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Abstract: In the industrial field, the 3D target detection algorithm PointPillars has gained popularity.

Improving target detection accuracy while maintaining high efficiency has been a significant challenge.

To address the issue of low target detection accuracy in the PointPillars 3D target detection algorithm,

this paper proposes an algorithm based on feature enhancement to improve the backbone network.

The algorithm enhances preliminary feature information of the Backbone network by modifying it

based on PointPillars with the aid of channel attention and spatial attention mechanisms. To address

the inefficiency caused by the excessive number of subsampled parameters in PointPillars, FasterNet

(a lightweight and efficient feature extraction network) is utilized for downsampling and forming

different scale feature maps. To prevent the loss and blurring of extracted features resulting from

the use of inverse convolution, we utilize the lightweight and efficient up-sampling modules Carafe

and Dysample for adjusting resolution. Experimental results indicate improved accuracy under all

difficulties of the KITTI dataset, demonstrating the superiority of the algorithm over PointPillars.

Keywords: target detection; PointPillars; FasterNet; upsampling; attention mechanism

1. Introduction

With the ongoing advancements in automatic driving, virtual reality, and intelligent

manufacturing, among other application scenarios, the detection of three-dimensional object targets

has emerged as a favoured technique in the realm of computer vision [1]. The advancement in

LIDAR manufacturing processes has lead to a gradual increase in the density of radar output point

clouds, resulting in improved measurement accuracy. As a result, the point cloud 3D object detection

algorithm which utilises point clouds as input, has become a mainstream technology in the field

of vision.Currently, 3D target detection in point clouds relies primarily on point and voxel-based

methods. While the PointNet [2]and VoxelNet [3] approaches have adequately prepared for feature

extraction from point clouds, the data’s sparsity and complexity present difficulties in capturing the

target, leading to poor detection accuracy [4,5].

The PointPIllars 3D target detection algorithm has gained immense popularity in the industry

owing to its high efficiency and accuracy [6]. The algorithm converts three-dimensional point cloud

voxel [3] features into two-dimensional images for detection, thereby greatly reducing operating costs.

However, the main challenge presently is to enhance detection accuracy while maintaining efficiency.

Several scholars from various countries have proposed different methods to address this issue. Ryota

et al. suggest varying voxel sizes and carrying out feature fusion after extracting the features [7]. Li et

al. recommend incorporating the attention mechanism within the voxel and introducing relationship

features between diverse point clouds [8]. Konrad et al. [9] aim to replace the backbone network with

alternative feature extraction networks. However, although these approaches have been attempted,

they only result in marginal improvement of the detection accuracy. In light of this, he suggested that

a considerable amount of parameters in PointPillars are concentrated in the backbone network. As a

solution, novel backbone networks like MobileNet and DarkNet have been employed as substitutes to

the original convolution.

The results showed that this modification greatly enhances detection efficiency. After a

meticulous investigation, this study concludes that enhancing the Backbone network (2D CNN)
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is the most effective way to maximise detection accuracy and efficiency. Downsampling the model and

implementing the attention mechanism, along with sampling the backbone network, can significantly

enhance the detection precision and efficiency.Compared with the existing literatures, the major

contributions of this work can be summarized as follows:

1. Enhancing Features of Pseudo-Images generated through the algorithm via channel attention,

spatial attention, and 1x1 2D convolution.
2. FasterNet [10], a more lightweight network, replaces the feature extraction network resulting

in a significant reduction in module parameters. This replacement not only enhances detection

accuracy but also decreases the number of parameters required.
3. Replacing the original model’s inverse convolution technique involves the implementation of

two up-sampling methods and feature enhancement using proximity scale sampling methods.

2. Related Work

LiDAR data is commonly processed with Deep Convolutional Neural Networks (DCNNs), which

integrate the entire processing flow, resulting in high computational and storage complexity. Target

detection algorithms based on DCNNs outperform traditional methods in terms of detection accuracy

and recognition rate [9]. Traditional 2D image detection algorithms, which utilise a camera as a

data source, rely on an external light source and cannot precisely determine information such as

distance, position, depth, and angle of targeted vehicles and individuals. In contrast, LiDAR generates

three-dimensional point cloud data that provides details such as the object’s position, distance, depth,

and angle, making the data representation more realistic. LIDAR provides the benefits of precise

ranging and does not require visible light [11].

