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Abstract: Despite extensive use of intravitreal anti-vascular endothelial growth factor (anti-VEGF) biologics
for over a decade, neovascular age-related macular degeneration (nAMD) or choroidal neovascularization
(CNV) continues to be a major cause of irreversible vision loss in developed countries. Many nAMD patients
demonstrate persistent disease activity or experience declined responses over time despite anti-VEGF
treatment. The underlying mechanisms of anti-VEGF resistance are poorly understood, and no effective
treatment strategies are available to date. Here we review evidence from animal models and clinical studies
that support roles of neovascular remodeling and arteriolar CNV formation in anti-VEGF resistance.
Cholesterol dysregulation, inflammation, and ensuing macrophage activation are critically involved in
arteriolar CNV formation and anti-VEGF resistance. Combination therapy by neutralizing VEGF and
enhancing cholesterol removal from macrophages is a promising strategy to combat anti-VEGF resistance in
CNV.

Keywords: choroidal neovascularization; CNV; anti-VEGF resistance; neovascular age-related
macular degeneration; AMD; arteriolar CNV; anti-VEGF therapies; anti-VEGF resistance; capillary
CNV; AIBP; apoA-1

1. Limitation of anti-VEGF therapies.

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the
elderly. The number of people with AMD in 2020 was 196 million, projected to be 288 million in
2040, representing a substantial global burden on healthcare systems [1]. Neovascular AMD
(nAMD) or choroidal neovascularization (CNV), which accounts for 10-20% of AMD, is responsible
for 80-90% of AMD blindness [2]. The current first-line therapy targets vascular endothelial growth
factor (VEGF), a potent angiogenic factor that stimulates vessel growth and augments vascular
permeability. It is estimated that up to 50% of patients have incomplete responses to current anti-
VEGEF treatment (persistent fluid, unresolved or new hemorrhage) and the long-term outcomes are
suboptimal even among responders [3-14]. For example, 67.4% of patients treated with
bevacizumab and 51.5% of patients treated with ranibizumab showed persistent retinal fluid
accumulation even after 2 years of treatment in the CATT study [3]. In the VIEW 1 and VIEW 2
trials, 19.7%-36.6% of patients had active exudation after one year of regular 2.0 mg aflibercept
treatments [6]. In patients exiting the MARINA or ANCHOR trials (SEVEN-UP Study), the mean
visual acuity gradually decreased during long-term follow-up with a pro re nata retreatment [7].
Even patients who respond well initially can develop resistance over time (i.e., tachyphylaxis)
[4,15-17]. nAMD patients treated with bevacizumab showed a gradual declining response over
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time, which was not alleviated by increased dosage [18-20]. Patients treated with ranibizumab
exhibited recurrence in 66% to 76% of cases following 12-24 months of repeated treatment [21,22].

Various strategies including high-dose treatment [19,23-25] or switching between anti-VEGF
biologics [26,27] have been explored in small studies to resolve anti-VEGF resistance with some
success over limited follow-up periods. However, early anatomic gains from conversion to higher
dose therapy gradually plateau over time with only moderate improvements of central retinal
thickness (CRT) and absent or negligible gains in visual acuity [25,28]. The improvement on central
retinal thickness (CRT) was mild with no or small gains in visual acuity [26,28]. A recent NIH
sponsored trial comparing high dose bevacizumab, ranibizumab, and aflibercept for treatment-
resistant nAMD showed no significant benefit of any group, and no alleviation of injection
frequency (one injection per 5.7-6.4 weeks) [29]. Given this lack of response and the theoretical risks
of higher volume injection, further research is recommended before advocating for using even
higher dosages of these anti-VEGF agents delivered via standard formulations. Intriguingly, there is
considerable similarity between the response to higher dosage of the same therapy and anti-VEGF
switching, suggesting additional common mechanisms contribute to anti-VEGF resistance that are
not resolved by targeting VEGF alone.

