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Abstract: The human immunodeficiency virus (HIV) continues to pose a significant global health 

challenge, with millions of people affected and new cases emerging each year. While various 

treatment and prevention methods exist, including antiretroviral therapy and non-vaccine 

approaches, developing an effective vaccine remains the most crucial and cost-effective solution to 

combat the HIV epidemic. Despite significant advancements in HIV research, the HIV vaccine field 

has faced numerous challenges, and only one clinical trial has demonstrated a modest level of 

efficacy. This review delves into the history of HIV vaccines and the current efforts in HIV 

prevention, emphasizing pre-clinical vaccine development using the non-human primate model 

(NHP) of HIV infection. NHP models offers valuable insights into potential preventive strategies 

for combating HIV, and it plays a vital role in informing and guiding the development of novel 

vaccine candidates before they can proceed to human clinical trials. 
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1. Introduction 

Human immunodeficiency virus (HIV) continues to impose a significant global health impact, 

affecting millions of individuals annually with new infections. progress in treatment and prevention 

approaches, the imperative to develop an effective HIV vaccine remains urgent. Vaccines have 

historically played a crucial role in controlling and eradicating infectious diseases, and an equally 

effective HIV vaccine could be transformative in curtailing the epidemic. However, HIV poses unique 

challenges due to its ability to target the immune system, rapidly mutate, establish latent reservoirs, 

and evade immune responses. Intensive research efforts have been devoted to understanding the 

intricate biology of HIV and developing safe and effective vaccine candidates. The evolution of HIV 

vaccine research spans almost four decades and aligns with an enhanced comprehension of HIV and 

host immune responses.   

History of HIV Vaccine Development. The history of HIV vaccine development spans nearly 40 

years and initially focused on the role of antibodies, based on the concept that neutralizing antibodies 

could protect against HIV infection by preventing its entry into target cells (1) (2) (3) (4) (5). However, 

the highly variable and mutable nature of HIV presented significant challenges in eliciting broadly 

effective neutralizing antibody responses (6). A subsequential wave of HIV vaccine development 

shifted the attention to CD8+ T cells, recognizing their significance in HIV infection and control. HIV-

specific CD8+ T cells can kill target cells and respond to multiple HIV strains (7). The broad 

recognition capability of CD8+ T cells was shown to be critical in preventing viral escape and could 

be harnessed to develop a globally effective multi-clade HIV vaccine. T cell-inducing recombinant 

viral vectors, such as adenovirus and poxvirus-based vectors, as well as DNA-based HIV vaccines, 

were developed based on this concept (8). During this HIV-vaccine era, significant progress was 

made in understanding T cell responses and identifying T cell epitopes, however it was found that 

CD8+ T cells alone could not eliminate the virus, nor could they protect against HIV acquisition (9). 

Additional hurdles of T cell vector-based strategies were immune responses to the vector itself (as 
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opposed to HIV inserts) blunting vaccine immunogenicity and generation of newly activated CD4+ 

T cells, the preferred target of HIV, accentuating infection.  

The third wave of HIV vaccine development focused on using a dual approach to harness 

immune responses elicited by DNA or vector-based vaccines in combination with protein 

components in prime-boost strategies. One such strategy quickly progressed to clinical trials and 

resulted in the only successful HIV efficacy vaccine trial in humans to date, although the efficacy was 

modest. This era also emphasized the exploration of new and improved adjuvants for the protein 

components, as the currently licensed adjuvant, alum, was found to be less effective than non-

licensed adjuvants in inducing high HIV-specific antibody titers. However, subsequent attempts to 

enhance vaccine efficacy, including modifying adjuvants, have not yielded significant results in 

clinical settings (10, 11) (12). 

Recent HIV Vaccine Development. In recent years, there has been a shift towards reevaluating 

the types and functions of antibodies necessary for prevention, the quality of induced T-cell 

responses, and the importance of boosting innate immune responses alongside adaptive-specific 

responses. Current research predominantly focuses on broadly neutralizing antibodies (bNAbs), 

which can neutralize a wide range of HIV strains by targeting conserved regions of the virus. These 

bNAbs provide valuable insights into potential targets for vaccine-induced antibody responses. 

Researchers are actively investigating strategies to elicit bNAbs through vaccination, either by 

administering bNAbs directly or designing immunogens to stimulate their production. Additionally, 

RNA vaccines have shown promise in infectious diseases, including the successful development of 

mRNA vaccines against COVID-19. Ongoing research and development efforts are exploring the use 

of RNA-based vaccines for HIV, incorporating conserved regions of the virus in vaccine designs to 

enhance effectiveness against a broader range of HIV strains. 

The evolution of HIV vaccine research reflects the dynamic nature of the field and the adaptive 

response to the challenges posed by the virus. The shifting focus in the HIV vaccine field underscores 

the need for a multidimensional approach to developing an effective vaccine. It is now recognized 

that harnessing multiple aspects of the immune response, including neutralizing antibodies, non-

neutralizing antibody effector function, T cell immunity, and potentially other immune mechanisms 

such as different arms of innate immunity, will be required for comprehensive protection against 

HIV infection. This review provides an overview of the current landscape of HIV vaccine research, 

highlighting key advancements, challenges, and promising strategies on the path towards 

developing an effective preventive HIV vaccine. 

2. HIV Vaccines: Clinical trials 

Protein-based vaccines. The first Phase 3 HIV vaccine efficacy trials ever conducted in humans 

were the VAX003 and VAX004; the vaccine was a bivalent gp120 envelope protein formulation with 

alum adjuvant to induce anti-HIV envelope antibodies (5, 13). VAX003 enrolled people who inject 

drugs in Thailand and used bivalent envelope subtype B and AE proteins. In contrast, VAX004 

enrolled men who have sex with men and women at risk for heterosexual acquisition of HIV in the 

Americas and used bivalent subtype B proteins. Neither trial was successful in preventing HIV 

infection or decreasing viral replication or slowing disease progression. These results suggested that 

bivalent protein vaccination alone cannot provide protective efficacy against HIV (13). 

Adenovirus Vector-based Vaccines. The disappointing results of the VAX003 and VAX004 trials 

led to a change in strategy towards developing vector-based vaccines that elicit strong HIV-specific 

T-cell responses (7). The STEP trial was designed to evaluate a replication-defective adenovirus 

serotype 5 (Ad5) vectored vaccine expressing HIV Gag, Pol, and Nef antigens, and enrolled men 

having sex with men (MSM), sex workers, and participants with elevated heterosexual risk in the 

Americas and Australia (14). The vaccine induced robust cellular immune responses, particularly 

HIV-specific CD8+ T cell responses. These responses were measured by analyzing the production of 

interferon-gamma (IFN-g), a cytokine involved in antiviral immune responses. Despite the induction 

of strong cellular immune responses, the STEP trial did not demonstrate efficacy in preventing HIV 

infection or reducing viral replication in those who became infected. In fact, an unexpected finding 
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from the trial was an increased risk of HIV acquisition in a specific subset of participants who were 

uncircumcised and had pre-existing immunity to the Ad5 vector used in the vaccine. 

