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Abstract: Despite UAV multi-target detection exhibits considerable developmental potential worldwide, it 

suffers distinct challenges compared with traditional tasks in this field. These challenges include insufficient 

feature extraction capabilities for small targets, limited capabilities for multi-dimensional feature fusion, as 

well as constraints on hardware computation parameters. Especially in mission scenarios such as disaster 

detection, these challenges will be further amplified. Consequently, this paper introduces SSE-YOLO, an 

innovative YOLO framework algorithm specially designed to address these challenges. To enhance the model's 

feature extraction capability, we employ the SPDConv module to replace the original Conv in the backbone 

section, utilizing depth-separable convolution instead of traditional convolution pooling. Concurrently, we 

eliminate the SPPF module at the bottom and address a new Separate Kernel Attention Pyramid Pooling 

(SKAPP) module, substantially enhancing the feature fusion capability at the model's core. Moreover, to 

address the challenge of multi-dimensional feature fusion, we replace the Concat module of the neck and head 

with E-BiFPN, transmitting feature information from the backbone to the lower network through four CBS 

blocks, which effectively resolves the issue of lost contextual information in the model. Meanwhile, SSE-YOLO 

undergoes ablation experiments on the VisDrone2019 dataset to evaluate its effectiveness against alternative 

methods, and experimental results illustrate the model's exceptional precision in detecting UAV targets. In 

comparison to models with comparable experimental accuracy, SSE-YOLO requires remarkably fewer 

parameters. On the VisDrone2019-DET-test-dev dataset, SSE-YOLO enhances mAP by 17.3%, with a 42.5% 

reduction in the parameter amounts. Therefore, the proposed method effectively tackles the challenge of 

reconciling low parameters and high accuracy, presenting a novel pathway for deep learning-based UAV 

multi-target detection. 

Keywords: UAV; small target detection; YOLOv8; feature extraction; deep learning 

 

1. Introduction 

The integration of unmanned aerial vehicle (UAV) remote sensing images and deep learning 

detection technology has emerged as a popular research area [1,2]. Initially, drones were solely 

utilized by the military; however, with the rapid technological advancements over the recent years, 

their applications have expanded to all sectors of society. Due to their small size, flexible movement, 

and minimal restriction by geography, drones have the potential to greatly expand the scope of 

human monitoring and provide tremendous opportunities to explore unknown or hazardous areas, 

this has had a significant impact on multiple areas such as disaster survey, traffic control, landform 

exploration, and industrial risk management, among others. Drones can create huge value at minimal 

cost, inspiring researchers to optimize the technology. In recent years, researchers have proposed 

many excellent model algorithms. These methods have greatly improved the recognition accuracy of 

drones on the original basis, further promoting the development and application scope of the field of 

drone image recognition. 

The effectiveness of drones has rendered the identification of targets a critical domain in the 

realm of computer vision. Target detection has undergone notable advancements recently, mainly 
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due to the rise of deep learning methods[3]. The advent of deep learning has significantly enhanced 

the overall accuracy of target detection algorithms. Deep neural network methods have increasingly 

become the primary approach to tasks such as image classification, target detection, and image 

segmentation[4]. Nonetheless, the amalgamation of these methods still poses many challenges. 

Firstly, the hardware equipped with UAVs is often resource-constrained, raising an urgent demand 

in lightweight deployed models for fast inference and low latency[5]. Secondly, as shown in Figure 

1, compared to traditional images, drone aerial images have multitudes of small and complex targets, 

as well as complex backgrounds[6] and overlapping occlusions[7], which are caused by aerial 

photography angles. The complexity of images, their larger scene, and other characteristics present 

major challenges in target detection[8].  

Detection methods used in target recognition aim to identify specific objects or features in a 

scene. Examples include road vehicle detection for smart transportation, forest fire detection for 

smart disaster prevention, and industrial parts defect detection. These tasks are typically performed 

in a clear background environment. Since most recognition targets belong to a large category, few 

factors affect recognition efficiency. Historically, target detection using deep learning was dominated 

by convolutional neural networks (CNNs) like early R-CNN[20], AlexNet[21], and VGG[22]. These 

networks employed CNN for object classification and bounding box prediction. Google later 

proposed the Vision Transformer[23], a revolutionary model network that introduced the Self-

Attention mechanism of the Transformer and eliminated the sequential structure of CNN. This 

allowed for parallel training and improved the model's ability to extract features by obtaining global 

information. However, several experimental studies indicate that the visual Transformer's 

performance may not be optimal in various scenarios. Additionally, when the image resolution is 

high and contains numerous pixels, the Transformer's calculation based on global self-attention 

results in a significant computational burden. To address these issues, Liu et al. proposed the Swin 

Transformer[24], which features a hierarchical design and sliding window operation, effectively 

resolving the aforementioned problems. The sliding window operation restricts attention calculation 

to a window, which introduces the locality of CNN and reduces the amount of calculation. To 

enhance the model's accuracy in future research, Mehta et al. proposed MobileViT[25]. This hybrid 

architecture of CNN and Transformer provides spatial induction bias through CNN, accelerating the 

network's convergence and inference speed. Spatial information can be introduced to eliminate the 

influence of additional spatial position offset, thereby improving the simplicity of network migration. 

This allows MobileViT to achieve good performance using basic data enhancements while greatly 

reducing the number of parameters. Although these methods have made great progress on the 

original basis, they cannot directly obtain identification information such as object category and size 

through the network model, so they still belong to the two-stage detection method based on region 

proposal. Simultaneously, most of these two-stage detection methods demand substantial memory 

overhead and computing resources, making them challenging to directly deploy on low-power 

graphics processors, such as edge devices. In contrast, there is another one-stage method that directly 

processes the input image through a network model to obtain identification information. This type 

of method is also the most important in the current field of UAV image recognition. Undoubtedly, 

the single-stage recognition method most recognized by researchers in this field is the YOLO series[9–
16].  