Combination therapies that simultaneously target VEGF and alternate pro-angiogenic
signaling pathways have been explored in clinical trials. Combining ranibizumab with pegpleranib
(Fovista) or nesvacumab as the antagonist of platelet-derived growth factor (PDGF) or angiopoietin
2 (Ang2), respectively, failed to achieve endpoints [30,31]. Faricimab (Vabysmo), a bispecific
antibody that targets both VEGF-A and Ang2, delivered at extended treatment intervals (every 16
weeks) was found to be clinically equivalent (i.e., “no inferiority”) to aflibercept given at 8-week
intervals for neovascular AMD, thereby reducing treatment burden in patients [32]. However, there
is no evidence showing that faricimab provided significantly improved benefits in treating anti-
VEGEF resistant patients. The VEGF pathway remains the exclusive target of most ongoing clinical
trials [33]. Thus, the development of an effective therapy that address anti-VEGF resistance
represents an important unmet clinical need.

2. Animal Models of Anti-VEGF Resistance.

Multiple pivotal clinical trials (ANCHOR, MARINA, CATT) have shown that patients of
advanced age with larger baseline CNV lesions are less responsive to anti-VEGF treatment and
have worse outcomes [13,34-36]. Importantly, anti-VEGF resistance in CNV patients is frequently
associated with arteriolar CNV, characterized by large-caliber branching arterioles, vascular loops,
and anastomotic connections (Figure 1A-F) [9]. Persistent fluid leakage in arteriolar CNV most
likely involves increased exudation from poorly formed tight junctions at arteriovenous
anastomotic loops, especially during high rates of blood flow. On the other hand, anti-VEGF
responders are characterized by capillary CNV, in which VEGF-mediated permeability is
responsible for the leakage (Figure 1G-J). Furthermore, recurrent anti-VEGF treatment can cause
vessel abnormalization, arteriolar CNV formation, and anti-VEGF resistance [14,37]. The observed
abnormalization of the vessels may be explained by periodic pruning of angiogenic vascular
sprouts by VEGF withdrawal in the face of unimpeded arteriogenesis [14], suggesting a mechanism
for acquired anti-VEGF resistance.
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Figure 1. Clinical examples of treatment responses in arteriolar CNV and capillary CNV. (A-F)
Arteriolar CNV. At baseline, (A) fundus photography and (B) fluorescein angiography (FA)
demonstrate evidence of serous pigment epithelial detachment, (C) indocyanine green angiography

