imprint
of the author’s personality. There is a certain minimum amount of information N¢ required to establish
a creation, as shown in Figure 5. Sixteen possibilities provided by the minimum thermodynamic
entropy [31-33] bifurcate the assembly pathways (cf. Theorem 1) but none of these possibilities can be
considered a creation. However, the boundary between the green region of dissipative structures [21]
and the red region of human creativity remains to be discovered.

At first, the newly assembled information corresponds to the discovery by groping [20]. However,
its assembly pathway does not attain its most economical or efficient form all at once. For a certain
period of time, its evolution gropes about within itself. The try-out follows the try-out, not being
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finally adopted. Then finally perfection comes within sight, and from that moment the rhythm of
change slows down [20]. The new information, having reached the limit of its potentialities, enters the
phase of conquest. Stronger now than its less perfected neighbours, the new information multiplies
and consolidates. When the assembly index is reached, new information attains equilibrium, and its
evolution terminates. It becomes stable.

"Thanks to its characteristic additive power, living matter (unlike the matter of the physicists)
finds itself ‘ballasted” with complications and instability. It falls, or rather rises, towards
forms that are more and more improbable. Without orthogenesis life would only have spread;
with it there is an ascent of life that is invincible." [20]

The total entropy of the universe S is constant and is the sum of the information entropy S;; r,
and the physical entropy S,,ys. Therefore, over time [28]

dsinfo dsphys
T T 0. (25)

The time corresponds to an increasing information capacity. Bit by bit: dt = (N+1) = N =1
BB having the energy given by mass-energy equivalence

. k 2 k . dgp . 1 /Ngp
Egg = EMBBC = EmBBEP = TEP = ZV 71519,

242 (26)
2 <k < kmax = ————= ~ 6.7933
ot —af

where Mpp := mppmp, mpp € R denote the BB mass, and Ep, mp denote the Planck energy and
mass, « &~ 1/137.036 is the fine-structure constant and a, ~ —1,/140.178 is the 2" fine-structure
constant related to a by (« + &)/ (aap) = —7, and k is the BB size-to-mass ratio (STM) [19] (k = 2
if BB is BH).

It was shown [18] based on the Mandelstam-Tamm [52], Margolus-Levitin [53], and Levitin-
Toffoli [54] theorems on the quantum orthogonalization interval that BBs generate (or rather
assemble) a pattern forming nonequilibrium shell (VS) through the solid-angle correspondence, as
shown in Figure 6. The BB entropic work

1 1
Wgp = TpgSpp = TBBZLkBNBB = TBBZkBNd%B
_ Evdsp 1ii\/§—1 &
T 4k 4 ’

is the work done by all APTs of a BB. It is the product of the BB entropy [31-33] and the general,

complex BB temperature
T . k2
Tpp = —— (1 +iy/ o — 1), (28)

kﬂdBB 4

which in modulus and for a BH (k = 2) reduces [19] to Hawking temperature

o hC3 o TP
N SHGMBHkB N ZﬂdBH’

Teu (29)
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where i = h/(27) is the reduced Planck constant, G is the gravitational constant, and Tp is the
Planck temperature. In particular [19]

T .
Teg (kmax) = W]:Baz ( at —af £ zzx%), (30)

24 ;.2
Tp o tiaj

T k - 7
BB ( eq) 2rtdpg \/m (31)
where )
keq = ol at 4 a5 =~ 2.7665. (32)

is the energy equilibrium STM.

Figure 6. A black body object as a generator of an entropy variation shell (VS) through the solid
angle () correspondence.

A VS has the information capacity bounded by

Npp < Nys < 4Ngp,

(33)
Nys:=INpg, 1<1<4,
where [ is a VS defining factor. The number of APTs is bounded by
1 1
hNBBJ <N < ENBBJ, (34)

as shown in Figure 7, and thus its binary potential dpys = —N; c?/Nys [17,18] is bounded by

1 1).2
_1C2<5(PVS< N_BB_Z)C >0, Npp <4 (35)
- 1 1 2 ’

2 N~ 15)2 <0, Nog >4



https://doi.org/10.20944/preprints202401.1113.v9

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202401.1113.v9

20 of 35

and the theoretical probability p; :== Nj/Nys for a triangle on a VS to be an active Planck triangle

is also bounded [18] by
1 1

- = < =

16 aNg =7
which is satisfied by the ratio p; ,, (20) of the trivial assembling program 6 for Ngg > 2. On the
other hand, the entropy variation [17,55] 65/kp = —cé¢ so that for Ngp < 4 the lower bound (36)
is negative and the upper bound (35) is positive (N7 < 1 in this range). The Planck triangle of VS
is located somewhere on the VS surface defined by a solid angle

(36)

O- b Anlp 4n
" Ry, 4nmR%;  Ngs’

(37)

that corresponds to the BB Planck triangle.