However, the YOLO series does not perform satisfactorily in recognizing small targets. Unlike 

traditional captured images, images captured by drones often contain multiple types of small and 

low-pixel targets. Indeed, small object detection poses a significant challenge as smaller objects 

inherently have lower resolution and limited contextual information for the model to learn. 

Moreover, they often coexist with larger objects in the same image, leading to a feature-learning 

process dominated by the larger objects and leaving the smaller ones undetected. Simultaneously, 

the visibility of these targets is often easily affected by factors such as pixels, light, and complex 

backgrounds due to the problem of aerial photography angle. This can confuse the detection target 

and the background in the YOLO series. In target detection tasks, it is common for low-pixel and 

small-size targets to have their feature values ignored due to a lack of details. Numerous outstanding 
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target detection methods excel in traditional image recognition tasks but often struggle to address 

the unique challenges present in the UAV domain. 

To address these challenges, researchers have focused on elevating the performance of small 

object detectors by improving feature representation and optimizing data augmentation techniques 

[17].Despite substantial progress in enhancing object detection through these methods, they still 

exhibit certain limitations. Specifically, these approaches reveal insufficient generalization 

capabilities, particularly when dealing with small objects in the context of multi-class object detection 

[18]. Complex environmental factors can lead to inaccurate detection outcomes, and existing models 

may fall short in extracting adequate feature information for small objects to transmit effectively to 

the subsequent network. In scenes characterized by complex, blurry, and polluted backgrounds, a 

notable amount of information is lost, posing a formidable challenge for detecting these objects. 

Additionally, models with high accuracy often come burdened with a large number of computational 

parameters, imposing a significant strain on embedded hardware devices. Consequently, the field of 

UAV target recognition demands a model capable of extracting features from intricate images with 

high accuracy and a reduced parameter volume. 

In response to the aforementioned issues, this paper introduces an enhanced SSE-YOLO 

algorithm structure based on YOLO v8. The outlined model architecture and the accompanying 

experimental results demonstrate its efficacy for detecting complex small targets. This model was 

compared against several existing models and exhibited superior performance in the realm of UAV 

target recognition. The experimental results indicate that our model achieves higher accuracy with a 

smaller number of parameters, underscoring that SSE-YOLO is more suitable for multi-target 

recognition tasks in UAV remote sensing images.  

The main contributions of this paper can be summarized as follows: 

1. In the backbone part, we introduce a new Separate Kernel Attention Pyramid Pooling (SKAPP) 

as a replacement module for SPPF. In contrast to the original SPPF module, SKAPP incorporates 

the concept of Large Separable Kernel Attention (LSKA), leading to a significant improvement 

in the efficiency of model feature extraction and fusion while effectively managing the 

calculation parameter count. Simultaneously, we use a new convolution SPDConv for low 

resolution and small  targets to replace the traditional Conv. This convolution can greatly 

improve the  accuracy of the model for small target recognition. 

2. Four CBS models with a stride and a kernel size of 1 are inserted between the backbone portion 

and the neck portion to store and transmit the image feature information of the trunk component. 

This effectively remedies the loss of significant feature information observed in the baseline 

model. 

3. For the feature fusion processing in the neck & head segment, we introduced an Easy 

Bidirectional Feature Pyramid Network(E-BIFPN) to replace the Concat module. This module 

can adaptively adjust its structure based on the number of input heads, thereby achieving a more 

efficient feature fusion operation.  

4. Compared with several current advanced deep object detection models, our model stands out 

with exceptional performance while effectively managing the calculation parameter count. 

Results of the large-weight model experiments demonstrate that SSE-YOLO-L utilizes only 52% 

of the parameters of YOLOV8-L while achieving similar accuracy. The SSE-YOLO low-weight 

model(n,s,m) outperforms other models with similar parameter levels in recognition accuracy 

and other outcome parameters. 
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(a) (b) 

  

(c) (d) 

Figure 1. Sample images taken from drones:(a) People and vehicles on the street;(b) Complex real 

estate layout in the old city;(c)Road covered by trees and buildings;(d)low visibility weather. 

2. Related Work 

The rapid advancement of drone technology has introduced new avenues for image acquisition, 

offering enhanced perspectives and dimensional target information from elevated angles. However, 

these images come with inherent challenges, including diverse scenes, complex backgrounds, low 

visibility, and target overlap. Traditional target detection methods lose their effectiveness in the face 

of these challenges, and their application to multi-target recognition tasks in UAV images becomes 

exceptionally challenging. Fortunately, the development of large-scale datasets tailored for drone-

captured images has played a crucial role in achieving substantial breakthroughs in object detection 

through the application of deep learning-based methods[19].  

Researchers in the field have proposed many methods and approaches to address the above 

challenges. In this section we will focus on the ideas that YOLOv5 and YOLOv8 provide for our work. 

Jocher et al.[13] proposed YOLOv5 in 2021. Mosaic data enhancement and adaptive anchor frame 

calculation were introduced at the input end to improve the network's detection effect on small 

targets. At the same time, a focus module was introduced in the backbone part, which improved the 

input image processing speed and reduced the amount of model calculations. To improve the feature 

fusion capability of the model, the CSP2 structure is used in the neck. The team proposed YOLOv8[16] 

in 2023, using the residual idea to introduce the new C2f module to obtain more gradient information 

and alleviate the problem of context information loss. To improve the expressiveness of multi-scale 

features, FPN is modified and PAN is introduced to aggregate shallow and deep feature maps. The 

above two methods provide important basic ideas for densely distributed object detection tasks. Most 

of the methods proposed by subsequent researchers are based on these two methods and have been 

improved to address problems in different directions, such as overlapping target instances, 

insufficient feature extraction capabilities, etc. 

