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Abstract: Using assembly theory, we investigate the assembly pathways of binary strings of length N formed

by joining the individual bits present in the assembly pool and the strings that entered the pool as a result of

previous joining operations. We show that the string assembly index is bounded from below by the shortest

addition chain for N, and we conjecture about the form of the upper bound. We define the degree of causation

for the minimum assembly index and show that it features patterns that can be used to determine the shortest

addition chain for certain N. We show that a string with the smallest assembly index can be assembled by an

elegant trivial program of length equal to this index, if the length of the string is expressible as a product of

Fibonacci numbers. We conjecture that there is no binary program that has a length shorter than the length of

the string having the largest assembly index that could assemble this string. We conjecture that a black hole

surface is defined by a balanced distinct string that satisfies the upper bound of a distinct string assembly index.

The results confirm that four Planck areas provide a minimum information capacity that provides a minimum

thermodynamic (Bekenstein-Hawking) entropy. Knowing that the problem of determining the assembly index is

at least NP-complete, we conjecture that this problem is NP-complete, while the problem of creating the string so

that it would have a predetermined maximum assembly index is NP-hard. Therefore, once the new information

is assembled by a dissipative structure or by a human, increasing the information entropy according to the 2nd

law of infodynamics, it is subject to the 2nd law of thermodynamics, and nature seeks to optimize its assembly

pathway.

Keywords: assembly theory; emergent dimensionality; black holes; shortest addition chains; P versus NP problem;

quantum orthogonalization interval theorems; second law of infodynamics; mathematical physics; binputation

1. Introduction

Assembly Theory (AT) [1–7] provides a distinctive complexity measure, superior to established
complexity measures used in information theory, such as Shannon entropy or Kolmogorov complexity
[1,5]. AT does not alter the fundamental laws of physics [6]. Instead, it redefines objects on which these
laws operate. In AT, objects are not considered as sets of point particles (as in most physics), but instead
are defined by the histories of their formation (assembly pathways) as an intrinsic property, where, in
general, there are multiple assembly pathways to create a given object.

AT explains and quantifies selection and evolution, capturing the amount of memory necessary to
produce a given object [6]. This is because the more complex a given object is, the less likely an identical
copy can be observed without the selection of some information-driven mechanism that generated that
object. Formalizing assembly pathways as sequences of joining operations, AT begins with basic units
(such as chemical bonds) and concludes with a final object. This conceptual shift captures evidence of
selection in objects [1,2,6].

The Assembly Index, which represents the length of the shortest assembly pathway leading
to an object, facilitates the quantification of the minimum memory required for its construction. In
general, it increases with the object’s size, but decreases with symmetry, so large objects with repeating
substructures may have lower complexity than smaller objects with greater heterogeneity [1]. The copy
number specifies the number of copies of an object, essential for assessing its structural complexity.
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AT has been experimentally confirmed in the case of molecules and probed directly experimen-
tally with high accuracy with spectroscopy techniques, including mass spectroscopy, IR, and NMR
spectroscopy [6]. It is a versatile concept with applications in various domains. Beyond its application
in the field of biology and chemistry [7], its adaptability to different data structures, such as text,
graphs, groups, music notations, image files, compression algorithms, etc., showcases its potential in
diverse fields [2].

In this study, we investigate the assembly pathways of binary strings by joining individual bits
present in the assembly pool [6] and strings that entered the pool as a result of previous joining
operations.

In particular, we investigate the assembly of black-body objects (BBs: black holes (BHs), white
dwarfs, and neutron stars) considered binary strings [8–10]. It is known [2,8–19] that information
in the universe evolves toward increased structural complexity, decreasing information entropy.

We use emphasis for object as this term, understood as a collection of matter, is a misnomer, as
it neglects the (quantum) nonlocality [20]. Nonlocality is independent of the entanglement among
particles [21], as well as the quantum contextuality [22], and increases as the number of particles
[23] grows [24,25]. Furthermore, the ugly duckling theorem [26,27] asserts that every two objects
we perceive are equally similar (or equally dissimilar).

This study extends the findings of previous research [8–10,23] within the framework of AT
and emergent dimensionality [8–10,15,17,18,20,23,28]. However, our results generally apply to
information theory. Therefore, we put the BB-related content in frames like this one. The reader
not interested in BBs may skip the text in these frames and the additional results presented in
Section 7.

The paper is structured as follows. Section 2 introduces the basic definitions used in the paper.
Section 3 shows that the assembly index of binary strings is bounded from below and provides the form
of this bound. Section 4 shows that the assembly index of binary strings is bounded from above and
conjectures about the exact form of this bound. Section 6 introduces the concept of binary assembling
program and shows that the trivial assembling program assembles binary strings that have a minimum
assembly index. Section 7 discusses additional results of this research in the context of BBs. Section 8
concludes the findings of this study.

2. Preliminaries

For K subunits of an object O the assembly index aO of AT is bounded [1] from below by

min(aO) = log2(K), (1)

and from above by
max(aO) = K − 1, (2)

The lower bound (1) represents the fact that the simplest way to increase the size of a subunit in a
pathway is to take the largest subunit so far and join it to itself [1] and, in the case of the upper bound
(2), subunits must be distinct so that they cannot be reused from the pool, decreasing the index.

Here we consider binary strings C(N)
k containing bits {1, 0}, which are our basis AT objects [2],

with N0 zeros and N1 ones1, having length N = N0 + N1.

1 N1 is called binary Hamming weight or bit summation of a string C(N)
k .
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Where the bit value can be either 1 or 0, we write ∗ = {1, 0} with ∗ being the same within the
string C(N)

k . If we allow for the 2nd possibility that can be the same as or different from ∗, we write

⋆ = {1, 0}. Thus, C(2)
k = [∗⋆], for example, is a placeholder for all four 2-bit strings.

We consider strings to be messages transmitted through a communication channel between a
source and a receiver, similarly to the Claude Shannon approach [29] used in the derivation of binary
information entropy

H
(

C(N)
k

)
= −p0 log2(p0)− p1 log2(p1), (3)

where
p0 =

N0

N
and p1 =

N1

N
, (4)

are the ratios of occurrences of zeros and ones within the string C(N)
k and the unit of entropy (3) is bit.

Here, we consider the process of formation of binary strings within the AT framework.

Definition 1. A string assembly index a(N) is the smallest number of steps s required to assemble a binary
string C(N)

k of length N by joining two distinct bits contained in the initial assembly pool P = {1, 0} and
strings joined in previous steps that are added to the assembly pool. Therefore, the assembly index a(N)(Ck) is a
function of the string C(N)

k .

For example, the 8-bit string
C(8)

k = [01010101] (5)

can be assembled in at most seven steps:

1. join 0 with 1 to form C(2)
k = [01], adding [01] to P = {1, 0, 01},

2. join C(2)
k = [01] with 0 to form C(3)

k = [010], adding [010] to P = {1, 0, 01, 010},
3. ...
7. join C(7)

k = [0101010] with 1 to form C(8)
k = [01010101]

(i.e. not using the assembly pool P), six, five, or four steps:

1. join 0 with 1 to form C(2)
k = [01], adding [01] to P,

2. join C(2)
k = [01] with [01] taken from P to form C(4)

k = [0101], adding [0101] to P,
3. join C(4)

k = [0101] with [01] taken from P to form C(6)
k = [010101], adding [010101] to P,

4. join C(6)
k = [010101] with [01] taken from P to form C(8)

k = [01010101],

or at least three steps:

1. join 0 with 1 to form C(2)
k = [01], adding [01] to P,

2. join C(2)
k = [01] with [01] taken from P to form C(4)

k = [0101], adding [0101] to P,
3. join C(4)

k = [0101] with [0101] taken from P to form C(8)
k = [01010101],

while the 8-bit string
C(8)

l = [00010111] (6)

can be assembled in at least six steps:

1. join 0 with 1 to form C(2)
l = [01], adding [01] to P,

2. join C(2)
l = [01] with [01] taken from P to form C(4)

l = [0101], adding [0101] to P,
3. join 0 with 0 adding [00] to P,
4. join C(4)

l = [0101] with [00] taken from P to form C(6)
l = [000101], adding [000101] to P,

5. join C(6)
l = [000101] with 1 to form C(7)

l = [0001011], adding [0001011] to P,
6. join C(7)

l = [0001011] with 1 to form C(8)
l = [00010111],
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as only the doublet [01] can be reused from the pool. Therefore, strings (5) and (6), despite having the
same length N = 8 and Hamming weight N1 = 4, have respective assembly indices a(8)(Ck) = 3 and
a(8)(Cl) = 6 that represent the lengths of their shortest assembly pathways, which in turn ensures that
their assembly pools P are distinct sets.

Tables 1 and A6–A13 (Appendix D) show the distributions of the assembly indices among 2N

strings for 4 ≤ N ≤ 12 taking into account the number of ones N1. The sums of each column form
Pascal’s triangle read by rows (OEIS sequence A007318).

Theorem 1. A string having length N = 4 is the shortest string having more than one string assembly index 1.

Proof. The proof is trivial. For N = 1 the assembly index a(1)(C) = 0, as all basis objects have a
pathway assembly index of 0 [2] (they are not assembled). N = 2 provides four available strings with
a(2)(C) = 1. N = 3 provides eight available strings with a(3)(C) = 2. Only N = 4 provides 16 strings
that include four stings with a(4)(C) = 2 and twelve strings with a(4)(C) = 3 including |B(4)| = 6
balanced strings, as shown in Tables 1 and 2.

For example, to assemble the string B1 = [0101] we need to assemble the string [01] and reuse
it. Therefore, a(N)(Ck) = N − 1 for 0 < N < 4, ∀k and min

k

(
{a(N)(Ck)}

)
< N − 1 for N ≥ 4, where

{a(N)(Ck)} denotes a set of different assembly indices.

Table 1. Distribution of the assembly indices for N = 4.

N1
a(4)(C) |a(4)(C)| 0 1 2 3 4

2 4 1 2 1
3 12 4 4 4

16 1 4 |B(4)| = 6 4 1

Table 2. |B(4)| = 6 balanced strings B(4)
k .

k B(4)
k a(4)(Bk)

1 (0 1) (0 1) 2
2 (1 0) (1 0) 2
3 0 1 1 0 3
4 1 1 0 0 3
5 1 0 0 1 3
6 0 0 1 1 3

Interestingly, Theorem 1 strengthens the meaning of NBH = 4 as the minimum information
capacity that provides a minimum thermodynamic (BH) entropy [30–32].

There is no disorder or uncertainty in an object that can be assembled in the same number of
steps s ≤ 2.

Definition 2. A string B(N)
k is a balanced string if it has the same number of bits, where N1 = N0 − 1 or

N0 = N1 − 1 if N is odd.