(ICGA) demonstrates an arteriolar predominant lesion, with feeder artery (red arrowhead), arteriole
(orange arrow), ill-defined marginal rim of vessels (yellow-dotted region, probable capillaries), and
draining vein (green arrowhead). Post-loading dose with three anti-VEGF treatments, (D) there is
large submacular hemorrhage in the macula by clinical exam and fundus photography, (E) FA
demonstrates blockage of fluorescence from the hemorrhage but increased late hyperfluorescence at
the margin with expanding, blurry margins consistent with leakage from CNV, and (F) ICGA
demonstrates growth of the CNV lesion, with increased vessel caliber of choroidal feeder artery (red
arrowhead), growth of new branching arterioles (orange arrow), extension of arterioles with
vascular loops without visible capillaries into the macula (yellow-dotted region), and draining
venule (green arrowhead). (G-J) Capillary CNV. At baseline, (G) FA demonstrates a Type 2 CNV
pattern and (H) ICGA demonstrates capillary CNV morphology (red arrows). Post-treatment with a
single anti-VEGF, (I) FA shows clearance of the CNV and (J) ICGA shows regression of the capillary
microvascular structure (red arrows). Used with permission of Elsevier Science & Technology
Journals, from Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease
mechanisms and therapeutic opportunities by Mettu, P. S., Allingham, M. J. & Cousins, S., Prog. Retin.
Eye Res. (2021) 82:100906.
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We found that laser photocoagulation produces larger CNV lesions in aged mice that are
markedly more resistant to anti-VEGF treatment compared with young mice [38—40]. Importantly,
laser-induced CNV in young and old mice, respectively, mimics capillary and arteriolar CNV
(Figure 2) [9,39]. We propose that laser-induced CNV in aged mice is a clinically relevant model of
anti-VEGF resistance [38,39]. Although this model uses aging as the pathological driver [39,40], we
do not mean to suggest that age is the only factor dictating experimental or clinical CNV or the
response to anti-VEGF therapy. In fact, previous studies have shown that cigarette smoking,
environmental co-factors (e.g., viral infection), and pathogen-associated molecular patterns (PAMP)
stimulation increase the extent and severity of experimental CNV with increased arteriolar CNV
formation [41-43]. The common underlying theme is macrophage activation, which is consistent
with our hypothesis that macrophages play a key role in anti-VEGF resistance (see below) [38,39].
Several main differences exist between mouse models and human AMD patients. Firstly, C57Bl6/]
mice are on an inbred homogeneous genetic background whereas human AMD patients carry a
wide range of diverse genetic risk factors. It is known that genetic risk factors (e.g., risk alleles in
CFH and ARMS2/HTRAI) influence the response to anti-VEGF therapies [44-46]. Secondly,
laboratory mice inhabit strictly controlled germ-free environments such as diet and lighting, etc.
This is different from human patients in which environmental factors including cigarette smoking
and diet contribute to AMD severity. However, age is also an important risk factor as multiple
pivotal clinical trials have shown that patients of advanced age and larger baseline CNV lesions are
less responsive to anti-VEGF treatment and have worse outcomes [13,34-36]. This is consistent with
our data that laser photocoagulation produces larger CNV lesions in aged mice and these mice are
markedly more resistant to anti-VEGF treatment than young mice [38,39]. Clearly, multiple genetic
and environmental factors confound the age effect in human AMD. This explains why aged
individuals with nAMD include both responders and non-responders. The important aspect is that
laser-induced CNV in aged mice mimics the arteriolar CNV that is resistant to anti-VEGF treatment
in human patients, which is invaluable for translational studies. A parallel example is laser-induced
CNYV, which is the most widely used model of wet AMD (e.g., in rodents, pigs, nonhuman primates)
not only for mechanistic studies, but also for most preclinical treatment evaluation experiments.
Although the laser injury model does not have the age-related progressive pathology of nAMD, it
captures many of the important features of the human condition, such as newly formed
neovascular vessels that project into the subretinal space through defects in Bruch’s membrane, and
leukocytes infiltration near CNV lesions [47-49]. However, this does not imply laser injury is a risk
factor for AMD.

doi:10.20944/preprints202401.1078.v2
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Figure 2. Vascular morphology of laser-induced CNV in young and old mice. (A) ICGA of laser-
induced CNV in young and old mice. White arrows and arrowheads indicate vascular loops and
branching arterioles in old mice, respectively. Red arrows indicate a large caliber feeder vessel. (B)
Representative images of CNV lesions labeled by Alexa 568 isolectin on RPE/choroid flatmounts in
young and old mice. White arrowheads and arrows indicate branching arterioles and vascular loops
in old mice, respectively. Scale bar = 40 pum. (C) Distribution of capillary and arteriolar CNV in
young versus old mice based on ICGA. The numbers inside the bars indicate the number of CNV
laser spots. (D) Quantitative results of normalized CNV area in young and old mice. CNV areas
were measured from Alexa 568 isolectin labeled RPE/choroid flatmounts. N = 32 and 40 laser spots
in young and old mice, respectively. Bars represent mean + SD. ***, P < 0.0001. (E) Early and late
phase FA show that laser-induced CNV in old mice exhibits significantly increased
hyperpermeability compared with that in young mice. (F) The percentage increase of fluorescent
area of CNV between the early and late phases of FA. Bars represent mean + SD. ***, P < 0.0001.
Adapted from Zhang, Z., Shen, M. M. & Fu, Y. Invest. Ophthalmol. Vis. Sci. (2022) 63(12):2.
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Food and Drug Administration (FDA) guidelines require that the efficacy of a pharmaceutical
product must be demonstrated in two different animal species (one rodent and one non-rodent).
Rabbit eyes have been used as a longstanding retinal model due to their relatively large size,
sharing physiologic parameters similar to those seen in humans. These similarities include eye size,
internal eye structure, eye optical system, eye biomechanics, and eye biochemical features. The
rabbit eye axial length is 18.1 mm, nearly 80% that of humans (approximately 23 mm), whereas
mice have an axial length of 3.2 mm, only 13% that of humans, and rats have an axial length of 5.98
mm. Various physiologic manipulation technologies and equipment developed for human eyes can
be applied to rabbits with minimal modification [50-52]. Much is known about the rabbit choroidal
vasculature, which shares many similarities to human vasculature [53,54]. Therefore, we developed
a rabbit CNV model of anti-VEGEF resistance for drug development. Consistent with mouse studies,
Matrigel and VEGF-induced CNV in aged rabbits is resistant to anti-VEGF treatments (i.e.,
bevacizumab) [55]. Matrigel-induced CNV in rabbits is considered a closer model of human CNV
compared to laser-induced models, in part because Matrigel mimics sub-RPE deposits associated
with human CNV [53,56-60]. The much larger eye size, longer half-time, and residence time of
therapeutics makes the rabbit model ideal for efficacy, pharmacokinetics, and toxicology studies.
We believe that the two animal models of CNV we developed, resistant to anti-VEGF therapies, are
valid models for anti-VEGF resistance in AMD to test new therapies. Currently, no other animal
models are available for this purpose. As no animal models fully recapitulate all features of
neovascular AMD, successful strategies that have demonstrated promise in alleviating anti-VEGF
resistance in aged animals must be evaluated in clinical trials.