The unstructured and non-fixed-size characteristics of the point cloud hinder its direct processing

by 3D target detectors, therefore, it necessitates transcription into a more condensed structure through

some sort of expression form [12]. Currently, there are two primary expression forms: point-based and

voxel-based procedures. The transcribed point cloud can undergo feature detection via convolutional or

established backbone networks. Networks vary in their feature extraction capabilities and parametric

quantities, thus network choice should be evaluated on a case-by-case basis.

2.1. Point-based, voxel-based approach to target detection

Qi et al. first extracts the PointNet network to derive features directly from the disordered

point cloud. The T-Net network is then employed to predict the affine transformation matrix to

align all the points with features. The symmetric function (MaxPooling) is utilized to address the

disorderedness of the point cloud, while the multilayer perceptron resolves the problem of point

cloud order invariance [2]. PointNet fails to address the issue of uncertain local feature extraction.

To obtain more efficient features, PointNet++ [13] employs a Hierarchical Set Abstraction layer,

with each module using several Set Abstraction modules to extract features. To enhance feature

extraction capability, PointNet++ utilises Hierarchical Set Abstraction (HSA). HSA leverages various

Set Abstraction modules for extracting features. Each module differs in the number of sampling points

and the sampling radius. Consequently, this approach effectively improves local feature extraction.

PointRCNN [14] utilizes PointNet++ for feature extraction, alongside foreground and background

segmentation based on the aforementioned extracted features, 3D frame prediction on each foreground

point, and ultimately further refinement on the object of interest.Whilst these approaches allow for

maximization of geometric point cloud features and consequently improve detection performance,

they do demand extensive time and computational resources during the feature extraction phase [15].

The process of transforming point clouds into voxels involves dividing the space occupied by

the point cloud into blocks of a fixed size. The features of the point clouds within these voxel blocks

are then extracted. VoxelNet algorithm utilises the Voxel Feature Encoder (VFE) to measure and

standardise the features across voxels. Subsequently, a 3D convolutional neural network is employed

to extract the features of the voxels, and finally, an RPN network is used to generate the detection
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frame. Because of the numerous voxels, feature extraction is sluggish. Yan et al. [16] proposed utilising

3D sparse convolution to conduct feature extraction of regulated voxels based on VoxelNet due to the

rarity of the point cloud, which significantly improved the processing speed in contrast to VoxelNet.

Lang et al. [17] et al. recommended PointPillars which effectively columnate the voxel points and

change the height of the voxel to correspond to that of the point cloud space. A straightforward

PointNet is applied to convert the voxel into a pseudo-image, allowing 2D convolution to extract

features while maintaining 3D characteristics, thus significantly increasing the operational speed.

PointPillars is the most prevalent 3D detection algorithm in the industry due to its rapid operation

and exceptional accuracy. Voxel-based techniques have lower detection accuracy than point methods.

How to ensure the detection efficiency on the basis of improving the detection accuracy has become a

research hotspot.

2.2. Feature extraction networks

Different blocks and depths are employed by feature extraction networks to extract features. To

prevent the issue of gradient explosion and gradient disappearance from more extensive models,

He et al. [18] proposed ResNet, which uses residual networks that allow network layers to reach

significant depth. The MobileNet [19] algorithm reduces the number of network parameters by using

depth-separable convolution and introducing shrinkage hyperparameters. This approach provides

excellent support for real-world scenarios in devices with limited computational power. DarkNet [20]

employs a repeated stacked downsampled convolution and residual block architecture, renowned

for its speed and efficiency, particularly in YOLO model series. This structure enables DarkNet to

perform real-time or near real-time target detection, making it ideal for use on devices with limited

computational power [21]. Extraction networks are progressing towards achieving greater accuracy

with fewer parameters, and the utilization of appropriate feature extraction networks can significantly

enhance target detection efficiency and accuracy.

3. Feature-enhanced backbone network

This section will introduce the PointPillars model and how it can be improved for the Backbone

network.

3.1. PointPillars

The PointPillars algorithm comprises three main parts: point cloud columnarisation, backbone

feature extraction, and detection header output, as illustrated in Figure 1.

PointCloud
Pillar Feature 

Net

Backbone(2D 

CNN)

Detection 

Head(SSD)

Figure 1. PointPillars Process.

