

Article

Not peer-reviewed version

Students' digital Competence Development in the Production of Open Educational Resources in Education for Sustainable Development

[Mirjam Braßler](#) *

Posted Date: 15 January 2024

doi: [10.20944/preprints202401.1054.v1](https://doi.org/10.20944/preprints202401.1054.v1)

Keywords: digital competence; higher education for sustainable development; open educational resources; OER; open educational practices; OEP; students as producer

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Students' Digital Competence Development in the Production of Open Educational Resources in Education for Sustainable Development

Mirjam Braßler

Institute of Psychology, University of Hamburg, 20146 Hamburg, Germany; mirjam.brassler@uni-hamburg.de

Abstract: Open Education, Open Educational Practices (OEP), and Open Educational Resources (OER) have emerged as significant opportunities for enhancing global sustainability information sharing. However, the creation and sharing of OER, as well as the usage of OEP in Higher Education for Sustainable Development (HESD), remain limited. This study explores the implementation of OEP in HESD, aiming to empower students to co-produce OER on Sustainable Development (SD). This study, drawing on the theoretical approach of the principle of constructive alignment, proposes the development of students' digital competence in OER production. A two-group pre-test post-test analysis of 409 students (Psychology, Economics, Education, Geography) reveals a significant increase in digital competence over time among students who produced OER on SD, compared to their peers enrolled in courses unrelated to OER content development. We delve into the practical implications for designing OEP in HESD and strategize to support students in their OER production processes.

Keywords: digital competence; higher education for sustainable development; open educational resources; OER; open educational practices; OEP; students as producer

1. Introduction

The adoption of Open Education, Open Educational Practices (OEP), and Open Educational Resources (OER) has emerged as an important topic in higher education development. UNESCO [1] strongly promotes the production and release of OER to enhance information sharing, media access, education, and participation worldwide. The implementation of OER and OEP has the potential to support the 2030 Sustainable Development Agenda, particularly SDG 4 (Quality education) [2]. OER on Sustainable Development (SD) provides teachers and learners with free access to learning materials and resources such as open textbooks, videos, and assignments, on topics such as climate change, migration, and water scarcity. The implementation of Education for Sustainable Development (ESD) in schools and Higher Education for Sustainable Development (HESD) at universities depends on access to appropriate educational resources on SD. However, the creation, sharing, and usage of OER remain low [3,4].

The aim of this study is to investigate the implementation of OEP in HESD. The study focuses on enabling students to co-produce OER related to sustainability. In this study, we follow Cronin's definition of OEP as "*collaborative practices that include the creation, use, and reuse of OER, as well as pedagogical practices employing participatory technologies and social networks for interaction, peer-learning, knowledge creation, and empowerment of learners*" [3] (p. 18). The study presents an interdisciplinary teaching and learning arrangement that incorporates various elements of OEP. These include interdisciplinary peer-learning, student construction of OER, educators acting as facilitators, and the use of participatory technologies to enhance open peer-reviews.

The potential link between OER produced by students as a result of their learning activities and open practices has been largely overlooked [5]. This approach could have benefits for the OER product itself, a potential shift towards a participatory culture, as well as the students' development in HESD. Some scholars have suggested that students would enhance their digital competence in OER production [3,6,7]. The present study aims to test the hypothesis by examining the development

of students' digital competence using a two-group pretest-posttest design. The study compares the development of students who produce OER in HESD with that of students who do not engage in OER production. As the first exploratory study on students' digital competence development in HESD, this research strongly contributes to the understanding of students' learning in the co-production of OER on SD, which is highly demanded [8–11].

2. Open Educational Practices and Students' potential Role in OER Production

Enabling students to co-produce OER entails several potential advantages. These include improving the quality of the OER product, enhancing students' development, and promoting a participatory culture in higher education.

2.1. Potential Advantages regarding the OER-Product

Students might uphold a key position in the sustainability OER production. First, they are prosumers of learning resources. They are both consumers and producers of learning resources, participating in lectures and reading books while also creating summaries and readers as part of their studies. According to Ha and Yun [12], students are more likely to be media prosumers than the general population. Secondly, the target group of OER students should be aware of what kind of OER on sustainability is understandable, useful, and appealing to them. This will enable them to produce authentic OER that address the needs of students. Thirdly, students can act as useful multipliers of their produced OER by sharing them with potentially interested students. Hodgkinson-Williams and Paskevicius [13] state that students have a greater awareness of open platforms, cloud-based services, and repositories for sharing materials than educators. Fourthly, students are subject to different legal conditions than educators. While educators are legally bound to consult their employer before publishing their work as OER, students hold the copyright as authors and can directly publish their work as OER.