Without loss of generality, we assume that if N is odd, N1 < N0 (e.g., for N = 5, N1 = 2, and
N0 = 3). However, our results are equivalently applicable if we assume the opposite (i.e. a larger
number of ones for an odd N).
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Considered as messages [29], only balanced and even length strings B(N)
k have binary entropies

H(B(N)
k ) = {0, 1}, i.e. natural numbers. Conversely, only non-balanced and/or odd length strings

C(N)
k have binary entropies 0 < H(C(N)

k ) < 1.
The number |B(N)| of balanced strings among all 2N strings is2

|B(N)| =
(

N
⌊N/2⌋

)
=

(
N

⌈N/2⌉

)
≈
√

2
πN

2N . (7)

This is the OEIS A001405 sequence, the maximal number of subsets of an N-set such that no one
contains another, as asserted by Sperner’s theorem, and approximated using Stirling’s approximation
for large N.

BBs emit Hawking black-body radiation having a continuous spectrum that depends only
on one factor, the BB temperature |TBB| = TP/(2πdBB) corresponding to the BB diameter DBB :=
dBBℓP, dBB ∈ R, where ℓP and TP denotes respectively the Planck length and temperature [8].

Triangulated BB surfaces contain a balanced number of Planck area triangles, each having
binary potential δφ = −c2 · {0, 1}, where c denotes speed of light in vacuum, as has been shown [8,
10], based on the Bekenstein-Hawking entropy [30–32] SBB = kBNBB/4. Here kB is the Boltzmann
constant and NBB := πD2

BB/ℓ2
P = πd2

BB is the information capacity of the BB surface, i.e., the
⌊NBB⌋ ∈ N Planck triangles corresponding to bits of information [8–10,31,33,34], and the fractional
part triangle(s) having the area {NBB}ℓ2

P = (NBB − ⌊NBB⌋)ℓ2
P too small to carry a single bit of

information [8,9].
Therefore, a balanced string Bk represents a BB surface comprising N1 = ⌊NBB⌋/2 active

Planck triangles (APTs) with binary potential φAPT = −c2 and energy EBB = ±MBBc2 [9].

Definition 3. A string D(N)
k is a distinct string if a ring formed with this string by joining its beginning with

its end is unique among the rings formed from the other distinct strings D(N)
l , l ̸= k.

There are at least two and at most N forms of a distinct string D(N)
k that differ in the position of

the starting bit. For example for |B(4)| = 6 balanced strings, shown in Table 2, two augmented strings
with a(4) = 2 correspond to each other if we change the starting bit

[. . . 1 | 0101 | 0101 | 01 . . . ] =

[. . . 10 | 1010 | 1010 | 1 . . . ].
(8)

Similarly, four augmented strings with a(4) = 3 correspond to each other

[. . . | 0110 | 0110 | 011 . . . ] =

[. . . 0 | 1100 | 1100 | 11 . . . ] =

[. . . 01 | 1001 | 1001 | 1 . . . ] =

[. . . 011 | 0011 | 0011 | . . . ],

(9)

after a change in the position of the starting bit. Thus, there are only two balanced distinct strings E(4)
k .

2 "⌊x⌋" is the floor function that yields the greatest integer less than or equal to x and "⌈x⌉" is the ceiling function that yields
the least integer greater than or equal to x.
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The number of distinct strings |D(N)| among all 2N strings is given by the OEIS sequence A000031.
In general (for N ≥ 3), the number |D(N)| of distinct strings is much lower than the number |B(N)| of
balanced strings.

As asserted by the no-hair theorem [35], BH is characterized only by three parameters: mass,
electric charge, and angular momentum.

However, BHs are fundamentally uncharged and non-rotating, since the parameters of any
conceivable BH, that is, charged (Reissner-Nordström), rotating (Kerr) and charged rotating (Kerr-
Newman), can be arbitrarily altered, provided that the area of a BH surface does not decrease [36]
using Penrose processes [37,38] to extract electrostatic and/or rotational energy of a BH [39].

Thus, a BH is defined by a single real number, and no Planck triangle is distinct on a BH
surface. We can define neither a beginning nor an end of a balanced distinct string E(NBH)

k that
represents a given BH.

By neglecting the notion of the beginning and end of a string, we focus on its length and content.
In Yoda’s language,

"complete, no matter where it begins. A message is".

The numbers of the balanced |Bk|, distinct |Dk|, and balanced distinct3 |Ek| strings are shown in Table 3
and Figure 1. The formula for |Ek| remains to be researched.

Table 3. String length N, number of all strings 2N , number of balanced strings B(N), number of distinct
strings D(N), and number of balanced distinct strings E(N).

N 2N |B(N)| |D(N)| |E(N)| |B(N)|/|E(N)|
1 2 1 2 1 1
2 4 2 3 1 2
3 8 3 4 1 3
4 16 6 6 2 3
5 32 10 8 2 5
6 64 20 14 4 5
7 128 35 20 5 7
8 256 70 36 10 7
9 512 126 60 14 9

10 1024 252 108 26 9.6923 . . .
11 2048 462 188 42 11
12 4096 924 352 80 11.55
13 8192 1716 632 132 13
14 16384 3432 1182 246 13.9512 . . .
15 32768 6435 2192 429 15

3 |Ek | is close to OEIS A000014 up to the eleventh term.
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Figure 1. Numbers of all 2N strings (red), balanced strings |B(N)| (green), distinct strings |D(N)| (cyan),
and balanced distinct strings |E(N)| (blue) as a function of the string length N.

We note that, in general, the starting bit is relevant for the assembly index. Thus, different forms
of a distinct string may have different assembly indices. For example, for N = 7 balanced strings
B34 and B35, shown in Table A16 have a(7) = 6. However, these strings are not distinct, since they
correspond to each other and to the balanced strings B13, B18, B20, B28, and B30 with a(7) = 5. They all
have the same triplet of adjoining ones.

Definition 4. The assembly index of a distinct string D(N)
k is the smallest assembly index among all forms of

this string.

Thus, if different forms of a distinct string have different assembly indices, we assign the smallest
assembly index to this string. In other words, we assume that the smallest number of steps

a(N)(Dk) = min
l

(
{a(N)(Dk)l}

)
, (Dk)l ∈ Dk, (10)

where (Dk)l denotes a particular form of a distinct string Dk, is the string assembly index of this
distinct string.

If an object that can be represented by a distinct string (a BB in particular) can be assembled in
fewer steps, this procedure will be preferred by nature.

The distribution of the assembly indices of the balanced distinct strings Ek is shown in Table 4.
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Table 4. Distribution of assembly indices among balanced distinct strings E(N) for 4 ≤ N ≤ 11.

N |E(N)| a(N) = 2 a(N) = 3 a(N) = 4 a(N) = 5 a(N) = 6 a(N) = 7 a(N) = 8
4 2 1 1
5 2 1 1
6 4 1 2 1
7 5 2 3
8 10 1 1 6 2
9 14 1 4 7 2
10 26 1 6 9 10
11 42 2 14 20 6

3. Minimum Assembly Index

In the following, we derive the tight lower bound of the set of different string assembly indices 1.

Theorem 2 (Tight lower bound on the string assembly index). The smallest string assembly index
a(N)(Cmin) as a function of N corresponds to the shortest addition chain for N (OEIS sequence A003313).

Proof. Strings Cmin for which a(N)(Cmin) = min
k

(
{a(N)(Ck)}

)
, ∀k = {1, 2, . . . , 2N} can be formed in

subsequent steps s by joining the longest string assembled so far with itself until N = 2s is reached [1].
Therefore, if N = 2s, then min

k

(
{a(2s)(Ck)}

)
= s = log2(N). Only four strings

C(2s)
min1

= [00 . . . ], C(2s)
min2

= [11 . . . ], C(2s)
min3

= [0101 . . . ], and C(2s)
min4

= [1010 . . . ] (11)

have such an assembly index in this case.
An addition chain for N ∈ N having the minimum length s ∈ N (commonly denoted as l(N)) is

defined as a sequence 1 = b0 < b1 < · · · < bs = N of integers such that for each j ≥ 1, bj = bk + bl
for l ≤ k < j. The first step in creating an addition chain for N is always b1 = 1 + 1 = 2 and this
corresponds to assembling a doublet [∗⋆] from the initial assembly pool P. Thus, the lower bound for s
of the addition chain for N, s ≥ log2(N) is attained for N = 2s. In the assembly case, this bound is
attained by the strings (11). The second step in creating an addition chain can be either b2 = 1 + 1 = 2
or b2 = 1 + 2 = 3.

Thus, finding the shortest addition chain for N corresponds to finding an assembly index of a
string containing bits and/or doublets and/or triplets generated by these doublets for N ̸= 2s since
due to Theorem 1 only they provide the same assembly indices {0, 1, 2}. Such strings correspond to
linear molecules made of carbons [4] (Supplementary Materials, S3.2).

The minimum assembly index a(N)
min is shown in Table 5 for 1 ≤ N ≤ 21. Calculating the minimum

length of the addition chain for N and finding the assembly index of a string of length N have been
shown to be at least as hard as NP-complete [4,40].

Table 5. The lower bound on the binary string assembly index (OEIS A003313).

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

a(N)
min 0 1 2 2 3 3 4 3 4 4 5 4 5 5 5 4 5 5 6 5 6

Using the difference between the general AT lower bound (1) and the minimum assembly index
we can define

DC(N) := 2
(

log2(N)−a(N)
min

)
= N2−a(N)

min , (12)

capturing a degree of causation [6] of assembling this string of length N, as shown in Fig. 2. For N = 2s,
the degree of causation DC(N) = 1, as strings (11) can be assembled along a single pathway only; their
assembly is entirely causal. However, for N ̸= 2s, DC(N) < 1, since at least some strings C(N)

min can
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be assembled along different pathways. For example, there are two pathways for the string [001]: 1.
[00] + 1 and 2. 0 + [01] leaving different subunits ([00] and [01]) in their assembly pools, resulting in
lower DC(N) values.