1. Columnarisation of point cloud. a square box is created based on X-Y, with Z as the vertical

dimension of point columns. Each column comprises multiple points, and a basic PointNet

network is then employed to project the original point cloud onto a 2D plane, generating a

sparse 2D pseudo-image that assists in subsequent feature learning. Technical abbreviations are

explained when first employed [5].
2. Feature extraction. a 2D convolutional neural network downsamples the pseudo-image

several times, creating feature maps with varying resolutions and channels. The

downsampling-generated feature maps are upsampled using inverse convolution to the same

channel and resolution feature maps, and subsequently merged to form the final map.
3. Detection head output. the feature map is fed to the SSD detection head to perform the target’s

classification and the regression of the enclosing frame, obtaining the object’s position and type.
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3.2. FasterNet lightweight feature extraction network

In the original version of the PointPillars network, most of the multiply-add operations (about 84%)

are concentrated in the backbone,specifically in the "top-down" submodule. Thus, potentially, speeding

up this part of the algorithm will have the greatest impact on the time results obtained [9].To create

faster neural networks, researchers have concentrated on reducing FLOPs. However, it’s important

to note that FLOPs and neural network latency don’t always have a direct correlation. To achieve

greater speed, FasterNet utilises Partial Convolution (PConv), which improves the extraction of spatial

features and reduces both redundant computation and memory access. As a result, FasterNet [10]

is considerably quicker than other networks. To fully utilise all channel information, we have

incorporated Point-Wise Convolution (PWConv) after PConv. This enhances the effective sensory field

of input feature maps to resemble a T-shaped Conv, which focuses more on the central position than

regular Conv.

E
m

b
e

d
d

in
g

FasterNet Block

FasterNet Block

Embedding

FasterNet Block

Embedding

PConv

Conv 1x1

Conv 1x1

Figure 2. PointPillars Process.

FasterNet is designed primarily as a combination of Stage and Embedding. Each Stage is subject

to an Embedding or Merging layer for spatial downsampling and expansion of channel number. Each

stage consists of a series of FasterNet Blocks comprised of PConv and PWConv. This paper presents

the fine-tuning of the original FasterNet model to align with the PointPillars setup. The proceedings

are elaborated as follows.

• Block depth settings correspond to PointPillars.
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• Add Embedding before each Block for downsampling.
• The activation function uses GELU as suggested by FasterNet, and PointPIllars remains

unchanged using RELU.

For the modifications in this paper, the parameters and other relevant data were calculated for

PointPillars with FasterNet replacement.

Table 1. Parameter characteristics.total params represent the overall number of trainable parameters in

the downsampling process, such as weights and biases. The total mul-adds and pseudo-add operations

executed during the propagation period is known as Total multiplicative addition, and it enables us to

evaluate the procedure’s complexity. params size measures the amount of memory consumed by the

parameters, with the estimated total size indicating the entire space occupied by the downsampling

process. The estimated total size pertains to the memory that the downsampling process uses.

PointPillar total params total mult-adds(G) params size(MB) estimated size(MB)

PointPillars 4,207,616 29.63 444.66 513.02

OurFasterNet 2,339,712 3.96 91.55 152.78

From the above table, it can be seen that by using FasterNet instead of downsampling, the total

parameters are reduced by almost 50% and the multiply-add operation is reduced by about 9 times.

The detection accuracy is improved after performing the substitution and we will give detailed results

in the next section.

3.3. Attention-based feature enhancement

The primary objective of attentional mechanisms is to suppress the influence of unimportant

regions in an image through a heightened focus on regions of interest [22]. Attention mechanisms can

be categorised into channel attention mechanisms, spatial attention mechanisms, and self-attention

mechanisms. Some commonly used attention mechanism modules include ECA [23], CBAM [24],

SENet [25], PAN, STN and PSA [26] et al.

The channel attention mechanism enhances the network’s expressiveness in the feature

representation by evaluating the significance of each channel. This, in turn, advances the model’s

performance. Each channel of the feature map acts as a feature detector that concentrates on the

positional information within the image.

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

The spatial attention mechanism aims to facilitate the model’s adaptive learning of attention

weights in various regions through the integration of an attention module. This allows the model to

prioritize important image regions while ignoring those that are unimportant. To calculate spatial

attention, the average pooling and maximum pooling are performed in the channel dimensions before

concatenating the feature maps. Then, a convolution operation is applied to the spliced feature maps

to generate the ultimate spatial attention feature maps.