T

st —
-4l R :

10 11 12 13 14 15 16 17 18 19 20
N
BH

0

01234567289

Figure 7. Lower (red) and upper (green) bound on the number of APTs Nj on a VS as a function
of the information capacity of the generating BB [18].

The BB information capacity is dictated by its diameter and the BB energy (26) as a function
of its diameter is the same for all BBs (it is independent on k). However, the BB mass and density

Mgg 3

PBB Ves  kNgp PP, (8)

are not.
Based on the orbiting condition V(% < VI% < Vg, where Vo = /GMc/Ravg is the orbital, and
Vi = \/2GMc/Rayg is the escape speed of an orbiting object, Rayg is the average distance from
the center of the central object to the center of the orbiting object, and Mc is the mass of the central
object, the bounds
Npp < 40%Nys < 4Ngg, (39)

containing the velocity term Vg = vrc, vg € {R, I} were also derived [18]. Plugging Nys from the
bounds (33) into the bounds (39) we arrive at

<vg <

— =

, (40)

(e
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which is satisfied by real and imaginary (but not complex) velocities (for example, for | = 1 by
—1<ovr < -1/vV2,1/V2<vgr <1, —i<ovg < —i/V2,and i/V2 < vg < i). Taking the square
root of the bounds (40), using U%L + U%R =1, vr € {R,I} [18], and squaring again, we arrive at

I—2V1+4+1

41 —4V1+1
1 S A N

S 4

(41)
The bounds (40) and (41), shown in Figure 8, meet at v = 1/ V2, where de Broglie and
Compton wavelengths of mass M are the same

/1 _ V2
h 1 P h | 1 (42)

)\ = — = 7_)\ = — = —,
B MV CT M T V2

where p is the relativistic momentum. The same is the ratio of orbital to escape speed: ‘1% =1

N

0.866
0.8165

0.7071

0.5774
4
0.5r

v,V

0.4r

0.2r

0 L L L L
1 1.5 2 225 25 3 3.5 4
!

Figure 8. Lower (red) and upper (green) bounds on vr and lower (blue) and up-
per (cyan) bounds on v; as a function of I defining VS. Characteristic velocities are

{0,v/174,v/1/3,v/2/4,/2/3,7/3/4,1}, v, vg € Ry.

Furthermore, the bounds (40) and (41) do not overlap only for | = {1,4}. Therefore, 1 < I < 4
defines the dissipativity or the assembly range. Furthermore, the intersection of the bounds (40)
and (41) is the common region for both velocities. If v} is within this region, then vy is as well.
We note that the average orbital velocity of each orbiting object only slightly exceeds its orbital
speed V. This implies that the average VS defining factor layg 2 1in (33) for a VS orbiting object
(cf. Appendix A).

BBs define a perfect thermodynamic equilibrium, and the bounds (33) and (34) show that
nature uses optimally assembled information (cf. Conjecture ??) to assemble new information.
Figure 9 shows the bounds on the string assembly indices and Figure 10 shows the BB temperature
(29), energy (26), and entropic work (27) for 0 < Npp < 5. kp|Tgp|/Epg = 2/Npp is a rational
number for natural Ngg. Furthermore, log,(Ngg) > Npg — 1 for Ngg € Rand 1 < Npg < 2.

Let us examine this process starting from the Big Bang during the Planck epoch and shortly
thereafter, and for continuous Npg € R (i.e., including fractional Planck triangle(s)).
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Big Bang time—

Figure 9. Lower (red) and upper (green) bounds on the binary string assembly index of length
Npg and log, (Npg) (blue), for 0 < Npp < 5.

04n

o

1 L

[ 3
:

P

e
[}
O

T BH/T - EBH/EP, WBH/E
(=]
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[ )
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/
/

=]
/
e
1/
|
h
\

0.05 e T A

01 1 2 2 N, T 4 5

Big Bang time -
Figure 10. Black body object energy Epp (green); temperature Tpy (red), Re[Tgp(keq)] (red,
dash-dot), Re[Tgp(kmax)] (red, dash); and work Wy (blue), Re[Wpp(keq)] (blue, dash-dot),
Re[Wpp(kmax)] (blue, dash),as a function of its information capacity Npp in terms of Planck
units, for 0 < Npg < 5.