3. Role of Macrophages in Anti-VEGF Resistance.

Several lines of evidence suggest that the accumulation of intracellular lipids in old
macrophages plays a critical role in anti-VEGF resistance. Firstly, decreased efficacy of anti-VEGF
therapy with age correlates inversely with age-dependent increase of intracellular lipids in
macrophages [38]. Secondly, macrophage depletion in old mice converts arteriolar CNV to capillary
CNV [9] and restores CNV sensitivity to anti-VEGF treatment [38]. Thirdly, macrophages in
surgically excised human CNV membranes following bevacizumab treatment have increased
density and proliferative activity [61], and the proportion of circulating CD11b+ monocytes
correlates with the number of anti-VEGF injections in patients with neovascular AMD and PCV
[62]. Actions of lipid laden macrophages are also consistent with the well-established roles of
monocytes and macrophages in promoting arteriogenesis by releasing growth factors, proteases
and chemokines that mediate structural remodeling of the extracellular matrices, cell proliferation,
and migration [63-66]. Both preclinical and clinical studies are consistent with an involvement of
neovascular remodeling, in which macrophages are known to play important roles in anti-VEGF
resistance [9,14,64].

Consistent with contributions of lipid-laden macrophages in human arteriolar CNV formation,
Lutty et al, identified a high frequency of activated HLA-DR* macrophages associated with
arteriolar CNV in human postmortem CNV specimens (Figures 9 and 10 in Ref [67]). In addition to
lipid-containing microglial cells found in type 3 neovascularization [68], hyperreflective lipid-filled
cells of monocyte origin (i.e., macrophages) have been detected in neovascularization AMD [69].
Curcio and colleagues suggest that these monocyte-derived cells filled with lipid droplets resemble
foam cells in coronary artery plaques [69], which is well-known to promote inflammation in
association with atherosclerosis. Oxidized lipoproteins and macrophages were colocalized with
CNV lesions and most macrophages in the CNV membranes expressed oxidized lipoprotein-
specific scavenger receptors, suggesting a close link between oxidized lipoproteins and
macrophages in AMD [70]. Transcriptomic profiling showed that impaired cholesterol homeostasis
is perturbed in aged macrophages, and that oxysterol signatures in patient samples distinguish
AMD from physiologic aging [71]. Expression of ABCA1 and cholesterol efflux are reduced in aged
macrophages in mice and humans (old people and AMD) [72], and ABCA1 polymorphisms are

doi:10.20944/preprints202401.1078.v2
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associated with advanced AMD [73]. Multiple studies confirm the involvement of dysregulated
lipid metabolism, macrophages, and inflammation in CNV [59,61,71,72,74-85], as well as beneficial
roles of lipid lowering medications in reducing the risk of CNV, diabetic retinopathy, and diabetic
macular edema [86-89]. It should be stressed that it can be difficult to definitively distinguish
between microglia and macrophages by in vivo imaging of human patients. Although our
macrophage depletion experiments suggests that blood-derived macrophages contribute to anti-
VEGEF resistance [38], retinal microglia may also be involved in anti-VEGEF resistance.

