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Assembly Theory of Binary Messages

Szymon Łukaszyk * and Wawrzyniec Bieniawski
Łukaszyk Patent Attorneys, ul. Głowackiego 8, 40-052 Katowice, Poland
* Correspondence: szymon@patent.pl

Abstract: Using assembly theory, we investigate the assembly pathways of binary strings (bitstrings) of length

N formed by joining bits present in the assembly pool and the bitstrings that entered the pool as a result of

previous joining operations. We show that the bitstring assembly index is bounded from below by the shortest

addition chain for N, and we conjecture about the form of the upper bound. We define the degree of causation

for the minimum assembly index and show that for certain N it has regularities that can be used to determine

the length of the shortest addition chain for N. We show that a bitstring with the smallest assembly index for N
can be assembled by a binary program of length equal to this index if the length of this bitstring is expressible

as a product of Fibonacci numbers. Knowing that the problem of determining the assembly index is at least

NP-complete, we conjecture that this problem is NP-complete, while the problem of creating the bitstring so that

it would have a predetermined largest assembly index is NP-hard. The proof of this conjecture would imply

P ̸= NP, since every computable problem and every computable solution can be encoded as a finite bitstring.

Keywords: assembly theory; emergent dimensionality; shortest addition chains; P versus NP problem; mathemat-

ical physics

1. Introduction

Assembly Theory (AT) [1–7] provides a distinctive complexity measure, superior to established
complexity measures used in information theory, such as Shannon entropy or Kolmogorov complex-
ity [1,5]. AT does not alter the fundamental laws of physics [6]. Instead, it redefines objects on which
these laws operate. In AT, objects are not considered sets of point particles (as in most physics), but
instead are defined by the histories of their formation (assembly pathways) as an intrinsic property,
where, in general, there are multiple assembly pathways to create a given object.

AT explains and quantifies selection and evolution, capturing the amount of memory necessary
to produce a given object [6] (this memory is the object [8]). This is because the more complex a given
object is, the less likely an identical copy can be observed without the selection of some information-
driven mechanism that generated that object. Formalizing assembly pathways as sequences of joining
operations, AT begins with basic units (such as chemical bonds) and ends with a final object. This
conceptual shift captures evidence of selection in objects [1,2,6].

The assembly index of an object corresponds to the smallest number of steps required to assemble
this object, and - in general - increases with the object’s size but decreases with symmetry, so large objects
with repeating substructures may have a smaller assembly index than smaller objects with greater
heterogeneity [1]. The copy number specifies the observed number of copies of an object. Only these
two quantities describe the evolutionary concept of selection by showing how many alternatives were
excluded to assemble a given object [6,8].

AT has been experimentally confirmed in the case of molecules and has been probed directly
experimentally with high accuracy with spectroscopy techniques, including mass spectroscopy, IR,
and NMR spectroscopy [6,7]. It is a versatile concept with applications in various domains. Beyond
its application in the field of biology and chemistry [7], its adaptability to different data structures,
such as text, graphs, groups, music notations, image files, compression algorithms, human languages,
memes, etc., showcases its potential in diverse fields [2].

In this study, we investigate the assembly pathways of binary strings (bitstrings) by joining
individual bits present in the assembly pool and bitstrings that entered the pool as a result of previous
joining operations.
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Bit is the smallest amount and the quantum of information. Perceivable information about any
object can be encoded by a bitstring [9,10] but this does not imply that a bitstring defines an object.
Information that defines a chemical compound, a virus, a computer program, etc. can be encoded by
a bitstring. However, a dissipative structure [11] such as a living biological cell (or its conglomerate
such as a human, for example) cannot be represented by a bitstring (even if its genome can). This
information can only be perceived (so this is not an object defining information). Therefore, we use the
emphasis for the object in this paper as this term, understood as a collection of matter, is a misnomer, as
it neglects the (quantum) nonlocality [12]. The nonlocality is independent of the entanglement among
particles [13], as well as the quantum contextuality [14], and increases as the number of particles [15]
grows [16,17]. Furthermore, the ugly duckling theorem [9,10] asserts that every two objects we perceive
are equally similar (or equally dissimilar).

Furthermore, a bitstring, as such is neither dissipative nor creative. It is its assembly process that
can be dissipative or creative. The perceivable universe is not big enough to contain the future; it
is deterministic going back in time and non-deterministic going forward in time [18]. But we know
[2,11,19–29] that it has evolved to the present since the Big Bang. Evolution is about assembling a
novel structure of information and optimizing its assembly process until it reaches the assembly index.
Once the new information is assembled (by a dissipative structure operating far from thermodynamic
equilibrium, including humans), it enters the realm of the 2nd law of thermodynamics, and nature
seeks how to optimize its assembly pathway.

At first, the newly assembled structure of information is discovered by groping [19] and its
assembly pathway does not attain its most economical or efficient form at once. For a certain period
of time, its evolution gropes about within itself. The try-out follows the try-out, not being finally
adopted. Then finally perfection comes within sight, and from that moment the rhythm of change
slows down [19]. The new information, having reached the limit of its potentialities, enters the phase
of conquest. Stronger now than its less perfected neighbours, the new information multiplies and
consolidates. When the assembly index is reached, new information attains equilibrium, and its
evolution terminates. It becomes stable.

"Thanks to its characteristic additive power, living matter (unlike the matter of the physicists)
finds itself ’ballasted’ with complications and instability. It falls, or rather rises, towards
forms that are more and more improbable. Without orthogenesis life would only have spread;
with it there is an ascent of life that is invincible." [19]

The paper is structured as follows. Section 2 introduces basic concepts and definitions used in
the paper. Section 3 shows that the bitstring assembly index is bounded from below and provides
the form of this bound. Section 4 defines the degree of causation for the smallest assembly index
bitstrings. Section 5 shows that the bitstring assembly index is bounded from above and conjectures
about the exact form of this bound. Section 6 introduces the concept of a binary assembling program
and shows that, in general, the trivial assembling program assembles the smallest assembly index
bitstrings. Section 7 discusses and concludes the findings of this study.

2. Preliminaries

For K subunits of an object O the assembly index aO of this object is bounded [1] from below by

min(aO) = log2(K), (1)

and from above by
max(aO) = K − 1, (2)

The lower bound (1) represents the fact that the simplest way to increase the size of a subunit in a
pathway is to take the largest subunit assembled so far and join it to itself [1] and, in the case of the
upper bound (2), subunits must be distinct so that they cannot be reused from the pool, decreasing the
index.
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Here, we consider bitstrings C(N)
k containing bits {1, 0}, with N0 zeros and N1 ones, having length

N = N0 + N1. N1 is called the binary Hamming weight or bit summation of a bitstring. Bitstrings
are our basic AT objects [2] and we consider the process of their formation within the AT framework.
Where the bit value can be either 1 or 0, we write ∗ = {1, 0} with ∗ being the same within the bitstring
C(N)

k . If we allow for the 2nd possibility that can be the same as or different from ∗, we write ⋆ = {1, 0}.

Thus, C(2)
k = [∗⋆], for example, is a placeholder for all four 2-bit strings.

We consider bitstrings C(N)
k to be messages transmitted through a communication channel between

a source and a receiver, similarly to the Claude Shannon approach [30] used in the derivation of binary
information entropy

H
(

C(N)
k

)
= −p0 log2(p0)− p1 log2(p1), (3)

where
p0 =

N0

N
and p1 =

N1

N
, (4)

are the ratios of occurrences of zeros and ones within the bitstring C(N)
k and the unit of entropy (3) is

bit.

Definition 1. A bitstring assembly index a(N) is the smallest number of steps s required to assemble a bitstring
C(N)

k of length N by joining two distinct bits contained in the initial assembly pool P = {1, 0} and bitstrings
assembled in previous steps that were added to the assembly pool. Therefore, the assembly index a(N)(Ck) is a
function of the bitstring C(N)

k .

For example, the 8-bit string
C(8)

k = [01010101] (5)

can be assembled in at most seven steps:

1. join 0 with 1 to form C(2)
k = [01], adding [01] to P = {1, 0, 01},

2. join C(2)
k = [01] with 0 to form C(3)

k = [010], adding [010] to P = {1, 0, 01, 010},
3. ...
7. join C(7)

k = [0101010] with 1 to form C(8)
k = [01010101]

(i.e. not using the assembly pool P), six, five, or four steps:

1. join 0 with 1 to form C(2)
k = [01], adding [01] to P,

2. join C(2)
k = [01] with [01] taken from P to form C(4)

k = [0101], adding [0101] to P,
3. join C(4)

k = [0101] with [01] taken from P to form C(6)
k = [010101], adding [010101] to P,

4. join C(6)
k = [010101] with [01] taken from P to form C(8)

k = [01010101],

or at least three steps:

1. join 0 with 1 to form C(2)
k = [01], adding [01] to P,

2. join C(2)
k = [01] with [01] taken from P to form C(4)

k = [0101], adding [0101] to P,
3. join C(4)

k = [0101] with [0101] taken from P to form C(8)
k = [01010101],

while the 8-bit string
C(8)

l = [00010111] (6)

can be assembled in at least six steps:

1. join 0 with 1 to form C(2)
l = [01], adding [01] to P,

2. join C(2)
l = [01] with [01] taken from P to form C(4)

l = [0101], adding [0101] to P,
3. join 0 with 0 adding [00] to P,
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4. join C(4)
l = [0101] with [00] taken from P to form C(6)

l = [000101], adding [000101] to P,
5. join C(6)

l = [000101] with 1 to form C(7)
l = [0001011], adding [0001011] to P,

6. join C(7)
l = [0001011] with 1 to form C(8)

l = [00010111],

as only the doublet [01] can be reused from the pool. Therefore, bitstrings (5) and (6), despite having
the same length N = 8, Hamming weight N1 = 4, and Shannon entropy (3), have respective assembly
indices a(8)(Ck) = 3 and a(8)(Cl) = 6 that represent the lengths of their shortest assembly pathways,
which in turn ensures that their assembly pools P are distinct sets for a given assembly pathway.

Tables 1 and A5–A12 (Appendix C) show the distributions of the assembly indices among 2N

bitstrings for 4 ≤ N ≤ 12 taking into account the number of ones N1. The sums of each column form
Pascal’s triangle read by rows (OEIS A007318).