Yan et al.[26] enhanced YOLOv5 by introducing the BottleneckCSP-2 module to replace the 

BottleneckCSP module in the backbone and incorporating Squeeze and Excitation (SE) attention into 

the architecture. This modification demonstrated excellent performance in addressing the issue of 

overlapping target instances. Cao et al.[27] proposed GCL-YOLO, constructing a lightweight 

backbone network based on GhostConv and employing the Focal Effective Intersection Loss (Focal-

EIOU) as the positioning loss. This approach resulted in a 76.7% reduction in parameters compared 
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to the baseline model. Zhu et al.[28] introduced TPH-YOLOv5, which replaced the original prediction 

head with Transformer Prediction Heads (TPH) to leverage the prediction potential of the self-

attention mechanism. Additionally, a convolutional block attention model (CBAM) was integrated to 

identify attentional regions in dense object scenes. Compared to the previous state-of-the-art method 

DPNet, this approach improved the Average Precision (AP) result by 1.81% and demonstrated 

superior detection accuracy for small targets. Wang et al.[29] proposed UAV-YOLOv8, incorporating 

the BiFormer attention mechanism to optimize the backbone network, enhancing the model's ability 

to extract key features. They also designed a feature processing module named Focal FasterNet block 

(FFNB) and introduced two new detection scales based on this module to fuse shallow and deep 

feature information efficiently. This method achieved an average accuracy improvement of 7.7% 

compared to the baseline model. Wang et al.[30] introduced SMFF-YOLO, which integrated the 

ELAN-SW object detection prediction head to enhance the detection accuracy of small objects. The 

Adaptive Atrous Space Pyramid Pooling (AASPP) module was also introduced to achieve adaptive 

feature fusion capability rapidly. 

Many studies have demonstrated that modifying the model's backbone and introducing 

attention mechanism modules can enhance the feature extraction capabilities and contribute to 

addressing UAV target recognition challenges. These approaches have significantly influenced our 

work by providing valuable insights into problem-solving strategies. However, these methods still 

face challenges such as high background confusion rates for small targets, substantial computational 

parameter requirements, and overall low accuracy. In light of these challenges, we build upon the 

foundations laid by previous researchers and propose SSE-YOLO, incorporating two key 

enhancements for addressing small target detection with low pixel counts. The first is to strengthen 

the feature extraction ability of the model. We introduced SPDConv to replace the backbone Conv to 

avoid the problem of fine-grained information loss. At the same time, we canceled the SPPF module 

at the bottom of the backbone, introduced the LSKA attention mechanism, and proposed the Separate 

Kernel Attention Pyramid Pooling (SKAPP) module. These modifications significantly enhance the 

feature extraction capabilities of the model's backbone. Secondly, our attention is directed toward 

preserving contextual feature information while reinforcing the model's multidimensional feature 

fusion capability. We insert four Contextual Feature Preservation (CSB) modules between the 

backbone and the neck of the model to retain essential feature information. The output information 

flow from CSB serves as one of the input information flows for the Enhanced Bi-directional Feature 

Pyramid Network (E-BiFPN), a structure proposed to replace the Concat module in the neck and 

head. This replacement reduces computational parameters and improves the fusion ability of 

multidimensional feature information. Through these enhancements, our method successfully 

achieves the goal of minimizing parameters while maximizing accuracy. Compared with the baseline 

model, our approach demonstrates outstanding performance across parameters such as mAP, 

Parameters, Precision, and various small target detection accuracy metrics. 

3. Methods 

This section details the improvement ideas of the methods and modules proposed in this article. 

We will provide a thorough breakdown of the model's structure, revised components, creative 

modules, and resolved issues. Firstly, traditional convolutional neural networks encounter 

challenges when processing low-pixel images and recognizing small targets. To address this issue, 

we replaced the Conv module in the backbone of the baseline model with Space-to-Depth 

Convolution (SPDConv). This unique convolution technique eliminates downsampling and pooling. 

It is implemented at the base of the backbone. We present Separable Kernel Attention Pyramid 

Pooling (SKAPP), which fuses aspects of SPPF (Spatial Pyramid Pooling-Fast) and LSKA (Large 

Separable Kernel Attention). It uses a kernel decomposition type that works with depth dilation 

convolution. This approach implements a feature fusion layer that requires fewer parameter 

calculations, improving efficiency. Secondly, to address the issue of contextual feature information 

loss, we developed four CBS modules and integrated them into the backbone and neck of the 

network. This resulted in a new network structure that significantly decreased the expense of 
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contextual feature information. Lastly, we present the E-BIFPN structure module. Compared to the 

Concat module, E-BIFPN employs a weighted bidirectional feature pyramid network structure. This 

not only improves the fusion of multi-dimensional feature information in the neck but also decreases 

the parameter calculation required. This resolved the problem of parameter explosion during neck 

upsampling. The overall architecture of SSE-YOLO is illustrated in Figure 2. 

SSE-YOLO is further subdivided into SSE-YOLO (nano), SSE-YOLO (small), SSE-YOLO 

(medium), and SSE-YOLO (large) based on the model's parameter size. The corresponding values for 

each model on the VisDrone2019 dataset will be presented and analyzed in detail in Section 4. 

 

Figure 2. The overall architecture of the proposed SSE-YOLO is only provided for the CBS and C2f 

basic modules in the figure, with diagrams of the remaining modules to be added later. The overall 

architecture is yet to be fully depicted. 

3.1. Backbone Improvements 

3.1.1. Space-to-Depth Convolution 

Convolutional neural networks (CNNs) have demonstrated remarkable success in various 

computer vision tasks. However, their performance significantly diminishes when confronted with 

the challenge of detecting low-resolution or small-sized objects. This limitation is attributed to an 

inherent flaw in the existing CNN architecture, specifically the utilization of stride convolution or 

pooling layers. This architectural choice diminishes the model's feature extraction capability, leading 

to challenges in handling fine-grained information loss. To address this issue, we have opted to 

integrate SPDConv[18], a novel CNN building block. As shown in Figure 3, this module comprises a 

space-to-depth (SPD) layer and a non-strided convolution layer, strategically replacing each strided 

convolution layer and pooling layer in the architecture. This innovative approach aims to enhance 

the model's ability to extract features, mitigating the difficulties associated with fine-grained 

information loss. 
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Figure 3. (a)(b)(c) give an example when scale = 2, where we obtain four sub-maps 𝑓0,0, 𝑓1,0, 𝑓0,1, 𝑓1,1 

each of which is of shape (𝑆2 , 𝑆2 , 𝐶1) and downsamples X by a factor of 2. 