2.2. Potential Advantages regarding a Participatory Culture

Enabling students to create and construct knowledge to produce OER on SD has the potential to increase their active participation in HESD. This shift from teacher-centred to student-centred learning is crucial to implement competence orientation in education for sustainable development (ESD) [14]. Open Education is strongly associated with democratic learning, civic engagement, co-production of knowledge, and student empowerment [3,5–7]. These aspects are aligned with successful ESD [15–19]. Educators value OEP for social learning by implementing peer-learning and co-construction of knowledge [3,5]. Additionally, educators report a shift from the traditional teacher role to an advisory role in OEP [3,5]. Nel [20] promotes the incorporation of partnership in OEP to involve students as active contributors rather than objects of instructional learning. Hodgkinson-Williams and Paskevicius [13] provide a successful example of collaboration and co-authorship between postgraduate students and academics in OER production. Students and academics value each other's support, expertise, and shared responsibilities. These descriptions, experiences, and results suggest the untapped potential of students co-producing open educational resources on sustainable development in higher education for sustainable development.

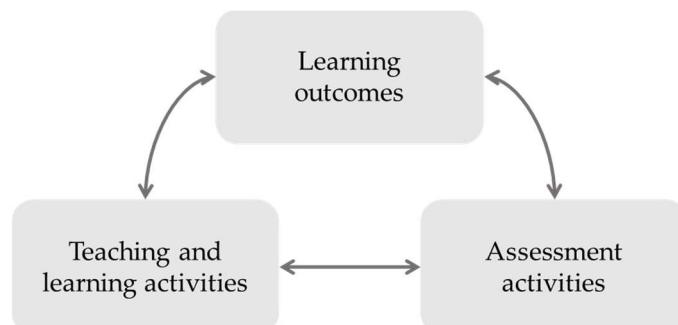
2.3. Potential Advantages regarding Student's Development

Engaging students with OER can help develop valuable competencies for working in the knowledge and digital age. Littlejohn and Hood [21] report on the learning opportunities for educators through their engagement with OER and the construction of new expertise and knowledge. The same opportunities are available for students. Master-man's [5] qualitative interview study suggests that educators should expect students to develop their communication and analytical skills in their discipline while creating OER. Additionally, engaging students in OER production on SD can increase their awareness and knowledge of OER and sustainability, different forms of licensing, and potentially introduce them to the *Openness Movement* and their engagement for SD. This is particularly relevant for teacher students, as it is essential to improve their knowledge of OER and related competencies in order to apply OEP, OER, and ESD in their future teaching activities [6]. Consistent with this argument, teacher students who have produced OER report the development of

creativity skills, positive attitudes towards Open Education, and intentions to further develop and use OER [22].

Several scholars expect students to develop digital competencies in OER production [3,6,7]. Digital competence is a pressing need for students in the 21st century. According to the European Commission's 2.1 version of the DigComp framework, digital competence includes five areas: (1) information and data literacy; (2) communication and collaboration; (3) digital content creation; (4) safety; and (5) problem-solving [23]. In today's increasingly digital society, digital competence is essential for building a sustainable future [24]. Some experts even advocate for the development of 'digitainability' - the combination of digitalization and sustainability [25]. Despite students' high self-perception of their digital competence [11,26,27], their actual competence is lacking [9,28]. Currently, there are limited opportunities for students to acquire these competencies through HESD training programs [11,25]. Due to this reason, there is a shortage of research on the development of students' digital competence [9]. This study aims to address this gap by examining the development of students' digital competence in creating OER on different sustainability topics in HESD.

3. Theoretical Framework


The present study draws on theoretical approaches to learning and competence development originated in educational sciences as well as psychology.

3.1. Constructivism

The constructivist philosophy focuses on learning as an active process in which the inquiry of knowledge is based on personal experiences and interactions with the environment [29,30]. Humans as learners perceive the world, interpret activities, and construct knowledge through questions, tests, and answers in an iterative process. Enabling students in OER development and production in teams represents such a student-centered pedagogy that facilitate collaborative teamwork toward an understanding and reflection of real-life, complex problems. Encountering a (sustainability related) problem functions as an incentive or goal for learning and consequently leads to actual learning [29]. Engaging students interdisciplinary peer-learning enables them to reconstruct knowledge by reproducing knowledge from other disciplines and deconstruct existing knowledge by identifying disciplinary limitations [31]. Thereby it qualifies students to co-construct knowledge by innovatively integrating ideas across disciplinary cultures and languages aligned with social constructivism [30].