After the lack of efficacy of the STEP trial, the Phambili trial HVTN 503 using the same Ad5 HIV-

1 vaccine (15) was also terminated early because of the results of the STEP trial.  

In vitro experiments suggested that Ad5-specific CD4+ T cells are highly susceptible to HIV 

infection and that these cells are preferentially lost in HIV-1-positive individuals. These findings 

raised important questions about the effect of pre-existing anti-vector immunity and using Ad5- 

vectored vaccines where Ad5 is prevalent. As a follow-up the HVTN 505 trial, a phase IIb clinical trial 

was conducted by the HIV Vaccine Trials Network (HVTN) to evaluate a DNA prime /rAd5 boost 

regimen that included immunogens targeting HIV Env, Gag, Pol, and Nef. The trial enrolled 2,504 

Ad5 seronegative participants who were at high risk of HIV infection including men and transgender 

females who have sex with men. However, the trial was halted early in April 2013 due to the lack of 

efficacy observed in interim analyses.  

The Ad26 “mosaic” vaccine was developed by Janssen Pharmaceuticals and utilizes viral vectors 

(Ad26 or modified vaccinia Ankara - MVA), protein boosts, and specially optimized immunogen 

sequences to create polyvalent "mosaic" antigens. These antigens aim to elicit both T cell responses 

and neutralizing antibodies, incorporating Env into their design. Mosaic antigens are generated from 

natural sequences, including common B and T cell epitopes while excluding rare ones (16). Clinical 

use of these mosaic antigens draws insights from NHP studies (discussed below) and the 

APPROACH study, which evaluated various regimens containing Ad26 or MVA vectors expressing 

mosaic antigens, some administered together with gp140 boosts. All regimens have proved safe and 

well-tolerated, with strong antibody responses detected. The mosaic antigens elicited binding IgG 

responses to cross-clade transmitted/founder Envs and other variants, similar to vaccine homologous 

responses. ADCP responses were found to be increased in the gp140-boosted groups, and serum 

neutralizing activity was observed against difficult to neutralize - tier-1 HIV variants. Subsequent 

clinical trials (TRAVERSE, ASCENT, IMBOKODO, and MOSAICO) expanded on these findings, 

testing various formulations and regimens (17). These trials have shown promising results in terms 

of safety and immunogenicity, with some formulations advancing to larger Phase 3 trials. However, 

phase 3 trials IMBOKODO did not prevent HIV infection in a population of young women in sub-

Saharan Africa and reached a vaccine efficacy of only 25%. The phase 3 trial MOSAICO (or 

HPX3002/HVTN 706) was tested among men who have sex with men (MSM) and transgender people, 

involving 3,900 volunteers ages 18 to 60 years in Europe, North America, and South America. This 

trial also proved ineffective and was discontinued in 2023. Currently other Ad-based vectors are 

under investigation, including Ad35 (NCT01264445, phase I) (18) and Ad4 (NCT01989533, phase I) 

(19). 

ALVAC Vector-based Vaccines. The RV144 Phase III HIV-1 vaccine trial was conducted in 

Thailand from 2003 to 2009 (20) (21). Enrolling over 16,000 participants from the general population, 

the trial was a collaborative effort between the Thai Ministry of Public Health, the US Army Surgeon 

General, the US Military HIV Research Program (MHRP), and various Thai and US government 

agencies, private companies, and nonprofit organizations (22). The vaccine regimen employed in the 

RV144 trial involved a prime-boost strategy, combining two vaccines: ALVAC-HIV from Sanofi 

Pasteur and AIDSVAX from VaxGene. These vaccines were designed based on HIV-1 B and E clades 

prevalent in Thailand. The primary objective of the trial was to evaluate the efficacy of this 

combination in preventing HIV infection and reducing viral RNA levels in infected individuals. 

Despite initial doubts and debates surrounding the immune response generated by this vaccine 

combination, the RV144 trial demonstrated its safety showed 60% vaccine efficacy (VE) at 12 months 

post-immunization, which decreased to 31% at 3.5 years (20).  While the level of efficacy, was modest 

the results provided encouraging evidence for the feasibility of an HIV vaccine and indicates that 

further research is necessary to develop a vaccine capable of effectively safeguarding the general 

population against HIV acquisition. Notably, the RV144 vaccine did not generate neutralizing 

antibodies, nor CD8+ T cell responses, prompting researchers to investigate alternative protective 

mechanisms. Surprisingly, post-hoc analyses unveiled significant correlations between binding 
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antibody responses and CD4+ T cell responses affecting the rate of HIV acquisition (23) (24) (25). 

Specifically, IgG antibody binding to the V1V2 region of the envelope demonstrated an inverse 

correlation with infection rate, suggesting a potential protective effect (26) (27). In contrast, the 

binding of plasma IgA antibodies to the envelope showed a direct correlation with the rate of 

infection, indicating a potential detrimental impact on vaccine efficacy. These findings underscore 

the significance of evaluating both the quality and specificity of antibody responses in HIV 

prevention (28). Furthermore, the analysis revealed additional correlates of protection. High avidity 

of IgG antibodies for the envelope, as well as antibody-dependent cellular cytotoxicity (ADCC) and 

phagocytosis (ADCP) activities, were inversely correlated with the risk of infection (29, 30) (31) (32) 

(33) (34). These data suggest that non-neutralizing effector functions of antibodies play a role in 

preventing HIV acquisition. Additionally, the presence of Env-specific CD4+ T cells was found to be 

inversely correlated with the risk of infection, further emphasizing the importance of cellular immune 

responses in vaccine-induced protection (23). Polyfunctional response in Env-specific CD4+ T cells 

expressing CD154 (or CD40 ligand), and secreting cytokines such as IL-2, IL-4, IFN-g, and TNF-a 

demonstrated the most robust correlation, resulting in a lower infection rate compared to individuals 

who did not generate such a multifaceted immune response (35) (23). Moreover, the analysis 

demonstrated selective effects of the vaccine on the V2 region of breakthrough viruses, suggesting a 

potential impact on viral evolution and the development of escape mutations. Transcriptomic 

analysis of RV144 trial samples identified the interferon regulatory factor 7 or IRF7 as a mediator of 

protection and the activation of mTORC1 as a correlate of the risk of HIV-1 acquisition (25, 36). 

Two early-phase trials, RV305 and RV306, were conducted to explore strategies for improving 

the durability of immune responses observed in the RV144 trial. RV305 enrolled individuals who had 

previously received the RV144 vaccine and evaluated the effects of boosting with ALVAC-HIV and 

AIDSVAX B/E. The results showed that the priming vaccination series in RV144 evoked memory 

responses, as evidenced by higher levels of IgG responses against gp120 and gp70-V1V2 compared 

to peak immunogenicity in RV144. Repeated booster vaccination led to the development of antibodies 

with characteristics of broadly neutralizing antibodies, such as increased somatic hypermutation and 

longer immunoglobulin heavy-chain complementarity-determining region 3 (HCDR3) length. 

However, it was observed that repeated boosting skewed the responses towards the IgG4 subclass, 

which is associated with reduced non-neutralizing function and did not improve durability of 

antibody responses (37) (38) (39) (40). 