Npg =0

There is nothing to talk about. It is a mystery.
0 < Ngg <1

The Big Bang has occurred, forming the 15 BB. At Npp (kmax) = (a* — a3)/(47a*) ~ 0.0069
the BB temperature (29) and subsequently at Ngy = 1/ (477) ~ 0.0796 the BH temperature (29)
become equal to the Planck temperature, but any BB in this range is still too small to carry a
single bit of information and cannot be triangulated. However, independent BBs merge [18,19]
summing their entropies and increasing the information capacity.
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Npp =1

The first bit (a degree of freedom [18]) becomes available and APTs on BBs begin to fluctuate
providing the initial assembly pool P = {1,0}. The BH energy reaches the limit of the equipar-
tition theorem for one bit (Egyg = %kB Tgy). However, the bounds (34) make them unable to
generate any APTs ona VS (N = 0).

1< Npg <2

This is the only range in which the lower AT bound (1) is greater than the upper AT bound (2).

The BH temperature (29) exceeds its energy (26) (%kBTBH < Egy < kgTgp) [18]. At Ngy =
21n(2) the BH energy (26) is equal to the Landauer limit Egyy = kgTppIn(2) ~ 1.3863 [56].
Shortly thereafter, at Ngy = 1.5, the BH density reaches the level of the Planck density For a
BB [19] Still N; = 0. Merging BBs expand fractional Planck triangle(s) to form the 2™ bit.

Npp =2

The first nonvanishing N; = 1 becomes available on a VS generated by a BB. The BH tempera-
ture (29) is equal to its energy (26) (kg Tp = Epu = Ep/ (2v/27)).

2 < Ngg <3

At Npp = 41In(2) the BH entropic work (27) is equal to the Landauer limit (kgTgy = Wpy =
Ep/(4y/7)). At Npg > 2.4507 the density of the least dense BB (kmax = 6.7933) decreases below
the modulus of its temperature. Ny = {0,1}.

Npg =3

3 < Npg <4

With Ngg > 3 BBs can finally be triangulated. Yet, containing only one APT (N; = {0,1}), they
are not ergodic [18].

At Npy > 7t the BH surface gravity ggyy = 1/dpp decreases below the Planck acceleration and
the tangential acceleration [17,18] becomes real (a1, € R).

Npg =4

The BB assembly index bifurcates, minimal thermodynamic entropy [32] is reached, and the
relation (34) provides the second bit on a VS (N7 = 2). At this moment BB can be assembled in
a different number of steps and nature seeks to minimize this number following the dynamics
induced by the relation (25). The BH temperature (29) is equal to its entropic work (27) (kg Ty =

Wgh).
4 < Ngg <6

The BH temperature (29) finally decreases below the entropic work (27) limit and Ny > 2.
Npg =6

A BB reaches the upper bound on ringed assembly index.

6 < Ngg <7

The imaginary Planck time appears at the BH surface [17] heralding the end of the Planck epoch.
After crossing this threshold, the VSs begin to operate with1 < N; <3 on 2w < Nys < 87, and
the first dissipative structures can be assembled.

Nature enters a directed exploration phase (¢ < 1) and selectivity emerges, limiting the discov-

ery of new objects [6].
Npp =7

A BB reaches the upper bound on non-ringed assembly index.

Ngg > 12

At Npp = 47 a first precise diameter relation can be established between the vertices of the BB
surface. Furthermore, for Ngg = 47, the solid angle (37) equals one steradian.
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Ngg > NC

The onset of human creativity.

8. Conclusions

The results reported here can be applied in the fields of cryptography, data compression methods,
stream ciphers, approximation algorithms [57], reinforcement learning algorithms [58], information-
theoretically secure algorithms, etc. Another possible application of the results of this study could
be molecular physics and crystallography. Overall, the results reported here support the AT, the
Bekenstein’s minimum thermodynamic entropy [31-33], the holographic principle [34], entropic
gravity [35], emergent dimensionality [8,11,17-19,24,26,27,29], the second law of infodynamics [25,28],
and invite further research.
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Abbreviations

The following abbreviations are used in this manuscript:

AT assembly theory;

BH black hole;

BB black-body object (BH, white dwarf, neutron star);
VS nonequilibrium shell;

APT active Planck triangle;

N length of a binary string;

No number of 0’s in the binary string;

Ny binary Hamming weight of the binary string;
C]EN) binary string of length N;

BIEN) balanced string of length N;

R]((N) ringed string of length N;

E,((N) balanced ringed string of length N;

|C(N)| number of binary strings of length N (2N);
|BIN)| number of balanced strings of length N (OEIS A001405);
|IRIN)| number of ringed strings (OEIS A000031);
|[EN)| number of balanced ringed strings;

alN) assembly index of a string of length N;