3.2. Constructive Alignment

In accordance with the current educational debate on competence orientation, providing students with the ability to produce OER on SD can extend beyond the construction, co-construction, and application of knowledge about SD. This learning process has the potential to enhance competencies that enable a person to act within a complex situation. Especially in ESD at university-level the implementation of competence orientation in planning teaching and learning processes is necessary to address and enhance students' competence development [14]. One theoretical approach combining constructivism and aligned educational design for outcomes-based teaching towards competence development is the principle of constructive alignment [32]. Figure 1 illustrates the core elements of the principle.

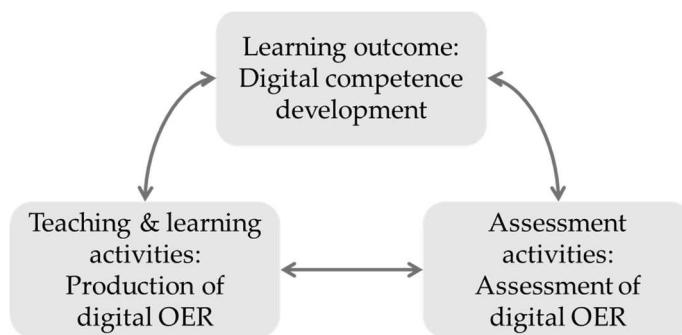


Figure 1. Core elements of the principle of constructive alignment [32]

Teaching fulfils this principle if learning outcomes are competence-oriented and communicated in advance, if performance assessments measure students' achievement of those, and if teaching and learning activities help students to achieve them. The educator should create appropriate learning environments while students construct their own learning through engagement in relevant activities.

3.3. Digital Competence Development

Paskevicius [6] presents a model that aims to transfer the principle of constructive alignment to the design of OEP. The model addresses opportunities to strengthen openness in each component of design. The model includes open practices for designing learning outcomes, activities, resources, and assessments. These practices involve increasing transparency, co-creation of learning outcomes and objectives by students, usage of OER, and collaborative learning. Additionally, students are involved in the assessment process as producers and peer-reviewers of OER. The present study aims to develop students' digital competence as a learning outcome. Digital competence can be described in five areas, according to the European Commission [33] "1) *Information and data literacy, including management of content*; 2) *Communication and collaboration, and participation in society*; 3) *Digital content creation, including ethical principles*; 4) *Safety*; and 5) *Problem solving*." Following the principle of constructive alignment in OEP design, these learning goals can be achieved through appropriate open learning activities and assessments formats. Figure 2 illustrates the application of the principle of constructive alignment to the design of OEP with the aim of developing digital competence in this study.

Figure 2. Application of the principle of constructive alignment in OEP design

Consequently, students can develop digital competencies if they are informed of this goal in advance, if their learning activities focus on digital content creation, collaboration, and problem-solving, and if the chosen assessment format also addresses these areas of learning. This study demonstrates a potential application of the principle of constructive alignment in OEP design. In order to develop students' digital competence, educators and students focus on producing digital OER in the form of digital scripts and videos covering various topics related to SD. The assessment is based on this production.

4. Context of the Study

Three educators implemented an interdisciplinary course at the University of Hamburg with the aim of producing OERs on various topics of sustainability for the Hamburg Open Online University. The Hamburg Open Online University as well as core elements of the concept of the interdisciplinary course on OER production are described in the following.

4.1. Hamburg Open Online University

The Hamburg Open Online University (HOOU) was established in 2015 to provide a digital learning platform for students and society in Germany. The HOOU is a collaborative project supported by a network of six Hamburg state universities, the Ministry of Science, Research and Equal Opportunities, the Senate Chancellery, and the Multimedia Kontor Hamburg. The HOOU published a call for proposals to apply for financial support for the development and production of OERs from various disciplines and in multiple formats, with the aim of establishing a repository.

