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Abstract: Despite UAV multi-target detection exhibits considerable developmental potential worldwide, it
suffers distinct challenges compared with traditional tasks in this field. These challenges include insufficient
feature extraction capabilities for small targets, limited capabilities for multi-dimensional feature fusion, as
well as constraints on hardware computation parameters. Especially in mission scenarios such as disaster
detection, these challenges will be further amplified. Consequently, this paper introduces SSE-YOLO, an
innovative YOLO framework algorithm specially designed to address these challenges. To enhance the model's
feature extraction capability, we employ the SPDConv module to replace the original Conv in the backbone
section, utilizing depth-separable convolution instead of traditional convolution pooling. Concurrently, we
eliminate the SPPF module at the bottom and address a new Separate Kernel Attention Pyramid Pooling
(SKAPP) module, substantially enhancing the feature fusion capability at the model's core. Moreover, to
address the challenge of multi-dimensional feature fusion, we replace the Concat module of the neck and head
with E-BiFPN, transmitting feature information from the backbone to the lower network through four CBS
blocks, which effectively resolves the issue of lost contextual information in the model. Meanwhile, SSE-YOLO
undergoes ablation experiments on the VisDrone2019 dataset to evaluate its effectiveness against alternative
methods, and experimental results illustrate the model's exceptional precision in detecting UAV targets. In
comparison to models with comparable experimental accuracy, SSE-YOLO requires remarkably fewer
parameters. On the VisDrone2019-DET-test-dev dataset, SSE-YOLO enhances mAP by 17.3%, with a 42.5%
reduction in the parameter amounts. Therefore, the proposed method effectively tackles the challenge of
reconciling low parameters and high accuracy, presenting a novel pathway for deep learning-based UAV
multi-target detection.

Keywords: UAV; small target detection; YOLOVS; feature extraction; deep learning

1. Introduction

The integration of unmanned aerial vehicle (UAV) remote sensing images and deep learning
detection technology has emerged as a popular research area [1,2]. Initially, drones were solely
utilized by the military; however, with the rapid technological advancements over the recent years,
their applications have expanded to all sectors of society. Due to their small size, flexible movement,
and minimal restriction by geography, drones have the potential to greatly expand the scope of
human monitoring and provide tremendous opportunities to explore unknown or hazardous areas,
this has had a significant impact on multiple areas such as disaster survey, traffic control, landform
exploration, and industrial risk management, among others. Drones can create huge value at minimal
cost, inspiring researchers to optimize the technology. In recent years, researchers have proposed
many excellent model algorithms. These methods have greatly improved the recognition accuracy of
drones on the original basis, further promoting the development and application scope of the field of
drone image recognition.

The effectiveness of drones has rendered the identification of targets a critical domain in the
realm of computer vision. Target detection has undergone notable advancements recently, mainly
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due to the rise of deep learning methods[3]. The advent of deep learning has significantly enhanced
the overall accuracy of target detection algorithms. Deep neural network methods have increasingly
become the primary approach to tasks such as image classification, target detection, and image
segmentation[4]. Nonetheless, the amalgamation of these methods still poses many challenges.
Firstly, the hardware equipped with UAVs is often resource-constrained, raising an urgent demand
in lightweight deployed models for fast inference and low latency[5]. Secondly, as shown in Figure
1, compared to traditional images, drone aerial images have multitudes of small and complex targets,
as well as complex backgrounds[6] and overlapping occlusions[7], which are caused by aerial
photography angles. The complexity of images, their larger scene, and other characteristics present
major challenges in target detection[8].

Detection methods used in target recognition aim to identify specific objects or features in a
scene. Examples include road vehicle detection for smart transportation, forest fire detection for
smart disaster prevention, and industrial parts defect detection. These tasks are typically performed
in a clear background environment. Since most recognition targets belong to a large category, few
factors affect recognition efficiency. Historically, target detection using deep learning was dominated
by convolutional neural networks (CNNs) like early R-CNNJ[20], AlexNet[21], and VGGJ[22]. These
networks employed CNN for object classification and bounding box prediction. Google later
proposed the Vision Transformer[23], a revolutionary model network that introduced the Self-
Attention mechanism of the Transformer and eliminated the sequential structure of CNN. This
allowed for parallel training and improved the model's ability to extract features by obtaining global
information. However, several experimental studies indicate that the visual Transformer's
performance may not be optimal in various scenarios. Additionally, when the image resolution is
high and contains numerous pixels, the Transformer's calculation based on global self-attention
results in a significant computational burden. To address these issues, Liu et al. proposed the Swin
Transformer[24], which features a hierarchical design and sliding window operation, effectively
resolving the aforementioned problems. The sliding window operation restricts attention calculation
to a window, which introduces the locality of CNN and reduces the amount of calculation. To
enhance the model's accuracy in future research, Mehta et al. proposed MobileViT[25]. This hybrid
architecture of CNN and Transformer provides spatial induction bias through CNN, accelerating the
network's convergence and inference speed. Spatial information can be introduced to eliminate the
influence of additional spatial position offset, thereby improving the simplicity of network migration.
This allows MobileViT to achieve good performance using basic data enhancements while greatly
reducing the number of parameters. Although these methods have made great progress on the
original basis, they cannot directly obtain identification information such as object category and size
through the network model, so they still belong to the two-stage detection method based on region
proposal. Simultaneously, most of these two-stage detection methods demand substantial memory
overhead and computing resources, making them challenging to directly deploy on low-power
graphics processors, such as edge devices. In contrast, there is another one-stage method that directly
processes the input image through a network model to obtain identification information. This type
of method is also the most important in the current field of UAV image recognition. Undoubtedly,
the single-stage recognition method most recognized by researchers in this field is the YOLO series[9-
16].