HVTN 097 was conducted in South Africa and utilized the same vaccine formulation and 

schedule as the RV144 trial. The study aimed to assess the overall response rates of plasma IgG and 

Env-specific CD4+ T cells expressing IFN-γ and/or IL-2. The results of HVTN 097 showed that the 

response rates were similar to those observed in RV144. HVTN 100 was also conducted in South 

Africa and employed a pox-protein vaccine regimen specifically designed for the local subtype C 

epidemic. The vaccine regimen consisted of the ALVAC-HIV vCP2438, which expressed HIV subtype 

C gp120, subtype B gp41, gag, and protease, followed by a boost with a bivalent subtype C (TV1/1086) 

gp120. Additionally, an alternative adjuvant, the MF59 oil-in-water emulsion was used instead of the 

aluminum hydroxide adjuvant used in RV144. The primary objectives of HVTN 100 were to evaluate 

the safety and tolerability of the vaccine regimen and assess the immune responses elicited by the 

vaccine (41). The study found that all vaccine recipients developed gp120 binding antibodies, and 

these antibody levels were significantly increased compared to RV144. Furthermore, the vaccine 

regimen induced higher CD4+ T cell responses to the corresponding envelope protein. Although the 

IgG antibody responses directed at 1086_V1V2 were lower in HVTN 100 compared to the RV144 

regimen in HVTN 097(28) (42), the results showed that the vaccine met the criteria for advancing to 

the next phase, which was the HVTN 702 trial. The HVTN 702 Uhambo efficacy trial began in 2016 

and enrolled individuals at risk for HIV in South Africa. However, interim analysis results revealed 

no significant evidence of decreased or increased infection rates associated with the vaccine regimen. 

Consequently, the trial was halted in February 2020 by the NIH US Data and Safety Monitoring Board 

due to the lack of efficacy  (12) (43) (44). Considerations of the many distinctions between the South 

African and Thai trials are important to prevent any mistaken inference that the results of the former 
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trial undermine those of the latter (45). Finally, the HVTN111 trial employed a DNA-prime strategy 

(subtype C DNA-HIV-PT123) and the same gp120 boost used in HVTN 100. This trial resulted in 

increased immune responses when compared HVTN100, including CD4+ T cells, and binding and 

neutralizing antibodies (46). 

Broadly neutralizing antibodies.  In the early days of the HIV epidemic, studies found a link 

between high neutralizing antibody levels and delayed disease progression in people with HIV 

(PWH) (47) (48). This discovery led to experimental transfers of hyperimmune plasma to individuals 

with active virus replication. Advances in antibody isolation and cloning techniques, including 

improved antigen design and B-cell receptor amplification, have enabled the identification of highly 

potent antibodies capable of neutralizing a wide range of HIV strains. Over the past decade, more 

than 60 clinical trials have explored the pharmacokinetics and immunological effects of these broadly 

neutralizing antibodies (bNAbs) in humans. Currently researchers are actively investigating 

strategies to elicit bNAbs through vaccination, either by administering bNAbs directly or designing 

immunogens to stimulate their production (49).  The Assessing Antibody-Mediated Protection AMP 

trial investigated the potential of long-term administration of the passively infused bnAb VRC01, 

targeting the CD4 binding site (CD4bs), to prevent HIV-1 acquisition in humans (HVTN 704/HPTN 

085 and HVTN 703/HPTN 081) (50). It involved 4,600 at-risk participants from diverse geographical 

regions, including Sub-Saharan Africa, the Americas, and Europe. The results revealed that VRC01 

could prevent HIV-1 infection, with a high prevention efficacy of 75% observed against viruses 

sensitive to VRC01 (IC80 <1μg/ml). However, there was no efficacy against the majority of circulating 

strains (with IC80 values >1μg/ml), resulting in no significant overall protection. Interestingly, the 

outcome was reminiscent of what was observed with first-generation antiretroviral therapy, where 

innate resistance and the emergence of resistant isolates over time compromised the effectiveness of 

single therapeutic agents for prevention, thus suggesting the necessity of evaluating the efficacy of a 

more comprehensive and potent combination of antibodies (50). 

Efforts to achieve bNAbs through active immunization are also ongoing. Indeed, while the first 

generation of gp120 protein-based vaccines were safe and generated neutralizing antibodies in 

clinical trials, they did not effectively prevent HIV-1 infection. The failure to elicit protective bnAbs 

can be attributed to various HIV-1 immune evasion strategies, including antigenic diversification 

during replication and the dense glycan shield on Env that hides critical antigenic epitopes from the 

immune system (51). The structural dynamics of the Env trimer, with its distinct conformations, 

trigger different antibody responses. The closed prefusion conformation is recognized by potent 

bnAbs, while antibodies targeting regions exposed in the open conformation induced by CD4 binding 

are weak or non-neutralizing and ineffective at preventing infection. Using structure-based vaccine 

design, stabilized viral immunogens have been developed that remain in the closed prefusion 

conformation, and can generate protective antibodies. SOSIPs are uniform, soluble, stable, trimeric 

forms of the HIV-1 envelope spike that closely resemble the native viral spike in terms of antigenicity 

and structure. They achieve stability through a disulfide bond called "SOS" between gp120 and gp41 

and a specific point mutation named "IP" at residue 559, which helps maintain their trimeric structure 

(52, 53). This approach has been successful in creating vaccines against other viruses (54). For HIV-1, 

a soluble protein trimer immunogen was designed based on the clade A HIV strain BG505 (BG505 

SOSIP.664) (55) (52). Prior studies showed that this construct, although containing stabilizing 

mutations, could still be recognized by non-neutralizing, CD4-induced antibodies. An additional 

disulfide mutation (DS) was introduced within gp120 to prevent any CD4-induced conformational 

change. This modified prefusion-closed conformation immunogen, Trimer 4571 (BG505 DS-

SOSIP.664), exhibited the desired antigenic profile and was resistant to CD4-induced conformational 

changes (56). A phase 1 small sample size clinical trial concluded with encouraging results (56). 

3. Preclinical evaluation of HIV vaccines in NHPs 

The use of macaque models of HIV infection has played a crucial role in developing and 

evaluating HIV vaccines. Macaques, specifically Indian-origin rhesus macaques (Macaca mulatta) and 

pig-tailed macaques (Macaca nemestrina), have been widely employed due to their close genetic and 
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immunological similarities to humans, making them valuable surrogate models for studying HIV 

infection and vaccine responses.  The history of macaque models in HIV vaccine research can be 

traced back to the early 1980s when scientists began searching for an animal model that could mimic 

the immunopathogenesis of HIV infection. Gibbons and chimpanzee were not deemed reasonable 

hosts (57), while Asian macaques, including Macaca mulatta (rhesus macaques, RM) and M. fascicularis 

(cynomolgus monkeys, CM) and cells from these species appeared to be resistant to HIV-1 (58) (58). 

In 1984, a breakthrough was the discovery of a related lentivirus, simian immunodeficiency virus 

(SIV), in captive macaques. SIV naturally infects various African non-human primates, such as sooty 

mangabeys, African green monkeys without inducing disease but leads to immunodeficiency in 

Asian macaques that are experimentally infected (59) (60) (61 {Klatt, 2012 #37). The similarity between 

SIV and HIV, as well as the ability of SIV to cause an AIDS-like disease in macaques, led to the 

establishment of SIV infection models in macaques to study the pathogenesis and immune responses 

associated with HIV infection. Since then, macaque models of SIV infection have been extensively 

utilized to assess the safety and immunogenicity of potential HIV vaccine candidates before moving 

to human clinical trials (62).  