4.2. Concept of the OER Production Course

To enable students to produce Open Educational Resources (OER) within their studies, three lecturers from the departments of Psychology, Economics, Education, and Geography developed, planned, and executed an interdisciplinary course at the University of Hamburg, Germany. The twelve-credit course at the bachelor level was attended by 86 students from the four aforementioned departments. The following section describes several core elements of the teaching-learning-arrangement.

3.2.1. Sustainability

The course focused on sustainability. Interdisciplinary student teams selected an issue related to sustainable development from a set of newspaper articles. The teams formulated the following topics:

- Change – By Design or Disaster (Is there a limit to growth in society and economy?)
- This is not for my carryout bag (Can we live plastic free?)
- Water scarcity (What would happen if water were privatized?)
- Homo plasticus (What are the consequences of plastic consumption for humans?)
- Voices of refugees in Hamburg (What could be successful integration and how can we support it?)
- Eating better (How can we eat in a sustainable way?)
- Germany is the European champion of packaging waste (How can we reduce packaging waste?)
- Sustainability powerlessness (How can we deal with the feeling of powerlessness and what can we do?)
- I missed that this is my problem! (How can we organize waste separation more effectively?)
- Finally good news (How can refugees contribute to a sustainable change in society?)

All topics are so complex that they need an interdisciplinary approach to gain novel ideas and solutions, that are holistic and address the multiplicity.

3.2.2. Interdisciplinary Peer-Learning

To promote interdisciplinary peer-learning, students were divided into ten interdisciplinary teams, each consisting of individuals from different academic disciplines in roughly equal proportions. Each team followed the same process to identify interdisciplinary solutions to a complex problem related to sustainable development. At every step of their interdisciplinary teamwork, students were required to integrate knowledge from all relevant disciplines.

3.2.3. Empowerment of Learners

Each interdisciplinary student team followed the steps of interdisciplinary problem-based learning [31]. First, the students discussed unfamiliar concepts and discipline-based technical terms related to the sustainability topic. Second, within their chosen sustainability framework, they defined their interdisciplinary problem statement by integrating viewpoints across disciplines. Third, they brainstormed discipline-based information, data, techniques, tools, perspectives, concepts, and theories related to their interdisciplinary problem and collected ideas, explanations, and hypotheses for the underlying problem. Thereafter, they identified discrepancies, interrelationships, and gaps between the disciplines. Next, they defined interdisciplinary learning objectives by formulating questions that are relevant to the team and addressing each discipline involved. Guided by their questions and interests, students searched for and read academic research papers across disciplines. Back in session, students presented the answers they had found and learning objectives across disciplines and discussed and integrated their new ideas. They formulated an integrative team statement with identified solutions regarding their interdisciplinary problem statement by integrating discipline-based information, data, theories, and related research outcomes.

3.2.4. Focus on Open Educational Resources Production

The interdisciplinary student teams were assigned to write digital scripts and produce 'lessons learned' videos as OERs to communicate their interdisciplinary solution strategies for complex sustainability problems in society. To ensure the quality of the OERs, students were instructed on correct and effective science communication, OER licensing, and the benefits of appealing designs. In terms of science communication, we recommend that students use discipline-specific terminology and professional language with care, ensuring that their content is comprehensible to individuals from other disciplines as well as non-academics. In the production of OER videos, students were informed about legal conditions regarding personal rights, the right to their own image, avoidance of trademarks, and dealing with intellectual property. This included identifying and embedding free music, sound effects, and pictures.

To further enhance students' OER production, we established several feedback loops. All students were invited to comment on the digital scripts of their peers on the Online Platform OLAT. To ensure scientific quality, each interdisciplinary team received a review written by all educators from every discipline involved in the paper. We also implemented several opportunities to receive feedback to enhance video production quality. After identifying their main ideas and solution approaches, the students developed a storyboard. Each interdisciplinary team presented their storyboard to their peers to gain feedback on internal logic, comprehension, and visualization. Additionally, a technical consultant provided feedback on sound effects, lighting, camera work, and editing before the final cut. They also suggested implementing accessibility features such as subtitles and audio descriptions for people with disabilities.

All students were graded on their produced OERs, hence, their interdisciplinary digital scripts as well as their "lessons learned" videos.

3.2.5. Role of the educators

The educators in the interdisciplinary course acted as facilitators rather than simply transmitting knowledge. During each session, they rotated between the interdisciplinary teams to support idea generation, provide scientific or technical advice, and answer any questions related to OER. During off-sessions, the educators provided weekly consultation hours on demand: discipline-based expertise, technical expertise regarding shooting and editing of videos, and team expertise in case of conflict within the interdisciplinary student teams.