Equation (12) features certain patterns that for certain values of N can be used to determine the
minimum assembly index (i.e. the shortest addition chain for N) as a(N)

min = log2(N)− log2(DC(N)).
For example, for each N = 2s, s ∈ N and for each N̂ := 2s + 2l , l = 0, 1, . . . , s − 1 being the sum of two
powers of 2 (OEIS A048645)

DC(N̂) =
N̂

2s+1 , lim
s→∞

(
min DC(N̂)

)
=

1
2

, (13)

while for the remaining 2s < Ñ < 2s+1 not being the sum of two powers of 2 (OEIS A072823)

DC(Ñ) =
Ñ

2s+k , lim
s→∞

(max DC(N)) =
1
2

, (14)

where k = 2 for Ñ = {7, 11, 13 − 15, 19, 21 − 23, 25 − 28, . . . }, k = 3 for Ñ = {29, 31, 47, 53, 55, 57 −
59, 61 − 63, . . . }, k = 4 for Ñ = {127, 191, 235, 237, 239, 247, 251, 253, 254, . . . }, etc. For example, if s = 5,

N = 25 = 32 and for N̂ = {33, 34, 36, 40, 48, 64}, a(N̂)
min = s + 1 = 6, for Ñ = {35, 37 − 39, 41 − 46, 49 −

52, 54, 56, 60}, a(N̂)
min = s + 2 = 7, and for Ñ = {47, 53, 55, 57 − 59, 61 − 63}, a(N̂)

min = s + 3 = 8.

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

D
C
(N

)

Figure 2. Degree of causation as a function of 1 ≤ N ≤ 105.

4. Maximum Assembly Index

In the following, we conjecture the form of the upper bound of the set of different string assembly
indices 1.

In general, of all strings Ck having a given assembly index, shown in Tables 1 and A6–A13
(Appendix D), most are those having N1 = ⌊N/2⌋. The only exceptions we found are N = 8 for
a(8) = 4 (4 < 8) and for a(8) = 6 (24 < 26), N = 10 for a(10) = 4 (2 < 5) and for a(10) = 5 (32 < 33),
and N = 12 for a(12) = 4 (2 < 3).

Introducing the definition 2 of a balanced string allows us to reduce the search space of possible
strings with maximal assembly indices to balanced strings only. With the exception of N = 8, of all
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strings C(N)
k having a maximum assembly index, most are balanced. We can further restrict the search

space to distinct strings 3.
If a string Cmin for which a(N)(Cmin) = min

k

(
{a(N)(Ck)}

)
is constructed from repeating patterns,

then a string Cmax for which a(N)(Cmax) = max
k

(
{a(N)(Ck)}

)
must be the most patternless. The string

assembly index must be bounded from above and a(N)(Cmax) must be a monotonically nondecreasing
function of N that can increase at most by one between N and N + 1.

Identifying the shortest pathway is known to be computationally challenging [3]. This problem
has been proven to be at least as hard as NP-complete [4]. However, certain heuristic rules apply in
our binary case. For example,

• for N = 7 we cannot avoid two doublets (e.g. 2 × [00]) within a distinct string E(7)
28 = [0011100]

and thus a(7)(Cmax) = 5 < 6,
• for N = 8 we cannot avoid two pairs of doublets (e.g. 2 × [00] and 2 × [11]) within a distinct

string E(8)
7 = [00001111] and thus a(8)(Cmax) = 5 < 6,

• for N = 12 we cannot avoid three pairs of doublets (e.g. 2 × [00], 2 × [10], and 2 × [11]) within a
distinct string E(12)

k = [111000101100] and thus a(12)(Cmax) = 8 < 9,
• for N = 14 we cannot avoid two pairs of doublets and one doublet three times (e.g. 2 × [00],

2 × [11], and 3 × [01], and thus a(14)(Cmax) = 9 < 10,
• etc.

Table 6 shows the exemplary balanced strings Bmax having maximal assembly indices that we
assembled (cf. also Appendix B). To determine the assembly index a(18) = 11 of the string

E(18)
k = [1(001)(11)(110)(110)(00)(001)0], (15)

we look for the longest patterns that appear at least twice within the string, and we look for the largest
number of these patterns. Here, we find that each of the two triplets [001] and [110] appear twice
in E(18)

k and are based on the doublets [00] and [11] also appearing in E(18)
k . Thus, we start with the

assembly pool {1, 0, [00], [001], [11], [110]} made in four steps and join the elements of the pool in the
following seven steps to arrive at a(18)(Ek) = 11. On the other hand, another form of this balanced
distinct string

E(18)
l = [(01)(11)(110)(110)00(001)(01)0], (16)

has a(18)(El) = 12.
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Table 6. Exemplary balanced strings B(N)
max having a maximum assembly index. Conjectured (a(N)

conj)

form of the maximum assembly index and its factual values for distinct (a(N)
dst ) and non-distinct (a(N)

ndst)
strings (red if below the conjectured value, green - if above).

N B(N)
max a(N)

conj a(N)
dst a(N)

ndst
1 0 0 0 0
2 1 0 1 1 1
3 0 0 1 2 2 2
4 0 0 1 1 3 3 3
5 0 0 0 1 1 4 4 4
6 0 0 0 1 1 1 5 5 5
7 0 0 1 1 1 0 0 5 5 6
8 0 0 0 1 0 1 1 1 6 6 6
9 0 0 0 0 1 1 1 0 1 7 7 7

10 0 0 0 0 1 1 1 1 0 1 7 7 8
11 0 0 0 0 0 1 0 1 1 1 1 8 8 8
12 1 1 1 0 0 0 1 0 1 1 0 0 9 8 8
13 0 0 0 0 0 0 1 0 1 1 1 1 1 9 9 9
14 0 0 0 0 0 1 0 1 0 1 1 1 1 1 9 9 9
15 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 10 10 10
16 1 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 11 10 10
17 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 11 11 11
18 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 11 11 12
19 1 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 12 11 12
20 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 13 12 13

Conjecture 1 (Tight upper bound on a string assembly index). With exceptions for small N the largest
string assembly index a(N)(Cmax) of a binary string as a function of N is given by a sequence formed by
{+1,+1, k × 0,+1,+1, k × 0} strings for k ∈ N0, where +1 denotes increasing a(N)(Cmax) by one, and 0
denotes maintaining it at the same level, and a(0) = −1.

However, at this moment, we cannot state whether this conjecture applies to distinct or non-
distinct strings. The assembly indices for N < 3 are the same for a given N, whereas the assembly
indices for 4 ≤ N ≤ 10 were discussed above and are calculated in Appendix D for balanced and
balanced distinct strings.

The conjectured sequence is shown in Figures 3 and 4 starting with a(0) = −1 (we note in passing
that n = −1 is a dimension of the void, the empty set ∅, or (-1)-simplex). Subsequent terms are
given by {0, 1, 2, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 9, 10, . . . }, which is periodic for N = k(k + 3) and flattens at
a(N)(Dmax) = 4k − 3, and a(N)(Dmax) = 4k − 1, k ∈ N, k > 1.

This sequence can be generated using the following procedure
step =1; % step flag
run =1; % run flag
flat =0; % flat counter

Nk = 0;
aub= -1; % the upper bound
while Nk < N

if step < 3
Nk = Nk+1; % next Nk
aub= aub + 1; % increment the bound

else % step ==3
for k=1: flat

if flat > 0
Nk = Nk+1; % next Nk

end
end
run = run+1; % increment run flag
if run > 2
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run = 1; % reset run flag
flat = flat +1; % increment flat counter

end
end
step = step +1; % increment step flag
if step > 3

step =1; % reset step flag
end

end

We note the similarity of this bound to the Aufbau rule4, the Janet sequence (OEIS A167268) and
the monotonically non-decreasing Shannon entropy of chemical elements, including observable ones
[23]. Perhaps the exceptions in the sequence 1 vanish as N increases.

5. Strings between the Bounds

The bounds 2 and 1 are shown in Tables 5 and 6 and illustrated in Figures 3 and 4. No binary
string can be assembled in a smaller number of steps than given by a lower bound of Theorem 2. On
the other hand, some strings cannot be assembled in a smaller number of steps than given by an upper
bound (which for large N, as we suppose, has the form presented in Conjecture 1).

The Hamlet tragedy contains approximately 130,000 letters. Assigning five bits per letter (32
possibilities), the Hamlet tragedy can be encoded in a string having NHamlet = 650000 bits (81.25 kB)
yielding the total number of possible strings 2NHamlet ≈ 1 × 10195312 (including |BNHamlet | ≈ 1 × 10195309),
and their assembly indices are bounded by

27 ≤ a(NHamlet)(Ck) ≪ 3217 (17)

The lower bound (17) can be estimated using Theorem 2 (though for large N it can be at least as hard
as NP-complete [4,40]). The upper bound (17) can be estimated by finding the smallest k that satisfies
k(k + 3) ≥ NHamlet and using the relation a(N)(Cmax) = 4⌈k⌉ − 1 of Conjecture 1.

We assume that the assembly index of the string encoding the actual Hamlet tragedy is close to
the upper bound. Even if the probability of random typing of the Hamlet tragedy is unfathomably
small, when constrained to the bounds of the physical universe [5], as asserted by the infinite monkey
theorem, this tragedy was once created by William Shakespeare.

SARS-CoV-2 genome sequence contains 29903 nucleobases {A, C, G, T}. Assigning two bits per
base it can be encoded in a string of NSARS-CoV-2 = 59806 bits having the assembly index bounded by

20 ≤ a(NSARS-CoV-2)(Ck) ≪ 971. (18)

The supermassive BH Sagittarius A∗ has an estimated mass MBH ≈ 8.26 × 1036 kg corre-
sponding to the Schwarzschild diameter DBH ≈ 2.45 × 1010 m and the information capacity
NSagittarius A∗ ≈ 7.24 × 1090 [8]. In this case, its assembly index is bounded by

332 ≤ a(NSagittarius A∗ ) ≪ 1.0763 × 1046. (19)

However, we conjecture that

Conjecture 2. A BB surface is defined by a balanced distinct string that satisfies the upper bound of a
distinct string assembly index.

4 Only about twenty chemical elements (with only two non-doubleton sets of consecutive ones) violate the Aufbau rule.
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To be the most patternless [8], a balanced BB surface must minimize not only Shannon entropy
and Kolmogorov complexity (the latter is uncomputable), but also maximize its assembly index.
A BB cannot be assembled in a suboptimal way, since black-body radiation is informationless.

Figure 3. Lower bound on the binary string assembly index 2 (red) and log2(N) (red, dash-dot),
conjectured upper bound on the binary string assembly index 1 (green), factual values of the string
assembly index (blue) and the distinct string assembly index (cyan) and N − 1 (green, dash-dot), for
the string length 0 ≤ N ≤ 20.
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Figure 4. Lower bound on the binary string assembly index (red) and log2(N) (red, dash-dot),
conjectured upper bound on the string assembly index (green) and N − 1 (green, dash-dot), for the
binary string length 0 ≤ N ≤ 100.

6. Binputation

Definition 5. The binary assembling program QB is a binary string of length sQ that acts on the assembly pool
P and outputs the assembled strings, adding them to the pool.

Definition 6. The trivial assembling program Q is a binary assembling program 5 with particular bits denoting

0 take the last element from P, join it with itself, and output.
1 take the last two elements from P, join them with each other, and output.