However, the YOLO series does not perform satisfactorily in recognizing small targets. Unlike
traditional captured images, images captured by drones often contain multiple types of small and
low-pixel targets. Indeed, small object detection poses a significant challenge as smaller objects
inherently have lower resolution and limited contextual information for the model to learn.
Moreover, they often coexist with larger objects in the same image, leading to a feature-learning
process dominated by the larger objects and leaving the smaller ones undetected. Simultaneously,
the visibility of these targets is often easily affected by factors such as pixels, light, and complex
backgrounds due to the problem of aerial photography angle. This can confuse the detection target
and the background in the YOLO series. In target detection tasks, it is common for low-pixel and
small-size targets to have their feature values ignored due to a lack of details. Numerous outstanding
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target detection methods excel in traditional image recognition tasks but often struggle to address
the unique challenges present in the UAV domain.

To address these challenges, researchers have focused on elevating the performance of small
object detectors by improving feature representation and optimizing data augmentation techniques
[17].Despite substantial progress in enhancing object detection through these methods, they still
exhibit certain limitations. Specifically, these approaches reveal insufficient generalization
capabilities, particularly when dealing with small objects in the context of multi-class object detection
[18]. Complex environmental factors can lead to inaccurate detection outcomes, and existing models
may fall short in extracting adequate feature information for small objects to transmit effectively to
the subsequent network. In scenes characterized by complex, blurry, and polluted backgrounds, a
notable amount of information is lost, posing a formidable challenge for detecting these objects.
Additionally, models with high accuracy often come burdened with a large number of computational
parameters, imposing a significant strain on embedded hardware devices. Consequently, the field of
UAV target recognition demands a model capable of extracting features from intricate images with
high accuracy and a reduced parameter volume.

In response to the aforementioned issues, this paper introduces an enhanced SSE-YOLO
algorithm structure based on YOLO v8. The outlined model architecture and the accompanying
experimental results demonstrate its efficacy for detecting complex small targets. This model was
compared against several existing models and exhibited superior performance in the realm of UAV
target recognition. The experimental results indicate that our model achieves higher accuracy with a
smaller number of parameters, underscoring that SSE-YOLO is more suitable for multi-target
recognition tasks in UAV remote sensing images.

The main contributions of this paper can be summarized as follows:

1. Inthe backbone part, we introduce a new Separate Kernel Attention Pyramid Pooling (SKAPP)
as a replacement module for SPPF. In contrast to the original SPPF module, SKAPP incorporates
the concept of Large Separable Kernel Attention (LSKA), leading to a significant improvement
in the efficiency of model feature extraction and fusion while effectively managing the
calculation parameter count. Simultaneously, we use a new convolution SPDConv for low
resolution and small  targets to replace the traditional Conv. This convolution can greatly
improve the accuracy of the model for small target recognition.

2. Four CBS models with a stride and a kernel size of 1 are inserted between the backbone portion
and the neck portion to store and transmit the image feature information of the trunk component.
This effectively remedies the loss of significant feature information observed in the baseline
model.

3. For the feature fusion processing in the neck & head segment, we introduced an Easy
Bidirectional Feature Pyramid Network(E-BIFPN) to replace the Concat module. This module
can adaptively adjust its structure based on the number of input heads, thereby achieving a more
efficient feature fusion operation.

4. Compared with several current advanced deep object detection models, our model stands out
with exceptional performance while effectively managing the calculation parameter count.
Results of the large-weight model experiments demonstrate that SSE-YOLO-L utilizes only 52%
of the parameters of YOLOVS8-L while achieving similar accuracy. The SSE-YOLO low-weight
model(n,s,m) outperforms other models with similar parameter levels in recognition accuracy
and other outcome parameters.
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(c) (d

Figure 1. Sample images taken from drones:(a) People and vehicles on the street;(b) Complex real
estate layout in the old city;(c)Road covered by trees and buildings;(d)low visibility weather.

2. Related Work

The rapid advancement of drone technology has introduced new avenues for image acquisition,
offering enhanced perspectives and dimensional target information from elevated angles. However,
these images come with inherent challenges, including diverse scenes, complex backgrounds, low
visibility, and target overlap. Traditional target detection methods lose their effectiveness in the face
of these challenges, and their application to multi-target recognition tasks in UAV images becomes
exceptionally challenging. Fortunately, the development of large-scale datasets tailored for drone-
captured images has played a crucial role in achieving substantial breakthroughs in object detection
through the application of deep learning-based methods[19].

Researchers in the field have proposed many methods and approaches to address the above
challenges. In this section we will focus on the ideas that YOLOv5 and YOLOVS provide for our work.
Jocher et al.[13] proposed YOLOVS in 2021. Mosaic data enhancement and adaptive anchor frame
calculation were introduced at the input end to improve the network's detection effect on small
targets. At the same time, a focus module was introduced in the backbone part, which improved the
input image processing speed and reduced the amount of model calculations. To improve the feature
fusion capability of the model, the CSP2 structure is used in the neck. The team proposed YOLOv8[16]
in 2023, using the residual idea to introduce the new C2f module to obtain more gradient information
and alleviate the problem of context information loss. To improve the expressiveness of multi-scale
features, FPN is modified and PAN is introduced to aggregate shallow and deep feature maps. The
above two methods provide important basic ideas for densely distributed object detection tasks. Most
of the methods proposed by subsequent researchers are based on these two methods and have been
improved to address problems in different directions, such as overlapping target instances,
insufficient feature extraction capabilities, etc.

