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Abstract: Electrolysis stands as a pivotal method for environmentally sustainable hydrogen
production. However, the formation of gas bubbles during the electrolysis process poses significant
challenges by impeding the electrochemical reactions, diminishing cell efficiency, and dramatically
increasing energy consumption. Furthermore, the inherent difficulty in detecting these bubbles
arises from the non-transparency of the wall of electrolysis cells. Additionally, these gas bubbles
induce alterations in the conductivity of the electrolyte, leading to corresponding fluctuations in
the magnetic flux density outside of the electrolysis cell, which can be measured by externally
placed magnetic sensors. By solving the inverse problem of the Biot-Savart Law, we can estimate
the conductivity distribution as well as the void fraction within the cell. In this work, we study
different approaches to solve the inverse problem including Invertible Neural Networks (INNs) and
Tikhonov regularization. Our experiments demonstrate that INNs are much more robust to solving
the inverse problem than Tikhonov regularization when the level of noise in the magnetic flux density
measurements is not known or changes over space and time.

Keywords: Machine Learning; Invertible Neural Networks; Normalizing Flows; Water Electrolysis;
Biot-Savart Law; Inverse Problems; Current Tomography; Random Error Diffusion

1. Introduction

The surging demand for clean energy has led to extensive research into electrolysis as a viable
method for greenhouse gas-free hydrogen production [70]. Harnessing excess renewable energy from
sources like wind and sunlight enables us to power electrolysis that generates clean hydrogen gas. This
hydrogen serves as a reliable energy reservoir, particularly during periods of limited renewable energy
availability, thereby addressing the seasonal supply and demand gaps. Moreover, hydrogen exhibits
benefits including extended storage capabilities, presenting a promising solution for reducing carbon
footprints [1]. Hydrogen also finds diverse applications, ranging from usage as cryogenic liquid
fuel and as a replacement for lithium batteries. However, the overall efficiency of electrolysis faces
limitations due to the formation of gas bubbles which block electrodes’ reaction sites and obstruct
electric current [2] like shown in Figure 1. Furthermore, the growth and detachment of bubbles
are intricately governed by a complex interplay of forces, including buoyancy, hydrodynamic, and
electrostatic forces [5,74,75]. Consequently, detecting both bubble sizes and the location of possible
maldistribution of the gas fraction, along with the ability to control bubble formation is critical for
ensuring the efficiency and sustainability of hydrogen production through electrolysis.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. The illustration provides a visual representation of an electrolysis cell, elucidating the notable
occurrence of bubble formation concentrated specifically at the electrode reaction sites.

Detecting bubbles within electrolysis cells is a challenging problem, primarily due to the
non-transparency of the electrolyzer structures. A viable and non-invasive solution involves utilizing
externally positioned magnetic sensors to capture the bubble-induced fluctuations. However, the
availability of only low-resolution magnetic flux density measurements outside the cell, coupled
with the high-resolution current distribution inside the cell, necessary to provide accurate bubble
information, creates an ill-posed inverse problem for precise bubble detection. To further add to the
challenge, the measurement errors originating from sensor noise amplify the difficulty associated with
bubble detection.

The Contactless Inductive Flow Tomography (CIFT), introduced by Stefani et al. [7], stands as a
pioneering method for reconstructing flow fields within conducting fluids, an ill-posed linear inverse
problem. This technique leverages Tikhonov regularization to estimate the fluid motion from the
measured flow induced magnetic field under the influence of an applied magnetic field. The data
for this reconstruction are obtained from magnetic sensors strategically positioned on the external
walls of the fluid volume. However, the reconstruction of the conductivity distribution is an ill-posed
non-linear inverse problem which do not induce current through an external magnetic field. Moreover,
linear models, such as Tikhonov regularization, demonstrate high sensitivity to noise, particularly
when there exists a significant disparity in the amplitude of noise between the data used for model
fitting and testing. Also, the limited number of available sensors compounds the difficulty in achieving
a satisfactory reconstruction of the high-dimensional current distribution.