Preferred NHP models for HIV vaccines. There are currently multiple NHP models which differ 

in species, challenge route, virus doses, and strain.  RMs, particularly Indian-origin (as opposed to 

Chinese-origin) are the most used macaques in HIV vaccine studies in the US. It is worth noting that 

CO RMs often display lower viral loads in comparison to Indian-origin (IO) RMs, both during the 

acute and chronic stages of infection (63) (64). While this difference may be seen as a potential 

limitation, researchers have successfully addressed this challenge by creating alternative viruses that 

are specifically adapted for CO RMs. Pig-tailed macaques (PTMs) have also been used; however, they 

have higher baseline immune activation levels than RM even without infection and differ in HIV-1 

restriction factors (TRIM5alpha) (65) (66). Nonetheless studies in pigtails offer a good model for 

intravaginal challenge because females possess menstrual cycles like humans, making them valuable 

for studying factors affecting susceptibility to vaginal infection and evaluating interventions for 

preventing vaginal virus transmission.  

Virus challenge. An important focus in vaccine studies involving macaques is the selection of the 

right virus for challenging NHPs. Choosing a virus with high virulence and strong replication can 

lead to excessive pathology, overwhelming the host's immune responses after vaccination and 

resulting in an underestimate of vaccine efficacy. Conversely, using a virus with low virulence and 

weak replication might be easily controlled by the vaccine-induced immune response, leading to an 

overestimate of efficacy (67) (68) (69). Additionally, some viral strains are highly sensitive to 

neutralizing antibodies, making them unsuitable for evaluating mucosal transmissions. Fortunately, 

many challenge viruses have been developed, offering a range of options for preclinical vaccine 

studies using NHP models, and these viruses have been well-reviewed and summarized elsewhere 

(70). SIVmac251 and SIVmac239 are among the most widely used viruses in early NHP vaccine 

studies. SIVmac251 is a swarm first isolated from rhesus macaque “251” at the New England Primate 

research Center (71). Over time, various SIVmac251 stocks have been generated through in vitro 

passage or by isolating new viral populations from infected animals. These stocks consist of 

heterogeneous swarms of viruses that can transmit multiple variants across mucosal tissues (72-74). 

This diversity is important in NHP vaccine studies, as it reflects the complexity of viral populations 

encountered in natural infections and provides a more realistic model for evaluating vaccine efficacy. 

When infected with pathogenic SIV strains, RMs exhibit consistent disease progression and high viral 

loads during the acute phase of infection, allowing for studying the impact of vaccination on viral 

replication, disease progression, and immune system dynamics. The genetic variations observed in 

the reverse transcriptase and protease of HIV-1 and SIVmac pose challenges in assessing the 

effectiveness of antiretroviral drugs that specifically target these proteins within the SIVmac-RM 

model. Additionally, evaluating vaccines against HIV-1 using this model becomes impractical due to 

differences in cytotoxic T cell epitopes and the lack of cross-reactivity in neutralizing antibodies. To 

address these limitations, researchers have developed chimeric viruses known as SHIVs, which 

incorporate specific HIV genes into the SIV backbone (75) (76) (77) (12).  Recent initiatives have 
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shifted towards employing transmitted/founder (T/F) HIV-1 Env clones, which are highly pertinent 

Envs for transmission research and vaccine evaluations (72) (76). These T/F SHIVs can facilitate 

mucosal transmission and trigger strong viral replication in rhesus macaques without the need for 

consecutive modifications. Ongoing endeavors are directed at creating SHIVs with greater viral 

diversity and neutralization characteristics, as well as sustaining consistently elevated chronic viral 

loads and progressive infection patterns, to more accurately replicate HIV pathogenesis in specific 

prevention studies.  

Challenge route. NHP models have been employed to study various routes of virus transmission 

related to HIV-1, including intravenous (i.v.), intrarectal, intravaginal (i.vag), penile, oral, and 

intrauterine transmission, mimicking various modes of HIV transmission. However, these models 

have limitations in accurately mirroring human transmission scenarios. The i.v. route is the most 

reliable in NHPs but lacks clinical relevance for HIV vaccine research. In preclinical studies involving 

macaques, a significant focus has been on mucosal challenges since HIV infection is often acquired 

through heterosexual transmission via mucosal exposures. Historically and currently, intrarectal (IR) 

challenges are commonly used because they provide a relatively easy means of infection and allow 

for the use of both male and female NHP. In contrast, intravaginal (i.vag) challenges were initially 

less frequently employed, mainly because of the limited availability of female macaques (sustaining 

the breeding colonies in Non-Human Primate Centers across the US). Moreover, the menstrual cycle, 

vaginal mucosal structure, and microbial composition all play roles in influencing susceptibility to 

SIV or SHIV infection. Despite the challenges and limitations associated with Ivag challenges, 

preclinical trials using female macaques have increased in number in recent years. This method is 

considered the best way to simulate the male-to-female HIV transmission route, which accounts for 

the majority of HIV transmissions in humans. Penile challenges have also been developed in 

macaques, however, similarly to Ivag, they require higher virus doses and exhibit more variability 

between animals compared to intrarectal transmission (72) (78) (79) (74) (80). 

Virus dose. In the past, researchers used higher virus doses, approximating the minimum amount 

required to infect the majority of unvaccinated control animals with a single challenge. This approach 

allows for assessing vaccine effectiveness through sequencing techniques, along with evaluating 

infection rates, the number of transmitted variants per animal, and sieving analysis. However, the 

HIV transmission rate per coital act is estimated to be very low in humans (81) (82). It was also 

discovered that in humans, infection results from a limited range of viral variants responsible for 

systemic infection following sexual transmission of HIV-1, typically involving 1 to 5 T/F (72) (74) (83). 

To better replicate human transmission, preclinical studies in NHPs have shifted their focus towards 

utilizing repeated low-dose challenge paradigms (84) (85-87). This involves determining a challenge 

dose that infects only a portion of unvaccinated control animals per exposure and subjecting animals 

to repeated exposures until signs of infection emerge or a predetermined number of challenges is 

reached. While the inoculum size used in these studies may still exceed typical human exposures, it 

helps simulate human mucosal transmission by emulating a restricted set of initial viral variants. It's 

important to note that variations in challenge modalities, including the dose, can significantly impact 

vaccine efficacy (84, 88). Nonetheless, studies, using different macaque species, are vital for HIV 

research, shedding light on pathogenesis, immune responses, and vaccine development. Each species 

has unique strengths and weaknesses, enabling researchers to choose the best model for specific 

goals. These varied models provide valuable insights, driving progress in HIV research and efforts 

to develop effective preventive and therapeutic measures. 

4. Correlates of protection in NHP HIV vaccine studies 

Macaques are vital for HIV vaccine development, with preclinical studies using chimeric viruses 

in rhesus macaques as benchmarks. The similarity between the immune systems of humans and 

macaques makes macaque models invaluable for immunogenicity studies in vaccine development. 