P ={1,0} initial assembly pool;

s assembly step;

Q binary assembling program;

sQ length of the binary assembling program;

F Fibonacci sequence.


https://github.com/szluk/Evolution_of_Information
https://doi.org/10.20944/preprints202401.1113.v9

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2024 d0i:10.20944/preprints202401.1113.v9

25 of 35

Appendix A. Orbital Velocities and the VS Defining Factor

Table A1l shows the orbital speed V5 and escape speed Vi of some celestial objects, their
minimal Viin and maximal Vinay velocities®. The former lie below the orbital speed limits. The
average VS defining factor lavg = (Imax — Imin) /2, where Inin/max = 3(Vinin/max — Vo) / (Ve —
Vo) + 1 was determined by linear interpolation.

Table Al. Exemplary orbital speeds and velocities, and the average VS defining factor layg.

Object Vo [km/s] | Viin [km/s] | Vimax [km/s] | Vg [km/s] lavg
Mercury 47.88 38.86 58.98 67.71 1.158
Venus 35.02 34.79 35.26 49.53 1.000
Earth 29.79 29.29 30.29 4213 1.000
Mars 24.13 21.97 26.50 34.13 1.030
Jupiter 13.06 12.44 13.72 18.47 1.011
Saturn 9.62 9.09 10.18 13.61 1.009
Uranus 6.8 6.49 7.11 9.61 1.000
Neptune 5.43 5.37 5.50 7.68 1.001
Pluto 4.74 3.71 6.10 6.70 1.247
The Moon 1.02 0.96 1.08 14.40 1.011

Appendix B. Exemplary Strings with Maximal Assembly Indices

For the exemplary balanced ringed strings Emax, shown in Table 7:

Y= = [0011] have a®) =3,
%) = [00011] have a() = 4,
e all forms of E§6) [000111] have a(®) = 5,
o the form E{% = [0011100] has a”) = 5 but the form E{}) = [0001110] has ") = 6,
e all forms of EY = [00010111] have a(® =6,
e all forms of E{3 = [000011101] have a(®) = 7,
e the form E{’) = [0000111101] has a(1®) = 7 but the form E{'”’ = [0111101000] has a(1%) =8,
(1) — 00000101111] have a(11) = 8,
111000101100] have a(12) = 8,
0000001011111] have a(1¥) =9,

all forms of ElE

e all forms of E,

¢ all forms of E; N _
2)
13) _

e all forms of Eg

Q.)

¢ all forms of E

=
=
e all forms of E!** = [00000101011111] have a(14) =9,
e all forms of 151Z 15 — 000001010111110] have a1 = 10,
e all forms of EIZ 19 — [1000000101011111] have a(16) = 10,
e all forms of EIZ 17) = [00000010101111110] have a(17) = 11,
« all forms of E"¥ = [000000101010111111] have a(18) = 11,
e some forms ofE( %) = [1000010101001111101] have a(1) = 12,
e some forms of EIZZO) = [10100111110110000010] have a(20) = 13.

Appendix C. Trivial Assembling Programs

Table A2 shows the lengths of the strings assembled by the trivial assembling program introduced
in Section 6 for 1 < sg < 7. The table is divided into sections corresponding to sets of assembled
strings having the same form but different lengths. For example, thirty two 7-bit programs in the
bottom section assemble strings C = [«1 % 1...]. The boxed symbols denote program commands, not
the string lengths.
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Table A2. Lengths of the strings assembled by trivial assembly programs Qs (OEIS A065108).

aN) 01 2 3 34 45 56 67
50 1 2 3 4 5 6 7
T 1 2 3 5 & 13 21 38
| | | | 2
| | | | E 26 39
| | | | 52
| | | [o] 16t 24t a0t
| | | \ 48t
| | | 32F 48t
] 64t
| | [o] 10 15 25 a0
| | | \ 50
| | | 30 45
| | | 60
| | 20 30 50
| | \ 60
| | 40 60
| | 80
o [o] 6 9 15 2t 3
| | | \ 48"
| | | 30 45
| | | 60
| | 18 27 45
| | \ 54
| [ 36 54
| | 72
| 12 18 30 48t
| | \ 60
| | 36 54
| | 72
| 24 36 60
| | 72
| 48 72
| 9%
[o] 4 6 10 1688 26
| | | \ 52

| | | 32F 4gt

| | | 64"

| | 20 30 50

| | \ 60

| | 40 60

| | 80

| 12 18 30 48

| | \ 60

| | 36 54

| | 7

| 24 36 60

| \ 72

| 48 72

| 9%

8 12 20 32 5

| | \ 64"

| | 40 60

[ | 80

| 24 36 60

| \ 72

| 48 72

[ 9%

16 24 40 64t

| \ 80

| 8 72

| 9%

32 48 80

\ 9%

64 96

128
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Table A3. 4-bit programs assembling strings with a(N) = {3,4}.