Advanced machine learning (ML) techniques such as Deep Neural Networks (DNNs) offer
a data-driven approach for reconstructing the current distribution within an electrolysis cell. By
leveraging external magnetic flux density measurements, these techniques are capable of capturing
relationships between the measured magnetic flux density and the internal current distribution of the
cell. A method known as Network Tikhonov (NETT) [6] combines DNNs with Tikhonov regularization,
where the regularization weightage parameter plays a crucial role in balancing data fidelity and
regularization terms. However, the choice of the weightage parameter is based on some heuristic
assumptions [4].

Given the limitations of the conventional approaches, we explored the feasibility of Invertible
Neural Networks (INNs) to solve our ill-posed non-linear inverse problem. It was recently shown
by Ardizzone et al. [3] that INNs are a good candidate for solving such tasks. INNs are marked by
a bijective mapping and inherent invertibility between input and output spaces, which present a
pragmatic solution for addressing the complexities in estimating the conductivity from relatively much
lower resolution of magnetic flux density measurements. Therefore, we studied its performance in
comparison to the Tikhonov regularization to estimate the binary conductivity distribution. The binary
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conductivity represent non-conducting void fraction as zeros, indicating the presence of bubbles. A
cluster of zeros can indicate either the existence of large bubbles or a cluster of small bubbles, enabling
us to estimate the void fraction. Our key contributions are:

* We introduce a novel method that uses INNs to reconstruct the spatial distribution of the void
fraction from limited magnetic flux density measurements, thereby addressing the inverse
problem of the Biot-Savart Equation in electrolysis.

* We show that INN is more accurate than the Tikhonov approach to reconstruct the distribution
of the void fraction when the amplitude of the noise in the magnetic sensor measurements is not
known or varies considerably in space and time.

¢ In scenarios where the number of sensors is further reduced, and the distance of the sensor
placement from the region where the conductivity needs to be reconstructed is further increased,
we show that our INN model is able to provide a good reconstruction of the void fraction
distribution.

* We present a new evaluation metric named Random Error Diffusion that computes the likelihood
that the predicted conductivity distribution resembles the ground truth. Based on Random Error
Diffusion, we show that our INN-based approach is better than the Tikhonov regularization.

In Section 2, we review the related work, Section 3 details our simulation setup that
mimics electrolysis, while Section 4 elaborates on our INN model and Random Error Diffusion
metrics. Section 5 presents experimental results, while Section 6 summarizes our main contributions,
and discusses the broader application of INNs in Process Tomography.

2. Related Work

This section presents an overview of the related works and is structured into four
sub-sections. Section 2.1 delves into the works that discuss the bubble formation as a significant obstacle
to efficient hydrogen production. Section 2.2 explores methods that provide analytical solutions for
addressing the ill-posed inverse problem in process tomography, including setups that deal with
Biot-Savart Law. Furthermore, Section 2.3 presents a review of conventional deep learning approaches
for solving inverse problems, while Section 2.4 examines works that utilize INNs for tackling inverse
problems.

2.1. Electrolysis for Clean Hydrogen: Notable Challenges

A recent study [19] discusses the challenge posed by the supply-demand mismatch in renewable
energy sources such as solar and wind power to achieve a stable and sustainable energy grid. Another
related work [20] explores the impact of fluctuations in energy production due to weather conditions
and variables like climate change, emphasizing periods of excess energy or insufficient supply
that can affect grid stability. Hydrogen production through electrolysis emerges as a promising
solution to this issue, utilizing excess renewable energy during periods of abundance to power
the electrolysis process. This allows for the generation and storage of hydrogen, which can then
be converted back into electricity or used directly in various applications when the renewable
energy supply is low [21]. Serving as an energy reservoir, hydrogen production through electrolysis
effectively bridges the gap between fluctuating renewable energy production and consistent
demand. Additionally, hydrogen’s versatility as a clean fuel makes it a valuable resource for
transportation and chemical industry, thereby reducing dependence on fossil fuels and mitigating
environmental impacts [21]. Consequently, hydrogen production through electrolysis represents a key
strategy for achieving a reliable and sustainable energy system [21].