As the assembly pool P is a distinct set to which strings are added in subsequent assembly steps, only these two
commands are applicable to the initial assembly pool P = {1, 0} containing only two bits.

Theorem 3. If a string C(N)
min can be assembled by an elegant trivial program of length sQ = a(N)(Cmin) then

N is expressible as a product of Fibonacci numbers (OEIS A065108) and the length sQ of any trivial program Q
is not shorter than the assembly index of the string that this program assembles.

Proof. An elegant program is the shortest program that produces a given output [41,42].
The 1st bit of the program Q is irrelevant as Q = 0 assembles C(2)

min1
= [00] and Q = 1 assembles

C(2)
min4

= [10], so Q = ∗ assembles C(2)
min1,4

= [∗0]. Then the programs Q = ∗0 . . . 0 assemble the 2sQ -bit

strings C(2s)
min1,4

= [∗0 ∗ 0 . . . ] having the assembly index a(2
sQ )

min = sQ, while strings C2sQ
min2,3

with the

smallest assembly index a(2
sQ )

min = sQ can be assembled with the same two programs starting with the
pool P = {0, 1}.

The remaining 2sQ−1 − 2 programs will assemble some of the shorter strings with the assembly
index a(N)

min = sQ. In general, all programs Q assemble strings having lengths expressible as a product
of Fibonacci numbers (OEIS A065108) as shown in Table A2 (Appendix C), wherein out of 2sQ−1

programs (cf. Tables A5 and A2):

• 2sQ−2 programs Q = ∗0 ⋆ . . . assemble even length balanced strings B = [∗0 ∗ 0 . . . ] having

natural binary entropies (3) H(C) = {0, 1}, including strings C(2sQ )
min1,4

(11),
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• 2sQ−3 programs Q = ∗10 ⋆ . . . assemble [0 ∗ 00 ∗ 0 . . . ] strings having lengths divisible by three
and entropies H(C) ≈ {0, 0.9183},

• 2sQ−4 programs Q = ∗110 ⋆ . . . assemble [∗00 ∗ 0 ∗ 00 ∗ 0 . . . ] strings having lengths divisible by
five and entropies H(C) ≈ {0, 0.9710},

• 2sQ−5 programs Q = ∗1110 ⋆ . . . assemble [0 ∗ 0 ∗ 00 ∗ 0 . . . ] strings having lengths divisible by
eight, entropies H(C) ≈ {0, 0.9544}, and assembly indices a(N) = sQ − 1 if ∗ = 1,

• . . . ,
• the program Q = ∗1 . . . 0 joins two shortest strings joined in a previous step into a string of

length being twice the Fibonacci sequence (OEIS A055389), and finally
• the program Q = ∗1 . . . 1 assembles the shortest string that has length belonging to the set of

Fibonacci numbers.

Thus, for ∗ = 1, binary assembling programs Q assemble subsequent 2sQ−1 = 2sQ−2 + 2sQ−3 +

· · ·+ 20 + 1 Fibonacci words and their concatenations having entropies (3) with ratios (4)

p1,m =
Fm

Fm+2
and p0,m =

Fm+1

Fm+2
, (20)

where m = {1, 2, . . . sQ}, and F is the Fibonacci sequence starting from 1 that rapidly converge to

lim
sQ→∞

p0,m = φ − 1 ≈ 0.618033989 and lim
sQ→∞

p1,m = 2 − φ ≈ 0.381966011 (21)

where φ is the golden ratio. Therefore, limsQ→∞ Hm ≈ 0.9594 is the binary entropy of the Fibonacci
word limit. The Fibonacci sequence can be expressed through the golden ratio, which corresponds to
the smallest Pythagorean triple {−3, 4, 5} [28,43].

However, for sQ ≥ 4, some of the programs are no longer elegant if ∗ = 0 and some of the
assembled strings are not Cmin if ∗ = 1.

For sQ ≥ 4, Q = 111100 . . . assembles a string

C(2sQ−1
)

non-min = [01010010 . . . ] (22)

with an assembly index a(2
sQ−1

) = sQ which is not the minimum for this length of the string. For
example, 4-bit program Q = ∗111 assembles the string C(8) = [0 ∗ 0 ∗ 00 ∗ 0], but if ∗ = 0 this string can
be assembled by a shorter, 3-bit program Q = ∗00, and if ∗ = 1 this string does not have the minimal
assembly index a(8)(Cmin) = 3 but a(8)(Cnon-min) = 4.

For sQ = {4, 7} and sQ ≥ 10 and for the shortest string assembled by the program Q the program
Q is not elegant for ∗ = 0 and the shortest string assembled by the program is not Cmin for ∗ = 1.

However, the length sQ of any program Q is not shorter than the assembly index of the string that
this program assembles.

The trivial assembly programs Q and the strings they assemble are listed in Tables 7 and A3–A5
(Appendix C) for one version of the assembly pool and for 1 ≤ sQ ≤ 6. If a binary string C(N) were to
code four DNA nucleobases, (for example as, A= 00, G= 01, C= 10, and T= 11) then we note that
the nucleobase encoded by 11 (or 00 for P = {0, 1}) would not be present in the strings generated by
trivial assembly programs Q defined by 6.

Table 7. 3-bit elegant programs assembling strings with a(N) = 3.

Q C(s = 1) C(s = 2) C(sQ = 3) N
∗11 ∗0 0 ∗ 0 ∗00 ∗ 0 5
∗10 ∗0 0 ∗ 0 0 ∗ 00 ∗ 0 6
∗01 ∗0 ∗0 ∗ 0 ∗0 ∗ 0 ∗ 0 6
∗00 ∗0 ∗0 ∗ 0 ∗0 ∗ 0 ∗ 0 ∗ 0 8
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Perhaps the minimum assembly index 2 and Theorem 3 are related to the Collatz conjecture, as
the lengths of the strings (11) N = 22k correspond to the numbers to which the Collatz conjecture
converges, from N = (4k − 1)/3, k ∈ N (OEIS A002450).

Theorem 3 is related to Gödel’s incompleteness theorems and the halting problem. N cases of
the halting problem correspond only to sQ = log2(N), not to N bits of information [44]. Therefore,

sQ-bit elegant programs assemble all four strings C(2sQ )
min with a(2

sQ ) = sQ (with two versions of the
assembly pool). Furthermore, we could consider all strings assembled by the sQ-bit assembly program
as corresponding to provable theorems. Any formal axiomatic system (such as our trivial program;
Definition 6) only enables proving provable theorems. Thus, proving a theorem equals halting. There
is a more fundamental path to incompleteness that involves complexity, rather than self-reference [45].

Theorem 3 would be violated if we defined the command "0" e.g. as "take the last element from
the assembly pool, join it with itself, join with what you have already assembled (say at "the right"),
and output". Then the 2-bit program "00" would produce [000000] with the assembly index a(6) = 3.
However, such a one-step command would violate the axioms of assembly theory since it would
perform two assembly steps in one program step. An elegant program to output the gigabyte binary
string of all zeros would take a few bits of code and would have a low Kolmogorov complexity [46].
However, such a string would be outputted, not assembled. Furthermore, the length of such a program
that outputs the string [0 . . . ] would be shorter than the length of the program that outputs the string
[10 . . . ], while in AT, the lengths of these programs must be the same if the strings have the same
assembly indices. Theorem 3 is about binputation5 of binary strings.

Conjecture 3. There is no binary assembling program 5 that has a length shorter than the length of the string
having the largest assembly index that could assemble this string.

Partial Proof. When assembling the string having the largest assembly index (the largest complexity),
we cannot rely solely on the last or two last strings in the assembly pool. Thus, we need to index the
strings in the pool. However, we cannot predict in advance how many strings there will be in the
assembly pool. Thus, we do not know how many bits will be needed to encode the indices.

Furthermore, no program P (for a Turing machine) shorter than an elegant program Q can find
Q [41]. If it could, it could also generate Q’s output. But if P is shorter than Q, then Q would not be
elegant. Contradiction.

Conjecture 4. The problem of determining the assembly index of a given binary string C(N)
k and the problem

of assembling a non-trivial string so that it would have a minimum assembly index (Theorem 2) for N are
NP-complete. The problem of assembling the string so that it would have a maximum assembly index for N is
NP-hard.

Partial Proof. We found it much easier to determine an assembly index of a given binary string C(N)
k

than to assemble a string so that it would have a maximum assembly index. Similarly, a trivial string
with a minimum assembly index for N can have the form C(N)

min = [∗ . . . ] or the form of a Fibonacci
word generated by the trivial program 6.

A proof of conjecture 4 would also be the proof of the following conjecture.

Conjecture 5. P ̸= NP

Partial Proof. Every computable problem and every computable solution can be encoded as a finite
binary string. Here, determining whether the assembly index of a given string has its known maximal

5 As an analog to chemputation, where assembly theory is applied in digital chemistry.
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value corresponds to checking the solution to a problem for correctness, whereas assembling such a
string corresponds to solving the problem.

Thus, AT would solve the P versus NP problem in theoretical computer science. There is ample
pragmatic justification for adding P ̸= NP as a new axiom [44].

7. Additional Results

The [perceivable] universe is not big enough to contain the future; it is deterministic going back
in time and non-deterministic going forward in time [47]. But we know [2,8–19] that it has evolved to
the present since the Big Bang.

Perceivable information about any object can be encoded by a binary string [26,27]. This does not
imply that a binary string defines an object. Information that defines a chemical compound, a virus, a
computer program, etc. can be encoded by a binary string. However, a dissipative structure [12] such
as a living biological cell (or its conglomerate such as a human, for example) cannot be represented by
a binary string (even if its genome can). This information can only be perceived (so this is not an object
defining information). Each of us is given to ourselves as a mystery [48]. Therefore, since one bit is the
smallest amount and the quantum of information, the lower bound and the upper bound of the string
assembly index define the allowed region of the assembly indices for binary strings.

The bounds 2, 1, (1), and (2) on the assembly index are shown also in Figure 5 (adopted from
[1] and modified). According to the authors of [1], the "green portion of the figure is illustrative of
the location in the complexity space where life might reasonably be found. Regions below can be
thought of as being potentially naturally occurring, and regions above being so complex that even
living systems might have been unlikely to create them. This is because they represent structures with
limited internal structure and symmetries, which would require vast amounts of effort to faithfully
reproduce." [1].

Figure 5. An illustrative graph of complexity against information capacity: orange regions are
impossible, as they are above or below the assembly bounds; yellow region contains structures
optimally assembled (in equilibrium); green region contains dissipative structures; and red region is
the region of human creativity (figure not to scale).