Q C(s=3) C(sp =4) N
*111 x00x0  0x0x00%0 | 8F
*110 00 * 0 *00%0... 10
%101 0x0... 0x0... 9
*100 0x0... 0x0... 12
*011 *0... *0... 10
*010 *0... *0... 12
%001 *0... *0... 12
000 *0... *0... 16

t. This program is not elegant if * = 0 and the assembled string is not Cpp, if * = 1.

Table A4. 5-bit programs assembling strings with a(N) = {4,5}.

Q C(s =4) C(sg =5) N
#1111 | 0%0+00%0 #00%00%0%00%0 | 13
%1110 | 0%0%00%0 0%0%00%0... 16t
*1101 *00%0... *00%0... 15
*1100 %00 %0. .. %00%0... 20
#1011 0%0... 0%0... 15
1010 0x0... 0x0... 18
¥1001 0%0... 0%0... 18
%1000 0%0... 0%0... 24
%0111 %0... %0... 16t
%0110 %0... %0... 20
%0101 %0... %0... 18
0100 *0... *0... 24
%0011 %0... %0. .. 20
%0010 *0... *0... 24
%0001 %0... %0... 24
%0000 #0. %0.. 32

t. This program is not elegant (the same string can be assembled using the shorter 4-bit program *000). ¥. This
program is not elegant if * = 0 and the assembled string is not Cpjn if * = 1.

Table A5. 6-bit programs assembling strings with a(N) = {5,6}.

Q C(sg = 6) N
*11111 0%x0*x00%0%00%00%0x%00=x0 21
11110 #0000+ 0%00%0... 26
*1110% 0+x0%00x0... 24%,30%
*110 % x *00%0... 25,30,40
%10 % %% 0%0... 24%,...,48
*0 K % * * *0... 26,32%,...,64

t. This program is not elegant. . This program is not elegant if * = 0 and the assembled string is not Cpin if * = 1.

Appendix D. Binary Strings and Their Assembly Indices

Table A2 show the lengths of the strings assembled by programs Fs having the smallest assembly
indices. Tables A6-A13 show distributions of the assembly indices for 5 < N < 12. Tables A14-A18
show balanced strings B(N) and their assembly indices for 5 < N < 8. Tables A19-A24 show the
balanced ringed strings E(N) and their assembly indices for 5 < N < 10. Tables A25-A27 show selected
balanced ringed strings E(N) and their assembly indices for 11 < N < 13.

Table A6. Distribution of the assembly indices for N = 5.

Ny
a®@C) | a®@)) 0o 1 2 3 4 5
3 8|1 3 5 5 3 1
4 14 2 5 5 2
32 (1 5 10 10 5 1

Table A7. Distribution of the assembly indices for N = 6.

Nq
a®(C) | 1a9(C)| 1 2 3 4 5 6
3 10 | 1 3 2 3 1
4 44 6 10 12 10 6
5 10 2 6 2
64 | 1 6 15 20 15 6 1
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Table A8. Distribution of the assembly indices for N = 7.

Ny
a?”(@C) | @@ o 1 2 3 4 5 6 7
4 50 |1 5 7 12 12 7 5 1
5 74 2 14 21 21 14 2
6 4 2 2

128 1 7 21 3 3 21 7 1

Table A9. Distribution of the assembly indices for N = 8.

Ny
a®@cC) | a®@C) 0o 1 2 3 4 5 6 7 8
3 41 2 1
4 38 9 8 4 8 9
5 132 8 17 22 40 22 17 8
6 82 2 2 24 26 2
256 | 1 8 28 56 70 56 28 8 1

Table A10. Distribution of the assembly indices for N = 9.

N
a®(@C) | a®@©) o 1 2 3 4 5 6 7 8 9
4 24 11 3 3 5 5 3 3 1
5 184 4 17 35 36 36 3% 17 4
6 248 2 19 42 61 61 42 19 2
7 56 4 24 24 4
512 | 1 9 3 84 126 126 84 36 9 1
Table A11. Distribution of the assembly indices for N = 10.
N
al9C) | [«a"9@C) |0 1 2 3 4 5 6 7 8§ 9 10
4 20 | 1 3 5 2 5 3 1
5 198 8 22 20 33 32 33 20 22 8
6 502 2 18 68 108 110 108 68 18 2
7 288 2 3% 6 9% 6 32 2
8 16 2 12 2
1024 | 110 45 120 210 252 210 120 45 10

Table A12. Distribution of the assembly indices for N = 11.