Yan et al.[26] enhanced YOLOVS5 by introducing the BottleneckCSP-2 module to replace the
BottleneckCSP module in the backbone and incorporating Squeeze and Excitation (SE) attention into
the architecture. This modification demonstrated excellent performance in addressing the issue of
overlapping target instances. Cao et al.[27] proposed GCL-YOLO, constructing a lightweight
backbone network based on GhostConv and employing the Focal Effective Intersection Loss (Focal-
EIOU) as the positioning loss. This approach resulted in a 76.7% reduction in parameters compared
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to the baseline model. Zhu et al.[28] introduced TPH-YOLOV5, which replaced the original prediction
head with Transformer Prediction Heads (TPH) to leverage the prediction potential of the self-
attention mechanism. Additionally, a convolutional block attention model (CBAM) was integrated to
identify attentional regions in dense object scenes. Compared to the previous state-of-the-art method
DPNet, this approach improved the Average Precision (AP) result by 1.81% and demonstrated
superior detection accuracy for small targets. Wang et al.[29] proposed UAV-YOLOVS, incorporating
the BiFormer attention mechanism to optimize the backbone network, enhancing the model's ability
to extract key features. They also designed a feature processing module named Focal FasterNet block
(FFNB) and introduced two new detection scales based on this module to fuse shallow and deep
feature information efficiently. This method achieved an average accuracy improvement of 7.7%
compared to the baseline model. Wang et al.[30] introduced SMFF-YOLO, which integrated the
ELAN-SW object detection prediction head to enhance the detection accuracy of small objects. The
Adaptive Atrous Space Pyramid Pooling (AASPP) module was also introduced to achieve adaptive
feature fusion capability rapidly.

Many studies have demonstrated that modifying the model's backbone and introducing
attention mechanism modules can enhance the feature extraction capabilities and contribute to
addressing UAV target recognition challenges. These approaches have significantly influenced our
work by providing valuable insights into problem-solving strategies. However, these methods still
face challenges such as high background confusion rates for small targets, substantial computational
parameter requirements, and overall low accuracy. In light of these challenges, we build upon the
foundations laid by previous researchers and propose SSE-YOLO, incorporating two key
enhancements for addressing small target detection with low pixel counts. The first is to strengthen
the feature extraction ability of the model. We introduced SPDConv to replace the backbone Conv to
avoid the problem of fine-grained information loss. At the same time, we canceled the SPPF module
at the bottom of the backbone, introduced the LSKA attention mechanism, and proposed the Separate
Kernel Attention Pyramid Pooling (SKAPP) module. These modifications significantly enhance the
feature extraction capabilities of the model's backbone. Secondly, our attention is directed toward
preserving contextual feature information while reinforcing the model's multidimensional feature
fusion capability. We insert four Contextual Feature Preservation (CSB) modules between the
backbone and the neck of the model to retain essential feature information. The output information
flow from CSB serves as one of the input information flows for the Enhanced Bi-directional Feature
Pyramid Network (E-BiFPN), a structure proposed to replace the Concat module in the neck and
head. This replacement reduces computational parameters and improves the fusion ability of
multidimensional feature information. Through these enhancements, our method successfully
achieves the goal of minimizing parameters while maximizing accuracy. Compared with the baseline
model, our approach demonstrates outstanding performance across parameters such as mAP,
Parameters, Precision, and various small target detection accuracy metrics.

3. Methods

This section details the improvement ideas of the methods and modules proposed in this article.
We will provide a thorough breakdown of the model's structure, revised components, creative
modules, and resolved issues. Firstly, traditional convolutional neural networks encounter
challenges when processing low-pixel images and recognizing small targets. To address this issue,
we replaced the Conv module in the backbone of the baseline model with Space-to-Depth
Convolution (SPDConv). This unique convolution technique eliminates downsampling and pooling.
It is implemented at the base of the backbone. We present Separable Kernel Attention Pyramid
Pooling (SKAPP), which fuses aspects of SPPF (Spatial Pyramid Pooling-Fast) and LSKA (Large
Separable Kernel Attention). It uses a kernel decomposition type that works with depth dilation
convolution. This approach implements a feature fusion layer that requires fewer parameter
calculations, improving efficiency. Secondly, to address the issue of contextual feature information
loss, we developed four CBS modules and integrated them into the backbone and neck of the
network. This resulted in a new network structure that significantly decreased the expense of
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contextual feature information. Lastly, we present the E-BIFPN structure module. Compared to the
Concat module, E-BIFPN employs a weighted bidirectional feature pyramid network structure. This
not only improves the fusion of multi-dimensional feature information in the neck but also decreases
the parameter calculation required. This resolved the problem of parameter explosion during neck
upsampling. The overall architecture of SSE-YOLO is illustrated in Figure 2.

SSE-YOLO is further subdivided into SSE-YOLO (nano), SSE-YOLO (small), SSE-YOLO
(medium), and SSE-YOLO (large) based on the model's parameter size. The corresponding values for
each model on the VisDrone2019 dataset will be presented and analyzed in detail in Section 4.

Backbone

Output

3x C2f > Det@

Input(640x640x3)

E-BiFPN

Base Model I @E
| |
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: BatchNorm : A
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Figure 2. The overall architecture of the proposed SSE-YOLO is only provided for the CBS and C2f
basic modules in the figure, with diagrams of the remaining modules to be added later. The overall
architecture is yet to be fully depicted.

3.1. Backbone Improvements

3.1.1. Space-to-Depth Convolution

Convolutional neural networks (CNNs) have demonstrated remarkable success in various
computer vision tasks. However, their performance significantly diminishes when confronted with
the challenge of detecting low-resolution or small-sized objects. This limitation is attributed to an
inherent flaw in the existing CNN architecture, specifically the utilization of stride convolution or
pooling layers. This architectural choice diminishes the model's feature extraction capability, leading
to challenges in handling fine-grained information loss. To address this issue, we have opted to
integrate SPDConv[18], a novel CNN building block. As shown in Figure 3, this module comprises a
space-to-depth (SPD) layer and a non-strided convolution layer, strategically replacing each strided
convolution layer and pooling layer in the architecture. This innovative approach aims to enhance
the model's ability to extract features, mitigating the difficulties associated with fine-grained
information loss.
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Figure 3. (a)(b)(c) give an example when scale = 2, where we obtain four sub-maps fo0, fi0, fo1, fi1

each of which is of shape G; Cl) and downsamples X by a factor of 2.