We disagree with this statement. It is obvious that a binary string itself is neither dissipative nor
creative. It is its assembly process that can be dissipative or creative. Evolution is about assembling
new information and optimizing it until it reaches its assembly index.

That is why, we found determining the assembly index of a given binary string C(N)
k is easier

than creating a string with a maximum assembly index for this length of the string (Conjecture 4).
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Once the new information is assembled (by a dissipative structure operating far from thermodynamic
equilibrium, or created by humans) increasing the information entropy according to the 2nd law of
infodynamics [16], it enters the realm of the 2nd law of thermodynamics, and nature seeks how to
optimize its assembly pathway decreasing information entropy. And only humans are gifted with
creativity. Any creation is required to be shaped by the unique personality of the creator to such an
extent that it is statistically one-time in nature [49]; it is an imprint of the author’s personality.

The total entropy of the universe S is constant and is the sum of the information entropy Sin f o
and the physical entropy Sphys. Therefore, over time [19]

dSin f o

dt
+

dSphys

dt
= 0. (23)

The time corresponds to an increasing information capacity. Bit by bit: dt = (N + 1)− N = 1
At first, the newly assembled information corresponds to the discovery by groping [11]. However,

its assembly pathway does not attain its most economical or efficient form all at once. For a certain
period of time, its evolution gropes about within itself. The try-out follows the try-out, not being
finally adopted. Then finally perfection comes within sight, and from that moment the rhythm of
change slows down [11]. The new information, having reached the limit of its potentialities, enters the
phase of conquest. Stronger now than its less perfected neighbours, the new information multiplies
and consolidates. When the assembly index is reached, new information attains its equilibrium (not
necessarily a BH equilibrium) and its evolution terminates. It becomes stable.

There is a certain minimum amount of information NC required to establish a creation, as shown
in Figure 5. Sixteen possibilities provided by the minimum of thermodynamic entropy [30–32] bifurcate
the assembly pathways (cf. Theorem 1) but none of these possibilities can be considered a creation.
However, the boundary between the green region of dissipative structures [12] and the red region of
human creativity remains to be discovered.

"Thanks to its characteristic additive power, living matter (unlike the matter of the physicists)
finds itself ’ballasted’ with complications and instability. It falls, or rather rises, towards
forms that are more and more improbable. Without orthogenesis life would only have spread;
with it there is an ascent of life that is invincible." [11]

BB having the energy given by mass-energy equivalence

EBB =
k
2

MBBc2 =
k
2

mBBEP =
dBB

4
EP =

1
4

√
NBB

π
EP,

2 ≤ k ≤ kmax =
2α2√

α4 − α4
2

≈ 6.7933
(24)

where MBB := mBBmP, mBB ∈ R denote the BB mass, and EP, mP denote the Planck energy and mass,
α ≈ 1/137.036 is the fine-structure constant and α2 ≈ −1/140.178 is the 2nd fine-structure constant
related to α by (α + α2)/(αα2) = −π, and k is the BB size-to-mass ratio (STM) [10] (k = 2 if BB is BH).

It was shown [9] based on the Mandelstam-Tamm [50], Margolus–Levitin [51], and Levitin-Toffoli
[52] theorems on the quantum orthogonalization interval that BBs generate (or rather assemble) a pattern
forming nonequilibrium shell (VS) through the solid-angle correspondence, as shown in Figure 6. The
BB entropic work

WBB = TBBSBB = TBB
1
4

kBNBB = TBB
1
4

kBπd2
BB

=
EPdBB

4k

(
1 ± i

√
k2

4
− 1

)
,

(25)
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is the work done by all APTs of a BB. It is the product of the BB entropy [30–32] and the general,
complex BB temperature

TBB =
TP

kπdBB

(
1 ± i

√
k2

4
− 1

)
, (26)

which in modulus and for a BH (k = 2) reduces [10] to Hawking temperature

TBH =
h̄c3

8πGMBHkB
=

TP

2πdBH
, (27)

where h̄ = h/(2π) is the reduced Planck constant, G is the gravitational constant, and TP is the Planck
temperature. In particular [10]

TBB(kmax) =
TP

2πdBBα2

(√
α4 − α4

2 ± iα2
2

)
, (28)

TBB(keq) =
TP

2πdBB

α2 ± iα2
2√

α4 + α4
2

, (29)

where
keq =

2
α2

√
α4 + α4

2 ≈ 2.7665. (30)

is the energy equilibrium STM.

RBH2RBH

Ω

Figure 6. A black body object as a generator of an entropy variation shell (VS) through the solid angle
Ω correspondence.

A VS has the information capacity bounded by

NBB ≤ NVS ≤ 4NBB,

NVS := lNBB, 1 ≤ l ≤ 4,
(31)
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where l is a VS defining factor. The number of APTs is bounded by⌊
1
4

NBB

⌋
≤ N1 ≤

⌊
1
2

NBB

⌋
, (32)

as shown in Figure 7, and thus its binary potential δφVS = −N1c2/NVS [8,9] is bounded by

−1
2

c2 ≤ δφVS <


(

1
NBB

− 1
4

)
c2 > 0, NBB < 4(

1
4NBB

− 1
16

)
c2 < 0, NBB > 4

. (33)

and the theoretical probability p1 := N1/NVS for a triangle on a VS to be an active Planck triangle is
also bounded [9] by

1
16

− 1
4NBB

< p1 ≤ 1
2

, (34)

which is satisfied by the ratio p1,m (20) of the trivial assembling program 6 for NBB > 2. On the other
hand, the entropy variation [8,53] δS/kB = −cδφ so that for NBB < 4 the lower bound (34) is negative
and the upper bound (33) is positive (N1 ≤ 1 in this range). The Planck triangle of VS is located
somewhere on the VS surface defined by a solid angle

Ω =
ℓ2

P
R2

BB
=

4πℓ2
P

4πR2
BB

=
4π

NBB
, (35)

that corresponds to the BB Planck triangle.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

8

N
BH

N
1

Figure 7. Lower (red) and upper (green) bound on the number of APTs N1 on a VS as a function of the
information capacity of the generating BB [9].

The BB information capacity is dictated by its diameter and the BB energy (24) as a function of its
diameter is the same for all BBs (it is independent on k). However, the BB mass and density

ρBB =
MBB

VBB
=

3
kNBB

ρP, (36)

are not.
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Based on the orbiting condition V2
O ≤ V2

R ≤ V2
E , where VO =

√
GMC/Ravg is the orbital, and

VE =
√

2GMC/Ravg is the escape speed of an orbiting object, Ravg is the average distance from the
center of the central object to the center of the orbiting object, and MC is the mass of the central object,
the bounds

NBB ≤ 4v4
RNVS ≤ 4NBB, (37)

containing the velocity term VR = vRc, vR ∈ {R, I} were also derived [9]. Plugging NVS from the
bounds (31) into the bounds (37) we arrive at

1
4l

≤ v4
R ≤ 1

l
, (38)

which is satisfied by real and imaginary (but not complex) velocities (for example, for l = 1 by
−1 ≤ vR ≤ −1/

√
2, 1/

√
2 ≤ vR ≤ 1, −i ≤ vR ≤ −i/

√
2, and i/

√
2 ≤ vR ≤ i). Taking the square root

of the bounds (38), using v2
LL + v2

RR = 1, vR ∈ {R, I} [9], and squaring again, we arrive at

l − 2
√

l + 1
l

≤ v4
L ≤ 4l − 4

√
l + 1

4l
. (39)

The bounds (38) and (39), shown in Figure 8, meet at v = 1/
√

2, where de Broglie and Compton
wavelengths of mass M are the same

λdB =
h
p
= h

√
1 − V2

c2

MV
= λC =

h
Mc

⇔ V
c
=

1√
2

, (40)

where p is the relativistic momentum. The same is the ratio of orbital to escape speed: VO
VE

= 1√
2
.

1 1.5 2 2.25 2.5 3 3.5 4
0

0.2

0.4

0.5

0.5774

0.7071

0.8165
0.866

1

l

v L
,v
R

Figure 8. Lower (red) and upper (green) bounds on vR and lower (blue) and upper (cyan) bounds on
vL as a function of l defining VS. Characteristic velocities are {0,

√
1/4,

√
1/3,

√
2/4,

√
2/3,

√
3/4, 1},

vL, vR ∈ R+.

Furthermore, the bounds (38) and (39) do not overlap only for l = {1, 4}. Therefore, 1 < l < 4
defines the dissipativity or the assembly range. Furthermore, the intersection of the bounds (38) and
(39) is the common region for both velocities. If vL is within this region, then vR is as well. We note

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 April 2024                   doi:10.20944/preprints202401.1113.v7



22 of 37

that the average orbital velocity of each orbiting object only slightly exceeds its orbital speed VO. This
implies that the average VS defining factor lavg ≳ 1 in (31) for a VS orbiting object (cf. Appendix A).

BBs define a perfect thermodynamic equilibrium, and the bounds (31) and (32) show that nature
uses optimally assembled information (cf. Conjecture 2) to assemble new information. Figure 9 shows
the bounds on the string assembly indices and Figure 10 shows the BB temperature (27), energy (24),
and entropic work (25) for 0 ≤ NBB ≤ 5. kB|TBB|/EBB = 2/NBB is a rational number for natural NBB.
Furthermore, log2(NBB) > NBB − 1 for NBB ∈ R and 1 < NBB < 2.

Let us examine this process starting from the Big Bang during the Planck epoch and shortly
thereafter, and for continuous NBB ∈ R (i.e., including fractional Planck triangle(s)).

Figure 9. Lower (red) and upper (green) bounds on the binary string assembly index of length NBB

and log2(NBB) (blue), for 0 ≤ NBB ≤ 5.
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P
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P

1
4π 1 2ln(2) 2 π 4 5

Big Bang time→

Figure 10. Black body object energy EBB (green); temperature TBH (red), Re[TBB(keq)] (red, dash-dot),
Re[TBB(kmax)] (red, dash); and work WBH (blue), Re[WBB(keq)] (blue, dash-dot), Re[WBB(kmax)] (blue,
dash),as a function of its information capacity NBB in terms of Planck units, for 0 ≤ NBB ≤ 5.

NBB = 0

There is nothing to talk about. It is a mystery.
0 < NBB < 1

The Big Bang has occurred, forming the 1st BB. At NBB(kmax) = (α4 − α4
2)/(4πα4) ≈ 0.0069 the BB

temperature (27) and subsequently at NBH = 1/(4π) ≈ 0.0796 the BH temperature (27) become
equal to the Planck temperature, but any BB in this range is still too small to carry a single bit of
information and cannot be triangulated. However, independent BBs merge [9,10] summing their
entropies and increasing the information capacity.
NBB = 1

The first bit (a degree of freedom [9]) becomes available and APTs on BBs begin to fluctuate providing
the initial assembly pool P = {1, 0}. The BH energy reaches the limit of the equipartition theorem
for one bit (EBH = 1

2 kBTBH). However, the bounds (32) make them unable to generate any APTs on
a VS (N1 = 0).
1 < NBB < 2

This is the only range in which the lower AT bound (1) is greater than the upper AT bound (2).