N
aW(E) | a"M@Ee) o 1 2 3 4 5 6 7 8 9 10 11
5 84 | 1 7 14 23 18 29 29 18 23 14 7 1
6 686 4 32 69 104 134 134 104 69 32 4
7 970 9 69 178 229 229 178 69 9
8 208 4 30 70 70 30 4
2048 | 1 11 55 165 330 462 462 330 165 55 11
Table A13. Distribution of the assembly indices for N = 12.
Ny
a® | a0 1 2 3 4 5 6 7 8 9 10 11 12
Z 0 | 1 3 2 3 1
5 94 13 4 10 12 16 12 10 4 13
6 1034 12 42 94 141 130 196 130 141 94 42 12
7 1688 11 106 196 354 354 354 196 106 11
8 1180 16 143 282 298 282 143 16
9 90 2 14 58 14 2
409 | 1 12 66 220 495 792 924 792 495 220 66 12 1
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Table A14. |B(®)| = 10 balanced strings.

k B a®) (By)
110 @© 1 © 1 3
210 1 0 (O 1 3
3 /0 1 O 1) o0 3
4l @a 0 o0 @ o0 3
5@ 0 @ 0 0 3
6 0 0 0 1 1 4
7 0 0 1 1 0 4
8 0 1 1 0 0 4
9 1 0 0 0 1 4
10 1 1 0 0 0 4

Table A15. |B(®)| = 20 balanced strings.

k B %) (By)
T[O D © 1O © 1 3
2|l @a 0 @ o0 @ o0 3
370 0 1D © 1D 1 3
410 © 1 1 © 1 4
500 1 0o (© 1) 1 4
6|0 1 O 1 1 0 4
71O 1 1 0 O 1 4
8|0 1 1 (© 1 0 4
9 | a 0o o @ 0 1 4
ola 0o o 1 a o 4
1nm|l@a o @ 0 o0 1 4
i@ 0 1 a 0 o 4
Bl1 @a@ o0 0 da o 4
401 @ 0 @ 0 0 4
15 0 0 1 1 1 0 5
|0 0o 0 1 1 1 5
17 0 1 1 1 0 0 5
81 0o 0 0 1 1 5
901 1 0 0 0 1 5
20 1 1 1 0 0 0 5

Table A16. |B(”)| = 35 balanced strings.

k B} a) (By)
10 © 1 O 1 @© 1
2l 1 ©O 1 © 1 o0
3 /@a 0 @a@a o0 @ 0 o0
410 1 O 1) 0 (O 1
5 1@ 0 @ 0 0 (@1 0
6 |0 1 0 (O 1 (O 1
7 1la o0 o (@ 0)
8 | a1 o0 0 @ 1
9 |l a o 0 1 0)
01 @ 0 0 0)
110 o 1) 1 1)

SE-NIS NS NS WS NS WS NS RS NS NS WS RS WS NS WS NS, WS NS, WS WS WS | RISV TS TSNSV P

8

—_

—_

—_

>
orRlorRrT R, RS orSESTEorlorRroel
orRoErZoErRrroZ ool ocoRnaorZoocolSy

collEr~rrrloococoololororll ==

200 0o (© 1
3301 @ 0 o0
3 [0 0 0 1
3500 1 1 1
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Table A17. |B(®)| = 70 balanced strings (15t part).