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)])) (2)

The attention mechanism aims to highlight significant features of the image while minimizing

irrelevant regional responses. Through analyzing research on channel and spatial dimensions, the

CBAM (Convolutional Block Attention Module) has been developed and proven to enhance network

performance by accurately directing attention and suppressing irrelevant noise information.

Mcbam(F) = σ((F × Mc(F)× Ms(F × Mc(F)))) (3)
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3.4. Carafe and Dysample Sampling on the Proximity Scale

The commonly used feature up-samplers are NN and bilinear interpolation. They apply fixed

rules to interpolate the low-res feature, ignoring the semantic meaning in the feature map [27]. Max

unpooling has been adopted in semantic segmentation by SegNet [28] to preserve the edge information,

but the introduction of noise and zero filling destroy the semantic consistency in smooth areas. Similar

to convolution, some learnable upsamplers introduce learnable parameters in upsampling. For

example, deconvolution upsamples features in a reverse fashion of convolution. Pixel Shuffle [29] uses

convolution to increase the channel number ahead and then reshapes the feature map to increase the

resolution.

PointPillars utilizes the inverse convolution technique to up-sample, which can enhance image

resolution, but disregards significant semantic content. To circumvent this limitation, this study

replaces the original deconvolution with Carafe [30] and Dysample’s [27] light-weight up-sampling

operators, respectively. Furthermore, an up-sampling approach involving an approximated scale fusion

method is introduced to enrich the semantic relationship among various scales. Approximate scale

fusion involves combining the current scale with the approximate scale post operator up-sampling.

The resulting fused features will serve as current features, facilitating the incorporation of information

from various scales. The module structure is shown in Figure 3.

F = ReLU(X + Upsample(Y)) (4)

X is the current scale feature and Y is the previous scale feature.

ConvCBAM FasterNet

FasterNet

FasterNet

Upsamp

le

Upsamp

le

Upsamp

le

Figure 3. Approaching up-sampling fusion.

Content-aware reorganisation of features (Carafe) proposed by Wang et al. is a generic, lightweight

and efficient component.Carafe reassembles features in a predefined region centred on each location

by weighted combinations, where the weights are generated in a content-aware manner. In addition,

each location has multiple sets of such up-sampling weights, and then feature up-sampling is achieved

by rearranging the generated features as a spatial block.The advantages of Carafe are as follows:

• Large sensory field. Unlike previous approaches such as bilinear interpolation, Carafe can

aggregate contextual information within a large receptive field.
• Content-aware: Instead of using a fixed kernel for all samples, Carafe supports instance-specific

content-aware processing and can dynamically generate adaptive kernels.
• Lightweight and fast: Carafe has low computational overhead and can be easily integrated into

existing framework networks.
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Dysample is another ultra-lightweight, efficient dynamic upsampler. Unlike CARAFE, Dysample

bypasses dynamic convolution and specifies upsampling from a point-sampling point of view, which is

more resource efficient.Dysample does not require custom CUDA packages and has fewer parameters,

FLOPs, GPU memory and latency.

4. Results

In this study, we conducted experimental evaluations utilizing the extensive KITTI dataset, which

is publicly available. The dataset comprises 7481 training samples and 7518 test samples captured

from autonomous driving scenarios. We partitioned the training data into a training set of 3712 frames

and a validation set of 3796 frames using the PointPillars algorithm. The training set was utilized for

testing, while the validation set was utilized for experimental studies. The KITTI dataset encompasses

three classifications: Car, cyclist, and pedestrian are each classified into three levels of difficulty: easy,

medium, and hard, which are determined by various factors such as 3D object size, occlusion level,

and truncation level [31].

The experimental environment used in this study comprises Ubuntu 18.04 LTS, CUDA 11.4,

python 3.8, and pytorch 1.13.1. To achieve end-to-end training, the Adam optimiser was applied, with

a batch size of 8, a maximum of 100 iterations, and no ground truth frame. In the experiments, each

Pillar was set to a size of [0.16, 0.16] in the X-Y dimensions, the maximum number of columns was

12000, and the global point cloud was randomly scaled in the range of [0.95, 1.05].

4.1. Experimental results and analysis

The algorithms in this paper were tested on the KITTI dataset and evaluated for accuracy (AP)

using 40 predefined locations from the official KITTI test. The IOU threshold was set at 0.7 for cars

and 0.5 for pedestrians and cyclists. Tables 1–3 compare the results of this paper with those of the

PointPillars algorithm on the KITTI dataset for the car, pedestrian, and cyclist categories.