The BH temperature (27) exceeds its energy (24) ( 1
2 kBTBH < EBH < kBTBH) [9]. At NBH = 2 ln(2) the

BH energy (24) is equal to the Landauer limit EBH = kBTBH ln(2) ≈ 1.3863 [54]. Shortly thereafter, at
NBH = 1.5, the BH density reaches the level of the Planck density For a BB [10] Still N1 = 0. Merging
BBs expand fractional Planck triangle(s) to form the 2nd bit.
NBB = 2

The first nonvanishing N1 = 1 becomes available on a VS generated by a BB. The BH temperature
(27) is equal to its energy (24) (kBTBH = EBH = EP/(2

√
2π)).

2 < NBB < 3

At NBB = 4 ln(2) the BH entropic work (25) is equal to the Landauer limit (kBTBH = WBH =

EP/(4
√

π)). At NBB > 2.4507 the density of the least dense BB (kmax ≈ 6.7933) decreases below the
modulus of its temperature. N1 = {0, 1}.
NBB = 3
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3 < NBB < 4

With NBB > 3 BBs can finally be triangulated. Yet, containing only one APT (N1 = {0, 1}), they are
not ergodic [9].

At NBH > π the BH surface gravity gBH = 1/dBH decreases below the Planck acceleration and the
tangential acceleration [8,9] becomes real (aL ∈ R).
NBB = 4

The BB assembly index bifurcates, minimal thermodynamic entropy [31] is reached, and the relation
(32) provides the second bit on a VS (N1 = 2). At this moment BB can be assembled in a different
number of steps and nature seeks to minimize this number following the dynamics induced by the
relation (23). The BH temperature (27) is equal to its entropic work (25) (kBTBH = WBH).
4 < NBB < 6

The BH temperature (27) finally decreases below the entropic work (25) limit and N1 ≥ 2.
NBB = 6

A BB reaches the upper bound on distinct assembly index.
6 < NBB < 7

The imaginary Planck time appears at the BH surface [8] heralding the end of the Planck epoch.
After crossing this threshold, the VSs begin to operate with 1 ≤ N1 ≤ 3 on 2π < NVS ≤ 8π, and the
first dissipative structures can be assembled.

Nature enters a directed exploration phase (α < 1) and selectivity emerges, limiting the discovery of
new objects [6].
NBB = 7

A BB reaches the upper bound on nondistinct assembly index.
. . .
NBB > 12

At NBB = 4π a first precise diameter relation can be established between the vertices of the BB
surface. Furthermore, for NBB = 4π, the solid angle (35) equals one steradian.
. . .
NBB > NC

The onset of human creativity.

8. Conclusions

The results reported here can be applied in the fields of cryptography, data compression methods,
stream ciphers, approximation algorithms [55], reinforcement learning algorithms [56], information-
theoretically secure algorithms, etc. Another possible application of the results of this study could be
molecular physics and crystallography.

Overall, the results reported here support the AT, the Bekenstein’s minimum of thermody-
namic entropy [30–32], the holographic principle [33], entropic gravity [34], emergent dimension-
ality [8–10,15,17,18,20,23,28], the second law of infodynamics [16,19], and invite further research.

Author Contributions: WB: Conjecture concerning the diversification of strings in Theorem 1; partitioning
conjecture for N ≥ 16 resulting in the flattening of the string assembly index upper bound curve; observation that
the string assembly index upper bound curve should BE monotonically non-decreasing; linear interpolation of VS
defining factors; prior-art search; numerous clarity corrections and improvements; SŁ: The remaining part of the
study.

Data Availability Statement: The public repository for the code written in MATLAB computational environment
is given under the link https://github.com/szluk/Evolution_of_Information (accessed on November 23, 2023).
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Abbreviations

The following abbreviations are used in this manuscript:

AT assembly theory;
BH black hole;
BB black-body object (BH, white dwarf, neutron star);
VS nonequilibrium shell;
APT active Planck triangle;
N length of a binary string;
N0 number of 0’s in the binary string;
N1 number of 1’s in the binary string (number of APTs);

C(N)
k binary string of length N;

B(N)
k balanced string of length N;

D(N)
k distinct string of length N;

E(N)
k balanced distinct string of length N;

|C(N)| number of binary strings of length N (2N);
|B(N)| number of balanced strings of length N (OEIS A001405);
|D(N)| number of distinct strings (OEIS A000031);
|E(N)| number of balanced distinct strings;
a(N) assembly index of a string of length N;
P = {1, 0} initial assembly pool;
s assembly step;
Q binary assembling program;
sQ length of the binary assembling program;
F Fibonacci sequence.

Appendix A. Orbital Velocities and the VS Defining Factor l

Table A1 shows the orbital speed VO and escape speed VE of some celestial objects, their minimal
Vmin and maximal Vmax velocities6. The former lie below the orbital speed limits. The average
VS defining factor lavg = (lmax − lmin)/2, where lmin/max = 3(Vmin/max − VO)/(VE − VO) + 1 was
determined by linear interpolation.

Table A1. Exemplary orbital speeds and velocities, and the average VS defining factor lavg.

Object VO [km/s] Vmin [km/s] Vmax [km/s] VE [km/s] lavg
Mercury 47.88 38.86 58.98 67.71 1.158

Venus 35.02 34.79 35.26 49.53 1.000
Earth 29.79 29.29 30.29 42.13 1.000
Mars 24.13 21.97 26.50 34.13 1.030

Jupiter 13.06 12.44 13.72 18.47 1.011
Saturn 9.62 9.09 10.18 13.61 1.009
Uranus 6.8 6.49 7.11 9.61 1.000

Neptune 5.43 5.37 5.50 7.68 1.001
Pluto 4.74 3.71 6.10 6.70 1.247

The Moon 1.02 0.96 1.08 14.40 1.011

6 Based on https://sci.esa.int/web/solar-system.
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Appendix B. Exemplary Strings with Maximal Assembly Indices

For the exemplary balanced distinct strings Emax, shown in Table 6:

• all forms of E(4)
k = [0011] have a(4) = 3,

• all forms of E(5)
6 = [00011] have a(5) = 4,

• all forms of E(6)
16 = [000111] have a(6) = 5,

• the form E(7)
28 = [0011100] has a(7) = 5 but the form E(7)

34 = [0001110] has a(7) = 6,
• all forms of E(8)

45 = [00010111] have a(8) = 6,
• all forms of E(9)

13 = [000011101] have a(9) = 7,
• the form E(10)

22 = [0000111101] has a(10) = 7 but the form E(10)
l = [0111101000] has a(10) = 8,

• all forms of E(11)
7 = [00000101111] have a(11) = 8,

• all forms of E(12)
9 = [111000101100] have a(12) = 8,

• all forms of E(13)
8 = [0000001011111] have a(13) = 9,

• all forms of E(14)
k = [00000101011111] have a(14) = 9,

• all forms of E(15)
k = [000001010111110] have a(15) = 10,

• all forms of E(16)
k = [1000000101011111] have a(16) = 10,

• all forms of E(17)
k = [00000010101111110] have a(17) = 11,

• all forms of E(18)
k = [000000101010111111] have a(18) = 11,

• some forms of E(19)
k = [1000010101001111101] have a(19) = 12,

• some forms of E(20)
k = [10100111110110000010] have a(20) = 13.

Appendix C. Trivial Assembling Programs

Table A2 shows the lengths of the strings assembled by the trivial assembling program introduced
in Section 6 for 1 ≤ sQ ≤ 7. The table is divided into sections corresponding to sets of assembled
strings having the same form but different lengths. For example, thirty two 7-bit programs in the
bottom section assemble strings C = [∗1 ∗ 1 . . . ]. The boxed symbols denote program commands, not
the string lengths.
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Table A2. Lengths of the strings assembled by trivial assembly programs Qs (OEIS A065108).

a(N) 0 1 2 3 3,4 4,5 5,6 6,7
sQ 1 2 3 4 5 6 7
1 1 2 3 5 8‡ 13 21 34‡

| | | | | ⋆ 42

| | | | 0 26 39
| | | | ⋆ 52

| | | 0 16‡ 24‡ 40‡

| | | | ⋆ 48‡

| | | ⋆ 32‡ 48‡

| | | ⋆ 64‡

| | 0 10 15 25 40‡

| | | | ⋆ 50
| | | ⋆ 30 45
| | | ⋆ 60
| | ⋆ 20 30 50
| | | ⋆ 60
| | ⋆ 40 60
| | ⋆ 80

| 0 6 9 15 24† 39
| | | | ⋆ 48†

| | | ⋆ 30 45
| | | ⋆ 60
| | ⋆ 18 27 45
| | | ⋆ 54
| | ⋆ 36 54
| | ⋆ 72
| ⋆ 12 18 30 48†

| | | ⋆ 60
| | ⋆ 36 54
| | ⋆ 72
| ⋆ 24 36 60
| | ⋆ 72
| ⋆ 48 72
| ⋆ 96

0 4 6 10 16† 26 42
| | | | ⋆ 52
| | | ⋆ 32† 48†

| | | ⋆ 64†

| | ⋆ 20 30 50
| | | ⋆ 60
| | ⋆ 40 60
| | ⋆ 80
| ⋆ 12 18 30 48†

| | | ⋆ 60
| | ⋆ 36 54
| | ⋆ 72
| ⋆ 24 36 60
| | ⋆ 72
| ⋆ 48 72
| ⋆ 96
⋆ 8 12 20 32† 52

| | | ⋆ 64†

| | ⋆ 40 60
| | ⋆ 80
| ⋆ 24 36 60
| | ⋆ 72
| ⋆ 48 72
| ⋆ 96
⋆ 16 24 40 64†

| | ⋆ 80
| ⋆ 48 72
| ⋆ 96
⋆ 32 48 80

| ⋆ 96
⋆ 64 96

⋆ 128
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Table A3. 4-bit programs assembling strings with a(N) = {3, 4}.

Q C(s = 3) C(sQ = 4) N
∗111 ∗00 ∗ 0 0 ∗ 0 ∗ 00 ∗ 0 8‡

∗110 ∗00 ∗ 0 ∗00 ∗ 0 . . . 10
∗101 0 ∗ 0 . . . 0 ∗ 0 . . . 9
∗100 0 ∗ 0 . . . 0 ∗ 0 . . . 12
∗011 ∗0 . . . ∗0 . . . 10
∗010 ∗0 . . . ∗0 . . . 12
∗001 ∗0 . . . ∗0 . . . 12
∗000 ∗0 . . . ∗0 . . . 16

‡. This program is not elegant if ∗ = 0 and the assembled string is not Cmin if ∗ = 1.