5. Materials and Methods

5.1. Sample and design

To compare students' digital competence development in the OER production with other students, who did not produce OER, we applied a two-group pretest-posttest design. The study sample consisted of 409 students of four different disciplines (Psychology, Economics, Educational Sciences, Geosciences). 83 students were participants of the OER production course while the remaining 326 comprised the *control group*. All students of the control group were in the same cohort as students of the OER production course, but instead participated in a seminar in their respective discipline that was unrelated to OER content development. All students were handed a pencil-paper-questionnaire at the beginning and at the end of the semester.

5.2. Instruments

Digital competencies were measured using the following five items from the Creative Internet Skills Scale by van Deursen, Helsper, & Eynon [34]:

- "I know how to create something new from existing online images, music or video."
- "I know how to make basic changes to the content that others have produced."
- "I know how to design a website."
- "I know which different types of licenses apply to online content."
- "I would feel confident writing and commenting online."

Following the translation and adaption guidelines by Hambleton and de Jong [35], all items were translated into German and back into English, so three native speakers could compare the original

and backwards translation on literal and contextual equivalence with satisfying results (all over 90%). All items were answered on a five-point Likert scale ranging from 1 ("strongly disagree") to 5 ("strongly agree"). The reliability of the scale is considered acceptable for both the baseline as well as the post-course measurement with an internal consistency of $\alpha_1 = .84$ and $\alpha_2 = .88$, respectively.

6. Results

Table 1 shows the means and standard deviations of Time 1 (beginning of the semester) and Time 2 (end of the semester) of students' digital competence.

Table 1. Means and standard deviations of Time 1 and Time 2 of students' Digital Competence.

	<i>M₁</i>	<i>SD₁</i>	<i>M₂</i>	<i>SD₂</i>
OER Students	2.49	0.92	3.42	0.99
Control Group	2.22	0.89	2.54	0.90

A 2x2 repeated measures ANOVA with Time (Time 1/Time 2) and Group (OER students/control group) as factors and digital competence as dependent variable was conducted.

The analysis yielded a significant main effect of Time, $F(1,191) = 59.7$, $p < .001$, and a significant Time x Group interaction, $F(1,191) = 22.4$, $p < .001$. The main effect was large sized, $\eta_p^2 = .238$, while the interaction produced a medium sized effect, $\eta_p^2 = .105$. Figure 3 shows the increase of OER students' digital competence compared to the control group.

Figure 3. A comparison of the digital competence of OER students and the control group. Showing beginning (Time 1) and end of semester (Time 2).

7. Discussion

The adoption of Open Education, Open Educational Practices (OEP) and Open Educational Resources (OER) has emerged as an important goal to enhance sustainability information sharing, access to sustainability education and participation across the globe in Higher Education for sustainable Development (HESD) [1,2]. Unfortunately, both creation and sharing of OER as well as usage of OEP remain low [3,4]. The potential benefits of implementing OEP to enable students to co-produce OER have been overlooked [5]. This approach could aid in the development of students' digital competence [3,6,7]. The current study compared the digital competence development of students who produce OER in HESD with that of their peers who do not engage in OER production. As the first exploratory study on the subject, this research provides insights into students' learning through the co-production of OER on SD, which is highly demanded [8–11].

The results of the two-group pretest-posttest analysis of students' digital competence development show that students that co-produce OER on SD have a significant increase in comparison to their cohort who participate in seminars unrelated to OER content development. This result suits the principle of constructive alignment [32] and its application to open education [6] in HESD [14]: By communicating students digital competence development as learning objective, enabling to actively create digital content as OER on SD in interdisciplinary teams, and grading on their produced OER (digital scripts and "lessons learned" videos), students can further develop their digital competence in HESD. This supports the assumptions of open education scholars that students would benefit from producing OER [3,7]. Furthermore, these results highlight the potential benefits of combining sustainability and digitalisation in higher education [25].

7.1. Practical Implications

The results of this study strongly promote several opportunities that come with the implementation of OEP on sustainability in HESD. Enabling students to co-create OER and communicate open peer-feedback and reviews facilitated participatory education that motivated students and enhanced students' digital competence development. Additionally, students play a crucial role in OER production on SD as they have access to target-group specifications, both in terms of content and language. They can identify sustainability-related themes that are beneficial to other students and apply communication strategies that address their peers.