However, the formation of bubbles poses a significant challenge in the process of electrolysis. As
an electrochemical reaction occurs at the electrodes, gas bubbles—typically hydrogen and oxygen are
generated. These bubbles represent the desired product in many electrolytic processes, but they can
also impede the efficiency of the reaction [2,22]. The accumulation of bubbles around the electrodes can
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obstruct the active sites, leading to increased resistance within the electrolysis cell [2,22]. This resistance
necessitates higher energy input to sustain the desired current flow. Additionally, if left unmanaged,
excessive bubble formation can result in operational issues and reduced efficiency [2,22]. Therefore,
understanding and effectively managing bubble dynamics is crucial for optimizing the performance of
electrolysis and ensuring the economical production of hydrogen.

Hence, bubble detection in electrolysis plays a critical role in optimizing the efficiency of the
process. However, it is a challenging endeavor due to the complex dynamics within the electrolysis cell,
and the non-transparent walls of the cell make direct visual observation impractical [23,24]. Instead,
researchers often resort to indirect methods, such as utilizing magnetic sensors to detect the magnetic
field disturbances caused by the movement of bubbles. These sensors are strategically placed outside
the cell to minimize interference and provide reliable tracking of bubble behavior. Upon applying
cell voltage to the electrolyzer, an electric current starts to flow. Consequently, this current induces a
magnetic field in the vicinity of the electrolytic cell, governed by the Biot-Savart law. Therefore, such a
setup may help in designing a more precise and efficient electrolysis system, which should ultimately
contribute to advancements in clean and sustainable energy production.

2.2. Solving Inverse Problem of Biot-Savart Equation - Analytical Approaches

To the best of our knowledge, no prior research has addressed inverse problems within an
electrolysis cell setup. However, works such as [72,73] have focused on solving inverse problems in
the context of fuel cells. Wieser et al. [72] introduced a contactless magnetic loop array for estimating
current distribution within fuel cells, while [73] designed a magnetic field analyzer with sensors
associated with a ferromagnetic circuit that enhanced magnetic field variations, leading to more precise
analysis of current distribution in fuel cells. The work by Roth et al. [11] proposed to reconstruct 2D
current distribution using Fourier analysis in order to better interpret the magnetometer signals that
may be useful in applications like in geophysical surveys. Similarly, [12] investigated the possibility
of using magneto-optic imaging to directly observe current distributions in thin superconducting
samples. Hauer et al. [25] presented Magnetotomography, a non-invasive method to visualize fuel cell
current distribution by measuring magnetic flux with a 3D magnetic sensor and a four-axis positioning
system. This method, enabled precise calculation of current flow within the cell since there was no
feedback effect. In application of plasma physics, work such as [13] introduced the Bayesian modelling
for inferring the current distribution from measurements of magnetic field and flux, where the plasma
current is represented as a grid of toroidal current-carrying solid beams with rectangular cross sections.

2.3. Solving Inverse Problems using Deep Learning

With the advancement in machine learning algorithms, many deep learning approaches have
been proposed to tackle inverse problems in medical imaging including Computed Tomography [6,14]
and Magnetic Resonance Imaging [35]. Works such as [14] proposed a partially learned method by
integrating prior information of the ill-posed inverse problem of 2D Tomography with a data-driven
trainable neural network, while [53] explored deep image prior techniques in the context of ill-posed
inverse problems. The work by [35] advocates for Convolutional Neural Networks (CNNs) as the
choice for solving the inverse problem of medical image reconstruction and regularizing the network
with a deep learned noise prior. Whereas [6] suggests using a neural network named Network
Tikhonov (NETT) in conjunction with a Tikhonov regularizer to solve the inverse problem for medical
imaging. Similarly, iNETT [26] is another recent method that combines Tikhonov regularization with
Neural Networks, differing from [6] in that the non-stationary iterated Tikhonov method avoids
exhaustive tuning of the regularization parameter. [44] developed a method for the fast convergence
of neural networks used for solving inverse problems in imaging by reducing latency in calculating
gradients. To explore more related works dealing with solving inverse problems in medical imaging or
imaging in general via deep neural networks, readers are referred to [41-43,46,54]. Recent works such
as [39] highlight that Deep Neural Networks (DNNs) trained to solve inverse problems are robust
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to noise and adversarial perturbations. Nevertheless, we believe that fine-tuning the regularization
weightage when DNN s are trained with some regularization strategy is challenging, even though
methods such as [40] learn such regularization weights.