Table A4. 5-bit programs assembling strings with a(N) = {4, 5}.

Q C(s = 4) C(sQ = 5) N
∗1111 0 ∗ 0 ∗ 00 ∗ 0 ∗00 ∗ 00 ∗ 0 ∗ 00 ∗ 0 13
∗1110 0 ∗ 0 ∗ 00 ∗ 0 0 ∗ 0 ∗ 00 ∗ 0 . . . 16‡

∗1101 ∗00 ∗ 0 . . . ∗00 ∗ 0 . . . 15
∗1100 ∗00 ∗ 0 . . . ∗00 ∗ 0 . . . 20
∗1011 0 ∗ 0 . . . 0 ∗ 0 . . . 15
∗1010 0 ∗ 0 . . . 0 ∗ 0 . . . 18
∗1001 0 ∗ 0 . . . 0 ∗ 0 . . . 18
∗1000 0 ∗ 0 . . . 0 ∗ 0 . . . 24
∗0111 ∗0 . . . ∗0 . . . 16†

∗0110 ∗0 . . . ∗0 . . . 20
∗0101 ∗0 . . . ∗0 . . . 18
∗0100 ∗0 . . . ∗0 . . . 24
∗0011 ∗0 . . . ∗0 . . . 20
∗0010 ∗0 . . . ∗0 . . . 24
∗0001 ∗0 . . . ∗0 . . . 24
∗0000 ∗0 . . . ∗0 . . . 32

†. This program is not elegant (the same string can be assembled using the shorter 4-bit program ∗000). ‡. This
program is not elegant if ∗ = 0 and the assembled string is not Cmin if ∗ = 1.

Table A5. 6-bit programs assembling strings with a(N) = {5, 6}.

Q C(sQ = 6) N
∗11111 0 ∗ 0 ∗ 00 ∗ 0 ∗ 00 ∗ 00 ∗ 0 ∗ 00 ∗ 0 21
∗11110 ∗00 ∗ 00 ∗ 0 ∗ 00 ∗ 0 . . . 26
∗1110⋆ 0 ∗ 0 ∗ 00 ∗ 0 . . . 24‡, 32‡

∗110 ⋆ ⋆ ∗00 ∗ 0 . . . 25, 30, 40
∗10 ⋆ ⋆⋆ 0 ∗ 0 . . . 24†, . . . , 48
∗0 ⋆ ⋆ ⋆ ⋆ ∗0 . . . 26, 32†, . . . , 64

†. This program is not elegant. ‡. This program is not elegant if ∗ = 0 and the assembled string is not Cmin if ∗ = 1.

Appendix D. Binary Strings and Their Assembly Indices

Table A2 show the lengths of the strings assembled by programs Fs having the minimal assembly
indices. Tables A6-A13 show distributions of the assembly indices for 5 ≤ N ≤ 12. Tables A14-A18
show balanced strings B(N) and their assembly indices for 5 ≤ N ≤ 8. Tables A19-A24 show the
balanced distinct strings E(N) and their assembly indices for 5 ≤ N ≤ 10. Tables A25-A27 show
selected balanced distinct strings E(N) and their assembly indices for 11 ≤ N ≤ 13.

Table A6. Distribution of the assembly indices for N = 5.

N1
a(5)(C) |a(5(C)| 0 1 2 3 4 5

3 18 1 3 5 5 3 1
4 14 2 5 5 2

32 1 5 10 10 5 1
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Table A7. Distribution of the assembly indices for N = 6.

N1
a(6)(C) |a(6)(C)| 0 1 2 3 4 5 6

3 10 1 3 2 3 1
4 44 6 10 12 10 6
5 10 2 6 2

64 1 6 15 20 15 6 1

Table A8. Distribution of the assembly indices for N = 7.

N1
a(7)(C) |a(7)(C)| 0 1 2 3 4 5 6 7

4 50 1 5 7 12 12 7 5 1
5 74 2 14 21 21 14 2
6 4 2 2

128 1 7 21 35 35 21 7 1

Table A9. Distribution of the assembly indices for N = 8.

N1
a(8)(C) |a(8)(C)| 0 1 2 3 4 5 6 7 8

3 4 1 2 1
4 38 9 8 4 8 9
5 132 8 17 22 40 22 17 8
6 82 2 26 24 26 2

256 1 8 28 56 70 56 28 8 1

Table A10. Distribution of the assembly indices for N = 9.

N1
a(9)(C) |a(9)(C)| 0 1 2 3 4 5 6 7 8 9

4 24 1 3 3 5 5 3 3 1
5 184 4 17 35 36 36 35 17 4
6 248 2 19 42 61 61 42 19 2
7 56 4 24 24 4

512 1 9 36 84 126 126 84 36 9 1

Table A11. Distribution of the assembly indices for N = 10.

N1
a(10)(C) |a(10)(C)| 0 1 2 3 4 5 6 7 8 9 10

4 20 1 3 5 2 5 3 1
5 198 8 22 20 33 32 33 20 22 8
6 502 2 18 68 108 110 108 68 18 2
7 288 2 32 62 96 62 32 2
8 16 2 12 2

1024 1 10 45 120 210 252 210 120 45 10

Table A12. Distribution of the assembly indices for N = 11.

N1
a(11)(C) |a(11)(C)| 0 1 2 3 4 5 6 7 8 9 10 11

5 184 1 7 14 23 18 29 29 18 23 14 7 1
6 686 4 32 69 104 134 134 104 69 32 4
7 970 9 69 178 229 229 178 69 9
8 208 4 30 70 70 30 4

2048 1 11 55 165 330 462 462 330 165 55 11
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Table A13. Distribution of the assembly indices for N = 12.

N1
a(12) |a(12)| 0 1 2 3 4 5 6 7 8 9 10 11 12

4 10 1 3 2 3 1
5 94 13 4 10 12 16 12 10 4 13
6 1034 12 42 94 141 130 196 130 141 94 42 12
7 1688 11 106 196 354 354 354 196 106 11
8 1180 16 143 282 298 282 143 16
9 90 2 14 58 14 2

4096 1 12 66 220 495 792 924 792 495 220 66 12 1

Table A14. |B(5)| = 10 balanced strings.

k B(5)
k a(5)(Bk)

1 0 (0 1) (0 1) 3
2 (0 1) 0 (0 1) 3
3 (0 1) (0 1) 0 3
4 (1 0) 0 (1 0) 3
5 (1 0) (1 0) 0 3
6 0 0 0 1 1 4
7 0 0 1 1 0 4
8 0 1 1 0 0 4
9 1 0 0 0 1 4

10 1 1 0 0 0 4

Table A15. |B(6)| = 20 balanced strings.

k B(6)
k a(6)(Bk)

1 (0 1) (0 1) (0 1) 3
2 (1 0) (1 0) (1 0) 3
3 0 (0 1) (0 1) 1 4
4 0 (0 1) 1 (0 1) 4
5 (0 1) 0 (0 1) 1 4
6 (0 1) (0 1) 1 0 4
7 (0 1) 1 0 (0 1) 4
8 (0 1) 1 (0 1) 0 4
9 (1 0) 0 (1 0) 1 4
10 (1 0) 0 1 (1 0) 4
11 (1 0) (1 0) 0 1 4
12 (1 0) 1 (1 0) 0 4
13 1 (1 0) 0 (1 0) 4
14 1 (1 0) (1 0) 0 4
15 0 0 1 1 1 0 5
16 0 0 0 1 1 1 5
17 0 1 1 1 0 0 5
18 1 0 0 0 1 1 5
19 1 1 0 0 0 1 5
20 1 1 1 0 0 0 5
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Table A16. |B(7)| = 35 balanced strings.

k B(7)
k a(7)(Bk)

1 0 (0 1) (0 1) (0 1) 4
2 (0 1) (0 1) (0 1) 0 4
3 (1 0) (1 0) (1 0) 0 4
4 (0 1) (0 1) 0 (0 1) 4
5 (1 0) (1 0) 0 (1 0) 4
6 (0 1) 0 (0 1) (0 1) 4
7 (1 0) 0 (1 0) (1 0) 4
8 (1 0 0) (1 0 0) 1 4
9 (1 0 0) 1 (1 0 0) 4
10 1 (1 0 0) (1 0 0) 4
11 (0 0 1) 1 (0 0 1) 4
12 (0 0 1) (0 0 1) 1 4
13 1 (0 0) (0 0) 1 1 5
14 1 0 0 (0 1) (0 1) 5
15 (1 0) 0 0 1 (1 0) 5
16 (1 0) (1 0) 0 0 1 5
17 (1 0) 1 (1 0) 0 0 5
18 1 1 (0 0) (0 0) 1 5
19 1 (1 0) (1 0) 0 0 5
20 1 1 1 (0 0) (0 0) 5
21 (0 1) (0 1) 1 0 0 5
22 (0 1) 1 0 0 (0 1) 5
23 (0 1) 1 0 (0 1) 0 5
24 (0 1) 1 (0 1) 0 0 5
25 (0 1) 0 (0 1) 1 0 5
26 0 (0 1) (0 1) 1 0 5
27 0 (0 1) 1 (0 1) 0 5
28 (0 0) 1 1 1 (0 0) 5
29 (0 1) 0 0 (0 1) 1 5
30 (0 0) (0 0) 1 1 1 5
31 0 0 (0 1) (0 1) 1 5
32 0 0 (0 1) 1 (0 1) 5
33 1 (1 0) 0 0 (1 0) 5
34 0 0 0 1 1 1 0 6
35 0 1 1 1 0 0 0 6
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Table A17. |B(8)| = 70 balanced strings (1st part).

k B(8)
k a(8)(Bk)