Table 1. Distribution of the assembly indices for N = 4.

N1

a(4)(C) |a(4)(C)| 0 1 2 3 4
2 4 1 2 1
3 12 4 4 4

16 1 4 |B(4)| = 6 4 1

The following definition is commonly known, but we provide it here for clarity.

Definition 2. A bitstring B(N)
k is a balanced string if its Hamming weight N1 = ⌊N/2⌋ or N1 = ⌈N/2⌉.

Without loss of generality, we shall assume that if N is odd, N1 < N0 (e.g., for N = 5, N1 = 2,
and N0 = 3). However, our results are equivalently applicable if we assume the opposite (i.e. a larger
number of ones for an odd N). The number |B(N)| of balanced bitstrings among all 2N bitstrings is1

|B(N)| =
(

N
⌊N/2⌋

)
=

(
N

⌈N/2⌉

)
≈

√
2

πN
2N . (7)

This is the OEIS A001405 sequence, the maximal number of subsets of an N-set such that no one
contains another, as asserted by Sperner’s theorem, and approximated using Stirling’s approximation
for large N. Balanced and even length bitstrings B(N)

k have natural binary entropies (3) H(B(N)
k ) =

{0, 1}. Conversely, non-balanced and/or odd-length bitstrings C(N)
k have binary entropies 0 <

H(C(N)
k ) < 1.

Theorem 1. An N = 4-bit string is the shortest string having more than one bitstring assembly index 1.

Proof. The proof is trivial. For N = 1 the assembly index a(1)(C) = 0, as all basis objects have a
pathway assembly index of 0 [2] (they are not assembled). N = 2 provides four available bitstrings
with a(2)(C) = 1. N = 3 provides eight available bitstrings with a(3)(C) = 2. Only N = 4 provides 16
bitstrings that include four stings with a(4)(C) = 2 and twelve bitstrings with a(4)(C) = 3 including
|B(4)| = 6 balanced bitstrings, as shown in Tables 1 and 2. For example, to assemble the bitstring
B1 = [0101], we need to assemble the bitstring [01] and reuse it. Therefore, a(N)(Ck) = N − 1 for
0 < N < 4, ∀ k = {1, 2, . . . , 2N} and min

k

(
{a(N)(Ck)}

)
< N − 1 for N ≥ 4, where {a(N)(Ck)} denotes

a set of assembly indices of all 2N bitstrings.

1 "⌊x⌋" is the floor function that yields the greatest integer less than or equal to x and "⌈x⌉" is the ceiling function that yields
the least integer greater than or equal to x.
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Table 2. |B(4)| = 6 balanced bitstrings B(4)
k .

k B(4)
k a(4)(Bk)

1 (0 1) (0 1) 2
2 (1 0) (1 0) 2
3 0 1 1 0 3
4 1 1 0 0 3
5 1 0 0 1 3
6 0 0 1 1 3

Interestingly, Theorem 1 strengthens the meaning of N = 4 as the minimum information capacity
that provides a minimum thermodynamic black hole entropy [31–33]. There is no disorder or uncertainty
in an object that can be assembled in the same number of steps s ≤ 2.

The following definition, taking into account the cyclic order of bitstrings, is also provided for the
sake of clarity.

Definition 3. A bitstring R(N)
k is a ringed bitstring if a ring formed with this string by joining its beginning

with its end is unique among the rings formed from the other ringed strings R(N)
l , l ̸= k.

There are at least two and at most N forms of a ringed bitstring R(N)
k that differ in the position

of the starting bit. For example for |B(4)| = 6 balanced bitstrings, shown in Table 2, two augmented
strings with a(4) = 2 correspond to each other if we change the starting bit

[. . . 1 | 0101 | 0101 | 01 . . . ] =

[. . . 10 | 1010 | 1010 | 1 . . . ].
(8)

Similarly, four augmented bitstrings with a(4) = 3 correspond to each other

[. . . | 0110 | 0110 | 011 . . . ] =

[. . . 0 | 1100 | 1100 | 11 . . . ] =

[. . . 01 | 1001 | 1001 | 1 . . . ] =

[. . . 011 | 0011 | 0011 | . . . ],

(9)

after a change in the position of the starting bit. Thus, there are only two balanced ringed bitstrings
E(4)

k .

The number of ringed bitstrings |R(N)
k | among all 2N bitstrings is given by the OEIS sequence

A000031. In general (for N ≥ 3), the number |R(N)
k | of ringed bitstrings is much lower than the number

|B(N)
k | of balanced bitstrings.

By neglecting the notion of the beginning and end of a string, we focus on its length and content.
In Yoda’s language,

"complete, no matter where it begins. A message is".

The numbers of the balanced |B(N)
k |, ringed |R(N)

k |, and balanced ringed2 |E(N)
k | bitstrings are shown

in Table 3 and Figure 1. The formula for |E(N)
k | remains to be researched.

2 |E(N)
k | is close to OEIS A000014 up to the eleventh term.
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Table 3. Bitstring length N, number of all bitstrings 2N , number of balanced bitstrings B(N)
k , number

of ringed bitstrings R(N)
k , and number of balanced ringed bitstrings E(N)

k .

N 2N |B(N)
k | |R(N)

k | |E(N)
k | |B(N)

k |/|E(N)
k |

1 2 1 2 1 1
2 4 2 3 1 2
3 8 3 4 1 3
4 16 6 6 2 3
5 32 10 8 2 5
6 64 20 14 4 5
7 128 35 20 5 7
8 256 70 36 10 7
9 512 126 60 14 9

10 1024 252 108 26 9.6923 . . .
11 2048 462 188 42 11
12 4096 924 352 80 11.55
13 8192 1716 632 132 13
14 16384 3432 1182 246 13.9512 . . .
15 32768 6435 2192 429 15

Figure 1. Numbers of all 2N bitstrings (red), balanced bitstrings |B(N)
k | (green), ringed bitstrings |R(N)

k |
(cyan), and balanced ringed bitstrings |E(N)

k | (blue) as a function of the bitstring length N.

We note that, in general, the starting bit is relevant for the assembly index. Thus, different forms
of a ringed bitstring may have different assembly indices. For example, for N = 7 balanced bitstrings
B34 and B35, shown in Table A15 have a(7) = 6. However, these bitstrings are not ringed, since they
correspond to each other and to the balanced bitstrings B13, B18, B20, B28, and B30 with a(7) = 5. They
all have the same triplet of adjoining ones.

Definition 4. The assembly index of a ringed bitstring R(N)
k is the smallest assembly index among all forms of

this string.
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Thus, if different forms of a ringed bitstring have different assembly indices, we assign the
smallest assembly index to this string. In other words, we assume that the smallest number of steps

a(N)(Rk) = min
l

(
{a(N)(Rk)l}

)
, (Rk)l ∈ Rk, (10)

where (Rk)l denotes a particular lth form of a ringed bitstring Rk, is the bitstring assembly index of
this ringed string. We assume that if an object that can be represented by a ringed bitstring can be
assembled in fewer steps, this procedure will be preferred by nature.

The distribution of the assembly indices of the balanced ringed bitstrings Ek is shown in Table 4.

Table 4. Distribution of assembly indices among balanced ringed bitstrings E(N) for 4 ≤ N ≤ 11.

N |E(N)| a(N) = 2 a(N) = 3 a(N) = 4 a(N) = 5 a(N) = 6 a(N) = 7 a(N) = 8
4 2 1 1
5 2 1 1
6 4 1 2 1
7 5 2 3
8 10 1 1 6 2
9 14 1 4 7 2
10 26 1 6 9 10
11 42 2 14 20 6

3. Minimum Bitstring Assembly Index

In the following, we derive the tight lower bound of the set of different bitstring assembly indices.

Theorem 2 (Tight lower bound on the bitstring assembly index). The smallest bitstring assembly index
a(N)(Cmin) as a function of N corresponds to the shortest addition chain for N (OEIS A003313).

Proof. Bitstrings Cmin for which a(N)(Cmin) = min
k

(
{a(N)(Ck)}

)
, ∀k = {1, 2, . . . , 2N} can be formed

in subsequent steps s by joining the longest bitstring assembled so far with itself until N = 2s is
reached [1]. Therefore, if N = 2s, then min

k

(
{a(2s)(Ck)}

)
= s = log2(N). Only four bitstrings

C(2s)
min1

= [00 . . . ], C(2s)
min2

= [11 . . . ], C(2s)
min3

= [0101 . . . ], and C(2s)
min4

= [1010 . . . ] (11)

have such an assembly index in this case.
An addition chain for N ∈ N having the shortest length s ∈ N (commonly denoted as l(N)) is

defined as a sequence 1 = b0 < b1 < · · · < bs = N of integers such that for each j ≥ 1, bj = bk + bl
for l ≤ k < j. The first step in creating an addition chain for N is always b1 = 1 + 1 = 2 and this
corresponds to assembling a doublet [∗⋆] from the initial assembly pool P. Thus, the lower bound
for s of the addition chain for N, s ≥ log2(N) is achieved for N = 2s. In our case, this bound is
achieved by the bitstrings (11). The second step in creating an addition chain can be b2 = 1 + 1 = 2 or
b2 = 1 + 2 = 3.

Thus, finding the shortest addition chain for N corresponds to finding an assembly index of a
bitstring containing bits and/or doublets and/or triplets generated by these doublets for N ̸= 2s since
due to Theorem 1 only they provide the same assembly indices {0, 1, 2}. Such strings correspond to
linear molecules made of carbons [4, Supplementary Materials, S3.2].

The smallest assembly indices a(N)
min are shown in Table 5 for 1 ≤ N ≤ 21. Calculating the minimum

length of the addition chain for N, as well as finding the shortest assembly pathway for a chemical
molecule, have been shown to be at least as hard as NP-complete [4,34].
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Table 5. The lower bound on the bitstring assembly index (OEIS A003313).