These studies have proven to be highly reliable in this model for assessing various aspects of vaccine 

performance. Specifically, they provide insights into the safety profile of the vaccine and its ability to 

induce vaccine-induced immune responses, irrespective of the specific type of vaccine being tested. 
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However, disparities in vaccine efficacy between preclinical and clinical trials emphasize the need to 

reevaluate the reliability of macaque data for advancing candidate vaccines to clinical trials (89). 

NHP prediction of Vaccine Efficacy. Early vaccines studies involving NHPs offered a glimmer 

of hope for a preventive vaccine to be able to control viral replication and acquisition against high 

dose mucosal challenges. Studies conducted in the late 1980s and early 1990s initially generated 

excitement as recombinant live and DNA vaccines demonstrated measurable CD8+ T lymphocyte 

cytotoxic responses (CTL) in both rhesus macaques and humans (90) (91). Additionally, several 

studies have demonstrated that passively administered antibodies can protect non-human primates 

(NHP) from Simian-human immunodeficiency virus (SHIV) infection (92) (93) (94) (95). In monkeys, 

recombinant protein- and peptide-based vaccines elicited measurable levels of neutralizing 

antibodies. However, Phase III clinical trials revealed a stark contrast: recombinant HIV envelope 

(Env)-expressing vaccines failed to stimulate broad-spectrum protective antibodies, even against 

closely related viruses (13). This discrepancy highlighted a significant disparity between results in 

macaques and humans, leading to a fading hope of finding a quick solution to the HIV vaccine 

challenge through neutralizing antibodies.  

Broadly Nabs/SOSIPS in NHP. In preclinical studies, it was found to be safe and induced 

neutralizing antibodies in rhesus macaques when administered with an adjuvant. Furthermore, 

when used in combination vaccine regimens with an HIV-1 fusion peptide-coupled carrier, Trimer 

4571 resulted in cross-clade neutralizing antibodies in mice, guinea pigs, and rhesus macaques. (96) 

(97) (98). Native-like SOSIP trimers have been successful in eliciting antibodies capable of 

neutralizing autologous tier 2 strains in animal models and rhesus macaques (99, 100) (101) (102). A 

recent study suggested that high serum neutralizing antibody (nAb) titers elicited by the BG505 

SOSIP trimer were linked to protection against repeated, low-dose rectal challenges with 

SHIV.BG505. However, the study had limitations, and the protective efficacy was not conclusively 

demonstrated. In response, a preclinical efficacy trial was conducted using rhesus macaques. The 

macaques were immunized with BG505 SOSIP in 3M-052 adjuvant alone or in combination with three 

different heterologous viral vectors expressing SIVmac239 Gag. These viral vectors did not express 

Env and were included to investigate whether anti-Gag T cell responses played a role in protection. 

A control group received only the 3M-052 adjuvant. The results showed significant and robust 

protection against repeated low-dose intravaginal challenges with SHIV.BG505 in both vaccination 

groups compared to the control group. Specifically, a serum neutralizing antibody titer greater than 

1:319, measured two weeks after the final immunization, was found to be a reliable predictor of 

protection. This finding prompted further examination of the specificities and characteristics of these 

neutralizing antibodies associated with preventing SHIV acquisition (103). Another study 

investigated the targets of neutralizing antibodies (nAb) in rhesus macaques immunized with BG505 

SOSIP and found that these nAbs predominantly targeted the 465-glycan hole cluster. Longitudinal 

analysis revealed that N611 antibodies emerged before nAb in some macaques, and when nAb 

remained focused on the 465 glycan hole, it led to an increase in nAb titer. Monoclonal antibodies 

from a protected macaque showed potent neutralization of BG505 Env and BG505.SHIV, providing 

valuable insights into the immunogenicity of the C3/465 glycan hole cluster in BG505 SOSIP (104). 

Ad5 – based vaccines in NHP. Consequently, many researchers shifted their focus toward 

developing immunization approaches centered on harnessing antiviral T cell responses (105) (106) 

(107). Early evidence in non-human primates suggested that such responses might partially limit 

infections with distinct SIV strains. Researchers also concentrated on creating potent vector systems 

for inducing HIV-specific CTL responses, with the aim of reducing disease progression rather than 

achieving sterilizing immunity. While these second-generation vaccines, including adenovirus-based 

vectors, demonstrated promise in preclinical studies in macaques (105) (106) (107), concerns emerged 

regarding their efficacy against pathogenic SIV challenges in outbred genetic haplotypes (106). 

Despite debates about the relevance of various SIV and SHIV challenge models to human HIV 

infection, Ad5 studies advanced into clinical trials based on the assumption that protection in 

macaques would translate to humans, and non-protection would likewise correlate. However, as 

previously discussed, the STEP Phase IIb clinical trial lacked efficacy and unexpected increased HIV 
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transmission rates in certain Ad5-seropositive vaccine recipients, in stark contrast to earlier macaque 

studies (108).  

Ad26 – based and mosaic vaccines in NHP. Ad26-based vectors were developed and evaluated 

in macaques based on the assumption that humans had not been previously exposed to Ad26, unlike 

Ad5. Preclinical testing in macaques involved high-dose challenges with SIVs and SHIVs, and it 

demonstrated protection against high viral replication and mucosal acquisition when administered 

alone or in combination with DNA or gp140 protein in prime-boost regimens (109) (110). However, 

clinical trials in humans using similar approaches did not achieve significant protection 

Polyvalent mosaic antigens expressed by the recombinant, replication-incompetent adenovirus 

serotype 26 vectors were also tested in rhesus monkeys and informed the clinical trials that followed 

(111, 112). Indeed, they showed that adding mosaic antigens could markedly augment both the 

breadth and depth without compromising the magnitude of antigen-specific T cell responses as 

compared with consensus or natural sequence HIV-1 antigens (111) (112). Contrary to what was later 

observed in humans, Ad26 mosaic vaccines protected macaques from acquisition against 

heterologous SHIV challenges (86) (100). Parallel to the APPROACH study, an NHP study was 

conducted, observing similar immunogenicity (113). The Ad26.Mos.HIV/gp140 vaccine (adjuvanted 

in aluminum phosphate) showed significant protection against intrarectal challenges with SHIV-

SF162P3, with an impressive 94% reduction in per acquisition risk and 66% complete protection. 

ALVAC – based vaccines in NHP. Together with other poxviruses, the canarypox ALVAC 

vector has been extensively studies in macaques, against SIV, SHIV, and HIV isolates (114-119). 

Results showed variable levels of cellular immune responses and prevention of infection against HIV-

2 and other attenuated SIV viruses. As with the Ad based vectored vaccines, poxviruses also 

significantly reduced peak viral loads during acute infection (116, 118-120). Among the pox vector-

based vaccines, only ALVAC-based HIV-1 vaccines have been tested in phase 3 clinical trials and 

have been shown to be safe and immunogenic in humans and partially effective. The reduced 

protection against HIV acquisition provided by the ALVAC–SIV + gp120 alum regimen was both 

limited and temporary, indicating a need for enhancement. In macaques, vaccination with a 

comparable SIV-based vaccine regimen also notably reduced the risk of acquiring SIVmac251 (with 

44% efficacy), and this effect was linked to the quantity of mucosal antibodies targeting V2, similarly 

to humans (11). The substitution of the alum with the MF59 adjuvant resulted in loss of vaccine 

efficacy, similarly to what observed in the RV144 follow up trials in Africa (12). 