Table 2. RESULTS ON THE KITTI TEST BEV DETECTION BENCHMARK.

Car Pedestrian Cyclist
Easy Medium Hard Easy Medium Hard Easy Medium Hard

PointPillars 90.74 86.57 84.05 55.89 48.86 44.42 81.44 63.63 59.29

PP Carafe 91.55 87.76 85.04 58.97 51.88 48.47 85.64 66.15 61.59

PP Dysample 91.78 87.79 85.08 59.28 51.76 47.28 84.74 66.01 61.79

PP Carafe stands for downsampling using carafe. PP Dysample stands for downsampling using dysample, as do the tables

that follow.

Table 3. RESULTS ON THE KITTI TEST 3D DETECTION BENCHMARK.

Car Pedestrian Cyclist
Easy Medium Hard Easy Medium Hard Easy Medium Hard

PointPillars 85.40 75.14 72.71 48.16 41.58 37.07 76.76 59.74 55.53

PP Carafe 87.95 78.59 75.20 51.63 44.35 41.13 83.27 62.61 57.95

PP Dysample 87.89 78.13 73.44 50.62 43.28 39.01 81.69 63.46 58.96

From the data in the above table, it is evident that up-sampling in Dysample or Carafe improves

the detection of the Kitti dataset in any difficulty, although certain types of objects are biased towards

improvement. Notably, Carafe up-sampling shows a more substantial improvement in object types.

Specifically, in BEV, there is an improvement of Cyclist from 81.44 to 85.64 in Easy difficulty, and

in 3D mode, there is a 6.51 improvement in Easy difficulty. In AOS mode, the most significant

enhancement is observed for pedestrian, with a maximum improvement of 6.24 in Medium difficulty.
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The improvement effect is also more apparent in Easy and Hard modes. Dysample displays the most

noticeable improvement in Pedestrian. On the other hand, the improvement of Dysample is less

pronounced, which could be attributed to its lack of dynamic feature extraction.

Table 4. RESULTS ON THE KITTI TEST AOS DETECTION BENCHMARK.

Car Pedestrian Cyclist
Easy Medium Hard Easy Medium Hard Easy Medium Hard

PointPillars 94.75 91.27 88.29 46.34 42.96 39.68 86.15 70.35 65.98

PP Carafe 95.57 92.03 90.56 54.73 49.20 47.73 87.65 70.22 65.58

PP Dysample 95.47 91.79 88.90 53.98 48.42 45.44 86.40 70.08 66.01

It is apparent that the up-sampling techniques of Dysample and Carafe differ in their effect on

target feature reconstruction. If detection accuracy is a priority, CARAFE upsampling is a suitable

option. However, if detection efficiency is required, then Dysample may be more appropriate.

4.2. Ablation Experiments

In this section, we provide the results of ablation experiments to evaluate the key factors that

affect the accuracy of the experiments.

Table 5. ABLATION RESULTS ON THE KITTI TEST BEV MODE.

Car Pedestrian Cyclist
Easy Medium Hard Easy Medium Hard Easy Medium Hard

root 90.74 86.57 84.05 55.89 48.86 44.42 81.44 63.63 59.29

Attention 91.67 87.75 85.18 56.19 49.89 46.16 85.05 65.91 61.41

FasterNet 92.63 88.32 86.91 56.19 49.95 45.82 88.09 67.98 63.46

Carafe 92.05 87.80 85.13 55.55 49.12 44.86 85.07 67.49 62.85

Dysample 91.78 87.79 85.08 59.28 51.76 47.28 84.74 66.01 61.79

Table 6. ABLATION RESULTS ON THE KITTI TEST 3D MODE.

Car Pedestrian Cyclist
Easy Medium Hard Easy Medium Hard Easy Medium Hard

root 85.40 75.14 72.71 48.16 41.58 37.07 76.76 59.74 55.53

Attention 86.52 76.24 73.09 49.81 43.13 39.13 79.88 60.48 56.57

FasterNet 88.73 78.76 75.58 50.69 43.98 39.25 83.41 61.94 57.69

Carafe 86.92 75.47 72.31 48.37 42.13 37.35 79.88 62.50 58.23

Dysample 87.89 78.13 73.44 50.72 43.28 39.01 81.69 63.46 58.96

The ablation experiments revealed that replacing each module separately resulted in an

improvement outside the parameters. The replacement of the backbone network showed the most

significant improvement, with FasterNet demonstrating the most noticeable increase in detection

accuracy. The Attention Mechanism module showed an improvement of nearly 1 in detection at all

difficulties. Both upsampling methods, Carafe and Dysample, demonstrated significant improvement.