The SPD layer downscales the feature map X while preserving all information in the channel
dimension, ensuring no loss of information. Drawing inspiration from image transformation
techniques that re-scale the original image before inputting it into a neural network, this concept is
extended to downsampling feature maps, both internally and across the entire network. Additionally,
a non-spanning convolution operation is introduced after each SPD to adjust the number of channels
through learnable parameters in the newly added convolutional layer, allowing for channel reduction
or expansion. Consider any intermediate feature map X of size S x S x C1, slice out a sequence of sub
feature maps as Equation (1). In summary, SPD transforms feature maps X(S, S, C;) into intermediate

feature maps X'( s S ,saclezCl).

)
scale ” scale

foo = X[0:S:scale, 0:S: scale], f; o = X[1:S:scale, 0: S: scale], ....,
fscate-10 = X[scale — 1:S:scale, 0: S: sacle];
fo1 = X[0:S:5scale, 1:S: scalel,fi4,...
fscate—11 = X[scale — 1:S:scale, 1: S: sacle]; 1

foscale—1 = X[0:S:scale,scale — 1:S: scale], fi scare—1, -+

fscale-1,scate—1 = X[scale — 1:S:scale, sacle — 1: S: scale].

3.1.2. Separate Kernel Attention Pyramid Pooling

Jocher et al.[13] enhanced the Spatial Pyramid Pooling-Fast (SPPF) module in the benchmark
model, building upon the structure of the Spatial Pyramid Pooling (SPP) module. This modified
module incorporates three consecutive pooling layers, combining the output from each layer to
ensure multi-scale fusion. Simultaneously, it reduces computational complexity and significantly
improves speed compared to SPP, to achieve an adaptive size output. However, our investigation
revealed that this structure struggles to integrate small and fine-grained feature information
effectively. Despite reducing parameters through continuous pooling operations, it tends to overlook
small and fine-grained information, deviating from our research goals. Consequently, we abandoned
the original SPPF structure and proposed the SKAPP structure as a replacement, whose structure is
shown in Figure 4. Compared with the original structure, our structure can greatly enhance the
processing capability of small and fine-grained feature information, and can well integrate multi-
dimensional feature information after downsampling by SPDConv.
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Figure 4. Overall structure of the SKAPP module. Notice that ®represents Hadamard product, k

represents the maximum receptive field, and d represents the dilation rate.

We utilize multiple parallel atrous convolutional layers with varying sampling rates. The
features extracted for each sampling rate undergo further processing in separate branches before
being fused to generate the final result. This module constructs convolution kernels with different
receptive fields by employing various hole rates to acquire multi-scale object information.
Additionally, we integrate the pooling layer, convolution layer, and upsampling layer into a global
receptive field. Enlarging the global receptive field helps the module avoid information loss and
capture broader contextual information, including content in the image far away from the target area.
This capability is crucial for understanding the structure of the entire image. Following these
operations, we pass the fused feature information to the LSKA block as an input stream, referring to
the Large Separable Kernel Attention (LSKA) module proposed by Lau et al.[32]. This block module
utilizes a residual structure composed of four Depthwise Separable Convolution blocks and a
Pointwise Convolution block with a convolution kernel size of 1. In the depth convolution stage, a
separate convolution operation is performed on each channel of the input. If the input has C channels,
there will be C convolution kernels, each responsible for processing information from one input
channel. This step employs atrous convolution (also known as dilated convolution), enabling the
convolution kernel to share parameters between input channels and thereby reducing the number of
parameters. In the point-wise convolution stage, a 1x1 convolution kernel is used to linearly combine
the output channels of the depth convolution. This step facilitates the interaction and combination
between channels, integrating independently processed channel information to form the final output
feature map. By processing spatial and channel information separately, depthwise separable
convolution reduces computation, particularly in resource-limited scenarios like mobile devices. The
decomposition of depth-wise convolution and point-wise convolution results in fewer parameters
compared to standard convolution, reducing the model's complexity. This convolutional structure is
well-suited for lightweight model design, especially in environments with limited computing and
memory resources, such as drone-embedded devices.

The LSKA output is shown in Equation 2-5, and we will explain in detail all the parameters in

the formula as well as the calculation symbols. * and ® stand for convolution and Hadamard
product respectively:


https://doi.org/10.20944/preprints202401.1108.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 January 2024 doi:10.20944/preprints202401.1108.v1

X6 = Z W(Czd—1)><1 * <Z W1C><(2d—1) * FC) 2)
HwW HW
C _ C C C
= () ®

AC =Wy, * Z¢ 4)

TC = AC®FC (5)

where Z¢ is the output of the depth convolution obtained by convolving a kernel W of size k x k with
the input feature map F. Note that each channel C inF is convolved with the corresponding channel
in kernel W. The output T¢ of LSKA is the Hadamard product of the attention map A® and the
input feature map F€.

3.2. Neck and Head Improvements

To enhance multi-dimensional feature fusion during the upsampling process, we opted to
eliminate the Concat module in the neck and head, introducing E-BiFPN as its replacement. This
improvement is derived from the BiFPN concept initially proposed by Tan et al.[20]. BiFPN
incorporates learnable weights to discern the importance of different input features. Structurally, it
first eliminates nodes with only one input. Secondly, if the original input and output nodes are at the
same level, an additional edge is added between them to encompass more features without incurring
additional costs. Finally, each bidirectional path (top-down + down-top) is treated as a feature
network layer, and this process is iterated multiple times to facilitate higher-level feature fusion.