Taken together these results suggest that some NHP seemed to be potentially more likely than 

others to be able to predict vaccine efficacy; however, it is difficult to understand the reasons. One 

possibility could be different virus stocks used, or study design. There are considerable variations in 

the dosages of uncloned SIV or SHIV used in these studies. Variation includes viral stocks from 

different laboratories with different passage history and in vitro production methods. Another 

consideration is that, given that around 80% of HIV transmissions are caused by a single highly 

virulent virion, using a virus stock with either high or low variance can compromise the accuracy of 

modeling natural HIV infection (121). However, side by side comparison between viral stock and 

same vaccines have never been done because they are too costly. Another possible consideration for 

macaques to humans’ discrepancies is how vaccine efficacy (VE) is calculated. There has been an 

increased attention given to the specific methodologies and considerations involved in assessing VE, 

highlighting the need for more comprehensive research and discussion in the field to establish 

standardized protocols and guidelines for evaluating vaccine efficacy in NHP models. Survival 

analyses, particularly employing Cox's proportional hazard models and likelihood ratio tests, are the 

preferred methods for assessing vaccine efficacy in macaque models, comparing the risk of SIV/SHIV 

infection between vaccinated and unvaccinated groups over time. These analyses help define vaccine 

efficacy as the relative reduction in per-contact transmission probability when comparing vaccinated 

and unvaccinated macaques (87, 122).  

What is clear is that the evaluation of vaccine efficacy is significantly influenced by the design 

of challenge experiments. The design of challenge experiments significantly impacts efficacy 

assessment, including endpoints, sample size, unvaccinated macaque infection rates, susceptible 
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macaque proportions, and statistical methods. Precise sample size calculation to achieve at least 80% 

statistical power is essential. These NHP models can be further refined for evaluating HIV-1 vaccine 

candidates and guiding clinical trials. Overall, the macaque model's ability to replicate human-like 

immune responses and safety profiles in immunogenicity studies plays a pivotal role in the 

development and evaluation of vaccines, helping to identify promising candidates for further clinical 

testing in human trials. Lastly, when possible, it is important to bridge preclinical and clinical data. 

Other HIV vaccine strategies tested in NHP 

Numerous studies have been conducted to date involving other attenuated recombinant 

poxvirus vectors expressing HIV/SIV antigens in particular, modified Vaccinia Ankara (MVA) and 

New York Vaccinia (NYVAC) (123, 124) (125) (126) (127) .These strategies are reviewed elsewhere 

and are currently at various stages in clinical trials with the aim to establish their efficacy (128).  

The utilization of the human cytomegalovirus (CMV) vector represents a promising and 

innovative approach in the development of HIV vaccines. Immunization of non-human primates 

(NHPs) with CMV/SIV vectors has shown persistent and high-frequency SIV-specific memory T-cell 

responses at potential SIV replication sites. This resulted in sustained control of SIV infection in 50% 

of the NHPs, and this protective effect was associated with the elicitation of unconventional MHC-E-

restricted CD8+ T-cell responses (129). Currently, the initial clinical trial is underway to evaluate the 

safety and immunogenicity of a CMV vector-based vaccine named VIR-1111, with recruitment 

targeting healthy individuals who are CMV seropositive (130) (130, 131). HIV-RNA based vaccines 

have also been tested and following the success of vaccination for COVID these affords have been 

expanding with different messenger (m)RNA vaccines being tested (132). Currently, mRNA HIV 

vaccine candidates developed by Scripps Research Institute and Moderna are ben tested a Phase 1 

clinical trials(133). 

5. Vaccine induced Correlates of HIV in humans and NHP 

Correlates of Protection serve as critical immune biomarkers, evaluating vaccination response 

and predicting the anticipated level of vaccine efficacy for a specific clinical outcome (134). Whether 

mechanistic or non-mechanistic, a Correlate of Protection is valuable as a surrogate endpoint in this 

context. The identification of immunological markers associated with the risk of transmission in both 

preclinical and clinical trials for HIV-1 vaccines has significantly propelled the field of HIV-1 vaccine 

development, guiding the exploration of new vaccine candidates (135). Studies on immune correlates 

have spawned innovative hypotheses about the immunological processes that may contribute to 

averting HIV-1 acquisition. Recent research on HIV-1 immune correlates reveals that various types 

of immune responses collectively constitute an immune correlate, highlighting the role of 

polyfunctional immune control in preventing HIV-1 transmission. Consideration of the study 

population and species is crucial in understanding vaccine correlates. Although various non-human 

primate (NHP) challenge studies, employing diverse vaccine approaches, have shown partial 

protection against SIV or SHIV acquisition through CD8 T cell responses and neutralizing antibodies, 

the only partially effective trial against HIV did not yield similar results. The discussion on the role 

of adaptive immune responses in protecting against HIV has been extensive; hence, we discuss the 

contribution of innate immune responses and preexisting immunity. 

Innate immunity. Indubitably, a sharp paradigm shift that has opened new avenues in HIV 

vaccinology was the finding that protection was correlated with responses that are non-specific to 

HIV (e.g., monocytes and NKs), suggesting that balancing the activity of innate and adaptive (virus-

specific) responses may be a winning strategy (136). These finding were corroborated in three 

independent candidate HIV vaccines (including RV144) in macaques (11, 136) and more recently, in 

DNA/ MVA- based + protein vaccines (125).  By using systems vaccinology, we reported the 

activation of both hypoxia and inflammasome pathways within protective monocytes. Our data 

suggest that the RV144-like vaccine in monkeys was effective because it “trained” monocytes that in 

turn affected adaptive responses via the monocyte/ T-cell crosstalk. Unlike conventional vaccines that 

aim to elicit only specific responses to vaccine-related antigens, trained immunity-based vaccines 
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may offer greater protection by stimulating general long-term boosting of innate immune 

mechanisms (e.g., monocytes/macrophages) against pathogens and by harnessing the activation of T 

cell responses to the virus and even non-related antigens. 

Other arms of the innate immune system such as natural killer (NK) and natural killer T (NKT) 

cells may also act as a bridge between the innate and adaptive immune response to shape the quality 

and magnitude of the vaccine response. Natural killer (NK) cells may be important to improved 

vaccine immunogenicity, as shown in our RV144 macaque model (10). Although NK cells are a part 

of the innate immune system and lack clonal antigen receptors, they are now known to be unique in 

having adaptive properties of immunologic memory such as antigen-specific recall responses to a 

variety of pathogens, most notably to cytomegalovirus (CMV) infection (137, 138). Conclusive 

evidence of the presence of adaptive memory NK cells was first demonstrated against murine CMV, 

where NK cells expanded and cleared CMV through a memory-like response (139). Subsequent 

studies have affirmed the dominant role of human and rhesus CMV in inducing adaptive memory-

like NK cells with epigenetic imprinting, a unique receptor repertoire, and diverse function in 

humans and macaques (140-145). Additionally, memory-like NK cells without antigen specificity can 

be induced after cytokine activation with IL-12, IL-15, or IL-18 (146, 147). This raises the question of 

whether NK memory influences trained immunity by monocytes and whether it can be harnessed to 

improve vaccine efficacy(148) (147). 