The SPD layer downscales the feature map X while preserving all information in the channel 

dimension, ensuring no loss of information. Drawing inspiration from image transformation 

techniques that re-scale the original image before inputting it into a neural network, this concept is 

extended to downsampling feature maps, both internally and across the entire network. Additionally, 

a non-spanning convolution operation is introduced after each SPD to adjust the number of channels 

through learnable parameters in the newly added convolutional layer, allowing for channel reduction 

or expansion. Consider any intermediate feature map X of size S × S × C1, slice out a sequence of sub 

feature maps as Equation (1). In summary, SPD transforms feature maps X(𝑆, 𝑆, 𝐶1) into intermediate 

feature maps X′ ( 𝑆𝑠𝑐𝑎𝑙𝑒 , 𝑆𝑠𝑐𝑎𝑙𝑒 , 𝑠𝑎𝑐𝑙𝑒2𝐶1). 𝑓0,0 = 𝑋[0: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 0: 𝑆: 𝑠𝑐𝑎𝑙𝑒], 𝑓1,0 = 𝑋[1: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 0: 𝑆: 𝑠𝑐𝑎𝑙𝑒], . . . ., 
             𝑓𝑠𝑐𝑎𝑙𝑒−1,0 = 𝑋[𝑠𝑐𝑎𝑙𝑒 − 1: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 0: 𝑆: 𝑠𝑎𝑐𝑙𝑒]; 𝑓0,1 = 𝑋[0: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 1: 𝑆: 𝑠𝑐𝑎𝑙𝑒],𝑓1,1, . . ., 
             𝑓𝑠𝑐𝑎𝑙𝑒−1,1 = 𝑋[𝑠𝑐𝑎𝑙𝑒 − 1: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 1: 𝑆: 𝑠𝑎𝑐𝑙𝑒]; 

... 𝑓0,𝑠𝑐𝑎𝑙𝑒−1 = 𝑋[0: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 𝑠𝑐𝑎𝑙𝑒 − 1: 𝑆: 𝑠𝑐𝑎𝑙𝑒], 𝑓1,𝑠𝑐𝑎𝑙𝑒−1, . . ., 
  𝑓𝑠𝑐𝑎𝑙𝑒−1,𝑠𝑐𝑎𝑙𝑒−1 = 𝑋[𝑠𝑐𝑎𝑙𝑒 − 1: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 𝑠𝑎𝑐𝑙𝑒 − 1: 𝑆: 𝑠𝑐𝑎𝑙𝑒]. 

(1) 

3.1.2. Separate Kernel Attention Pyramid Pooling 

Jocher et al.[13] enhanced the Spatial Pyramid Pooling-Fast (SPPF) module in the benchmark 

model, building upon the structure of the Spatial Pyramid Pooling (SPP) module. This modified 

module incorporates three consecutive pooling layers, combining the output from each layer to 

ensure multi-scale fusion. Simultaneously, it reduces computational complexity and significantly 

improves speed compared to SPP, to achieve an adaptive size output. However, our investigation 

revealed that this structure struggles to integrate small and fine-grained feature information 

effectively. Despite reducing parameters through continuous pooling operations, it tends to overlook 

small and fine-grained information, deviating from our research goals. Consequently, we abandoned 

the original SPPF structure and proposed the SKAPP structure as a replacement, whose structure is 

shown in Figure 4. Compared with the original structure, our structure can greatly enhance the 

processing capability of small and fine-grained feature information, and can well integrate multi-

dimensional feature information after downsampling by SPDConv. 
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Figure 4. Overall structure of the SKAPP module. Notice that ⊗represents Hadamard product, k 

represents the maximum receptive field, and d represents the dilation rate. 

We utilize multiple parallel atrous convolutional layers with varying sampling rates. The 

features extracted for each sampling rate undergo further processing in separate branches before 

being fused to generate the final result. This module constructs convolution kernels with different 

receptive fields by employing various hole rates to acquire multi-scale object information. 

Additionally, we integrate the pooling layer, convolution layer, and upsampling layer into a global 

receptive field. Enlarging the global receptive field helps the module avoid information loss and 

capture broader contextual information, including content in the image far away from the target area. 

This capability is crucial for understanding the structure of the entire image. Following these 

operations, we pass the fused feature information to the LSKA block as an input stream, referring to 

the Large Separable Kernel Attention (LSKA) module proposed by Lau et al.[32]. This block module 

utilizes a residual structure composed of four Depthwise Separable Convolution blocks and a 

Pointwise Convolution block with a convolution kernel size of 1. In the depth convolution stage, a 

separate convolution operation is performed on each channel of the input. If the input has C channels, 

there will be C convolution kernels, each responsible for processing information from one input 

channel. This step employs atrous convolution (also known as dilated convolution), enabling the 

convolution kernel to share parameters between input channels and thereby reducing the number of 

parameters. In the point-wise convolution stage, a 1x1 convolution kernel is used to linearly combine 

the output channels of the depth convolution. This step facilitates the interaction and combination 

between channels, integrating independently processed channel information to form the final output 

feature map. By processing spatial and channel information separately, depthwise separable 

convolution reduces computation, particularly in resource-limited scenarios like mobile devices. The 

decomposition of depth-wise convolution and point-wise convolution results in fewer parameters 

compared to standard convolution, reducing the model's complexity. This convolutional structure is 

well-suited for lightweight model design, especially in environments with limited computing and 

memory resources, such as drone-embedded devices. 