Machine learning-based approaches have been proposed to solve ill-posed inverse problems
in Electrical Capacitance Tomography (ECT) [27,28], Electrical Impedance Tomography (EIT) [29,
30], Electrical Resistance Tomography (ERT) [31-33], Positron Emission Tomography [52], X-ray
Tomography [49,50], and novel applications such as Electromagnetic Inverse Scattering using
microwaves [45,51], generally via CNNs. A work by [48] explored the reason why CNNs are a
good candidate for solving specific inverse problems, where they showed that the usage of convolution
framelets represents the input data by convolving local and global information, aiding in learning
underlying features in the data. Although CNNs show promise in solving inverse problems, their
inherent non-invertibility may undermine their reliability. Other works to solve inverse problems
via deep learning, especially Adversarial Networks [36,37,47], LSTM-based Autoencoder [38], face
challenges in ensuring stable training due to their high complexity, making them less suitable for a
wide variety of inverse problems.

Based on our survey on solving inverse problems via deep learning, we conclude that while
significant progress has been made in developing such data-driven models, open questions persist
regarding invertibility during training, scalability, and reliability of these deep learning-based
approaches in applications of process tomography. Therefore, there is a need to explore novel network
architectures and address challenges for the wider practical deployment of such machine learning
models in scientific domains.

2.4. Invertible Neural Networks (INNs)

INNSs are a promising new category of deep learning architectures that are inherently invertible
in nature. Recently, Ardizzone et al. [3] showed the effectiveness of INNs for solving the inverse
problem of predicting the level of oxygenation in tissues from endoscopic images. Even though there
have been recent attempts to use INNs as surrogate models for solving inverse problems, such as
[34] for inverse problem in physical systems governed by Partial Differential Equations (PDEs), [55]
for inverse problem in morphology, [56] for inverse problem in medical imaging, or [57] for inverse
design of optical lenses. However, INNs remain largely unexplored in the field of solving inverse
problems in process tomography. INNs are popularly implemented based on Normalizing Flows
(NFlows) that are suitable generative models due to their invertible architectural design, and accurate
density estimation [64]. Additionally NFlows doesn’t suffer from posterior collapse, common in other
generative models such as Variational Auto-Encoders (VAEs) and Generative Adversarial Networks
(GANSs). NFlows were popularized by [58] for density estimation. Since then, multiple novel NFlows
have been proposed in the literature, such as RealNVP [8], Glow [9], FFJORD [59], NAF [60], SOS [61],
Cubic Spline Flows [62], Neural Spline Flows [63]. Each of these prior works differs on the design of
the NFlows that includes the design of the coupling function.

In summary, the section showcases the under-explored potential of INNs for addressing
the inverse problem of the Biot-Savart Equation and other applications in the industrial process
tomography domain in general.

3. Simulation Setup

The simulation setup mimics generic features of a water electrolyzer in a simplified model, as
depicted in Figure 2 (top). In Section 3.1, we elaborate on the intricate design details related to the
simulation. Moving to Section 3.2, we provide information on essential simulation parameters used
for the experiment. Subsequently, in Section 3.3, we discuss the mesh transformation step to obtain
the fine-grained mesh of the conductivity maps, which will be used as the input to the INN and other
evaluated models. In Section 3.4, we formulate the forward physical process of the simulation based
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on the Biot-Savart Equation and finally, in Section 3.5, we give an overview of the data used to perform
the experiments.

Cu electrodes

PMMA
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Cu wire
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Figure 2. The top figure shows the Proof-of-Concept (POC) model that contains a channel filled with
liquid GalnSn with PMMA cylinders normally distributed along the x-axis and randomly distributed
along the y-axis in the channel. The top figure also shows the Cu electrodes with wire to apply electric
current to the plate, and the magnetic sensors on the bottom. The two bottom figures show examples of
the binarized conductivity distribution of liquid metal-containing region in the xyz cartesian plane. The
dark pixels resembles low conductivity meaning the presence of void fraction clusters.