The transition from teacher-centered learning to student-centered learning presents challenges for educators. Firstly, the shift from advisor to facilitator may leave educators feeling a loss of control, particularly in interdisciplinary teaching and learning [36]. Secondly, supporting students in OER production requires expertise in various areas of knowledge, including diverse discipline-based expertise, technical expertise in video production, and team expertise. On a daily basis, this approach may be overwhelming for educators and not feasible for a single individual. The interdisciplinary course could not have been executed without additional funding from the Hamburg Open Online University (HOOU). Consequently, higher education institutions should establish support programs that facilitate the training of educators and provide financial assistance.

7.2. Limitations and future research

There are several limitations to this study. Firstly, the study was limited by its use of a quasi-experimental design, which could not control for group equivalence, posing a threat to the internal validity of the study. Additionally, the inclusion of a control group could not resolve the self-selection bias [37]. However, Yorio and Ye [38] found no significant difference between quasi-experimental and true experimental subgroups in the learning outcomes of social learning. Secondly, this study did not use an objective measure to investigate cognitive development regarding digital competence. This could have led to socio-cognitive biases or inherent inadequacies in self-evaluations [38]. Thirdly, there is currently no agreed-upon definition or concept of digital competence [9,11,39,40]. Future research should investigate students' development of other related constructs, such as digital literacies, digital intelligence, digital problem-solving competence, or digital team competence in OEP participation and OER production. In particular, the use of the newest instrument, the SDiCoS (students' digital competence scale) [10], could provide valuable insights into students' competence development. Fourth, group effects may have occurred due to students selecting their own interdisciplinary OER project, which prevented randomized matching of learning projects [41]. However, this type of student autonomy is highly recommended to enhance motivation [9]. Fourth, the impact of teachers' characteristics and attitudes [42], as well as their experience and expertise in OER production and digital creation, on student learning cannot be ignored and may have influenced the results. Additionally, the educators of the interdisciplinary course received extra funding from the Hamburg Open Online University to hire video experts who were able to assist students in their creative and production processes. Educators in HESD often lack the necessary digital competencies themselves [43,44]. Future research should investigate the development of educators' digital competence and evaluate specific training models regarding the use and reuse of OERs, as well as the adoption of OEPs.

Funding: This research received no external funding.

Acknowledgments: The author thanks the Hamburg Open Online University (HOOU) for their support.

Conflicts of Interest: The author declares no conflict of interest.