Positive and negative roles have been assigned to macrophages in the progression of CNV
pathogenesis. Macrophages may play a beneficial role in eliminating drusen and waste products,
potentially reducing the formation of CNV [90,91]. Macrophages from young but not old mice
inhibit experimental CNV [72,78]. Nevertheless, substantial evidence using multiple criteria
including histology and genetics in both animal models and human patients supports the
involvement of macrophages in CNV pathogenesis, particularly evident in their consistent presence
within CNV lesions expressing elevated VEGF [59,62,72,74,75,78-83,92]. Macrophage activation is
also associated with CNV [92]. Notably, during subretinal neovascularization, endothelial cells
migrate through defects in Bruch’s membrane, primarily composed of elastin and collagen.
Macrophages, expressing matrix metalloproteinases, contribute to the breakdown of Bruch’s
membrane. Our data suggest that cholesterol dysregulation, inflammation, and macrophage
activation underline the pathological role of aged macrophages in anti-VEGF resistance. Thus, we
propose a strategic approach to manage anti-VEGF resistance by selectively targeting activated
inflammatory macrophages. This can be achieved by normalizing the lipid rafts of activated
macrophages, referred to as “inflammarafts [93,94],” in CNV lesions (refer to “treatment strategies”
below). This approach ensures the targeted intervention of the pathology without compromising
the protective functions of macrophages at various stages of lesion progression.

4. Treatment Strategies for Anti-VEGF Resistance by Simultaneously Targeting Capillary and
Arteriolar CNV.

Our results suggest that while VEGF-dependent capillary angiogenesis is dominant in CNV
pathogenesis of young mice, inflammation-dependent neovascular remodeling and arteriolar CNV
formation involving macrophages becomes dominant in aged mice and contributes to anti-VEGF
resistance. Therefore, an effective treatment strategy requires the targeting of both capillary and
arteriolar CNV. Because CNV is driven by abnormal levels of angiogenesis and inflammation with
critical roles for VEGEF-A, endothelial cells, and macrophages, we explored a new treatment strategy
that targets each of these central elements to address the limitations of current anti-VEGF [38,39].

Cholesterol-rich lipid rafts harboring activated receptors (e.g., VEGFR2, TLR4) serve as the
organizing platform to initiate angiogenic and inflammatory signaling [93,95-97]. Extracellular
apolipoprotein A-I (apoA-I) binding protein (AIBP) regulates lipid rafts via augmenting cholesterol
efflux from endothelial cells, macrophages, and T cells, resulting in inhibition of angiogenesis and
atherosclerosis, etc. [38,98-105]. AIBP binds its partner apoA-I or high-density lipoprotein (HDL) to
enhance cholesterol efflux and inhibit lipid raft-anchored VEGFR2 signaling in endothelial cells
[38,98]. By binding to the toll-like receptor 4 (TLR4), AIBP/apoA-I augments cholesterol efflux from
macrophages and microglia, normalizes plasma lipid rafts, and suppresses inflammation
[94,99,100,106]. The ability of AIBP to target both hyperactive endothelial cells and cholesterol-
laden macrophages makes it an ideal candidate to address the challenge of anti-VEGF resistance in
CNV treatment. We found that a combination of AIBP/apoA-I and anti-VEGF treatment
ameliorated anti-VEGF resistance to aflibercept in experimental CNV in old mice by robustly
inhibiting arteriolar CNV (Figure 3) [39]. Despite sharing endothelial VEGFR2 signaling as a
common target, combined AIBP and anti-VEGF provides synergistic therapeutic benefit for CNV.
This is because macrophages that are recruited by VEGF to lesion sites of inflammation secrete
additional VEGF and other pro-angiogenic factors thereby creating strong positive feedback loops
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[76,77,107]. Thus, both anti-VEGF agents and AIBP are required to interrupt the vicious cycle of
events initiated by the reciprocal causal nexus of VEGF and inflammation.
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Figure 3. Comparison between aflibercept and combination therapy (AIBP, apoA-I, and aflibercept)
in suppressing laser-induced CNV in old mice. Representative (A) FA, (B) ICGA, and (C) Alexa 568
isolectin labeled RPE/choroid flatmounts of CNV lesions after treatments. (D) CNV vessel type
quantification based on isolectin-B4 staining. The numbers inside the bars indicate the number of
CNV laser spots. (E) Quantitative results of the percentage increase of fluorescent area in CNV
lesions between the early and late phases of FA. (F) Quantitative results of normalized CNV area.
Old mice were treated on day 2 (A-E) and were analyzed at day 7 post laser injury. Mice treated on
day 4 showed similar results. Bars represent mean + SD. NS, P > 0.05; *, P < 0.05; *, P < 0.01; ***, P <
0.001; ***, P < 0.0001. Adapted from Zhang, Z., Shen, M. M. & Fu, Y. Invest. Ophthalmol. Vis. Sci.
(2022) 63(12):2.