The LSKA output is shown in Equation 2-5, and we will explain in detail all the parameters in 

the formula as well as the calculation symbols. * and ⊗  stand for convolution and Hadamard 

product respectively: 
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XC = ∑ W(2d−1)×1CH,W ∗ (∑ W1×(2d−1)CH,W ∗ FC) (2) 

ZC = ∑ W[kd]×1CH,W ∗ (∑ W1×[kd]CH,W ∗ XC) (3) 

AC = W1×1 ∗ ZC
 (4) TC = AC⊗FC

 (5) 

where ZC is the output of the depth convolution obtained by convolving a kernel W of size k × k with 

the input feature map F. Note that each channel C in F is convolved with the corresponding channel 

in kernel W. The output ̄TC of LSKA is the Hadamard product of the attention map AC and the 

input feature map FC. 

3.2. Neck and Head Improvements 

To enhance multi-dimensional feature fusion during the upsampling process, we opted to 

eliminate the Concat module in the neck and head, introducing E-BiFPN as its replacement. This 

improvement is derived from the BiFPN concept initially proposed by Tan et al.[20]. BiFPN 

incorporates learnable weights to discern the importance of different input features. Structurally, it 

first eliminates nodes with only one input. Secondly, if the original input and output nodes are at the 

same level, an additional edge is added between them to encompass more features without incurring 

additional costs. Finally, each bidirectional path (top-down + down-top) is treated as a feature 

network layer, and this process is iterated multiple times to facilitate higher-level feature fusion. 

 
 

(a) (b) 

Figure 5. There are two structures of E-BIPFN in the model. (a)Two input heads; (b)Three input heads. 

The dotted line indicates a repeat block. 

In the feature fusion process, re-sizing is necessary due to different resolutions. However, since 

different feature input resolutions vary, the output's contribution to the final feature network should 

also differ. Consequently, the network needs to learn these weights. We proposed three weighting 

schemes, as illustrated in Equations 6-8, but we chose to adopt the weighting method from fast 

normalized feature fusion: On = ∑ wiIii  (6) 

OS = ∑ ewi∑ wjeji  (7) 

Oq = ∑ wiє + ∑ 1wjji Ii (8) 

where equation (6) represents a generally weighted feature fusion but without constraints on wi, 

it can lead to convergence difficulties, which do not align with our requirements. Equation (7) 
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represents feature fusion using Softmax. Although it achieves convergence, the use of numerous 

exponential operations makes it inefficient and does not meet our requirements. Equation (8) 

represents fast normalized feature fusion, a weighting method that employs ReLU to constrain 𝑤𝑖 
and sets є= 10−4 to ensure data stability and avoid Softmax operations. In summary, our E-BiFPN 

forms the final weighted bidirectional feature pyramid network based on bidirectional cross-scale 

connections and fast normalized feature fusion. 

3.3. One-way Feature Transfer Pyramid 

Different PAN[34] network structure than the baseline model, we implement a novel structure 

known as the One-way Feature Transfer Pyramid (OFTP), as shown in Figure 6. Between the 

backbone and the neck, we introduce four CBS modules with a step size and convolution kernel size 

of 1 as containers to store backbone feature information. Utilizing the concept of path aggregation, 

we aggregate shallow feature maps (with low resolution but weak semantic information) and deep 

feature maps (with high resolution but rich semantic information). Feature information is transferred 

along specific paths, allowing the strong localization features of the lower layer to be passed upward. 

These operations further enhance the expressive capabilities of multi-scale features. Building upon 

this, we use these four containers as the new backbone feature information input stream for the 

subsequent network, thereby improving the performance of the OFTP structure in detecting low-

pixel small targets. However, this structure undoubtedly imposes an additional computational 

burden and complexity on subsequent networks in terms of multi-dimensional feature processing. 

Therefore, we pass these data streams to the E-BiFPN module, which replaces the Concat module, 

cleverly addressing the requirements for multi-dimensional feature fusion and reducing 

computational load. 

 

Figure 6. Four CBS modules are inserted between the backbone and neck to store feature information 

from top to bottom. 

4. Experiments and Results 

This section will provide an overview of the experimental dataset, the experimental details ,and 

the experimental evaluation metrics adopted in turn. We will provide a comprehensive analysis and 

summary of the experimental results, and present the complete and real experimental data in graphs 

to prove the superiority of the performance of the proposed model. First, the experimental dataset 

used is presented in detail. 
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4.1. Datasets and Experimental Environment 

Given the markedly distinct characteristics of UAV aerial images compared to those captured 

by ground personnel, UAV image recognition tasks present a notably greater challenge than 

traditional image recognition. Standard image sets, such as MS COCO[35] and PASCALVOC[36], 

may not as suitable foundations for this article. Consequently, the VisDrone2019 dataset collected 

and annotated by the AISKYEYE team at Tianjin University's Machine Learning Data Mining 

Laboratory[37] has been adopted for this study. The dataset comprises 6471 images distributed across 

three categories: training set, verification set, and test set. The images capture different scenes 

consisting of pedestrians, motorcycles, and various models of cars, among ten other common object 

categories. Acknowledged as a benchmark in the international drone vision field, this dataset holds 

authoritative status. The images exhibit extensive diversity, encompassing various settings like 

streets, roads, residential areas, docks, and similar backgrounds. The VisDrone2019 dataset 

encompasses a variety of light conditions such as excessive light, sufficient light, insufficient light, 

cloudy and night. Furthermore, the dataset features drone images with complex backgrounds, both 

large and small scenes, and various intricate elements. The rich diversity of these features 

underscores the necessity for a model with robust generalization and feature extraction capabilities. 

Our baseline model is YOLOv8, version Ultralytics 8.0.225. In terms of hardware and software, 

we used an Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz, 16 cores, and 24 threads, a main 

frequency of 3.19 GHz, 32 GB running memory, graphics processor GeForce RTX 3090, and 24 GB 

video memory; the deep learning model framework used Python 3.8、Pytorch2.0.0 and CUDA 11.8.  