NKT are unique immunomodulatory innate T-cells with an invariant TCR recognizing 

glycolipids presented on MHC class-I-like CD1d molecules. Activated iNKT rapidly secrete pro-and 

anti-inflammatory cytokines, potentiate immunity, and modulate inflammation. Due to their rapid 

response and broad functional potential, iNKT bridge the gap between innate and adaptive immunity 

(149). Once activated, iNKT can be directly cytolytic (through perforin and granzyme B) and display 

Th1, Th2 and Th17 effector functions. Additionally, iNKT rapidly influence the function of multiple 

immune subsets. Bidirectional interactions between iNKT and dendritic cells (DC) enhances DC 

maturation and facilitates antigen cross-presentation and priming of antigen-specific T-lymphocyte 

responses, IFNγ production by iNKT rapidly activates NK cells improving cytolysis, iNKT are also 

known to recruit and provide help to B-cells, improving B-cell maturation, antibody class-switching 

and overall humoral immunity(150) (151). iNKT activation was shown to enhance antigen specific 

CD4+ and CD8+ T cell responses to HIV DNA vaccine in mice with the effect being observed during 

DNA priming (152). We demonstrated the effects of iNKT activation in the NHP model of Mauritian-

origin cynomolgus macaques and showed downstream activation effects on CD4+ T-lymphocytes, 

monocytes, dendritic cells and B cells (153). Harnessing the immunotherapeutic potential of iNKT 

activation may be another useful tool for potentiating HIV vaccine efficacy which can be tested in the 

NHP model. 

Preexisting immunity effect on HIV vaccines. Preexisting immunity to HIV can have both 

positive and negative effects on the efficacy of HIV vaccines. This preexisting immunity might 

include specific antibodies, immune responses, or immune memory cells. While this immunity can 

be beneficial in controlling the virus in infected individuals, it can also complicate vaccine 

development. If a vaccine induces immune responses that are too similar to those of preexisting 

immunity, it may not provide additional protection. Interesting results were obtained by Campion et 

al In a study conducted as part of the HIV Vaccine Trial Network (HVTN) 106 phase I trial, the role 

of cross-reactive memory CD4+ T cells in the primary immune response to HIV-1 gp160 envelope 

(Env) was investigated. The study utilized ultrasensitive quantification and epitope mapping, 

revealing the presence of both naive and memory CD4+ T cells specific to Env in individuals who 

had not been previously exposed to the virus. Surprisingly, the primary immune responses triggered 

by the vaccine were primarily derived from the preexisting memory CD4+ T cell pool. This finding 

underscores the phenomenon known as "original antigenic sin" within the context of early vaccine-

induced T cell responses, highlighting the significance of preexisting memory T cells in shaping the 

immune response to novel pathogen (154, 155). In the context of HIV vaccine development, it has also 

been observed that even the most potent and broadly neutralizing antibodies, when reverted to their 

inferred germline versions representing naive B cell receptors, often fail to bind to the HIV envelope. 
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This implies that the initial B cell response is not exclusively composed of naive B cells but also 

includes a pre-existing pool of cross-reactive, antigen-experienced B cells that expand upon exposure 

to Env. As part of the HIV Vaccine Trial Network (HVTN) 105 trial, researchers isolated gp120-

reactive monoclonal antibodies (mAbs) from participants. Through deep sequencing and lineage 

tracking, it was discovered that several of these antibody lineages were present in the participants' 

pre-immune peripheral blood. Furthermore, these lineages persisted in the post-vaccination bone 

marrow, particularly within the long-lived plasma cell compartment. Interestingly, the pre-immune 

lineage members included not only immunoglobulin (Ig)M but also IgG and IgA, and they exhibited 

somatic hypermutation. These findings suggest that vaccine-induced gp120-specific antibody 

lineages originate from both naive and cross-reactive memory B cells, underscoring the complex 

interplay of B cell populations in the immune response to HIV (156). 

BCG and HIV vaccines. Preexisting immunity to HIV that arises from other vaccinations or 

coinfections against/with pathogens is an important area of research in the context of HIV vaccine 

development(157-160). This phenomenon (e.g.: heterologous immunity" or "cross-reactive immunity" 

or HIV epitope mimicry) (161, 162). For example, Bacillus Calmette-Guérin (BCG) is a vaccine 

primarily used for the prevention of tuberculosis (TB) in humans and RM (160, 163-165). Currently, 

the BCG vaccine is licensed for intradermal delivery. However, this strategy does not protect adults 

from pulmonary TB nor can be utilized in people living with HIV. Thus, intravenous administration 

of BCG has been explored with promising results in RM (160, 166).  

BCG vaccination has also been explored for its potential role in enhancing the immune response 

to HIV in the context of HIV vaccine development. Indeed, BCG is known to have a non-specific 

immunomodulatory effect on the immune system. It can activate various components of the immune 

system, including innate immune cells and it is therefore referred to as the gold standard for trained 

immunity(167, 168). In this context BCG "trains" the myeloid monocyte/macrophage lineage to be 

protective against TB and unrelated pathogens(169, 170).  BCG functions as a "self-adjuvanted" 

vaccine, engaging multiple pattern recognition receptors (PRRs) like Toll-like receptors (TLR2, TLR4, 

TLR8) to enhance vaccine-induced immunity (171, 172). BCG also induces epigenetic reprogramming 

in bone marrow myeloid precursors, leading to protection against various unrelated pathogens. 

BCG-trained monocytes boost responses to different exposures through non-antigen-specific 

mechanisms, including increased cytokine and chemokine release and the support of memory 

adaptive responses (173). Recent findings also suggest that BCG induces sustained changes in T cell 

repertoire, potentially contributing to long term protection (174). Applying trained immunity to 

enhance specific HIV responses across multiple clades is an intriguing concept, with trained 

monocytes initiating the response, followed by effective adaptive cytotoxic responses against 

conserved HIV regions. BCG's potential role in HIV vaccine development remains an area of active 

research. So far various studies involving BCG based HIV/SIV vaccines have been tested in non-

human primates (175, 176) (177) (178). Results show promising immune responses and are 

summarized in Table 1. Recombinant (r)BCG (-Tokyo) and Vaccinia Virus (DIs) were tested in 

combination in cynomolgus macaques (177) .The rBCG expressed full -length Gag was used as prime 

and was followed by non-replicating vaccinia virus. High levels IFNg responses were detected, and 

vaccinated monkeys were protected from high viral replication and CD4+ T cell depletion for a year 

after intrarectal exposures to a pathogenic SHIV clone, compared to controls. rBCG and Ad5 

combination strategy was tested in RM (175). Strong polyfunctional CD8+ T cells were induced by 

rBCG expressing SIV Gag and Pol and rAd5 expressing SIV antigens. BCG strain AERAS-401 

expressing HIVA immunogen as a prime, followed by MVA.HIVA and OAdV.HIVA vaccines were 

tested in RM (176). Recombinant Mtb strain mc26435 expressing SIV Gag was evaluated for TB- and 

SIV-specific immune responses in infant macaques. Results show low levels of SIV-specific immunity 

observed following oral and intradermal priming, that were enhanced after boosts (176) (179). BCG-

SIVgag constructs acted as a strong SIV-specific prime for cellular immune responses, inducing SIV-

specific CD8+ and CD4+ T-cell responses after the prime. Maintenance of immunogenicity was 

observed more than 2 years following prime-boost administration, though no protective effect was 

measured against repeated SIVmac251 rectal mucosal challenge (178). 
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Table 1. Summary of In Vivo Studies on BCG-Based HIV-1/SIV Vaccines in Nonhuman Primates. 