Whereas the precise mechanism for arteriolar CNV formation is unknown, our results indicate
that it shares features with arteriogenesis while capillary CNV forms via angiogenesis, in which
new capillary blood vessels sprout from a preexisting blood vessel. Although angiogenesis is highly
VEGF dependent, arteriogenesis is not VEGF dependent [108-110]. In support of this hypothesis,
we found that capillary CNV in young mice is highly responsive to aflibercept while arteriolar CNV
in old mice is resistant [39]. These findings are consistent with clinical findings that anti-VEGF
resistance in CNV patients is frequently associated with arteriolar CNV while anti-VEGF
responders are associated with capillary CNV [9]. Yet despite this, current nAMD drugs only target
angiogenesis with minimal or no effects on arteriogenesis. AIBP/apoA-I/anti-VEGF combination
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therapy resolves this issue by simultaneously targeting VEGF-dependent angiogenesis and VEGF-
independent arteriogenesis (Figure 4).

Anti-VEGF therapy AIBP/apoA-l/anti-VEGF combination
Anti-VEGF Anti-VEGF AlBP/apoA-|
AIBP binding to
activated TLR4
VEGF VEGF Cholesterol
neutralization neutralization
apoA-|
Endothelial Endothelial Macrophages
cells cells
VEGFR2 VEGFR2 Inflammation l
signaling arteriogenesis T signaling S:gxg S;thgtrg

angiogenesisl angiogenesis 1 arteriogenesis l

Anti-VEGF resistance Amelioration of Anti-VEGF resistance
Sub-optimal CNV management Optimal CNV management

Figure 4. Comparison of anti-VEGF monotherapy with AIBP/apoA-I/anti-VEGF combination
therapy in the treatment of CNV. Anti-VEGF therapies neutralize VEGF, inhibit VEGFR?2 signaling
in endothelial cells, and thereby inhibit angiogenesis and capillary CNV. However, this treatment
results in unchecked arteriogenesis, vessel abnormalization, and arteriolar CNV formation, leading
to anti-VEGF resistance and sub-optimal CNV management. In AIBP/apoA-I/anti-VEGF
combination therapy, AIBP binds to activated TLR4 and augments cholesterol efflux from
macrophages and microglia to apoA-I, normalizing plasma lipid rafts and suppressing
inflammation, which inhibits arteriolar CNV. Simultaneously, anti-VEGF therapies inhibit VEGFR2
signaling in endothelial cells, thereby suppressing angiogenesis and capillary CNV. Thus, the
combination therapy leads to the amelioration of anti-VEGF resistance and optimal CNV
management.

As discussed above, macrophages may have varying roles in CNV. How can we ensure the
proposed combination therapy only targets pathological macrophages? This is achieved through
the selectivity and normalization properties of AIBP on lipid rafts of activated target cells. Previous
studies have shown that AIBP selectively targets lipid rafts of activated macrophages/microglia and
inhibits inflammatory signaling by binding to activated (e.g., dimerized) TLR4 [93,94,106]. AIBP
normalizes lipid rafts of activated macrophages/microglia (i.e., inflammarafts [93]) [94], reducing
the proinflammatory and proangiogenic

subtypes (i.e., pathogenic) without affecting normal macrophage function including their
protective functions.