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

a(N)
min 0 1 2 2 3 3 4 3 4 4 5 4 5 5 5 4 5 5 6 5 6

4. Degree of Causation for Minimum Assembly Index Bitstrings

Using the difference between the general AT lower bound (1) and the smallest bitstring assembly
index (OEIS A003313) we can define the quantity

DC(N) := 2
(

log2(N)−a(N)
min

)
= N2−a(N)

min , (12)

capturing a degree of causation [6] of assembling the bitstrings of length N with the smallest assembly
index, as shown in Figure 2. For N = 2s, the degree of causation DC(N) = 1, as all bitstrings (11) can
be assembled along a single pathway only; their assembly is entirely causal. However, for N ̸= 2s,
DC(N) < 1, since some bitstrings C(N)

min can be assembled along different pathways. For example,
there are two pathways for the bitstring [001]: (a) [00] + 1 and (b) 0 + [01] leaving different subunits
(respectively [00] and [01]) in their assembly pools and resulting in lower values of DC(N).

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

D
C
(N

)

Figure 2. Degree of causation as a function of 1 ≤ N ≤ 105.

Equation (12) naturally divides the set of natural numbers into sections 2s ≤ N < 2s+1 and shows
regularities that for certain values of N can be used to determine the smallest assembly index (i.e. the
shortest addition chain for N) as a(N)

min = log2(N)− log2(DC(N)). For each N = 2s ⇔ a(2
s)

min = s and for
each N̂ being the sum of two powers of 2 (OEIS A048645)

N̂ := 2s + 1 · 2l , l = 0, 1, . . . , s − 1 ⇔ a(N̂)
min = s + 1, (13)

while for the remaining Ñ not being the sum of two powers of 2 (OEIS A072823)

2s < Ñ < 2s+1, Ñ ̸= N̂ ⇔ a(Ñ)
min = s + k, k ≥ 2, (14)
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where k = 2 for Ñ = {7, 11, 13− 15, 19, 21− 23, 25− 28, . . . }, while some Ñ’s generate exceptions to this
general rule (cf. OEIS A230528). For example, k = 3 for Ñ = {29, 31, 47, 53, 55, 57 − 59, 61 − 63, . . . },
k = 4 for Ñ = {127, 191, 235, 237, 239, 247, 251, 253, 254, . . . }, etc. The first exception, k = 3 is for
Ñ13 = 29. The first double exception, k = 4 is for Ñ63 = 127. However, in particular, for

Ñ3 = 2s + 3 · 2l , l = 0, 1, . . . , s − 2 ⇔ a(Ñ3)
min = s + 2, and (15)

Ñ7,s−3 = 2s + 7 · 2s−3 = {15, 30, 60, . . . }, s ≥ 3 ⇔ a(Ñ7,s−3)
min = s + 2, (16)

so the number of Ns within each section, not included in the set of general rules 2s, (13), (15), and (16),
is |Nngr| = |2s − 1 − s − (s − 1)− 1| = |2s − 2s − 1|. Furthermore,

lim
s→∞

(
min DC(N̂)

)
= lim

s→∞

(
1
2

(
1 +

1
2s

))
=

1
2

, lim
s→∞

(
max DC(Ñ)

)
= DC(Ñ7,s−3) =

15
32

. (17)

The shortest addition chain sequence generating factors for 1 ≤ s ≤ 5 are listed in Table 6, where the
subsequent odd numbers of the form mk generate sequences N = 2s + mk · 2l , where l = 0, 1, · · · , k − 1,
while the mk numbers in red indicate that certain Ñs within the sequences they generate are exceptions

to the general a(Ñ)
min = s + 2 rule. For example, if s = 4 then a(16)

min = 4 and

N̂ = 24 + 2l = {17, 18, 20, 24} ⇔ a(N̂)
min = 4 + 1 = 5,

Ñ3 = 24 + 3 · 2l = {19, 22, 28} ⇔ a(Ñ3)
min = 4 + 2 = 6,

Ñ5 = 24 + 5 · 2l = {21, 26} ⇔ a(Ñ5)
min = 4 + 2 = 6,

Ñ7 = 24 + 7 · 2l = {23, 30} ⇔ a(Ñ7)
min = 4 + 2 = 6,

Ñ9 = 24 + 9 · 2l = 25 ⇔ a(Ñ9)
min = 4 + 2 = 6,

Ñ11 = 24 + 11 · 2l = 27 ⇔ a(Ñ11)
min = 4 + 2 = 6,

Ñ13 = 24 + 13 · 2l = 29 ⇔ a(Ñ13)
min = 4 + 3 = 7,

Ñ15 = 24 + 15 · 2l = 31 ⇔ a(Ñ15)
min = 4 + 3 = 7,

(18)

where the last two values a(Ñ)
min are higher than those given by the general rule. Based on the OEIS

A003313 sequence for N ≤ 105, we have determined the number of exceptions, that is |Nexc| such that
a(Nexc)

min ̸= {s, s + 1, s + 2} for 0 ≤ s ≤ 15 as shown in Table 7, where min(mk) is the minimal generating

factor mk shown in Table 6 that generates the exceptional a(Nexc)
min . For all s ≥ 4, max(mk) = 2s − 1. The

fact that |Nngr| > |Nexc|, ∀s ≥ 3 hints at the existence of general rules other than 2s, (13), (15), and (16).

Table 6. List of the shortest addition chain sequence generating factors for 1 ≤ s ≤ 5.

s 2s The shortest addition chain sequence generating factors
1 2 11
2 4 12 31
3 8 13 32 51 71
4 16 14 33 52 72 91 111 131 151
5 32 15 34 53 73 92 112 132 152 171 191 211 231 251 271 291 311

Table 7. Number of exceptional a(Nexc)
min values |Nexc|, and the number |Nngr| of a(Nngr)

min not generated
by general rules for 0 ≤ s ≤ 15.

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|Nexc| 0 0 0 0 2 9 30 80 193 432 925 1928 3953 8024 16189 32544

2s 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768
|Nngr| 0 0 0 1 7 21 51 113 239 493 1003 2025 4071 8165 16355 32737

min(mk) 13 13 7 7 7 7 7 7 7 7 7 7
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Furthermore, for 4 ≤ s ≤ 6, |Nexc| = 2s − s2 + 2 and for s ≥ 7, |Nexc| = 2s − s2 + 1 (OEIS
A024012) [35]. As shown in Figure 3(a), for all s, |Nexc| asymptotically approaches 2s available
in a given section as s → ∞, as shown in Figure 3(b) For s = 6 this ratio has a deflection point
|Nexc|/26 = 15/32.
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Figure 3. (a) Semi-log plot of 2s (red), |Nngr| (green), and |Nexc| (blue). (b) Fractions of |Nngr| (green)
and |Nexc| (blue) to 2s, showing the deflection point for s = 6 (see text for details).

Only living systems have been found to be capable of producing abundant molecules with an
assembly index greater than an experimentally determined value of 15 steps [3,8]. The cut-off between
13 and 15 is sharp, which means that molecules made by random processes cannot have assembly
indices exceeding 13 steps [3,8]. In particular, N = 15 is the length of the shortest addition chain for
N which is smaller than the number of multiplications to compute Nth power by the Chandah-sutra
method (OEIS A014701, OEIS A371894). Furthermore, the values of the sequence A014701 are larger
than the shortest addition chain for N /∈ 22 + 2l . These values (OEIS A371894) are not given by
equation (15) but equation (16) provides their subset. Their Hamming weight is at least 4 in binary
representation [36]. Furthermore, the exceptional a(Nexc)

min values bear similarity to the atomic numbers Z
of chemical elements that violate the Aufbau rule [15] that correctly predicts the electron configurations
of most elements. Only about twenty elements within 24 ≤ Z ≤ 103 (with only two non-doubleton
sets of consecutive ones) violate the Aufbau rule.

5. Maximum Bitstring Assembly Index

In the following, we conjecture the form of the upper bound of the set of different bitstring
assembly indices. In general, of all bitstrings Ck having a given assembly index, shown in Tables 1 and
A5–A12 (Appendix C), most have N1 = ⌊N/2⌋, though we have found a few exceptions, mostly for
non-maximal assembly indices, namely for a(8) = 4 (4 < 8) and for a(8) = 6 (24 < 26), for a(10) = 4
(2 < 5) and for a(10) = 5 (32 < 33), and for a(12) = 4 (2 < 3). These observations allow us to restrict the
search space of possible bitstrings with the largest assembly indices to balanced bitstrings only: with
the exception of N = 8, of all bitstrings C(N)

k having a largest assembly index, most are balanced. We
can further restrict the search space to ringed bitstrings (Definition 3). If a bitstring Cmin for which
a(N)(Cmin) = min

k

(
{a(N)(Ck)}

)
is constructed from repeating patterns, then a bitstring Cmax for which

a(N)(Cmax) = max
k

(
{a(N)(Ck)}

)
must be the most patternless. The bitstring assembly index must be

bounded from above and a(N)(Cmax) must be a monotonically nondecreasing function of N that can
increase at most by one between N and N + 1. Certain heuristic rules apply in our binary case. For
example,
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• for N = 7 we cannot avoid two doublets (e.g. 2 × [00]) within a ringed bitstring E(7)
28 = [0011100]

and thus a(7)(Cmax) = 5 < 6,
• for N = 8 we cannot avoid two pairs of doublets (e.g. 2 × [00] and 2 × [11]) within a ringed

bitstring E(8)
7 = [00001111] and thus a(8)(Cmax) = 5 < 6,

• for N = 12 we cannot avoid three pairs of doublets (e.g. 2 × [00], 2 × [10], and 2 × [11]) within a
ringed bitstring E(12)

k = [111000101100] and thus a(12)(Cmax) = 8 < 9,
• for N = 14 we cannot avoid two pairs of doublets and one doublet three times (e.g. 2 × [00],

2 × [11], and 3 × [01], and thus a(14)(Cmax) = 9 < 10,
• etc.

Table 8 shows the exemplary balanced bitstrings Bmax having the largest assembly indices that
we assembled (cf. also Appendix A). To determine the assembly index a(18) = 11 of the bitstring

E(18)
k = [1(001)(11)(110)(110)(00)(001)0], (19)

for example, we look for the longest patterns that appear at least twice within the string, and we look
for the largest number of these patterns. Here, we find that each of the two triplets [001] and [110]
appear twice in E(18)

k and are based on the doublets [00] and [11] also appearing in E(18)
k . Thus, we

start with the assembly pool {1, 0, [00], [001], [11], [110]} made in four steps and join the elements of
the pool in the following seven steps to arrive at a(18)(Ek) = 11. On the other hand, another form of
this balanced ringed string

E(18)
l = [(01)(11)(110)(110)00(001)(01)0], (20)

has a(18)(El) = 12.