k BY a®) (By)
1] 1 © 1) (0 1) (© 1) 3
2 (@ 0 @ 0) (@ 0 @a 0 3
3@ 0 @ 1) (O 0 @O 1) 4
4 1( 1 @ o0 (@O 1 @ o) 4
5 1@ 0 (@© 1) (@@ 0 (© 1) 4
6 @ 1n © 0) (@ 1) (O 0y 4
710 0 © 0 (T 1 a@ 1 5
8@ o 1 © o0 1 1 1 5
910 (© 1 @O 1 (© 1 1 5
00 © 1 © 1 1 (O 1 5
1m0 @© 1) 1 O 1 (@O 1 5
210 0 1) 1 1 0 0 1 5
B @O 0 @ 1 @ 1 (O 0 5
4@ 1 0o © 1 O 1 1 5
B0 1) 0o © 1 1 (0 1 5
6| @O0 1 © 1 0 @O 1) 1 5
7] @©0 1 © 1 © 1 1 0 5
8] @© 1 O 1 1 0 (O 1 5
91 © 1) O 1 1 (O 1) 0 5
20| @© 1 1 o0 o © 1 1 5
2000 1) 1 0 (© 1) (0 1) 5
2|0 1 1 © 1 0 (O 1 5
210 1 1 @© 1 © 1) 0 5
24| @© 1 1 O 1 1) 0 0 5
25| @ o 0 @ o0 0 1 1 5
2% 1 o © 1 (© 1 © 1 5
27|l @a 0o o @ 0 1 (@1 0 5
2@ 0 0 1 @ 0 (1 0 5
2| @ o 0 1 1 1 0 0 5
30 @ 0 1 0 0o @ 0 1 5
31| @1 0o @ o o0 1 @ 0 5
Rla 0o o o0 @@ 0 o0 1 5
33| @1 0 @a 0 1 @ 0 o0 5
4| @1 0 1 @ 0 0 @ o0 5
350 @1 0 1 (@ 0 @ 0 0 5
3| @1 1 © 0 (O 0 @ 1 5
371 @ 1 0 0 0o (1 1 0 5
38 | 1 1 © 0 1 (@O 0 1 5
39 1 1 0 0 1 0 1 0 5
40| 1 @ 0 @ 0 0 @ 0 5
4 |/@a 1 0 @ 1 0 0 0 5
42 1 1 0 1 0 1 0 0 5
43 | 1 1 @1 0 0 (@ 0 0 5
41 a 1 @1 1) © 0 (O 0 5
45| 0 0o © 1 1) © 1 1 5
46| 0 © 1 1 (O 1 1) 0 5

k BY a®)(By)
70 0 (@O 1 (© 1 1
4810 0 (O 1 1 1 (©
90 0 0 (@@ 1 @@ 1
50/ 0 © 1 O 1 1 1
510 0 0 1 @1 0 @

(

T 6

1) 6

0 6

0 6

1 0) 6

2/ 1 0 0 (© 1 1 1 6
530 1 0o (© 1 1 1 0 6
sal 0 1 © 1) 1 1 0 0 6
5500 1 1 1 0 0 (O 1 6
56 |0 1 1 1 0 (O 1) 0 6
57/ 1 1 1 © 1 0 0 6
580 @ 1 (1 1) 0 0 0 6
(1 © 0 (0 0 1 1 1 6
0|1 0o 0 0 @ 0 1 1 6
611 0 0 © 1 1 (O 1 6
2]@a 0o o 0 1 1 (1 0 6
3|1 0o a 0 o 0 1 1 6
641 0 1 @ 0 0 0 1 6
65/ 0 1 1 @ 0 0 0 6
6|1 @1 0 0 0 @1 0 1 6
6711 1 (O 1) 0 o0 (O 1 6
681 1 1 (© 0 O 0 1 6
o1 1 @a 0 o0 0 @d 0 6
7001 1 (1 0 @ 0 0 0 6
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Table A19. |E(®)| = 2 balanced ringed strings.

k EY a®) (Ey)
T10 © 1) (© 1 3
610 0 0 1 1 3

Table A20. |E(®)| = 4 balanced ringed strings.

A9

k a©) (Ey)

0 1) © 1 0 1 3
4

4

5

|

0 ©0 1 @© 10 1
0o O 1 1 @O 1)
0 0 o0 1 1 1

—
NES

Table A21. |E(7)| = 5balanced ringed strings.

k E 1" (E)
T]10 © 1D 0 1 © 1D 1
20 0o 1 (0 0 1) 1 4
300 0 © 0 1 1 1 5
3o o (0 1 (0 1 1 5
2|0 o0 (0O 1 1 (0 1 5

Table A22. |E®)| = 10 balanced ringed strings.

k EY a® (E)
1 (@ 1) © 1) (0 1) (O 1) 3
310 0 a 1 (@© 0 a 1 4
7100 0 © 0 (@ 1 ad 1 5
8 o © 1 o0 (O 1 1 1 5
90 © 1 @O 1 (O 1 1 5
vlo0o (© 1 © 1 1 (O 1 5
170 @© 1 1 © 1 (O 1 5
46| 0 0o O 1 1) © 1 1 5
45 0 0 [@ 1 © 1) 1 1 6
4710 o © 1 1 1 (@O 1 6

Table A23. Selected balanced ringed strings |E(9) | = 14.