To ensure the fairness of the comparison and ablation experiments, identical hyper-parameters 

have been employed in both the training and testing phases across all experiments. The crucial hyper-

parameter configurations during the training process are detailed in Table 1. Notably, Mosaic, 

Translation, and Scale are employed as data enhancement methods in image processing. Maintaining 

uniformity in hyperparameter settings is critical to preserving the integrity of the comparison and 

ensuring accurate evaluation in ablation experiments. 

Table 1. Training hyper-parameter setting table. 

Hyper-parameters Setup 

Epochs 100 

Batch Size 16 

Input Size 640 

Optimizer SGD 

NMS IoU 0.7 

Initial Learning Rate 1×10−2 
Final Learning Rate 1×10−4 

Weight-Decay 5×10−4 
Workers 8 

Mosaic 1.0 

Translation 0.1 

Scale 0.5 

Momentum 0.937 

Close Mosaic 10 

Warmup Epochs 2 

4.2. Experiment Metrics 

In this paper, we will employ precision (P) evaluation metric with an IoU threshold of 0.7 along 

with average accuracy mAP50 and mAP90 with an IoU threshold of 0.7 to assess the accuracy 

performance of our proposed method for identification purposes. Additionally, to assess the model's 

speed and computing performance, we will utilize Frames Per Second (FPS) to measure the number 

of frames processed per second, Giga Floating Point Operations Per Second (GFLOPs) to measure the 
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billions of executed floating-point operations per second and the parameter size (M) of the model, 

which refers to the size of the parameters in millions of parameters. 

Precision (P) assesses the overall performance strength of the model by measuring the 

proportion of correctly predicted targets among all predicted targets. It is primarily computed using 

TP and FP, whereby TP denotes the accurately predicted target and FP denotes the inaccurately 

predicted target. The Equation (9) describes the specific calculation. P = TPTP + FP (9) 

Recall(R) is the ratio of correctly identified targets to all targets. Its computation is similar to that 

of precision and can be determined using the specific formula depicted in Equation (10) where FN 

stands for targets that exist within the dataset but have not been detected. R = TPTP + FN (10) 

Average precision (AP) is the region encapsulated by the curve generated by precision and recall. 

A higher value of AP indicates a larger area. Equation (11) depicts its methodology. We utilize two 

distinct kinds of average accuracy metrics: mAP0.5 and mAP0.95. Here, 0.5 and 0.95 represent the 

union size between predicted and annotated bounding boxes. For bounding box predictions to be 

considered accurate, IoU (Intersection over Union) rates must be high. At 0.50 or 0.95, this technique 

can more comprehensively evaluate the accuracy performance of the model. AP = ∫ 𝑝(𝑟)𝑑𝑟1
0  (11) 

The mean precision (mAP) indicates the average accuracy across all image sample types, 

calculated using Equation (12). We have adopted two varying average accuracy metrics: mAP0.5 and 

mAP0.95. 

mAP = 1n ∑ 𝐴𝑃𝑖n
i=1  (12) 

4.3. Ablation Experiment 

To assess the impact of the added and modified modules on the baseline model's performance, 

we will disassemble the structure of each module and conduct comprehensive ablation experiments 

for evaluation and comparison. It is worth noting that YOLOv8 and the improved model in this table 

default to nano. For convenience, we will no longer use YOLOv8-n and SSE-YOLO-n in the table and 

subsequent statements, opting to use YOLOv8 and SSE-YOLO directly. 𝐄-YOLO uses only the E-

BIFPN structure to modify the model, while 𝐒𝐏-YOLO replaces Conv with SPDConv. By contrast, 

SS-YOLO employs both SPDConv and SKAPP for modification. The 𝐒𝐏𝐄-YOLO model is adjusted 

using SPDConv and E-BIFPN, while 𝐒𝐊𝐄-YOLO uses the modified SKAPP and E-BIFPN frameworks. 

In 𝐒𝐊 -YOLO, only the SKAPP framework is used. No training files were used to ensure the 

experiment's fairness. All hyper-parameters implemented in the experiment are consistent, and 

specific parameters are outlined in Table 1. The final results of the experimental data are shown in 

Table 2. 

Table 2 presents the experimental evaluation outcomes of SSE-YOLO-n and YOLOv8-n on the 

VisDrone2019 dataset. This represents an enormous enhancement. The top-performing results in 

each indicator have been highlighted. Clearly, SSE-YOLO-n demonstrated superior performance in 

accuracy-related evaluations, including mAP and Precision. Our model improved mAP0.5 by 10.18% 

and mAP0.95 by 7.25% from the baseline model, and its Precision also increased by a significant 9.43%. 

SSE-YOLO-n is not the most optimal choice in terms of FPS and Parameters evaluation metrics. 

Specifically, its weak real-time processing capability when evaluating FPS is a drawback. In addition, 

SSE-YOLO-n has a 12% increase in parameters compared to baseline model. However, it is worth 
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noting that both models still maintain a similar number of parameters, so this does not necessarily 

classify as a flaw. 

Table 2. Ablation experimental data shows that each result obtained is optimal. 

Model m𝑨𝑷𝟎.𝟓(%) m𝑨𝑷𝟎.𝟗𝟓(%) Precision(%) FPS GFLOPs Parameters(M) 

YOLOv8-n[16] 30.62 17.25 41.07 113.7 8.2 3.15 𝐄-YOLO-n 32.0 18.3 42.4 153.3 7.2 1.99 𝐒𝐏-YOLO-n 33.1 19.3 42.7 200.3 10.9 4.18 𝐒𝐊-YOLO-n 34.0 19.9 46.1 192.2 8.4 3.28 

SS-YOLO-n 34.8 20.3 47.7 140.4 11.2 2.65 𝐒𝐏𝐄-YOLO-n 31.6 18.1 43.1 162.0 10.1 3.16 𝐒𝐊𝐄-YOLO-n 31.9 18.4 43.5 159.2 7.3 2.26 𝐒𝐒𝐄-YOLO-n 40.8(↑10.18%) 24.5(↑7.25%) 50.5(↑9.43%) 135.0 10.9 3.55 

4.4. Performance Comparison with State-of-the-Art Methods and Baseline Methods 

In order to comprehensively evaluate the performance of SSE-YOLO, its experimental results 

were comprehensively compared with those of 10 other state-of-the-art methods on the VisDrone2019 

dataset. The experimental results indicate that the SSE-YOLO series is an excellent model for multi-

target detection in UAV images due to its small parameters and high accuracy. 