(a) (b)

Figure 5. There are two structures of E-BIPFN in the model. (a)Two input heads; (b)Three input heads.
The dotted line indicates a repeat block.

In the feature fusion process, re-sizing is necessary due to different resolutions. However, since
different feature input resolutions vary, the output's contribution to the final feature network should
also differ. Consequently, the network needs to learn these weights. We proposed three weighting
schemes, as illustrated in Equations 6-8, but we chose to adopt the weighting method from fast
normalized feature fusion:

On = Ziwili (6)

Os = Zize? w; (7)

O—Z Wi
E i€+Z;lel 8)

where equation (6) represents a generally weighted feature fusion but without constraints on wi,
it can lead to convergence difficulties, which do not align with our requirements. Equation (7)
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represents feature fusion using Softmax. Although it achieves convergence, the use of numerous
exponential operations makes it inefficient and does not meet our requirements. Equation (8)
represents fast normalized feature fusion, a weighting method that employs ReLU to constrain w;
and sets e= 10™* to ensure data stability and avoid Softmax operations. In summary, our E-BiFPN
forms the final weighted bidirectional feature pyramid network based on bidirectional cross-scale
connections and fast normalized feature fusion.

3.3. One-way Feature Transfer Pyramid

Different PAN[34] network structure than the baseline model, we implement a novel structure
known as the One-way Feature Transfer Pyramid (OFTP), as shown in Figure 6. Between the
backbone and the neck, we introduce four CBS modules with a step size and convolution kernel size
of 1 as containers to store backbone feature information. Utilizing the concept of path aggregation,
we aggregate shallow feature maps (with low resolution but weak semantic information) and deep
feature maps (with high resolution but rich semantic information). Feature information is transferred
along specific paths, allowing the strong localization features of the lower layer to be passed upward.
These operations further enhance the expressive capabilities of multi-scale features. Building upon
this, we use these four containers as the new backbone feature information input stream for the
subsequent network, thereby improving the performance of the OFTP structure in detecting low-
pixel small targets. However, this structure undoubtedly imposes an additional computational
burden and complexity on subsequent networks in terms of multi-dimensional feature processing.
Therefore, we pass these data streams to the E-BiFPN module, which replaces the Concat module,
cleverly addressing the requirements for multi-dimensional feature fusion and reducing
computational load.

CBS

U=Upsample

Figure 6. Four CBS modules are inserted between the backbone and neck to store feature information
from top to bottom.

4. Experiments and Results

This section will provide an overview of the experimental dataset, the experimental details ,and
the experimental evaluation metrics adopted in turn. We will provide a comprehensive analysis and
summary of the experimental results, and present the complete and real experimental data in graphs
to prove the superiority of the performance of the proposed model. First, the experimental dataset
used is presented in detail.
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4.1. Datasets and Experimental Environment

Given the markedly distinct characteristics of UAV aerial images compared to those captured
by ground personnel, UAV image recognition tasks present a notably greater challenge than
traditional image recognition. Standard image sets, such as MS COCO[35] and PASCALVOC[36],
may not as suitable foundations for this article. Consequently, the VisDrone2019 dataset collected
and annotated by the AISKYEYE team at Tianjin University's Machine Learning Data Mining
Laboratory[37] has been adopted for this study. The dataset comprises 6471 images distributed across
three categories: training set, verification set, and test set. The images capture different scenes
consisting of pedestrians, motorcycles, and various models of cars, among ten other common object
categories. Acknowledged as a benchmark in the international drone vision field, this dataset holds
authoritative status. The images exhibit extensive diversity, encompassing various settings like
streets, roads, residential areas, docks, and similar backgrounds. The VisDrone2019 dataset
encompasses a variety of light conditions such as excessive light, sufficient light, insufficient light,
cloudy and night. Furthermore, the dataset features drone images with complex backgrounds, both
large and small scenes, and various intricate elements. The rich diversity of these features
underscores the necessity for a model with robust generalization and feature extraction capabilities.

Our baseline model is YOLOVS, version Ultralytics 8.0.225. In terms of hardware and software,
we used an Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz, 16 cores, and 24 threads, a main
frequency of 3.19 GHz, 32 GB running memory, graphics processor GeForce RTX 3090, and 24 GB
video memory; the deep learning model framework used Python 3.8. Pytorch2.0.0 and CUDA 11.8.

To ensure the fairness of the comparison and ablation experiments, identical hyper-parameters
have been employed in both the training and testing phases across all experiments. The crucial hyper-
parameter configurations during the training process are detailed in Table 1. Notably, Mosaic,
Translation, and Scale are employed as data enhancement methods in image processing. Maintaining
uniformity in hyperparameter settings is critical to preserving the integrity of the comparison and
ensuring accurate evaluation in ablation experiments.

Table 1. Training hyper-parameter setting table.

Hyper-parameters Setup
Epochs 100
Batch Size 16
Input Size 640
Optimizer SGD
NMS IoU 0.7
Initial Learning Rate 1x107?
Final Learning Rate 1x107*
Weight-Decay 5x107*
Workers 8
Mosaic 1.0
Translation 0.1
Scale 0.5
Momentum 0.937
Close Mosaic 10
Warmup Epochs 2

4.2. Experiment Metrics

In this paper, we will employ precision (P) evaluation metric with an IoU threshold of 0.7 along
with average accuracy mAP50 and mAP90 with an IoU threshold of 0.7 to assess the accuracy
performance of our proposed method for identification purposes. Additionally, to assess the model's
speed and computing performance, we will utilize Frames Per Second (FPS) to measure the number
of frames processed per second, Giga Floating Point Operations Per Second (GFLOPs) to measure the
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billions of executed floating-point operations per second and the parameter size (M) of the model,
which refers to the size of the parameters in millions of parameters.