1 ((0 1) (0 1)) ((0 1) (0 1)) 3
2 ((1 0) (1 0)) ((1 0) (1 0)) 3
3 ((0 0) (1 1)) ((0 0) (1 1)) 4
4 ((0 1) (1 0)) ((0 1) (1 0)) 4
5 ((1 0) (0 1)) ((1 0) (0 1)) 4
6 ((1 1) (0 0)) ((1 1) (0 0)) 4
7 (0 0) (0 0) (1 1) (1 1) 5
8 (0 0 1) (0 0 1) 1 1 5
9 0 (0 1) (0 1) (0 1) 1 5
10 0 (0 1) (0 1) 1 (0 1) 5
11 0 (0 1) 1 (0 1) (0 1) 5
12 (0 0 1) 1 1 (0 0 1) 5
13 (0 0) (1 1) (1 1) (0 0) 5
14 (0 1) 0 (0 1) (0 1) 1 5
15 (0 1) 0 (0 1) 1 (0 1) 5
16 (0 1) (0 1) 0 (0 1) 1 5
17 (0 1) (0 1) (0 1) 1 0 5
18 (0 1) (0 1) 1 0 (0 1) 5
19 (0 1) (0 1) 1 (0 1) 0 5
20 (0 1 1) 0 0 (0 1 1) 5
21 (0 1) 1 0 (0 1) (0 1) 5
22 (0 1) 1 (0 1) 0 (0 1) 5
23 (0 1) 1 (0 1) (0 1) 0 5
24 (0 1 1) (0 1 1) 0 0 5
25 (1 0 0) (1 0 0) 1 1 5
26 1 0 (0 1) (0 1) (0 1) 5
27 (1 0) 0 (1 0) 1 (1 0) 5
28 (1 0) 0 1 (1 0) (1 0) 5
29 (1 0 0) 1 1 (1 0 0) 5
30 (1 0 1) 0 0 (1 0 1) 5
31 (1 0) (1 0) 0 1 (1 0) 5
32 (1 0) (1 0) (1 0) 0 1 5
33 (1 0) (1 0) 1 (1 0) 0 5
34 (1 0) 1 (1 0) 0 (1 0) 5
35 (1 0) 1 (1 0) (1 0) 0 5
36 (1 1) (0 0) (0 0) (1 1) 5
37 (1 1 0) 0 0 (1 1 0) 5
38 1 1 (0 0 1) (0 0 1) 5
39 1 1 0 0 1 0 1 0 5
40 1 (1 0) (1 0) 0 (1 0) 5
41 (1 1 0) (1 1 0) 0 0 5
42 1 1 0 1 0 1 0 0 5
43 1 1 (1 0 0) (1 0 0) 5
44 (1 1) (1 1) (0 0) (0 0) 5
45 0 0 (0 1 1) (0 1 1) 5
46 0 (0 1 1) (0 1 1) 0 5
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Table A18. |B(8)| = 70 balanced strings (2nd part).

k B(8)
k a(8)(Bk)

47 0 0 (0 1) (0 1) 1 1 6
48 0 0 (0 1) 1 1 (0 1) 6
49 0 0 0 (1 1) (1 1) 0 6
50 0 (0 1) (0 1) 1 1 0 6
51 0 0 1 1 (1 0) (1 0) 6
52 (0 1) 0 0 (0 1) 1 1 6
53 (0 1) 0 (0 1) 1 1 0 6
54 (0 1) (0 1) 1 1 0 0 6
55 (0 1) 1 1 0 0 (0 1) 6
56 (0 1) 1 1 0 (0 1) 0 6
57 (0 1) 1 1 (0 1) 0 0 6
58 0 (1 1) (1 1) 0 0 0 6
59 1 (0 0) (0 0) 1 1 1 6
60 (1 0) 0 0 (1 0) 1 1 6
61 1 0 0 (0 1) 1 (0 1) 6
62 (1 0) 0 0 1 1 (1 0) 6
63 (1 0) (1 0) 0 0 1 1 6
64 (1 0) 1 (1 0) 0 0 1 6
65 (1 0) 1 1 (1 0) 0 0 6
66 1 (1 0) 0 0 (1 0) 1 6
67 1 1 (0 1) 0 0 (0 1) 6
68 1 1 1 (0 0) (0 0) 1 6
69 1 1 (1 0) 0 0 (1 0) 6
70 1 1 (1 0) (1 0) 0 0 6

Table A19. |E(5)| = 2 balanced distinct strings.

k E(5)
k a(5)(Ek)

1 0 (0 1) (0 1) 3
6 0 0 0 1 1 4

Table A20. |E(6)| = 4 balanced distinct strings.

k E(6)
k a(6)(Ek)

1 (0 1) (0 1) (0 1) 3
3 0 (0 1) (0 1) 1 4
4 0 (0 1) 1 (0 1) 4
16 0 0 0 1 1 1 5

Table A21. |E(7)| = 5 balanced distinct strings.

k E(7)
k a(7)(Ek)

1 0 (0 1) (0 1) (0 1) 4
12 (0 0 1) (0 0 1) 1 4
30 (0 0) (0 0) 1 1 1 5
31 0 0 (0 1) (0 1) 1 5
32 0 0 (0 1) 1 (0 1) 5

Table A22. |E(8)| = 10 balanced distinct strings.

k E(8)
k a(8)(Ek)

1 ((0 1) (0 1)) ((0 1) (0 1)) 3
3 (0 0) (1 1) (0 0) (1 1) 4
7 (0 0) (0 0) (1 1) (1 1) 5
8 0 (0 1) 0 (0 1) 1 1 5
9 0 (0 1) (0 1) (0 1) 1 5
10 0 (0 1) (0 1) 1 (0 1) 5
11 0 (0 1) 1 (0 1) (0 1) 5
46 0 0 (0 1 1) (0 1 1) 5
45 0 0 (0 1) (0 1) 1 1 6
47 0 0 (0 1) 1 1 (0 1) 6
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Table A23. Selected balanced distinct strings |E(9)| = 14.

k E(9)
k a(9)(Ek)

1 0 ((0 1) (0 1)) ((0 1) (0 1)) 4
2 0 ((0 0) (1 1)) ((0 0) (1 1)) 5
3 (0 (0 1)) (0 1) (0 0 1) 1 5
4 (0 (0 1)) (0 0 1) 1 (0 1) 5
5 (0 (0 1)) (0 0 1) (0 1) 1 5
6 0 (0 0 1) 1 1 (0 0 1) 6
7 0 0 (0 1) 1 (0 1) (0 1) 6
8 0 0 (0 1) (0 1) 1 (0 1) 6
9 0 0 (0 1) (0 1) (0 1) 1 6

10 0 (0 0 1) (0 0 1) 1 1 6
11 (0 0) (0 0) (1 1) 0 (1 1) 6
12 0 (0 0) (0 0) (1 1) (1 1) 6
13 (0 0) (0 0) 1 1 1 0 1 7
14 (0 0) (0 0) 1 0 1 1 1 7

Table A24. |E(10)| = 26 balanced distinct strings.

k E(10)
k a(10)(Ek)

1 ((0 1) (0 1)) ((0 1) (0 1)) (0 1) 4
2 0 ((0 1) (0 1)) ((0 1) (0 1)) 1 5
3 (0 1) (1 (0 1) 0) (1 (0 1) 0) 5
4 (0 (0 1) 1) (0 0 1 1) (0 1) 5
5 0 ((0 1) 0 1) 1 (0 1 0 1) 5
6 0 ((1 0) 1 0) 1 (1 0 1 0) 5
7 (0 1) ((0 1) 1 0) (0 1 1 0) 5
8 (0 (0 1)) (0 1) (0 0 1) 1 1 6
9 (0 (0 1)) (0 0 1) 1 1 (0 1) 6
10 (0 (0 1)) (0 0 1) 1 (0 1) 1 6
11 (0 (0 1)) (0 0 1) (0 1) 1 1 6
14 0 (0 0 1 1) 1 (0 0 1 1) 6
15 0 0 ((0 1) 1) (0 1 1) (0 1) 6
16 0 0 ((0 1) 1) (0 1) (0 1 1) 6
17 0 (0 0 1 1) (0 0 1 1) 1 6
19 0 0 (0 1) ((0 1) 1) (0 1 1) 6
12 (0 0) 0 (1 1) (1 1) (0 0) 1 7
13 0 0 (0 1) 1 1 (0 1) (0 1) 7
18 0 0 (0 1) (0 1) 1 1 (0 1) 7
20 0 0 (0 1) (0 1) (0 1) 1 1 7
21 (0 0) 0 1 (0 0) (1 1) (1 1) 7
22 (0 0) (0 0) (1 1) (1 1) 0 1 7
23 (0 0) (0 0) (1 1) 1 0 (1 1) 7
24 (0 0) (0 0) (1 1) 0 (1 1) 1 7
25 (0 0) (0 0) 1 0 (1 1) (1 1) 7
26 (0 0) (0 0) 0 1 (1 1) (1 1) 7

Table A25. Selected balanced distinct strings E(11).

k E(11)
k a(11)(Ek)

1 0 (0 1) ((0 1)) (0 1)) (0 1 0 1) 5
2 (0 (0 1) (0 1)) (0 0 1 0 1) 1 5
3 (0 0) ((0 0) 1 1) (1 0 0 1 1) 6
4 (0 (0 1)) (0 1) (0 1) (0 0 1) 1 6
5 (0 0) (0 0) (0 0) (1 1) (1 1) 1 7
6 (0 0) (1 1 0) 1 (0 0) (1 1 0) 7
7 (0 0) (0 0) (0 1) (0 1) 1 1 1 8
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Table A26. Selected balanced distinct strings E(12).

k E(12)
k a(12)(Ek)

1 ((0 1) (0 1)) (0 1 0 1) (0 1 0 1) 4
2 (0 (0 1) 1 (0 1)) (0 0 1 1 0 1) 5
3 ((0 1) 1 (0 (0 1))) ((0 1) 1 (0 0 1)) 5
4 (0 (0 1) 1) (0 0 1 1) (0 1) (0 1) 6
5 ((0 1) 0 (0 1)) (0 1 0 0 1) 1 1 6
6 (0 0 1) (0 0 1) (0 0 1) 1 1 1 7
7 (0 0) (0 0) (0 0) (1 1) (1 1) (1 1) 7
8 (0 0) (0 0) (1 1) (1 1) 1 (0 0) 1 8
9 (0 0) (1 0) (1 1) (0 0) (1 1) (1 0) 8
10 (1 1) (1 1) (0 1) (0 1) (0 0) (0 0) 8
11 (1 1) (1 1) (0 0) (0 0) (1 0) (1 0) 8

Table A27. Selected balanced distinct strings E(13).

k E(13)
k a(13)(Ek)

1 0 ((0 1) (0 1)) (0 1 0 1) (0 1 0 1) 5
2 0 ((1 0) 0 1 (1 0)) (1 0 0 1 1 0) 6
3 (0 ((0 1) (0 1)) (0 0 1 0 1) (0 1) 1 6
4 0 (0 0) ((0 0) (1 1)) (0 0 1 1) (1 1) 7
5 (0 0) ((0 0) (1 1)) (0 0 1 1) 0 (1 1) 7
6 (0 0) (0 0) (0 0) 0 (1 1) (1 1) (1 1) 8
7 (0 0 (0 1)) (0 0 0 1) (0 1) 1 1 1 8
8 (0 0) (0 0) (0 0) 1 0 (1 1) (1 1) 1 9
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