As shown in Table 3, our SSE-YOLO achieved 53.2% m AP0.5  and 34.3% m AP0.95  on 

VisDrone2019-DET-test-dev, these two evaluation index values are the highest among all compared 

models. Based on the indicators, TPH-YOLOv5++ has achieved excellent experimental results. Its 

m AP0.5  and m AP0.95  are only 0.7% and 0.8% lower than our model. However, our method 

outperforms TPH-YOLOv5++ in terms of GFLOPs and Parameters. SSE-YOLO (large) has fewer 

parameters than TPH-YOLOv5++ by 44.5% and also reduces GFLOPs by 25.1%. 

However, it is worth noting that SSE-YOLO's performance in Frames Per Second (FPS) is not 

optimal, with SSE-YOLO (large) having the lowest FPS. However, it is worth noting that SSE-YOLO's 

performance in Frames Per Second (FPS) is not optimal, with SSE-YOLO (large) having the lowest 

FPS. It is important to compare FPS with other models. SSE-YOLO (large) is more accurate than 

YOLOv8-s and YOLOv8-l in the 40~60 range. Based on the FPS comparison, YOLOv5-n performs the 

best. SSE-YOLO (nano) is 25.2 lower than YOLOv5-n in this indicator data. However, our model 

outperforms YOLOv5-n in terms of m and m, with 13.8% and 12% higher scores respectively. This 

represents a significant improvement. 

In conclusion, our model considers both small parameter size and high accuracy, albeit at the 

expense of a small reduction in FPS. This fulfills the two most crucial requirements of the UAV-

embedded platform. Consequently, our model is better suited for multi-target recognition tasks in 

high-precision UAV images, and it presents a novel solution in this field. 

Table 3. Comparison of experimental results with ten other state-of-the-art methods on 

VisDrone2019-DET-test-dev. The best results are shown in bold. 

Model m𝑨𝑷𝟎.𝟓(%) m𝑨𝑷𝟎.𝟗𝟓(%) FLOPs(G) Parameters(M) FPS 

YOLOv5-n 32.4 18.9 7.2 2.65 188.1 

YOLOv5-s 34.3 20.1 24.1 9.15 154.2 

YOLOv7-tiny[15] 26.6 17.8 - 6.02 - 

YOLOv8-s[16] 30.9 17.25 28.7 11.1 58.9 

YOLOv8-l[16] 35.9 21.2 165.7 76.7 50.9 

Faster R-CNN[38] 31.0 17.2 118.8 41.2 - 

RetinaNet [39] 44.3 22.7 35.7 36.4 - 

Drone-

YOLO(large)[40] 
40.7 23.8 - 76.2 - 

Modified-YOLOv8[41] 33.7 - - 9.66 143 
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TPH-YOLOv5++[42] 52.5 33.5 207.0 99.1 - SSE-YOLO(nano) 46.2 30.9 10.2 3.44 162.9 SSE-YOLO(small) 48.7 32.8 37.2 13.1 128.9 SSE-YOLO(medium) 50.2 34.0 96.0 27.5 69.1 SSE-YOLO(large) 53.2 34.3 193.2 44.1 44.0 

The Table 4 presents the evaluation index data of the proposed method and 10 comparative 

models, which were experimentally obtained on the VisDrone2019-val dataset. As GFLOPs are 

missing for most of the compared models in this table, we have excluded this evaluation metric from 

the table. It is evident that SSE-YOLO (large) achieved the best results in both mAP0.5 and mAP0.95. In 

comparison to the benchmark model YOLOv8-l, mAP0.5 increased by 13.9%, mAP0.95 increased by 

14.2%, and the number of parameters is only 57.5% of YOLOv8-l. Meanwhile, although YOLOv5-n 

has the fewest parameters, SSE-YOLO (nano) has achieved a 4.9% increase in mAP0.5 and a 3.4% 

increase in mAP0.95 compared to YOLOv5, with only 0.79M more parameters than YOLOv5-n.  

Table 4. Comparison of experimental results with other advanced methods on the VisDrone2019-

DET-val dataset. The best results are highlighted in bold. 

Model m𝑨𝑷𝟎.𝟓(%) m𝑨𝑷𝟎.𝟗𝟓(%) Parameters(M) FPS 

YOLOv5-n 46.2 32.3 2.65 188.1 

YOLOv5-s 49.4 35.1 9.12 154.2 

YOLOv7-l[15] 47.1 26.4 71.4 - 

YOLOv8-l[16] 43.7 26.9 76.7 50.9 

Drone-YOLO (large)[40] 51.3 33.2 76.2 - 

Modified-YOLOv8[41] 42.2 - 9.66 143 

ACAM-YOLO[43] 49.5 29.6 15.9 - 

MS-YOLOv7[44] 53.1 31.3 79.7 - 

EdgeYOLO[45] 44.8 26.4 40.5 34 SSE-YOLO(nano) 50.1 35.7 3.44 162.9 SSE-YOLO(small) 53.5 38.1 13.1 128.9 SSE-YOLO(medium) 56.7 40.8 27.5 69.1 SSE-YOLO(large) 57.6 41.1 44.1 44.0 

5. Visualization and discussion of experimental data 

Deep learning is often referred to as a 'black box'. Despite the widespread use of deep learning 

models in various engineering fields, their lack of interpret-ability has hindered their progress in 

some high-tech fields[40]. Therefore, interpret-ability of deep learning has become a mainstream 

research direction in contemporary artificial intelligence. Drones play a crucial role in various 

industries, including smart agriculture and the military, making their interpret-ability a key factor in 

building their models. This section will use visualization methods to provide a clear explanation and 

summary of the experimental data. Firstly, we will select the experimental results obtained by several 

typical models on the test and verification sets as the data for the visual chart, as shown in Figure 7. 