Precision (P) assesses the overall performance strength of the model by measuring the
proportion of correctly predicted targets among all predicted targets. It is primarily computed using
TP and FP, whereby TP denotes the accurately predicted target and FP denotes the inaccurately
predicted target. The Equation (9) describes the specific calculation.

p= TP
TP +FP
Recall(R) is the ratio of correctly identified targets to all targets. Its computation is similar to that
of precision and can be determined using the specific formula depicted in Equation (10) where FN
stands for targets that exist within the dataset but have not been detected.
TP
~ TP +FN

©)

R (10)

Average precision (AP) is the region encapsulated by the curve generated by precision and recall.
A higher value of AP indicates a larger area. Equation (11) depicts its methodology. We utilize two
distinct kinds of average accuracy metrics: mAP0.5 and mAP0.95. Here, 0.5 and 0.95 represent the
union size between predicted and annotated bounding boxes. For bounding box predictions to be
considered accurate, IoU (Intersection over Union) rates must be high. At 0.50 or 0.95, this technique
can more comprehensively evaluate the accuracy performance of the model.

AP=J- p(r)dr (11)
0

The mean precision (mAP) indicates the average accuracy across all image sample types,
calculated using Equation (12). We have adopted two varying average accuracy metrics: mAP0.5 and
mAP0.95.

n
1
mAP = ;Z AP, (12)
i=1

4.3. Ablation Experiment

To assess the impact of the added and modified modules on the baseline model's performance,
we will disassemble the structure of each module and conduct comprehensive ablation experiments
for evaluation and comparison. It is worth noting that YOLOvS8 and the improved model in this table
default to nano. For convenience, we will no longer use YOLOv8-n and SSE-YOLO-n in the table and
subsequent statements, opting to use YOLOv8 and SSE-YOLO directly. E-YOLO uses only the E-
BIFPN structure to modify the model, while Sp-YOLO replaces Conv with SPDConv. By contrast,
SS-YOLO employs both SPDConv and SKAPP for modification. The SpE-YOLO model is adjusted
using SPDConv and E-BIFPN, while SgE-YOLO uses the modified SKAPP and E-BIFPN frameworks.
In Sg-YOLO, only the SKAPP framework is used. No training files were used to ensure the
experiment's fairness. All hyper-parameters implemented in the experiment are consistent, and
specific parameters are outlined in Table 1. The final results of the experimental data are shown in
Table 2.

Table 2 presents the experimental evaluation outcomes of SSE-YOLO-n and YOLOvS8-n on the
VisDrone2019 dataset. This represents an enormous enhancement. The top-performing results in
each indicator have been highlighted. Clearly, SSE-YOLO-n demonstrated superior performance in
accuracy-related evaluations, including mAP and Precision. Our model improved mAP, 5 by 10.18%
and mAP, g5 by 7.25% from the baseline model, and its Precision also increased by a significant 9.43%.
SSE-YOLO-n is not the most optimal choice in terms of FPS and Parameters evaluation metrics.
Specifically, its weak real-time processing capability when evaluating FPS is a drawback. In addition,
SSE-YOLO-n has a 12% increase in parameters compared to baseline model. However, it is worth
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noting that both models still maintain a similar number of parameters, so this does not necessarily
classify as a flaw.

Table 2. Ablation experimental data shows that each result obtained is optimal.

Model mAPy5(%) mAPy95(%)  Precision(%) FPS GFLOPs Parameters(M)

YOLOv8-n[16] 30.62 17.25 41.07 113.7 8.2 3.15
E-YOLO-n 32.0 18.3 42.4 153.3 7.2 1.99
Sp-YOLO-n 33.1 19.3 42.7 200.3 10.9 4.18
Sk-YOLO-n 34.0 19.9 46.1 192.2 8.4 3.28
S$S-YOLO-n 34.8 20.3 47.7 140.4 11.2 2.65
SpE-YOLO-n 31.6 18.1 43.1 162.0 10.1 3.16
SkE-YOLO-n 31.9 184 43.5 159.2 7.3 2.26
SSE-YOLO-n  40.8(110.18%) 24.5(17.25%)  50.5(19.43%) 135.0 10.9 3.55

4.4. Performance Comparison with State-of-the-Art Methods and Baseline Methods

In order to comprehensively evaluate the performance of SSE-YOLO, its experimental results
were comprehensively compared with those of 10 other state-of-the-art methods on the VisDrone2019
dataset. The experimental results indicate that the SSE-YOLO series is an excellent model for multi-
target detection in UAV images due to its small parameters and high accuracy.

As shown in Table 3, our SSE-YOLO achieved 53.2% m APys and 34.3% m AP;o5 on
VisDrone2019-DET-test-dev, these two evaluation index values are the highest among all compared
models. Based on the indicators, TPH-YOLOv5++ has achieved excellent experimental results. Its
mAPy5 and mAP,g; are only 0.7% and 0.8% lower than our model. However, our method
outperforms TPH-YOLOv5++ in terms of GFLOPs and Parameters. SSE-YOLO (large) has fewer
parameters than TPH-YOLOv5++ by 44.5% and also reduces GFLOPs by 25.1%.

However, it is worth noting that SSE-YOLO's performance in Frames Per Second (FPS) is not
optimal, with SSE-YOLO (large) having the lowest FPS. However, it is worth noting that SSE-YOLO's
performance in Frames Per Second (FPS) is not optimal, with SSE-YOLO (large) having the lowest
FPS. It is important to compare FPS with other models. SSE-YOLO (large) is more accurate than
YOLOV8-s and YOLOvS-1 in the 40~60 range. Based on the FPS comparison, YOLOv5-n performs the
best. SSE-YOLO (nano) is 25.2 lower than YOLOvV5-n in this indicator data. However, our model
outperforms YOLOv5-n in terms of m and m, with 13.8% and 12% higher scores respectively. This
represents a significant improvement.