k EY a® (Ey)
110 (¢ 1) (© 1) (( 1) © 1) 4
2100 (@ 0o @ 1) (O 0 @O 1) 5
30 ©0 1) (O 1 © o 1 1 5
400 © 1) © 0 1 1 © 1 5
500 0 1) O o 1) O 1) 1 5
60 (O 0 1 1 1 (0 0 1 6
710 0 © 1 1 © 1 © 1 6
slo o (@© 1 © 1 1 (O 1 6
9o o (@ 1 (O 1 O 1 1 6
0|0 © o 1 (© o 1 1 1 6
m|l© 0 © 0o @a@ 1) 0 @a 1 6
20 © 0 © 0 @ 1 a1 1 6
B|]@© 0 © 0 1 1 1 0 1 7
4O 0 © 0 1 0 1 1 1 7
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Table A24. |E(10)| = 26 balanced ringed strings.

k EY a9 (Ey)
1] 1y @ 1) @ 1H @ 1) © 1) 4
200 (O 1 O 1) (O 1 0O 1) 1 5
3 /0 1 @ O 1 0 @ @O 1 0 5
4|0 © 1 1 @O o 1 1 (O 1 5
500 @ 1 o 1H 1 © 1 0 1 5
60 (@ 0 1 0 1 @1 0 1 0 5
7O 1H @ 1y 1 0 (© 1 1 0 5
8 © © 1) © D © 0 Dn 1 1 6
9 @© © 1y © o 1 1 1 (© 1 6
0v@© @© 1) (© o 1 1 © 1) 1 6
1m)@© @© 1) © o 1 © 1 1 1 6
4]0 © 0 1 1) 1 (0 0 1 1) 6
50 0 (@ 1 1 © 1 1 O 1 6
16 | 0 o (0 1 1) (O 1 ©O 1 1 6
710 (O 0 1 1) © o 1 1 1 6
9]0 0 © 1 (© 1 1H (O 1 1 6
20 0 o0 @ 1 @@ 1 © 0 1 7
Blo o © 1 1 1 (O 1 (© 1 7
Blo o © 1 © 1 1 1 (© 1 7
200 o © 1 © 1 © 1 1 1 7
21 0 0 0 1 ©0 0 @@ 1 (@ 1 7
2|@© 0 0 0o @ 1 @ 1 0 1 7
BlO 0 0 0 @ 1 1 0o @ 1 7
40 0 © 0 @ 1 o0 @ 1 1 7
350 0 © 0 1 0 @ 1 @ 1 7
26| @O0 0 (@O 0 0 1 a 1 @1 1 7

Table A25. Selected balanced ringed strings E (11),

k E a1V (Ey)
1 0 [ 1) (O 1) © 1) (@ 1 0 1) 5
210 © 1 © 1)) © o 1 0 1) 1 5
3170 0 (@ 0 1 1 @ 0 0 1 1 6
410 © 1) © 1 © 1) © o0 1 1 6
510 0 © 0 © 0 @ 1 a 1) 1 7
6|0 0 @ 1 0 1 (© 0 @€ 1 0 7
710 0 © 0 © 1D © 1 1 1 1 8
Table A26. Selected balanced ringed strings E (12),
k E™ 212 (Ep)
T [(© 1 (@© 1) (© 1 0 1) © 1 0 1 4
70 (©0 1o 1 (@© 1) © o0 1 1 0 1 5
3| 1 1 @O © vy (@ 1 1 @O 0 1) 5
I @O0 (©0 10 1. (© o0 T 1) © 10 © 1 6
51 1) 0 (@© 1) ( 1 0 0 1 1 1 6
6 | © 0 1 (@© 0 H» @© o0 1n 1 1 1 7
7l @© 0 © 0 © 0 @@ 1 a 1 @ 1 7
§ | © 0 © 0o @a 1 @@ 1 1 @© 0 1 8
9l © 0 @1 0 @ 1 (O 0 @ 1) ada o0 8
w|la 1 a 1 @© 1 (O 1) @© 0 (O 0 8
117]1@1 1 ¢ 1) © 0 © 0 @1 0 @@ o0 8
Table A27. Selected balanced ringed strings E (13),
k E a3 (Ey)
T/]0 (@ 1., @© 1) (© 1 0 10 (@© 1 0 1) 5
210 (@ 0 0 1 @ 0) d o0 0 1 1 0 6
3/ (o 1 © 1) O 0 1 0 1 (O 1 1 6
I10 O 0 (@ 0 d@ 1) @ 0o 1 1 a D 7
5/0 0 (@ 0 @ 1)) (O o0 1 1 0 (@1 1 7
60 0 (@© 0 @© 0 0 @a@ 1n a 1 @ 1 3
7l o © 1) (O o o0 1) © 1 1 1 1 8
8]0 0 (@© 0 @© 0 1 0 @a 1 a 1 1 9
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