References

1. UNESCO. Draft Recommendation on Open Educational Resources. Available online: <https://unesdoc.unesco.org/ark:/48223/pf0000370936> (accessed on 20 October 2023).
2. United Nations. About the Sustainable Development Goals. Available online: <http://www.un.org/sustainabledevelopment/sustainable-development-goals/> (accessed on 17 June 2020).
3. Cronin, C. Openness and praxis: Exploring the use of open educational practices in higher education. *Int. Rev. Res. Open. Dis.* **2017**, *18*(5), 15-34. <https://doi.org/10.19173/irrodl.v18i5.3096>
4. Rodés, V.; Gewerc-Barujel, A.; Llamas-Nistal, M. University teachers and open educational resources: Case studies from Latin America. *Int. Rev. Res. Open. Dis.* **2019**, *20*(1). <https://doi.org/10.19173/irrodl.v20i1.3853>
5. Masterman, E. Bringing open educational practice to a research-intensive university: Prospects and challenges. *Electronic. J. e-Learn.* **2016**, *14*, 31-43.
6. Paskevicius, M. Conceptualizing open educational practices through the lens of constructive alignment. *Open Prax.* **2017**, *9*(2), 125-140. <http://dx.doi.org/10.5944/openpraxis.9.2.519>
7. Watling, S. Student as producer and open educational resources: enhancing learning through digital scholarship. *Enhance. Learn. Soc. Scie.* **2012**, *4*(3), 1-7. <https://doi.org/10.11120/elss.2012.04030013>
8. Otto, D.; Kerres, M. Increasing Sustainability in Open Learning: Prospects of a Distributed Learning Ecosystem for Open Educational Resources. *Front. Educ.* **2022**, *7*, 866917. <https://doi.org/10.3389/feduc.2022.866917>
9. Marrero-Sánchez, O.; Vergara-Romero, A. Digital competence of the university student. A systematic and bibliographic update. *Amaz. Invest.* **2023**, *12*(67), 9-18. <https://doi.org/10.34069/AI/2023.67.07.1>
10. Tzafirkou, K.; Perifanou, M.; Economides, A.A. Development and validation of students' digital competence scale (SDiCoS). *Int. J. Educ. Technol. High. Educ.* **2022**, *19*, 30. <https://doi.org/10.1186/s41239-022-00330-0>
11. Zhao, Y.; Sánchez Gómez, M.C.; Pinto Llorente, A.M.; Zhao, L. Digital Competence in Higher Education: Students' Perception and Personal Factors. *Sustainability* **2021**, *13*, 12184. <https://doi.org/10.3390/su132112184>
12. Ha, L.; Yun, G. W. Digital divide in social media prosumption: Proclivity, production intensity, and prosumer typology among college students and general population. *J. media commun.* **2014**, *6*(1), 45-62.
13. Hodgkinson-Williams, C.; Paskevicius, M. The role of postgraduate students in co-authoring open educational resources to promote social inclusion: A case study at the university of Cape Town. *Distance Educ.* **2012**, *33*(2), 253-269. <https://doi.org/10.1080/01587919.2012.692052>
14. Wilhelm, S.; Förster, R.; Zimmermann, A.B. Implementing Competence Orientation: Towards Constructively Aligned Education for Sustainable Development in University-Level Teaching-And-Learning. *Sustainability* **2019**, *11*, 1891. <https://doi.org/10.3390/su11071891>
15. Pauw, J.B.-d.; Gericke, N.; Olsson, D.; Berglund, T. The Effectiveness of Education for Sustainable Development. *Sustainability* **2015**, *7*, 15693-15717. <https://doi.org/10.3390/su71115693>
16. Kioupi, V., & Voulvoulis, N. Education for Sustainable Development: A Systemic Framework for Connecting the SDGs to Educational Outcomes. *Sustainability* **2019**, *11*(21), 6104. <https://doi.org/10.3390/su11216104>
17. Lozano, R., Merrill, M.Y., Sammalisto, K., Ceulemans, K., & Lozano, F. J. Connecting Competences and Pedagogical Approaches for Sustainable Development in Higher Education: A Literature Review and Framework Proposal. *Sustainability* **2017**, *9*(10), 1889. <https://doi.org/10.3390/su9101889>
18. Martín-Sánchez, A.; González-Gómez, D.; Jeong, J.S. Service Learning as an Education for Sustainable Development (ESD) Teaching Strategy: Design, Implementation, and Evaluation in a STEM University Course. *Sustainability* **2022**, *14*(12), 6965. <https://doi.org/10.3390/su14126965>
19. Sinakou, E., Donche, V.; Boeve-de Pauw, J.; Van Petegem, P. Designing Powerful Learning Environments in Education for Sustainable Development: A Conceptual Framework. *Sustainability* **2019**, *11*(21), 5994. <https://doi.org/10.3390/su11215994>
20. Nel, L. Students as collaborators in creating meaningful learning experiences in technology-enhanced classrooms: An engaged scholarship approach. *Br. J. Educ. Technol.* **2017**, *48*(5), 1131-1142. <https://doi.org/10.1111/bjet.12549>
21. Littlejohn, A.; Hood, N. How educators built knowledge and expand their expertise: The case of open education resources. *Br. J. Educ. Technol.* **2016**, *48*(2), 499-510. <https://doi.org/10.1111/bjet.12438>
22. Tur, G.; Urbina, S.; Moreno, J. (2016). From OER to open education: Perceptions of student teachers after creating digital stories with creative common resources. *BRAIN* **2016**, *7*(2), 34-40. <https://doaj.org/article/88ea286eac0449cfa7236ce7460dc76f>