Table 8. Exemplary balanced bitstrings B(N)
max that have a largest assembly index. Conjectured (a(N)

conj)

form of the largest assembly index and its factual values for ringed (a(N)
rng ) and non-ringed (a(N)

nrng)
bitstrings (red if below the conjectured value, green if above).

N B(N)
max a(N)

conj a(N)
rng a(N)

nrng

1 0 0 0 0
2 1 0 1 1 1
3 0 0 1 2 2 2
4 0 0 1 1 3 3 3
5 0 0 0 1 1 4 4 4
6 0 0 0 1 1 1 5 5 5
7 0 0 1 1 1 0 0 5 5 6
8 0 0 0 1 0 1 1 1 6 6 6
9 0 0 0 0 1 1 1 0 1 7 7 7

10 0 0 0 0 1 1 1 1 0 1 7 7 8
11 0 0 0 0 0 1 0 1 1 1 1 8 8 8
12 1 1 1 0 0 0 1 0 1 1 0 0 9 8 8
13 0 0 0 0 0 0 1 0 1 1 1 1 1 9 9 9
14 0 0 0 0 0 1 0 1 0 1 1 1 1 1 9 9 9
15 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 10 10 10
16 1 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 11 10 10
17 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 11 11 11
18 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 11 11 12
19 1 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 12 11 12
20 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 0 0 0 1 0 13 12 13

These results allow us to formulate the following conjecture.

Conjecture 1 (Tight upper bound on a bitstring assembly index). With exceptions for small N the largest
bitstring assembly index a(N)(Cmax) is given by a sequence formed by {+1,+1, k × 0,+1,+1, k × 0} for
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k ∈ N0, where +1 denotes increasing a(N)(Cmax) by one, and 0 denotes maintaining it at the same level, and
a(0) = −1.

However, at this moment, we cannot state whether this conjecture applies to ringed or non-ringed
bitstrings. The assembly indices for N < 3 are the same for a given N, whereas the assembly indices
for 4 ≤ N ≤ 10 were discussed above and are calculated in Appendix C for balanced and balanced
ringed bitstrings.

The conjectured sequence is shown in Figures 4 and 5 starting with a(0) = −1 (we note in passing
that n = −1 is a dimension of the void, the empty set ∅, or (-1)-simplex). Subsequent terms are given
by {0, 1, 2, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 9, 10, . . . }, which is periodic for N = k(k + 3) and defines plateaus of a
constant bitstring assembly index at a(N)(Cmax) = 4k − 3, and a(N)(Cmax) = 4k − 1, k ∈ N, k > 1.

This sequence can be generated using the following procedure

step =1; % step flag
run =1; % run flag
flat =0; % flat counter

Nk = 0;
aub= -1; % the upper bound
while Nk < N

if step < 3
Nk = Nk+1; % next Nk
aub= aub + 1; % increment the bound

else % step ==3
for k=1: flat

if flat > 0
Nk = Nk+1; % next Nk

end
end
run = run+1; % increment run flag
if run > 2

run = 1; % reset run flag
flat = flat +1; % increment flat counter

end
end
step = step +1; % increment step flag
if step > 3

step =1; % reset step flag
end

end

We note the similarity of this bound to the monotonically nondecreasing Shannon entropy
of chemical elements, including observable ones [15]. Perhaps the exceptions in the sequence of
Conjecture 1 vanish as N increases.

6. Binputation

So far we have assembled bitstrings "manually". Now we shall automatize this process using
other bitstrings as assembling programs.

Definition 5. The binary assembling program QB is a bitstring of length sQ that acts on the assembly pool P
and outputs the assembled bitstrings, adding them to the pool.

Definition 6. The trivial assembling program Q is a binary assembling program with consecutive bits denoting
the following commands:

0 ⇔ take the last element from P, join it with itself, and output,
1 ⇔ take the last two elements from P, join them with each other, and output.
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As the assembly pool P is a distinct set to which bitstrings are added in subsequent assembly
steps, only these two commands apply to the initial assembly pool P = {1, 0} containing only two bits,
regardless of the starting command.

Theorem 3. If a bitstring C(N)
min can be assembled by an elegant trivial program of length sQ = a(N)(Cmin) then

N is expressible as a product of Fibonacci numbers (OEIS A065108) and the length sQ of any trivial program Q
is not shorter than the assembly index of the string that this trivial assembling program assembles.

Proof. An elegant program is the shortest program that produces a given output [37,38]. Furthermore,
no program P shorter than an elegant program Q can find this elegant program Q [37]. If it could, it
could also generate the Q’s output. But if P is shorter than Q, then Q would not be elegant, which
leads to a contradiction.

The 1st bit of the trivial assembling program Q is irrelevant as Q = 0 assembles C(2)
min1

= [00] and

Q = 1 assembles C(2)
min4

= [10], so Q = ∗ assembles C(2)
min1,4

= [∗0]. Then the programs Q = ∗0 . . . 0

assemble the 2sQ -bit strings C(2s)
min1,4

= [∗0 ∗ 0 . . . ] having the assembly index a(2
sQ )

min = sQ, while

bitstrings C2sQ
min2,3

with the smallest assembly index a(2
sQ )

min = sQ can be assembled with the same two
programs starting with the reversed assembly pool P = {0, 1}.

The remaining 2sQ−1 − 2 programs will assemble some of the shorter bitstrings with the assembly
index a(N)

min = sQ. In general, all programs Q assemble bitstrings having lengths expressible as a
product of Fibonacci numbers (OEIS A065108) as shown in Table A1 (Appendix B), wherein out of
2sQ−1 programs (cf. Tables A4 and A1):

• 2sQ−2 programs Q = ∗0 ⋆ . . . assemble even length balanced bitstrings B = [∗0 ∗ 0 . . . ] having

natural binary entropies (3) H(C) = {0, 1}, including bitstrings C(2sQ )
min1,4

(11),
• 2sQ−3 programs Q = ∗10 ⋆ . . . assemble [0 ∗ 00 ∗ 0 . . . ] bitstrings having lengths divisible by three

and entropies H(C) ≈ {0, 0.9183},
• 2sQ−4 programs Q = ∗110 ⋆ . . . assemble [∗00 ∗ 0 ∗ 00 ∗ 0 . . . ] bitstrings having lengths divisible

by five and entropies H(C) ≈ {0, 0.9710},
• 2sQ−5 programs Q = ∗1110 ⋆ . . . assemble [0 ∗ 0 ∗ 00 ∗ 0 . . . ] bitstrings having lengths divisible by

eight, entropies H(C) ≈ {0, 0.9544}, and assembly indices a(N) = sQ − 1 if ∗ = 1,
• . . . ,
• the program Q = ∗1 . . . 0 joins two shortest bitstrings assembled in a previous step into a bitstring

of length being twice the Fibonacci sequence (OEIS A055389), and finally
• the program Q = ∗1 . . . 1 assembles the shortest bitstring that has length belonging to the set of

Fibonacci numbers.

Thus, for ∗ = 1, binary assembling programs Q assemble subsequent 2sQ−1 = 2sQ−2 + 2sQ−3 +

· · ·+ 20 + 1 Fibonacci words and their concatenations having entropies (3) with ratios (4)

p1,m =
Fm

Fm+2
and p0,m =

Fm+1

Fm+2
, (21)

where m = {1, 2, . . . sQ}, and F is the Fibonacci sequence starting from 1. Ratios (21) rapidly converge
to

lim
sQ→∞

p0,m = φ − 1 ≈ 0.618033989 and lim
sQ→∞

p1,m = 2 − φ ≈ 0.381966011 (22)

where φ is the golden ratio. Therefore, limsQ→∞ Hm ≈ 0.9594 is the binary entropy of the Fibonacci
word limit. The Fibonacci sequence can be expressed through the golden ratio, which corresponds to
the smallest Pythagorean triple {−3, 4, 5} [39,40].

However, for sQ ≥ 4, some of the programs are no longer elegant if ∗ = 0 and some of the
assembled bitstrings are not Cmin if ∗ = 1.
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For sQ ≥ 4, Q = 111100 . . . assembles a bitstring

C(2sQ−1
)

non-min = [01010010 . . . ] (23)

with an assembly index a(2
sQ−1

) = sQ which is not the minimum for this length of the bitstring. For
example, the 4-bit program Q = ∗111 assembles the bitstring C(8) = [0 ∗ 0 ∗ 00 ∗ 0], but if ∗ = 0 this
string can be assembled by a shorter 3-bit program Q = ∗00, and if ∗ = 1 this string does not have the
smallest assembly index a(8)(Cmin) = 3 but a(8)(Cnon-min) = 4.

For sQ = {4, 7} and sQ ≥ 10 and for the shortest bitstring assembled by the program Q the
program Q is not elegant for ∗ = 0 and the shortest bitstring assembled by the program is not Cmin for
∗ = 1.

However, the length sQ of any program Q is not shorter than the assembly index of the bitstring
that this program assembles.

The trivial assembly programs Q and the bitstrings they assemble are listed in Tables 9 and A2–A4
(Appendix B) for one version of the assembly pool and for 1 ≤ sQ ≤ 6.

Table 9. 3-bit elegant programs assembling bitstrings with a(N) = 3.

Q C(s = 1) C(s = 2) C(sQ = 3) N
∗11 ∗0 0 ∗ 0 ∗00 ∗ 0 5
∗10 ∗0 0 ∗ 0 0 ∗ 00 ∗ 0 6
∗01 ∗0 ∗0 ∗ 0 ∗0 ∗ 0 ∗ 0 6
∗00 ∗0 ∗0 ∗ 0 ∗0 ∗ 0 ∗ 0 ∗ 0 8

We note in passing that there are other mathematical results on bitstrings and the Fibonacci
sequence. For example, it was shown [41] that having two concentric circles with radii {Fn, Fn+2} and
drawing two pairs of parallel lines orthogonal to each other and tangent to the inner circle, one obtains
an octagon defined by the points of intersection of those lines with the outer circle, which comes very
close to the regular octagon with n → ∞. Furthermore, each of these octagons defines a Sturmian
binary word (a cutting sequence for lines of irrational slope) except in the case of n = 5 [41].