In conclusion, our model considers both small parameter size and high accuracy, albeit at the
expense of a small reduction in FPS. This fulfills the two most crucial requirements of the UAV-
embedded platform. Consequently, our model is better suited for multi-target recognition tasks in
high-precision UAV images, and it presents a novel solution in this field.

Table 3. Comparison of experimental results with ten other state-of-the-art methods on
VisDrone2019-DET-test-dev. The best results are shown in bold.

Model mAP 5(%) mAPj95(%) FLOPs(G) Parameters(M) FPS
YOLOvV5-n 32.4 18.9 7.2 2.65 188.1
YOLOvV5-s 34.3 20.1 24.1 9.15 154.2

YOLOV7-tiny[15] 26.6 17.8 - 6.02 -
YOLOvV8-s[16] 30.9 17.25 28.7 11.1 58.9
YOLOVS8-1[16] 35.9 21.2 165.7 76.7 50.9

Faster R-CNNJ38] 31.0 17.2 118.8 41.2 -
RetinaNet [39] 443 22.7 35.7 36.4 -

Drone-

YOLO(large)[40] 40.7 23.8 - 76.2 -

Modified-YOLOvS8[41] 33.7 - - 9.66 143

doi:10.20944/preprints202401.1108.v1
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TPH-YOLOv5++[42] 52.5 33.5 207.0 99.1 -
SSE-YOLO(nano) 46.2 30.9 10.2 3.44 162.9
SSE-YOLO(small) 48.7 32.8 37.2 13.1 128.9
SSE-YOLO(medium) 50.2 34.0 96.0 27.5 69.1
SSE-YOLO(large) 53.2 34.3 193.2 44.1 44.0

The Table 4 presents the evaluation index data of the proposed method and 10 comparative
models, which were experimentally obtained on the VisDrone2019-val dataset. As GFLOPs are
missing for most of the compared models in this table, we have excluded this evaluation metric from
the table. It is evident that SSE-YOLO (large) achieved the best results in both mAPy 5 and mAP, g5. In
comparison to the benchmark model YOLOvVS-1, mAP, 5 increased by 13.9%, mAP, o5 increased by
14.2%, and the number of parameters is only 57.5% of YOLOv8-l. Meanwhile, although YOLOv5-n
has the fewest parameters, SSE-YOLO (nano) has achieved a 4.9% increase in mAP,5 and a 3.4%
increase in mAP, g5 compared to YOLOvVS5, with only 0.79M more parameters than YOLOv5-n.

Table 4. Comparison of experimental results with other advanced methods on the VisDrone2019-
DET-val dataset. The best results are highlighted in bold.

Model mAP 5(%) mAP 95(%) Parameters(M) FPS
YOLOv5-n 46.2 323 2.65 188.1
YOLOv5-s 494 35.1 9.12 154.2

YOLOv7-1[15] 471 26.4 714 -
YOLOvS-1[16] 43.7 26.9 76.7 50.9
Drone-YOLO (large)[40] 51.3 33.2 76.2 -
Modified-YOLOVS8[41] 422 - 9.66 143
ACAM-YOLO[43] 495 29.6 15.9 -
MS-YOLOV7[44] 53.1 31.3 79.7 -
EdgeYOLO[45] 44.8 26.4 40.5 34
SSE-YOLO(nano) 50.1 35.7 3.44 162.9
SSE-YOLO(small) 53.5 38.1 13.1 128.9
SSE-YOLO(medium) 56.7 40.8 27.5 69.1
SSE-YOLO(large) 57.6 41.1 441 44.0

5. Visualization and discussion of experimental data

Deep learning is often referred to as a 'black box'. Despite the widespread use of deep learning
models in various engineering fields, their lack of interpret-ability has hindered their progress in
some high-tech fields[40]. Therefore, interpret-ability of deep learning has become a mainstream
research direction in contemporary artificial intelligence. Drones play a crucial role in various
industries, including smart agriculture and the military, making their interpret-ability a key factor in
building their models. This section will use visualization methods to provide a clear explanation and
summary of the experimental data. Firstly, we will select the experimental results obtained by several
typical models on the test and verification sets as the data for the visual chart, as shown in Figure 7.

The two visualization tables in Figure 7 clearly demonstrate that our method achieves
remarkably high accuracy with a minimal number of parameters. Notably, SSE-YOLO-n boasts the
lowest parameter count while outperforming most comparison models in both mAPs.
Simultaneously, SSE-YOLO-1 achieves accuracy comparable to TPH-YOLOv5++ and MS-YOLOv?,
yet with significantly fewer parameters. This underscores our model's excellence in balancing
accuracy and parameter control, yielding outstanding results. Nevertheless, these two visualization
diagrams fall short of fully showcasing the superiority of our method, particularly in terms of
recognition accuracy for small targets. To provide a more comprehensive demonstration, we will
compare the confusion matrix diagrams of several experimental models with our method. This aims

doi:10.20944/preprints202401.1108.v1
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to offer a more intuitive representation of the enhancement in small target recognition accuracy
achieved by our approach.

Comparison of VisDrone2019-test experimental results

B mAP50 mAP95 Parameters

mAP50 mAP95 Parameters
SSE-YOLO-n 309 3.44
SSE-YOLO-s 32.8 131
SSE-YOLO-m 34 275
SSE-YOLO- 343 441
YOLOV5n 272 25
YOLOVSs 29.7 9.1
Faster R-CNN 172 42
RetinaNet 227 36.4
YOLOV7-tiny 17.8 6.02
YOLOVS-| 212 76.7
Drone-YOLO(large) 238 76.2
TPH-YOLOV5++ 335 99.1

(@)

Comparison of VisDrone2019-val experimental results

mAPS50 mAP95 arameters
[E] p

mAP50 mAP95 parameters
SSE-YOLO-n 357 3.44
SSE-YOLO-s E 13.1
SSE-YOLO-m 408 27.5
SSE-YOLO- 411 441
YOLOV5-n 323 25
YOLOVS5-s (494 | 35.1 9.12
ACAM-YOLO 29.6 15.9
YOLOV7-l 26.4 71.4
YOLOVS-I 26.9 76.7
EdgeYOLO 26.4 405
Drone-YOLO (large) 332 76.2
MS-YOLOV7 313 79.7

(b)

Figure 7. Data visualization chart of experimental results:(a)Experimental results of the example
model on VisDrone2019-test;(b)Experimental results of the example model in VisDrone2019-val.