The two visualization tables in Figure 7 clearly demonstrate that our method achieves 

remarkably high accuracy with a minimal number of parameters. Notably, SSE-YOLO-n boasts the 

lowest parameter count while outperforming most comparison models in both mAPs. 

Simultaneously, SSE-YOLO-l achieves accuracy comparable to TPH-YOLOv5++ and MS-YOLOv7, 

yet with significantly fewer parameters. This underscores our model's excellence in balancing 

accuracy and parameter control, yielding outstanding results. Nevertheless, these two visualization 

diagrams fall short of fully showcasing the superiority of our method, particularly in terms of 

recognition accuracy for small targets. To provide a more comprehensive demonstration, we will 

compare the confusion matrix diagrams of several experimental models with our method. This aims 
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to offer a more intuitive representation of the enhancement in small target recognition accuracy 

achieved by our approach. 

 

(a) 

 
(b) 

Figure 7. Data visualization chart of experimental results:(a)Experimental results of the example 

model on VisDrone2019-test;(b)Experimental results of the example model in VisDrone2019-val. 

The confusion matrix derived from the experimental results reveals a significant number of 

omissions for all three models, suggesting confusion between the recognition target and the 

background category. To better illustrate the enhancement in our model's accuracy for small targets, 

we will specifically select several representative small targets as parameters for comparison. The 

comparative results will be visually presented to showcase the performance of our model. Please 

refer to Figure 8 for the results. In particular, these lightweight models have demonstrated 

exceptional results in recognizing large targets, with car types serving as a notable reference. It is not 

difficult to see that all four models have high recognition accuracy for this type of recognition. 

Therefore, the 6% improvement of our model over YOLOv8-s may not be deemed a particularly 

significant enhancement in this context.  However, our model has achieved a great improvement in 

recognition accuracy for small targets. Given the inherently lower accuracy, relying solely on 
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percentage improvement is inappropriate, so we will use the SSE-YOLO-s divided by the YOLOv8-s 

method to better show the extent of the improvement. Our model achieved 154.5%, 200%, 110.7%, 

121.4%, and 131.6% of the accuracy of the benchmark model in the categories of person, bicycle, car, 

tricycle, awning-tricycle, and motor vehicle, respectively. The experimental results underscore the 

substantial progress our model has made in the task of detecting small target types. 

 

Figure 8. Confusion matrix plot of selected three models. (a)YOLOv5-s confusion matrix diagram. 

(b)Li et al. confusion matrix diagram[41]. (c)Confusion matrix diagram of the SSE-YOLO-s in this 

paper. 

6. Conclusions 

This paper proposes SSE-YOLO, which aims to address the shortcomings of UAV target 

recognition by combining low parameter volume and high accuracy to identify small targets and 

complex backgrounds. Utilizing deep learning techniques, this model adeptly mitigates the adverse 

effects of diverse factors, encompassing background complexities, visibility issues, and scale 

variations, in UAV detection tasks. Firstly, we introduced SPDConv, a novel convolutional method 

designed for low resolution, replacing the standard Conv in the baseline model's backbone. This 

modification addresses the loss of fine-grained information in the original module and enhances the 

accuracy of extracting tiny targets, effectively mitigating these inherent flaws. In a second 

improvement, we incorporated the concept of LSKA at the bottom of the backbone section and 

introduced a novel structure named SKAPP to substitute the SPPF in the baseline model. This 

innovation achieves a more sophisticated feature fusion approach by thoroughly considering and 

reusing multi-scale features. It significantly enhances the feature fusion capabilities of the backbone 

and contributes to the advancement of multi-dimensional feature extraction in the neck and head 

segments. As a third enhancement, we addressed the issue of the baseline model's tendency to lose 

contextual feature information. To overcome this, we incorporated four CBS modules with a 

convolution kernel size step number of 1 in both the backbone and neck sections to retain crucial 

feature information. This preserved information is subsequently forwarded to the next network for 

processing. As a final improvement, we introduced the E-BIFPN module, inspired by the BIFPN 

concept, to replace the Concat module in the Neck & Head segment. This enhancement employs a 

deep network capable of adapting to various input heads, enabling more effective multi-dimensional 

feature fusion. It is worth noting that the above four improvements have reduced the number of 

calculation parameters while solving different problems. Therefore, our model can have high 

accuracy with a small number of parameters. 
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In experiments on the VisDrone2019 dataset, our method demonstrated superior performance. 

In both the test and validation datasets, SSE-YOLO (large) outperformed other comparison models 

in mAP0.5 and mAP0.95 metrics, with its parameter size being only 57.5% of the benchmark model 

YOLOv8-l. The smaller model, SSE-YOLO (nano), with a parameter size of only 3.44M, outperformed 

RetinaNet (36.4M parameters) and ACAM-YOLO (15.9M parameters) in mAP0.5. This signifies the 

remarkable success and applicability of our model, making a significant contribution to the 

advancement of UAV multi-target recognition. 

While our method excels in high-precision identification and parameter control, it currently falls 

short in terms of real-time image processing capability. Future research will focus on enhancing the 

model's real-time processing speed without compromising accuracy. To address the challenge of 

weak real-time processing capabilities, our future research will delve into PP-YOLOE[46]. We aim to 

explore this model's fundamental ideas and methods to enhance computational speed and integrate 

them into our model. Additionally, we plan to experiment with incorporating BiFormer[47] dynamic 

sparse attention mechanism in our future work to reduce computational and memory loads further. 

We aim to achieve a faster and more precise real-time target recognition algorithm. Additionally, we 

plan to explore image enhancement and lightweight strategies to bolster multi-dimensional feature 

extraction capabilities. To broaden the application scope, we are working on labeling ground cracks, 

fires, and other types of natural geographical disasters in custom datasets to further train our method. 

Our aspiration is for this approach to find application in a wider range of areas, providing increased 

value to the field. 
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