Perhaps the smallest assembly index given by Theorem 2 and the bitstrings of Theorem 3 are
related to the Collatz conjecture, as the lengths of the strings (11) for N = 22k correspond to the
numbers to which the Collatz conjecture converges, from N = (22k − 1)/3, k ∈ N (OEIS A002450).

Theorem 3 is also related to Gödel’s incompleteness theorems and the halting problem. N cases
of the halting problem correspond only to log2(N), not to N bits of information [42] and therefore,
complexity is more fundamental to incompleteness than self-reference of Gödel’s sentence [43]. Any
formal axiomatic system only enables provable theorems to be proved. If a theorem can be proved
by an automatic theorem prover, the prover will halt after proving this theorem. Thus, proving a
theorem equals halting. If we assume that the axioms of the trivial program given by Definition 6
define the formal axiomatic system, then the bitstrings having lengths expressible as a product of
Fibonacci numbers assembled by this program would represent provable theorems.

If we wanted to define a binary assembling program QB that would use specific bitstrings other
than the last one or two bitstrings in the assembly pool, we would have to index the bitstrings in the
pool. However, at the beginning of the assembly process, we cannot predict in advance how many
bitstrings will enter the assembly pool. Thus, we do not know how many bits will be needed to encode
the indices of the strings in the pool. Therefore, we state the following conjecture.

Conjecture 2. There is no binary assembling program (Definition 5) that has a length shorter than the length of
the bitstring having the largest assembly index that could assemble this string.
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Theorem 3 would be violated if in Definition 6 we specified the command "0" e.g. as "take the last
element from the assembly pool, join it with itself, join with what you have already assembled (say at
"the right"), and output". Then, the 2-bit program "00" would produce the 6-bit string [000000] with the
assembly index a(6) = 3. However, such a one-step command would violate the axioms of assembly
theory, since it would perform two assembly steps in one program step. An elegant program to output
the gigabyte bitstring of all zeros would take a few bits of code and would have a low Kolmogorov
complexity [44]. However, such a bitstring would be outputted, not assembled. Furthermore, the length
of such a program that outputs the bitstring [0 . . . ] would be shorter than the length of the program
that outputs the string [10 . . . ], while in AT, the lengths of these programs must be the same if the
strings have the same assembly indices. Definitions 5, 6 and Theorem 3 are about binputation, about
bitstrings assembling other bitstrings.

In particular, Theorem 3 confirms that the assembly index is related to the amount of physical
memory required to store the information to direct the assembly of an object (a bitstring in our case)
and set a directionality in time from the simple to the complex [8]: sQ-bit long trivial assembling
programs (i.e., with sQ-bits of memory) can assemble 2sQ -bit strings with minimal assembly indices sQ
and, for sQ ≥ 4, some shorter but more complex bitstrings with non-minimal assembly indices sQ. The
memory defines the object [8].

7. Discussion and Conclusions

Consider the SARS-CoV-2 genome sequence defined by 29903 nucleobases {A, C, G, T}, its initial
version MN9089473 collected in December 2019 in Wuhan and its sample OL3513704 collected in Egypt
nearly two years after the Wuhan outbreak, on October 23, 2021. In the MN version, the nucleobases
are distributed as |A| = 8954, |C| = 5492, |G| = 5863, and |T| = 9594 and in the OL version as
|A| = 8954, |C| = 5470, |G| = 5856, and |T| = 9623, following Chargaff’s parity rules with the same
count of adenines. We can convert these sequences into bitstrings by assigning two bits per nucleobase.
For such N = 59806, not being the sum of two powers of 2, with the degree of causation [6] given by
equation (14), the assembly index is bounded by

21 ≤ a(59806)(Ck) ≪ 971. (24)

Interestingly, if a bitstring C(N) were to encode four DNA/RNA nucleobases, then the smallest
assembly index bitstrings (as well as the strings generated by trivial assembly programs Q according to
Definition 6) would not encode all nucleobases. For example, the bitstring C(10)

min = [1001010010] with

a(10)
min = 4 and encoding A=00, C=01, G=10, and T=11, cannot encode T=11. Therefore, we increased

the lower bound (24), given by Theorem 2, by one. The upper bound (24) was estimated by finding
the smallest k that satisfies k(k + 3) ≥ N and using the relation a(N)(Cmax) = 4⌈k⌉ − 1 of Conjecture 1.
We do not know the actual assembly indices of the MN and OL sequences. Their determination is an
NP-complete problem, as we conjecture. There are twelve possible assignments of two bits per one
nucleobase with twelve different Hamming weights and six different Shannon entropies (3)

N1

(
C(59806)

MN

)
= {25801, 26172, 26441, 26812, 29263, 29532, 30274, 30543, 32994, 33365, 33634, 34005},

N1

(
C(59806)

OL

)
= {25750, 26136, 26419, 26805, 29234, 29517, 30289, 30572, 33001, 33387, 33670, 34056},

H
(

C(59806)
MN

)
= {0.9864, 0.9887, 0.9903, 0.9923, 0.9997, 0.99989},

H
(

C(59806)
OL

)
= {0.9860, 0.9885, 0.9902, 0.9922, 0.9996, 0.99988}.

(25)

3 Available online at https://www.ncbi.nlm.nih.gov/nuccore/MN908947.
4 Available online at https://www.ncbi.nlm.nih.gov/nuccore/OL351370.
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All sequences (25) are almost balanced (N/2 = 29903). However, the later OL versions are less
balanced, producing lower Shannon entropies and showcasing the existence of an entopic force that
governs genetic mutations [25]. We conjecture that the assembly index of the OL sequence is higher
than that of the MN one - the evolution of information tends to increase the assembly index.

The bounds of Theorem 2 and Conjecture 1 are shown in Tables 5 and 8 and are illustrated in
Figures 4 and 5. No bitstring can be assembled in a smaller number of steps than is given by a lower
bound of Theorem 2. However, some bitstrings cannot be assembled in a smaller number of steps than
given by an upper bound.

Figure 4. Lower bound on the bitstring assembly index 2 (red) and log2(N) (red, dash-dot), conjectured
upper bound on the bitstring assembly index 1 (green), factual values of the bitstring assembly index
(blue) and the ringed bitstring assembly index (cyan) and N − 1 (green, dash-dot), for the bitstring
length 0 ≤ N ≤ 20.
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Figure 5. Lower bound on the bitstring assembly index (red), log2(N) (red, dash-dot), general

rule a({2s ,N̂,Ñ})
min = {s, s + 1, s + 2} (cyan), and OEIS A014701 (yellow); conjectured upper bound on

the bitstring assembly index (green) and N − 1 (green, dash-dot); and assembly indices of C(N)
non-min

bitstrings assembled by trivial assembling programs (blue); for the bitstring length 0 ≤ N ≤ 100 (see
text for details).
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We found it much easier to determine the assembly index of a given bitstring C(N)
k than to

assemble a bitstring so that it would have the largest assembly index. Similarly, a trivial bitstring with
the smallest assembly index for N can have the form C(N)

min1−4
= [∗ ⋆ . . . ] (11) or the form of a Fibonacci

word generated by the trivial assembling program (Definition 6). Therefore, we state the following
conjecture.

Conjecture 3. The problem of determining the assembly index of any bitstring C(N)
k is NP-complete. The

problem of assembling the bitstring so that it would have the largest assembly index for large N is NP-hard. This
corresponds to determining the largest assembly index value for large N.

A proof of conjecture 3 would also be the proof of the following known conjecture.

Conjecture 4. P ̸= NP

Every computable problem and every computable solution can be encoded as a finite bitstring.
Here, determining whether the assembly index of a given bitstring has its known maximal value
corresponds to checking the solution to a problem for correctness, whereas assembling such a bitstring
corresponds to solving the problem. Thus, AT would solve the P versus NP problem in theoretical
computer science. There is ample pragmatic justification for adding P ̸= NP as a new axiom [42];
rather than attempting to prove this conjecture, mathematicians should accept that it may not be
provable and simply accept it as an axiom [45].

The bounds on the bitstring assembly index given by Theorem 2 and Conjecture 1, and the general
bounds (1), and (2) on the assembly index [1] are illustrated in Figure 6 (adopted from [1] and modified;
not to scale). The lower bound on the bitstring assembly index implies two paths of evolution:

1. creative path (slanting lines in Figure 6), and
2. optimization path (vertical lines in Figure 6),

as for some bitstrings Cm of length N > 3 it admits the possible region of their assembly steps
a(N)

min(Cm) < s ≤ N − 1. For 1 ≤ N ≤ 3 only the creative path is available as there is nothing to optimize:
a(1≤N≤3) = N − 1. The 2nd path becomes available already at N = 4, where the suboptimal number
of 3 steps used to assemble a bitstring [0101] can be optimized to a(4)min = 2. The evolution becomes
interesting for N ≥ 7 (N > 7 for ringed strings; cf. Table 8) due to an upper bound on the bitstring
assembly index. For each (N ≥ 7)-bit string Cm suboptimally assembled in a(N≥7)(Cm) < s ≤ N − 1
steps, the search space is recursively explored to optimize the number of steps until the assembly index
a(N≥7)(Cm) of this bitstring is reached, where a(N≥7)

min ≤ a(N≥7)(Cm) ≤ a(N≥7)
max .

We conjecture that, in general, the assembly of a novel, nontrivial bitstring C(N+l)
m , for l ∈ N, with a

longer length N + l using the 1st path of evolution is NP-hard, requires access to noncomputability, and,
thus, is available only to dissipative structures, including life, including humans. This path represents
"true" creativity. However, once this new bitstring is assembled, it is unlikely that it will be assembled
optimally in s steps corresponding to its assembly index. This implies the 2nd path of minimizing
the number of steps s required to assemble this newly found nontrivial bitstring C(N+l)

m towards its
assembly index, which is only NP-complete. The bitstring C(N+l)

m is reassembled in a simpler way, but
such a reassembly is no longer creative. The 2nd path represents "generative creativity" available both
to dissipative structures and to artificial intelligence.