However, the improvement was more pronounced for Carafe upsampling.

4.3. Visualisation Analysis

To provide evidence of the method’s effectiveness in improving detection accuracy, this section

presents visualised and analysed results of the algorithm. Due to the use of pure radar data in the
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algorithm, the relevant information cannot be visually represented. Therefore, the front-view camera

image is referred to as a comparison for the radar detection results in the BEV view.

After analyzing the four scenes in Figure 4, it is evident that the PointPillars network misidentifies

point cloud shapes reflected from objects such as tree trunks and line poles as cars or pedestrians.

However, the model with the improved backbone network has a significantly lower misdetection

and error detection rate. The improved backbone network strengthens the features of the point cloud

pseudo-images, while the lightweight network and proximity scale sampling method retain more

semantic information and improve the module’s ability to extract features. As a result, the improved

PointPillars outperform the pre-improved version by reducing misdetection and omission, ultimately

improving network detection performance.
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Figure 4. Visualize the results. Different rows represent different scenarios. The columns represent

the front camera, PointPillars results, PP Carafe upsampling results, and PP Dysample results one at a

time.

• In the initial scene, PointPillars identifies the far-off iron house as a vehicle, which the algorithm

in the optimization is able to avoid. Additionally, there are more trees on the left side, and

PointPillars recognizes the number as people, which is significantly reduced compared to

PointPillars in the optimized algorithm, although there is also a misdetection.
• In the second scenario, PointPillars made a mistake during multi-check by identifying the iron

ladder near the car as a car. This error was avoided in the optimized scenario. Multi-checks

occurred near the point in PointPillars and PP Carafe, mistaking the road sign for a person. The

optimized scheme shows the direction of the two cars in the upper left at a more accurate angle.

The three scenarios resulted in a false pickup on the right against the red streetlight army.
• The third scenario is straightforward. All three scenarios detected the bicycle following the car.

PointPillars produced one multi-detection (a lateral car) for the car directly in front, and none

in the optimized scenario. PointPillars is especially problematic for the false detection of trees
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on the left side. In the optimized scenario, PP Carafe produces only one multidetection, and PP

Dysample identifies the number on the left side intact.
• The fourth scenario is complex, involving multiple object types. PointPillars still experiences

significant multi-detection issues on the left side. In all three scenarios, there are missed detections

directly in front. PP Dysample has more severe detection errors on the left side, and one vehicle

lacks direction discrimination. For the nearby vehicles, the optimized scheme improves the

vehicle facing angle significantly, resulting in much better direction prediction than PointPillars.

In summary, this paper’s optimization scheme produces a superior visualization effect compared

to PointPillars. However, the scheme does have some limitations. For instance, it enhances near

objects more than distant targets, possibly due to the limited number of point clouds for distant

objects, resulting in errors. To address this, we suggest exploring the use of a multi-frame aggregation

method to increase the number of radar point clouds for distant objects. The optimization scheme for

enhancing small targets still has certain defects. After processing the point cloud into an image, it may

ignore the connection between different voxels, resulting in a loss of contextual information. The next

step of this paper will focus on studying point cloud coding.

5. Conclusions

In this paper, we present a 3D target detection algorithm with an enhanced backbone network

based on PointPillars for object detection. Initially, we generate a point cloud pseudo-image, and

subsequently employ channel spatial attention to consolidate contextual information, optimize image

features, and establish connections across channels and locations. Additionally, a modified lightweight

network, FasterNet, and proximity scale upsampling have been implemented to enhance the feature

extraction capabilities of the convolutional neural network and maintain the integrity of deep point

cloud features. The outcome shows significant improvement in comparison to the PointPillars

algorithm. The comparison of the algorithm highlights that by introducing the attention mechanism,

replacing the feature extraction network, and utilising a new up-sampling method, target detection

accuracy can be significantly enhanced.

However, this experiment has a slight limitation. Despite the improved detection accuracy, it

is unable to differentiate false detections and omissions at a glance. Additionally, in the presence of

numerous pedestrians or bicycles, it may cause interference which can influence the results of the

detection.
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