23. Carretero, S.; Vuorikari, R.; Punie, Y. *DigComp 2.1: The Digital Competence Framework for Citizens*, Publications Office of the European Union, Luxembourg, Luxembourg, 2017. <https://doi.org/10.2760/38842>
24. Gupta, S.; Motlagh, M.; Rhyner, J. The digitalization sustainability matrix: A participatory research tool for investigating digitainability. *Sustainability* **2020**, *1*, 9283. <https://www.mdpi.com/2071-1050/12/21/9283>
25. Sá, M.J.; Santos, A.I.; Serpa, S.; Miguel Ferreira, C. Digitainability—Digital Competences Post-COVID-19 for a Sustainable Society. *Sustainability* **2021**, *13*, 9564. <https://doi.org/10.3390/su13179564>
26. Maderick, J.A.; Zhang, S.; Hartley, K.; Marchand, G. Preservice Teachers and Self-Assessing Digital Competence. *J. Educ. Comput. Res.* **2015**, *54*(3), 326–351. <https://doi.org/10.1177/0735633115620432>
27. Son, J.-B.; Park, S.; Park, M. Digital literacy of language learners in two different contexts. *Jaltcalljournal* **2017**, *13*(2), 1832–4215.
28. Cabezas, M.; Casillas, S. Are Future Social Educators Digital Residents? *Rev. electron. cient. investig. educ.* **2017**, *19*(4), 61–72. <http://doi.org/10.24320/redie.2017.19.4.1369>
29. Dewey, J. *Experience & Education*, Kappa Delta Pi: New York, USA, 1938.
30. Vygotsky, L.S. *Mind in society: The development of higher psychological processes*, Harvard University Press: Cambridge, MA, USA, 1978.
31. Braßler, M. Interdisciplinary problem-based learning – A student-centred pedagogy to teach social sustainable development in higher education. In *Teaching education for sustainable development at university level*; Leal, W.; Pace, P.; Eds.; Springer: Hamburg, Germany, 2016, pp. 245–257.
32. Biggs, J.; Tang, C. *Teaching for quality learning at university*, 4th ed.; The Society for Research into Higher Education & Open University Press: Buckingham, UK, 2011.
33. European Commission. Recommendation on key competences for lifelong learning. Proceedings of the Council on key competences for lifelong learning, 22 May 2018. <https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018SC0014&from=EN>
34. Van Deursen, A.J.A.M.; Helsper, E.J.; Eynon, R. Development and validation of the Internet Skills Scale (ISS). *Inf. Commun. Soc.* **2016**, *19*(6), 804–823. <https://doi.org/10.1080/1369118X.2015.1078834>
35. Hambleton, R.K.; de Jong, J.H.A.L. Advances in translating and adapting educational and psychological tests. *J. Lang. Test.* **2003**, *20*(2), 127–134. <https://doi.org/10.1191/0265532203lt247xx>
36. Lindvig, K.; Ulriksen, L. Different, difficult and local: A review of interdisciplinary teaching activities. *Rev. High. Educ.* **2019**, *43*, 697–725. <https://doi.org/10.1353/rhe.2019.0115>
37. Dahan, T.A. Revisiting Pedagogical Variations in Service-Learning and Student Outcomes. *Int. j. Res. service learn. commun. Engage.* **2016**, *4*(1), 3–15.
38. Yorio, P. L.; Ye, F. A meta-analysis on the effects of service-learning on the social, personal, and cognitive outcomes of learning. *Acad. Manag. Learn. Educ.* **2012**, *11*(1), 9–27.
39. Spante, M.; Sofkova Hashemi, S.; Lundin, M.; Algiers, A. Digital competence and digital literacy in higher education research: Systematic review of concept use. *Cogent Educ.* **2018**, *5*(1). <https://doi.org/10.1080/2331186X.2018.1519143>
40. Saltos-Rivas, R.; Novoa-Hernández, P.; Serrano Rodríguez, R. On the quality of quantitative instruments to measure digital competence in higher education: A systematic mapping study. *PLoS ONE* **2021**, *16*(9), e0257344. <https://doi.org/10.1371/journal.pone.0257344>
41. Gerholz, K.-H.; Listz, V.; Klingsieck, K.B. Effects of learning design patterns in service-learning courses. *Active Learn. High. Educ.* **2018**, *19*(1), 47–59. <https://doi.org/10.1177/1469787417721420>
42. Hattie, J. *Visible learning: A synthesis of over 800 meta-analyses relating to achievement*, Routledge: London, UK, 2008.
43. Littlejohn, A.; Beetham, H.; McGill, L. Learning at the digital frontier: A review of digital literacies in theory and practice. *J. Comput. Assist. Learn.* **2012**, *28*(6), 547–556. <https://doi.org/10.1111/j.1365-2729.2011.00474.x>
44. Mattila, A. (2016). The future educator skills in the digitization era: Effects of technological development on higher education. In Proceedings 5th International Conference on e-Learning, ECONF, Manama, Bahrain, 18–20th Oct 2015. <https://doi.org/10.1109/ECONF.2015.18>

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.