To illustrate this process, consider two examples: one from biological evolution (the emergence of
amphibians from fish) and another from technological evolution (the invention of an airplane). The
fish began to evolve around 541 million years ago, forming a plethora of fish species and exploring the
available search space, optimizing the fish assembly index and increasing the information capacity within
the range delimited by the same upper bound fish plateau (cf. Conjecture 1). Around 400 million years
ago, some species of fish began using areas with fluctuating water levels, where occasionally water
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was scarce. The next amphibian plateau of a larger assembly index was within sight. By groping [19],
protolungs developed, allowing fish to obtain oxygen from air instead of water. The breakthrough
was made and amphibians were formed, exploring the subsequent amphibian plateau and optimizing
this evolutionary gain. Many inventions led to the first airplane: the invention of airfoil (George
Cayley), its use in gliders (Otto Lilienthal), propeller,... Again, the search space was well explored, and
the airplane plateau of a larger assembly index was close. Finally, it was the Wright brothers, bicycle
retailers, who realized the importance of combining roll and yaw control in their first suboptimal
Wright Flyer foreplane configuration. Once it was shown that it can be done, other people began to
optimize this invention, minimizing the number of steps required to recreate it.

Figure 6. An illustrative graph of complexity against information capacity: orange regions are
impossible, as they are above or below the assembly index general bounds, yellow region indicates the
bitstring assembly index bounds, green region contains structures that can be assembled by dissipative
structures of nature, red region contains structures that can only be assembled by humans, blue circles
and dots denote, respectively, the number of steps of suboptimally assembled bitstrings and their
assembly indices, blue slanting and vertical lines denote, respectively, creative and optimization paths
of evolution of information (figure not to scale; see text for details).

AT captures the notion of intelligence, understood as a degree of ability to reach the same goal
through different means (assembly pathways) [46], where a fundamental aspect of intelligence is
collective behavior [47]. Once the search space is saturated, the fish collectively explore it to develop
lungs, just as humans, starting at least in the nineteenth century, began to think collectively about
heavier-than-air flying machines. We assume that only dissipative structures can assemble novel
structures of information and define life as a dissipative structure provided with choice (ability to
select [6]) and human as a living dissipative structure provided with abstract, modality-independent
language. As shown in Figure 6, we predict a limit on complexity or maximum assembly index aH
achievable by non-human dissipative structures. These structures do not use an abstract, modality-
independent language required for advanced human creativity. A human creative work also needs a
certain minimum amount of information NH . We take it for granted that presently only Homo sapiens
has a gift of creativity that exceeds aH . Any creation is required to be shaped by the unique personality
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of its human creator(s) to such an extent that it is statistically one-time in nature [48]; it is an imprint
of the author’s personality. Subsequent plateaus of a(N)

max > aH can also be thought of as scientific
paradigms [49] defining coherent traditions of investigation.

Any structure of information assembled by a dissipative structure in s steps can belong to one of
the four regions shown in Figure 6:
1. N < NH and a(N)

max < s < N − 1, suboptimally assembled by dissipative structures (green region),

2. a(N)
min < s < max

(
a(N)

max, aH

)
, optimally assembled by dissipative structures,

3. N > NH and aH < s < a(N)
max, optimally assembled by humans, and

4. N > NH and a(N)
max < s < N − 1, suboptimally assembled by humans (red region).

We do not exclude that non-human dissipative structures are capable of suboptimally assembling struc-
tures C above aH , provided that their assembly indices satisfy a(N)(C) < aH . Thus, the optimization
path shown in the white rectangle in Figure 6 is available only to humans.

The results reported here can be applied in the fields of cryptography, data compression methods,
stream ciphers, approximation algorithms [50], reinforcement learning algorithms [51], information-
theoretically secure algorithms, etc. Another possible application of the results of this study could be
molecular physics and crystallography. Overall, the results reported here support the AT, emergent
dimensionality [12,15,22–24,26–28,40], the second law of infodynamics [25,29], and invite further
research.
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Abbreviations

The following abbreviations are used in this manuscript:

AT assembly theory;
N length of a bitstring;
N0 number of 0’s in the bitstring;
N1 binary Hamming weight of the bitstring;

C(N)
k bitstring of length N;

B(N)
k balanced bitstring of length N;

R(N)
k ringed bitstring of length N;

E(N)
k balanced ringed bitstring of length N;

|C(N)| number of bitstrings of length N (2N);
|B(N)| number of balanced bitstrings of length N (OEIS A001405);
|R(N)| number of ringed bitstrings of length N (OEIS A000031);
|E(N)| number of balanced ringed bitstrings of length N ;
a(N) assembly index of a bitstring of length N;
P = {1, 0} initial assembly pool;
s assembly step;
Q binary assembling program;
sQ length of the binary assembling program;
F Fibonacci sequence.
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Appendix A. Exemplary Maximal Assembly Index Bitstrings

For the exemplary balanced ringed bitstrings Emax, shown in Table 8:

• all forms of E(4)
k = [0011] have a(4) = 3,

• all forms of E(5)
6 = [00011] have a(5) = 4,

• all forms of E(6)
16 = [000111] have a(6) = 5,

• the form E(7)
28 = [0011100] has a(7) = 5 but the form E(7)

34 = [0001110] has a(7) = 6,
• all forms of E(8)

45 = [00010111] have a(8) = 6,
• all forms of E(9)

13 = [000011101] have a(9) = 7,
• the form E(10)

22 = [0000111101] has a(10) = 7 but the form E(10)
l = [0111101000] has a(10) = 8,

• all forms of E(11)
7 = [00000101111] have a(11) = 8,

• all forms of E(12)
9 = [111000101100] have a(12) = 8,

• all forms of E(13)
8 = [0000001011111] have a(13) = 9,

• all forms of E(14)
k = [00000101011111] have a(14) = 9,

• all forms of E(15)
k = [000001010111110] have a(15) = 10,

• all forms of E(16)
k = [1000000101011111] have a(16) = 10,

• all forms of E(17)
k = [00000010101111110] have a(17) = 11,

• all forms of E(18)
k = [000000101010111111] have a(18) = 11,

• some forms of E(19)
k = [1000010101001111101] have a(19) = 12,

• some forms of E(20)
k = [10100111110110000010] have a(20) = 13.

Appendix B. Trivial Assembling Programs

Table A1 shows the lengths of the bitstrings assembled by the trivial assembling program intro-
duced in Section 6 for 1 ≤ sQ ≤ 7. The table is divided into sections corresponding to sets of assembled
bitstrings having the same form but different lengths. For example, thirty two 7-bit programs in the
bottom section assemble bitstrings C = [∗1 ∗ 1 . . . ]. The boxed symbols denote program commands,
not the bitstring lengths.
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Table A1. Lengths of the bitstrings assembled by trivial assembly programs Qs (OEIS A065108).

a(N) 0 1 2 3 3,4 4,5 5,6 6,7
sQ 1 2 3 4 5 6 7
1 1 2 3 5 8‡ 13 21 34‡

| | | | | ⋆ 42

| | | | 0 26 39
| | | | ⋆ 52

| | | 0 16‡ 24‡ 40‡

| | | | ⋆ 48‡

| | | ⋆ 32‡ 48‡

| | | ⋆ 64‡

| | 0 10 15 25 40‡

| | | | ⋆ 50
| | | ⋆ 30 45
| | | ⋆ 60
| | ⋆ 20 30 50
| | | ⋆ 60
| | ⋆ 40 60
| | ⋆ 80

| 0 6 9 15 24† 39
| | | | ⋆ 48†

| | | ⋆ 30 45
| | | ⋆ 60
| | ⋆ 18 27 45
| | | ⋆ 54
| | ⋆ 36 54
| | ⋆ 72
| ⋆ 12 18 30 48†

| | | ⋆ 60
| | ⋆ 36 54
| | ⋆ 72
| ⋆ 24 36 60
| | ⋆ 72
| ⋆ 48 72
| ⋆ 96

0 4 6 10 16† 26 42
| | | | ⋆ 52
| | | ⋆ 32† 48†

| | | ⋆ 64†

| | ⋆ 20 30 50
| | | ⋆ 60
| | ⋆ 40 60
| | ⋆ 80
| ⋆ 12 18 30 48†

| | | ⋆ 60
| | ⋆ 36 54
| | ⋆ 72
| ⋆ 24 36 60
| | ⋆ 72
| ⋆ 48 72
| ⋆ 96
⋆ 8 12 20 32† 52

| | | ⋆ 64†

| | ⋆ 40 60
| | ⋆ 80
| ⋆ 24 36 60
| | ⋆ 72
| ⋆ 48 72
| ⋆ 96
⋆ 16 24 40 64†

| | ⋆ 80
| ⋆ 48 72
| ⋆ 96
⋆ 32 48 80

| ⋆ 96
⋆ 64 96

⋆ 128
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Table A2. 4-bit programs assembling bitstrings with a(N) = {3, 4}.

Q C(s = 3) C(sQ = 4) N
∗111 ∗00 ∗ 0 0 ∗ 0 ∗ 00 ∗ 0 8‡

∗110 ∗00 ∗ 0 ∗00 ∗ 0 . . . 10
∗101 0 ∗ 0 . . . 0 ∗ 0 . . . 9
∗100 0 ∗ 0 . . . 0 ∗ 0 . . . 12
∗011 ∗0 . . . ∗0 . . . 10
∗010 ∗0 . . . ∗0 . . . 12
∗001 ∗0 . . . ∗0 . . . 12
∗000 ∗0 . . . ∗0 . . . 16

‡. This program is not elegant if ∗ = 0 and the assembled bitstring is not Cmin if ∗ = 1.

Table A3. 5-bit programs assembling bitstrings with a(N) = {4, 5}.