Out of the three components, infusion of HDL/apoA-I had been tested in clinical trials in the
treatment of atherosclerosis. Whereas HDL/apoA-1 targeted therapies successfully ameliorate
plaque in atherosclerosis mouse models, clinical trials failed to show significant reduction of human
atheroma (reviewed in Ref [111]). Multiple possible reasons may account for the different responses
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of humans versus animal models to HDL/apoA-1 replacement therapy. One study reported that
raising apoA-1 had striking stage-specific atheroprotective effects [112]. When initiated at early
stages of disease, apoA-I markedly inhibited atheroma progression and systemic inflammation, but
these benefits were attenuated when treatment was initiated at later times in mice with advanced
atheroma. Most preclinical studies reporting such benefits were performed in young mice with
early-stage lesions [113-115] whereas large-scale HDL-raising clinical trials in elderly patients with
established plaque failed to show benefit. This is antiparallel to our studies that demonstrate
efficacy of combination AIBP/apoA-I/anti-VEGF therapy in old mice with severe arteriolar CNV
lesions that resemble arteriolar CNV in anti-VEGF resistant AMD patients [39]. In addition, we
have shown that: 1) apoA-I alone is insufficient to treat laser-induced CNV (Figure 6a,b in Ref. [38]);
and 2) AIBP/apoA-I is insufficient to treat arteriolar CNV in old mice (Figure 6e in Ref. [38]). The
likely reason is that AIBP can significantly enhance apoA-I's ability to remove cholesterol from
target cells (e.g., macrophages and endothelial cells) [38,94,98-100,106]. That is why we propose to
develop the AIBP/apoA-I/anti-VEGF combination therapy.

5. How Does the Combination Therapy Compare with Anti-VEGF Gene Therapy and Higher
Dose Anti-VEGF Regimen Currently in Development?

AMD is a complex multi-factorial disease. It is unrealistic to expect that targeting one factor or
one pathway will solve all the problems. The anti-VEGF gene therapy and higher dose regimen that
are currently in development only target VEGF-dependent angiogenesis without targeting
arteriogenesis, which are unlikely to resolve resistance (see Discussion regarding high dose regimen
in 1. Limitation of anti-VEGF therapies). In the HARBOR trial, high dose ranibizumab (2.0 mg) did
not increase efficacy in treatment-naive patients [116]. In the recently completed PULSAR trial, 8
mg aflibercept sustained improvements of visual acuity and retinal anatomy at 22 months with 36%
fewer injections relative to the standard 2-mg dose, suggesting the potential to reduce treatment
burdens. However, there is no evidence that the high-dose aflibercept eliminates anti-VEGF
resistance. Rather, there is evidence that this unbalanced treatment targeting VEGF-dependent
angiogenesis alone can cause vessel abnormalization, arteriolar CNV formation, and anti-VEGF
resistance [14,37] (Figure 4). Combination therapy has an advantage by targeting both angiogenesis
and arteriogenesis. A possible analogy is anti-human immunodeficiency virus (HIV) “cocktail”
therapy that slows the progression of HIV markedly better than any monotherapy.

6. Perspectives

Because long-term efficacy of anti-VEGF therapy is suboptimal and repeated anti-VEGF
treatment can lead to arteriolar CNV and anti-VEGEF resistance [14,37], we predict that combination
therapy with AIBP/apoA-I/anti-VEGF not only overcomes anti-VEGF resistance for monotherapy
non-responders, but also improves therapeutic efficacy at all levels of anti-VEGF response in the
treatment of nAMD. Combination therapy has the potential to replace current anti-VEGF
monotherapies and become a new first-line therapy. The global anti-VEGF therapeutics market size
was valued at USD 12.3 billion in 2022 and is estimated to reach USD 13.7 billion by 2031,
representing a significant portion of global healthcare cost. Our objective is to generate preclinical
efficacy and safety data to support an Investigational New Drug (IND) application for AIBP/apoA-
I/aflibercept therapy and advance to a first-in-human Phase I clinical trial that will ultimately
benefit a wide range of nAMD patients including anti-VEGF non-responders and responders with
sub-optimal long-term efficacy.
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