The confusion matrix derived from the experimental results reveals a significant number of
omissions for all three models, suggesting confusion between the recognition target and the
background category. To better illustrate the enhancement in our model's accuracy for small targets,
we will specifically select several representative small targets as parameters for comparison. The
comparative results will be visually presented to showcase the performance of our model. Please
refer to Figure 8 for the results. In particular, these lightweight models have demonstrated
exceptional results in recognizing large targets, with car types serving as a notable reference. It is not
difficult to see that all four models have high recognition accuracy for this type of recognition.
Therefore, the 6% improvement of our model over YOLOv8-s may not be deemed a particularly
significant enhancement in this context. However, our model has achieved a great improvement in
recognition accuracy for small targets. Given the inherently lower accuracy, relying solely on
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percentage improvement is inappropriate, so we will use the SSE-YOLO-s divided by the YOLOv8-s
method to better show the extent of the improvement. Our model achieved 154.5%, 200%, 110.7%,
121.4%, and 131.6% of the accuracy of the benchmark model in the categories of person, bicycle, car,
tricycle, awning-tricycle, and motor vehicle, respectively. The experimental results underscore the
substantial progress our model has made in the task of detecting small target types.

Small target recognition accuracy in lightweight parametric
model confusion matrix

We selected several representative models and small target types for comparison, the parameter
result unit is %.

people [ bicycle car [ tricycle [ awning-tricycle [JJj motor

. . awning-
people bicycle car tricycle tricycle motor
SSE-YOLO-s 34 l 20 81 I 17
voaresvorovs |25 s 8 B |-

YOLOv8-s 22 I 10 75 I 14
YOLOvS-s 22 I 12 /) I 11

Figure 8. Confusion matrix plot of selected three models. (a)YOLOv5-s confusion matrix diagram.
(b)Li et al. confusion matrix diagram([41]. (c)Confusion matrix diagram of the SSE-YOLO-s in this

paper.
6. Conclusions

This paper proposes SSE-YOLO, which aims to address the shortcomings of UAV target
recognition by combining low parameter volume and high accuracy to identify small targets and
complex backgrounds. Utilizing deep learning techniques, this model adeptly mitigates the adverse
effects of diverse factors, encompassing background complexities, visibility issues, and scale
variations, in UAV detection tasks. Firstly, we introduced SPDConv, a novel convolutional method
designed for low resolution, replacing the standard Conv in the baseline model's backbone. This
modification addresses the loss of fine-grained information in the original module and enhances the
accuracy of extracting tiny targets, effectively mitigating these inherent flaws. In a second
improvement, we incorporated the concept of LSKA at the bottom of the backbone section and
introduced a novel structure named SKAPP to substitute the SPPF in the baseline model. This
innovation achieves a more sophisticated feature fusion approach by thoroughly considering and
reusing multi-scale features. It significantly enhances the feature fusion capabilities of the backbone
and contributes to the advancement of multi-dimensional feature extraction in the neck and head
segments. As a third enhancement, we addressed the issue of the baseline model's tendency to lose
contextual feature information. To overcome this, we incorporated four CBS modules with a
convolution kernel size step number of 1 in both the backbone and neck sections to retain crucial
feature information. This preserved information is subsequently forwarded to the next network for
processing. As a final improvement, we introduced the E-BIFPN module, inspired by the BIFPN
concept, to replace the Concat module in the Neck & Head segment. This enhancement employs a
deep network capable of adapting to various input heads, enabling more effective multi-dimensional
feature fusion. It is worth noting that the above four improvements have reduced the number of
calculation parameters while solving different problems. Therefore, our model can have high
accuracy with a small number of parameters.
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In experiments on the VisDrone2019 dataset, our method demonstrated superior performance.
In both the test and validation datasets, SSE-YOLO (large) outperformed other comparison models
in mAPy5 and mAP, g5 metrics, with its parameter size being only 57.5% of the benchmark model
YOLOVS-1. The smaller model, SSE-YOLO (nano), with a parameter size of only 3.44M, outperformed
RetinaNet (36.4M parameters) and ACAM-YOLO (15.9M parameters) in mAP, 5. This signifies the
remarkable success and applicability of our model, making a significant contribution to the
advancement of UAV multi-target recognition.

While our method excels in high-precision identification and parameter control, it currently falls
short in terms of real-time image processing capability. Future research will focus on enhancing the
model's real-time processing speed without compromising accuracy. To address the challenge of
weak real-time processing capabilities, our future research will delve into PP-YOLOE[46]. We aim to
explore this model's fundamental ideas and methods to enhance computational speed and integrate
them into our model. Additionally, we plan to experiment with incorporating BiFormer[47] dynamic
sparse attention mechanism in our future work to reduce computational and memory loads further.
We aim to achieve a faster and more precise real-time target recognition algorithm. Additionally, we
plan to explore image enhancement and lightweight strategies to bolster multi-dimensional feature
extraction capabilities. To broaden the application scope, we are working on labeling ground cracks,
fires, and other types of natural geographical disasters in custom datasets to further train our method.
Our aspiration is for this approach to find application in a wider range of areas, providing increased
value to the field.
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