Q C(s = 4) C(sQ = 5) N
∗1111 0 ∗ 0 ∗ 00 ∗ 0 ∗00 ∗ 00 ∗ 0 ∗ 00 ∗ 0 13
∗1110 0 ∗ 0 ∗ 00 ∗ 0 0 ∗ 0 ∗ 00 ∗ 0 . . . 16‡

∗1101 ∗00 ∗ 0 . . . ∗00 ∗ 0 . . . 15
∗1100 ∗00 ∗ 0 . . . ∗00 ∗ 0 . . . 20
∗1011 0 ∗ 0 . . . 0 ∗ 0 . . . 15
∗1010 0 ∗ 0 . . . 0 ∗ 0 . . . 18
∗1001 0 ∗ 0 . . . 0 ∗ 0 . . . 18
∗1000 0 ∗ 0 . . . 0 ∗ 0 . . . 24
∗0111 ∗0 . . . ∗0 . . . 16†

∗0110 ∗0 . . . ∗0 . . . 20
∗0101 ∗0 . . . ∗0 . . . 18
∗0100 ∗0 . . . ∗0 . . . 24
∗0011 ∗0 . . . ∗0 . . . 20
∗0010 ∗0 . . . ∗0 . . . 24
∗0001 ∗0 . . . ∗0 . . . 24
∗0000 ∗0 . . . ∗0 . . . 32

†. This program is not elegant (the same bitstring can be assembled using the shorter 4-bit program ∗000). ‡. This
program is not elegant if ∗ = 0 and the assembled bitstring is not Cmin if ∗ = 1.

Table A4. 6-bit programs assembling bitstrings with a(N) = {5, 6}.

Q C(sQ = 6) N
∗11111 0 ∗ 0 ∗ 00 ∗ 0 ∗ 00 ∗ 00 ∗ 0 ∗ 00 ∗ 0 21
∗11110 ∗00 ∗ 00 ∗ 0 ∗ 00 ∗ 0 . . . 26
∗1110⋆ 0 ∗ 0 ∗ 00 ∗ 0 . . . 24‡ , 32‡

∗110 ⋆ ⋆ ∗00 ∗ 0 . . . 25, 30, 40
∗10 ⋆ ⋆⋆ 0 ∗ 0 . . . 24† , . . . , 48
∗0 ⋆ ⋆ ⋆ ⋆ ∗0 . . . 26, 32† , . . . , 64

†. This program is not elegant. ‡. This program is not elegant if ∗ = 0 and the assembled bitstring is not Cmin if
∗ = 1.

Appendix C. Bitstrings and Their Assembly Indices

Table A1 show the lengths of the bitstrings assembled by programs Fs having the smallest
assembly indices. Tables A5-A12 show distributions of the assembly indices for 5 ≤ N ≤ 12. Tables
A13-A17 show balanced bitstrings B(N) and their assembly indices for 5 ≤ N ≤ 8. Tables A18-A23
show the balanced ringed bitstrings E(N) and their assembly indices for 5 ≤ N ≤ 10. Tables A24-A26
show selected balanced ringed bitstrings E(N) and their assembly indices for 11 ≤ N ≤ 13.

Table A5. Distribution of the assembly indices for N = 5.

N1

a(5)(C) |a(5(C)| 0 1 2 3 4 5
3 18 1 3 5 5 3 1
4 14 2 5 5 2

32 1 5 10 10 5 1

Table A6. Distribution of the assembly indices for N = 6.

N1

a(6)(C) |a(6)(C)| 0 1 2 3 4 5 6
3 10 1 3 2 3 1
4 44 6 10 12 10 6
5 10 2 6 2

64 1 6 15 20 15 6 1
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Table A7. Distribution of the assembly indices for N = 7.

N1

a(7)(C) |a(7)(C)| 0 1 2 3 4 5 6 7
4 50 1 5 7 12 12 7 5 1
5 74 2 14 21 21 14 2
6 4 2 2

128 1 7 21 35 35 21 7 1

Table A8. Distribution of the assembly indices for N = 8.

N1

a(8)(C) |a(8)(C)| 0 1 2 3 4 5 6 7 8
3 4 1 2 1
4 38 9 8 4 8 9
5 132 8 17 22 40 22 17 8
6 82 2 26 24 26 2

256 1 8 28 56 70 56 28 8 1

Table A9. Distribution of the assembly indices for N = 9.

N1

a(9)(C) |a(9)(C)| 0 1 2 3 4 5 6 7 8 9
4 24 1 3 3 5 5 3 3 1
5 184 4 17 35 36 36 35 17 4
6 248 2 19 42 61 61 42 19 2
7 56 4 24 24 4

512 1 9 36 84 126 126 84 36 9 1

Table A10. Distribution of the assembly indices for N = 10.

N1

a(10)(C) |a(10)(C)| 0 1 2 3 4 5 6 7 8 9 10
4 20 1 3 5 2 5 3 1
5 198 8 22 20 33 32 33 20 22 8
6 502 2 18 68 108 110 108 68 18 2
7 288 2 32 62 96 62 32 2
8 16 2 12 2

1024 1 10 45 120 210 252 210 120 45 10

Table A11. Distribution of the assembly indices for N = 11.

N1

a(11)(C) |a(11)(C)| 0 1 2 3 4 5 6 7 8 9 10 11
5 184 1 7 14 23 18 29 29 18 23 14 7 1
6 686 4 32 69 104 134 134 104 69 32 4
7 970 9 69 178 229 229 178 69 9
8 208 4 30 70 70 30 4

2048 1 11 55 165 330 462 462 330 165 55 11

Table A12. Distribution of the assembly indices for N = 12.

N1

a(12) |a(12)| 0 1 2 3 4 5 6 7 8 9 10 11 12
4 10 1 3 2 3 1
5 94 13 4 10 12 16 12 10 4 13
6 1034 12 42 94 141 130 196 130 141 94 42 12
7 1688 11 106 196 354 354 354 196 106 11
8 1180 16 143 282 298 282 143 16
9 90 2 14 58 14 2

4096 1 12 66 220 495 792 924 792 495 220 66 12 1
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Table A13. |B(5)| = 10 balanced bitstrings.

k B(5)
k a(5)(Bk)

1 0 (0 1) (0 1) 3
2 (0 1) 0 (0 1) 3
3 (0 1) (0 1) 0 3
4 (1 0) 0 (1 0) 3
5 (1 0) (1 0) 0 3
6 0 0 0 1 1 4
7 0 0 1 1 0 4
8 0 1 1 0 0 4
9 1 0 0 0 1 4
10 1 1 0 0 0 4

Table A14. |B(6)| = 20 balanced bitstrings.

k B(6)
k a(6)(Bk)

1 (0 1) (0 1) (0 1) 3
2 (1 0) (1 0) (1 0) 3
3 0 (0 1) (0 1) 1 4
4 0 (0 1) 1 (0 1) 4
5 (0 1) 0 (0 1) 1 4
6 (0 1) (0 1) 1 0 4
7 (0 1) 1 0 (0 1) 4
8 (0 1) 1 (0 1) 0 4
9 (1 0) 0 (1 0) 1 4
10 (1 0) 0 1 (1 0) 4
11 (1 0) (1 0) 0 1 4
12 (1 0) 1 (1 0) 0 4
13 1 (1 0) 0 (1 0) 4
14 1 (1 0) (1 0) 0 4
15 0 0 1 1 1 0 5
16 0 0 0 1 1 1 5
17 0 1 1 1 0 0 5
18 1 0 0 0 1 1 5
19 1 1 0 0 0 1 5
20 1 1 1 0 0 0 5

Table A15. |B(7)| = 35 balanced bitstrings.

k B(7)
k a(7)(Bk)

1 0 (0 1) (0 1) (0 1) 4
2 (0 1) (0 1) (0 1) 0 4
3 (1 0) (1 0) (1 0) 0 4
4 (0 1) (0 1) 0 (0 1) 4
5 (1 0) (1 0) 0 (1 0) 4
6 (0 1) 0 (0 1) (0 1) 4
7 (1 0) 0 (1 0) (1 0) 4
8 (1 0 0) (1 0 0) 1 4
9 (1 0 0) 1 (1 0 0) 4

10 1 (1 0 0) (1 0 0) 4
11 (0 0 1) 1 (0 0 1) 4
12 (0 0 1) (0 0 1) 1 4
13 1 (0 0) (0 0) 1 1 5
14 1 0 0 (0 1) (0 1) 5
15 (1 0) 0 0 1 (1 0) 5
16 (1 0) (1 0) 0 0 1 5
17 (1 0) 1 (1 0) 0 0 5
18 1 1 (0 0) (0 0) 1 5
19 1 (1 0) (1 0) 0 0 5
20 1 1 1 (0 0) (0 0) 5
21 (0 1) (0 1) 1 0 0 5
22 (0 1) 1 0 0 (0 1) 5
23 (0 1) 1 0 (0 1) 0 5
24 (0 1) 1 (0 1) 0 0 5
25 (0 1) 0 (0 1) 1 0 5
26 0 (0 1) (0 1) 1 0 5
27 0 (0 1) 1 (0 1) 0 5
28 (0 0) 1 1 1 (0 0) 5
29 (0 1) 0 0 (0 1) 1 5
30 (0 0) (0 0) 1 1 1 5
31 0 0 (0 1) (0 1) 1 5
32 0 0 (0 1) 1 (0 1) 5
33 1 (1 0) 0 0 (1 0) 5
34 0 0 0 1 1 1 0 6
35 0 1 1 1 0 0 0 6
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Table A16. |B(8)| = 70 balanced bitstrings (1st part).

k B(8)
k a(8)(Bk)