Study Vaccine Animal Result Reference 

Cynomolgus 

Macaques  

rBCG (full-length 

SIV Gag) + 

Vaccinia virus 

boost 

Cynomolgus 

Macaques 

High IFN-γ secretion, protection from 

viral challenge, observed for a year; No 

protection with separate vaccine 

modalities 

(177) 

 

Rhesus 

Macaques  

rBCG (SIV Gag 

and Pol) + rAd5 

boost Rhesus Macaques 

Induced polyfunctional CD8+ T-cell 

profile 

(175) 

 

Rhesus 

Macaques  

AERAS-401 

prime + 

MVA.HIVA and 

OAdV.HIVA 

boost Rhesus Macaques 

High-frequency HIV-1-specific T-cell 

responses; Safety demonstrated, lower T-

cell immunogenicity in infants 

(180) 

 

Infant Macaque 

Model  

rMtb mc26435 

expressing SIV 

Gag 

+ MVA boost 

Infant Macaque 

Model 

Low levels of SIV-specific immunity, 

enhanced after boosts 

 

Mucosal SIV-specific IgA in saliva and 

intestinal IgA and IgG 

(176) 

(179) 

Chacma 

Baboons  

rBCGpan-Gag 

prime + Gag VLP 

boost Chacma Baboons 

Gag-specific responses after two primes, 

enhanced by Gag VLP boost 

(181) 

 

Rhesus 

Macaques  

Minigenes + 

rBCG, rDNA, 

rYF17D, rAd5 

combinations 

Rhesus Macaques 

(Mamu-A*01+ 

MHC-1) 

Modest reduction in viral set point 

following SIVmac239 challenge; Need for 

strategies to overcome 

immunodominance 

(182) 

 

Rhesus 

Macaques  

rBCG-SIVgag 

constructs Rhesus Macaques 

Strong SIV-specific prime for cellular 

immune responses; Maintenance of 

immunogenicity over 2 years, no 

protective effect (178) 

The studies collectively demonstrate the potential of mycobacterium-based HIV-1/SIV vaccines 

in inducing specific immune responses in nonhuman primates. Some approaches show promising 

results in terms of immunogenicity and protection against viral challenges, while others highlight the 

need for further strategies to overcome challenges such as immunodominance. Long-term 

immunogenicity is observed in several cases, but the quest for a fully protective vaccine continues 

(183).  

CMV natural infection in HIV vaccines. Human CMV (HCMV) impacts almost every part of 

the host immune system. Studies in identical twins discordant for CMV infection differ in >50% of 

about 200 immune parameters, providing strong evidence for its influence in shaping the immune 

landscape (184). HCMV profoundly impacts NK cells and is a major driver of NK memory (185). NK 

cells play a significant role in the defense against herpesviruses and have a particularly unique 
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relationship with CMV. Indeed, the co-evolution of CMV and the human immune system has led to 

the expansion of a unique memory-like NK cell subset that is not found in naïve hosts. CMVs are 

highly species-specific and have co-evolved with their respective host species (186). The CMV species 

that is most closely related to HCMV, and that can be experimentally studied, is infection of rhesus 

macaques with RhCMV (187) (188) (189) (190). RhCMV is widely prevalent in group-housed captive 

rhesus macaques in the SPF colony at the Tulane Primate Research Center (TNPRC) and recapitulates 

many of the known features of HCMV, including natural history and its effect on the immune system 

(190) (189) (140, 188, 191, 192). CMV’s effect on shaping the immune system could therefore have 

consequences on the host response to vaccines including preclinical AIDS vaccine testing. There are 
conflicting data on the effect of CMV co-infection on vaccination (148). One study reported both 

higher and lower anti-influenza antibody responses depending on age (188), and another observed 

increased influenza vaccination-induced antibody responses in CMV+ compared to CMV– macaques 

(193). Because of the effect of CMV seropositivity on alterations in the T cell repertoire and 

immunosenescence, its impact on vaccine responses remains an important, albeit unresolved 

consideration (194) (195). 

6. Future Directions 

Extensive preclinical and clinical testing has highlighted that solely targeting one facet of the 

immune system is not an effective strategy for achieving protection against HIV. Lessons learned 

from the T cell vaccine era (second wave) emphasize that adopting a "more is better" approach, such 

as aiming for strong CD8+ T cell responses or higher levels of interferon-gamma (IFNg) as an efficacy 

marker, has proven inadequate. Intriguingly, the only vaccine to achieve partial protection against 

HIV acquisition did not induce anti-viral CD8+ T cells. Furthermore, this same vaccine failed to 

reduce HIV replication levels in individuals who became infected. It appears that safeguarding 

against viral replication and acquisition may require distinct immune responses. This notion finds 

support in observations that successful viral load control in macaques did not translate into 

protection against acquisition in humans, and in some instances, it even heightened the risk of viral 

acquisition. It is therefore worthwhile to reconsider the strategy by emphasizing a short-term vaccine 

approach focused on preventing acquisition rather than striving for long-lasting protection (like 

bNabs approaches). Alternatively, new adjuvants could be developed to circumvent the necessity of 

inducing CD4+ T cells or to redirect CD4+ T cells away from transmission sites, possibly using 

innovative strategies, such as chemokines (196) heat shock proteins (197) or other strategies (198). 

We find ourselves in what could be considered a new era of vaccine development, although it 

can be challenging to accurately define waves while actively experiencing them. Undoubtedly, the 

emergence of the COVID-19 pandemic has transformed how we disseminate scientific information 

and, most importantly, has underscored the urgency of expediting vaccine testing in human subjects. 

Current challenges in the preclinical field include the availability of specific NHP models in the post-

COVID era and cost constraints. National Primate Centers are actively expanding their colonies due 

to disruptions in supplies from other countries. Cost limitations are particularly pertinent in low-

dose repeated challenge models, where achieving statistical power necessitates larger animal groups. 

Furthermore, conducting side-by-side comparisons of multiple vaccines can be financially 

burdensome and often impractical unless we have identified clear indicators of protection and 

thoroughly studied them. Despite these considerations and challenges, the NHP model remains an 

indispensable tool in vaccine research, offering a crucial bridge between preclinical studies and the 

complex human clinical trial phase. 

Finally, by examining the ongoing efforts and advancements in HIV prevention research, we 

hope to contribute to the collective knowledge and foster new ideas that can pave the way for the 

development of an effective HIV vaccine. 
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