1 ((0 1) (0 1)) ((0 1) (0 1)) 3
2 ((1 0) (1 0)) ((1 0) (1 0)) 3
3 ((0 0) (1 1)) ((0 0) (1 1)) 4
4 ((0 1) (1 0)) ((0 1) (1 0)) 4
5 ((1 0) (0 1)) ((1 0) (0 1)) 4
6 ((1 1) (0 0)) ((1 1) (0 0)) 4
7 (0 0) (0 0) (1 1) (1 1) 5
8 (0 0 1) (0 0 1) 1 1 5
9 0 (0 1) (0 1) (0 1) 1 5
10 0 (0 1) (0 1) 1 (0 1) 5
11 0 (0 1) 1 (0 1) (0 1) 5
12 (0 0 1) 1 1 (0 0 1) 5
13 (0 0) (1 1) (1 1) (0 0) 5
14 (0 1) 0 (0 1) (0 1) 1 5
15 (0 1) 0 (0 1) 1 (0 1) 5
16 (0 1) (0 1) 0 (0 1) 1 5
17 (0 1) (0 1) (0 1) 1 0 5
18 (0 1) (0 1) 1 0 (0 1) 5
19 (0 1) (0 1) 1 (0 1) 0 5
20 (0 1 1) 0 0 (0 1 1) 5
21 (0 1) 1 0 (0 1) (0 1) 5
22 (0 1) 1 (0 1) 0 (0 1) 5
23 (0 1) 1 (0 1) (0 1) 0 5
24 (0 1 1) (0 1 1) 0 0 5
25 (1 0 0) (1 0 0) 1 1 5
26 1 0 (0 1) (0 1) (0 1) 5
27 (1 0) 0 (1 0) 1 (1 0) 5
28 (1 0) 0 1 (1 0) (1 0) 5
29 (1 0 0) 1 1 (1 0 0) 5
30 (1 0 1) 0 0 (1 0 1) 5
31 (1 0) (1 0) 0 1 (1 0) 5
32 (1 0) (1 0) (1 0) 0 1 5
33 (1 0) (1 0) 1 (1 0) 0 5
34 (1 0) 1 (1 0) 0 (1 0) 5
35 (1 0) 1 (1 0) (1 0) 0 5
36 (1 1) (0 0) (0 0) (1 1) 5
37 (1 1 0) 0 0 (1 1 0) 5
38 1 1 (0 0 1) (0 0 1) 5
39 1 1 0 0 1 0 1 0 5
40 1 (1 0) (1 0) 0 (1 0) 5
41 (1 1 0) (1 1 0) 0 0 5
42 1 1 0 1 0 1 0 0 5
43 1 1 (1 0 0) (1 0 0) 5
44 (1 1) (1 1) (0 0) (0 0) 5
45 0 0 (0 1 1) (0 1 1) 5
46 0 (0 1 1) (0 1 1) 0 5

Table A17. |B(8)| = 70 balanced bitstrings (2nd part).

k B(8)
k a(8)(Bk)

47 0 0 (0 1) (0 1) 1 1 6
48 0 0 (0 1) 1 1 (0 1) 6
49 0 0 0 (1 1) (1 1) 0 6
50 0 (0 1) (0 1) 1 1 0 6
51 0 0 1 1 (1 0) (1 0) 6
52 (0 1) 0 0 (0 1) 1 1 6
53 (0 1) 0 (0 1) 1 1 0 6
54 (0 1) (0 1) 1 1 0 0 6
55 (0 1) 1 1 0 0 (0 1) 6
56 (0 1) 1 1 0 (0 1) 0 6
57 (0 1) 1 1 (0 1) 0 0 6
58 0 (1 1) (1 1) 0 0 0 6
59 1 (0 0) (0 0) 1 1 1 6
60 (1 0) 0 0 (1 0) 1 1 6
61 1 0 0 (0 1) 1 (0 1) 6
62 (1 0) 0 0 1 1 (1 0) 6
63 (1 0) (1 0) 0 0 1 1 6
64 (1 0) 1 (1 0) 0 0 1 6
65 (1 0) 1 1 (1 0) 0 0 6
66 1 (1 0) 0 0 (1 0) 1 6
67 1 1 (0 1) 0 0 (0 1) 6
68 1 1 1 (0 0) (0 0) 1 6
69 1 1 (1 0) 0 0 (1 0) 6
70 1 1 (1 0) (1 0) 0 0 6
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Table A18. |E(5)| = 2 balanced ringed bitstrings.

k E(5)
k a(5)(Ek)

1 0 (0 1) (0 1) 3
6 0 0 0 1 1 4

Table A19. |E(6)| = 4 balanced ringed bitstrings.

k E(6)
k a(6)(Ek)

1 (0 1) (0 1) (0 1) 3
3 0 (0 1) (0 1) 1 4
4 0 (0 1) 1 (0 1) 4

16 0 0 0 1 1 1 5

Table A20. |E(7)| = 5 balanced ringed bitstrings.

k E(7)
k a(7)(Ek)

1 0 (0 1) (0 1) (0 1) 4
12 (0 0 1) (0 0 1) 1 4
30 (0 0) (0 0) 1 1 1 5
31 0 0 (0 1) (0 1) 1 5
32 0 0 (0 1) 1 (0 1) 5

Table A21. |E(8)| = 10 balanced ringed bitstrings.

k E(8)
k a(8)(Ek)

1 ((0 1) (0 1)) ((0 1) (0 1)) 3
3 (0 0) (1 1) (0 0) (1 1) 4
7 (0 0) (0 0) (1 1) (1 1) 5
8 0 (0 1) 0 (0 1) 1 1 5
9 0 (0 1) (0 1) (0 1) 1 5

10 0 (0 1) (0 1) 1 (0 1) 5
11 0 (0 1) 1 (0 1) (0 1) 5
46 0 0 (0 1 1) (0 1 1) 5
45 0 0 (0 1) (0 1) 1 1 6
47 0 0 (0 1) 1 1 (0 1) 6

Table A22. Selected balanced ringed bitstrings |E(9)| = 14.

k E(9)
k a(9)(Ek)

1 0 ((0 1) (0 1)) ((0 1) (0 1)) 4
2 0 ((0 0) (1 1)) ((0 0) (1 1)) 5
3 (0 (0 1)) (0 1) (0 0 1) 1 5
4 (0 (0 1)) (0 0 1) 1 (0 1) 5
5 (0 (0 1)) (0 0 1) (0 1) 1 5
6 0 (0 0 1) 1 1 (0 0 1) 6
7 0 0 (0 1) 1 (0 1) (0 1) 6
8 0 0 (0 1) (0 1) 1 (0 1) 6
9 0 0 (0 1) (0 1) (0 1) 1 6
10 0 (0 0 1) (0 0 1) 1 1 6
11 (0 0) (0 0) (1 1) 0 (1 1) 6
12 0 (0 0) (0 0) (1 1) (1 1) 6
13 (0 0) (0 0) 1 1 1 0 1 7
14 (0 0) (0 0) 1 0 1 1 1 7
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Table A23. |E(10)| = 26 balanced ringed bitstrings.

k E(10)
k a(10)(Ek)

1 ((0 1) (0 1)) ((0 1) (0 1)) (0 1) 4
2 0 ((0 1) (0 1)) ((0 1) (0 1)) 1 5
3 (0 1) (1 (0 1) 0) (1 (0 1) 0) 5
4 (0 (0 1) 1) (0 0 1 1) (0 1) 5
5 0 ((0 1) 0 1) 1 (0 1 0 1) 5
6 0 ((1 0) 1 0) 1 (1 0 1 0) 5
7 (0 1) ((0 1) 1 0) (0 1 1 0) 5
8 (0 (0 1)) (0 1) (0 0 1) 1 1 6
9 (0 (0 1)) (0 0 1) 1 1 (0 1) 6
10 (0 (0 1)) (0 0 1) 1 (0 1) 1 6
11 (0 (0 1)) (0 0 1) (0 1) 1 1 6
14 0 (0 0 1 1) 1 (0 0 1 1) 6
15 0 0 ((0 1) 1) (0 1 1) (0 1) 6
16 0 0 ((0 1) 1) (0 1) (0 1 1) 6
17 0 (0 0 1 1) (0 0 1 1) 1 6
19 0 0 (0 1) ((0 1) 1) (0 1 1) 6
12 (0 0) 0 (1 1) (1 1) (0 0) 1 7
13 0 0 (0 1) 1 1 (0 1) (0 1) 7
18 0 0 (0 1) (0 1) 1 1 (0 1) 7
20 0 0 (0 1) (0 1) (0 1) 1 1 7
21 (0 0) 0 1 (0 0) (1 1) (1 1) 7
22 (0 0) (0 0) (1 1) (1 1) 0 1 7
23 (0 0) (0 0) (1 1) 1 0 (1 1) 7
24 (0 0) (0 0) (1 1) 0 (1 1) 1 7
25 (0 0) (0 0) 1 0 (1 1) (1 1) 7
26 (0 0) (0 0) 0 1 (1 1) (1 1) 7

Table A24. Selected balanced ringed bitstrings E(11).

k E(11)
k a(11)(Ek)

1 0 (0 1) ((0 1)) (0 1)) (0 1 0 1) 5
2 (0 (0 1) (0 1)) (0 0 1 0 1) 1 5
3 (0 0) ((0 0) 1 1) (1 0 0 1 1) 6
4 (0 (0 1)) (0 1) (0 1) (0 0 1) 1 6
5 (0 0) (0 0) (0 0) (1 1) (1 1) 1 7
6 (0 0) (1 1 0) 1 (0 0) (1 1 0) 7
7 (0 0) (0 0) (0 1) (0 1) 1 1 1 8

Table A25. Selected balanced ringed bitstrings E(12).

k E(12)
k a(12)(Ek)

1 ((0 1) (0 1)) (0 1 0 1) (0 1 0 1) 4
2 (0 (0 1) 1 (0 1)) (0 0 1 1 0 1) 5
3 ((0 1) 1 (0 (0 1))) ((0 1) 1 (0 0 1)) 5
4 (0 (0 1) 1) (0 0 1 1) (0 1) (0 1) 6
5 ((0 1) 0 (0 1)) (0 1 0 0 1) 1 1 6
6 (0 0 1) (0 0 1) (0 0 1) 1 1 1 7
7 (0 0) (0 0) (0 0) (1 1) (1 1) (1 1) 7
8 (0 0) (0 0) (1 1) (1 1) 1 (0 0) 1 8
9 (0 0) (1 0) (1 1) (0 0) (1 1) (1 0) 8
10 (1 1) (1 1) (0 1) (0 1) (0 0) (0 0) 8
11 (1 1) (1 1) (0 0) (0 0) (1 0) (1 0) 8

Table A26. Selected balanced ringed bitstrings E(13).

k E(13)
k a(13)(Ek)

1 0 ((0 1) (0 1)) (0 1 0 1) (0 1 0 1) 5
2 0 ((1 0) 0 1 (1 0)) (1 0 0 1 1 0) 6
3 (0 ((0 1) (0 1)) (0 0 1 0 1) (0 1) 1 6
4 0 (0 0) ((0 0) (1 1)) (0 0 1 1) (1 1) 7
5 (0 0) ((0 0) (1 1)) (0 0 1 1) 0 (1 1) 7
6 (0 0) (0 0) (0 0) 0 (1 1) (1 1) (1 1) 8
7 (0 0 (0 1)) (0 0 0 1) (0 1) 1 1 1 8
8 (0 0) (0 0) (0 0) 1 0 (1 1) (1 1) 1 9
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