3.1. Simulation Design

The goal of our simulation setup, depicted in Figure 2 (top), is to investigate the feasibility of
localizing and quantifying non-conducting bubbles by reconstructing the conductivity distribution
from the observed induced magnetic flux density in the surrounding external region. To achieve this,
the simulation setup simplifies the water electrolyzer to a quasi-two-dimensional configuration. The
setup is filled with liquid GalnSn as a substitute of water to avoid electrochemical reactions and the
generation of additional bubbles. To represent non-conducting gas bubbles, Poly-methyl methacrylate
(PMMA) cylinders with varying radii and locations are placed throughout the liquid. Hence, the
setup incorporates materials with significant conductivity differences to simulate conducting water
and low-conducting bubbles. We selected the dimensionality of the simulation setup based on the
future experimental setup. The liquid channel’s configuration measures 16 x 7 x 0.5 cm. The two
Cu electrodes (each measuring 10 x 7 x 0.5 cm) facilitate the application of the electric current. The
anode and cathode connections are established via wires, modeled with lengths of 50 cm and square
cross-sections measuring 0.5 cm on each side.

3.2. Simulation Parameters

To compute training data, diverse geometrical setups featuring regions of varying conductivity
were compiled from a Java-class file in the finite element software COMSOL Multiphysics V6.0
(COMSOL Inc, Burlington, USA) [66]. This involves placing between 30 and 120 PMMA cylinders
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with radii ranging from 2 to 2.5 mm within the liquid metal. The cylinder sizes are aligned with
bubble agglomerates, and larger clusters are represented by merged cylinders. Since no electrochemical
reactions occur in the liquid metal after the application of electric current, concentration-induced
conductivity gradients are excluded. A low electrical conductivity of 5 x 1074 S/m is employed to
simulate the void fraction at PMMA cylinder positions [67]. For the Cu wires and electrodes, values of
5.8 x 107 S /m are used, while the liquid metal is assigned a conductivity of 3.3 x 106 S /m [68]. A current
density of 1 A/cm? is applied at the electrode surface interfacing with the liquid metal, which falls
within the typical range for alkaline and PEM electrolyzers. As the input current is conducted through
the smaller cross-section copper wire, this necessitates an application of 14 A/cm?, corresponding to a
total current of 3.5 A.

3.3. Mesh Transformation

To facilitate automated grid generation for various bubble distributions, the geometry was
discretized using finite tetrahedral elements, forming an unstructured mesh. Following a study to
ensure grid independence, the mesh underwent refinement in regions exhibiting high current density
gradients, notably at the interfaces between the wire and electrode, as well as within the volume
containing liquid GalnSn. For the liquid metal, the tetrahedral element size of 0.1 mm was set as the
minimum, while the maximum was established at 5 mm. The computation of the current and the
conductivity distribution for multiple geometries necessitates meshes with varying cell counts. As
the INN and other evaluated models require fixed input array dimensions, the initial tetrahedral
mesh is transformed into a grid of hexahedrons with a constant number of elements. The current
density distribution within the structured mesh, consisting of one cell layer in height, can be treated
as two-dimensional, given the negligible influence of the z-component and variations in the x and y
components along the z-direction of the current. This grid comprises a total of 774 cells, with higher
resolution allocated to the middle containing the liquid metal volume, comprising 510 nearly cubic
cells, each with dimensions of 4.71 x 4.67 x 5 mm. The current density and electrical conductivity
within each hexahedron are determined through inverse distance-weighted interpolation [18] utilizing
the 24 nearest tetrahedrons.

3.4. Solving Forward Process via Biot-Savart Equation

The current distribution j(r/) was simulated using COMSOL for each bubble distribution, and
the magnetic field B(r) exclusively at the positions of virtual sensors, was determined by Biot-Savart
law given as,

B(I") — &/ M[ZV (1)
4 Jv |r — 7/|

where y is the permeability of free space, i.e., vacuum given as 47t x 107 N/ A2, V is the volume
with dV as infinitesimal volume element and B (r) € R? is the magnetic flux density at point r with
r/ as the integration variable and a location in V. Since only one spatial component of B(r) will be
measurable in the planned experimental validation setup, we aim to reconstruct the conductivity
distribution by using one spatial component of B(r) that is most informative about the magnetic flux
density. Therefore, we selected the x-component of the magnetic flux density. The simulation of the
current distribution typically requires 2.5 minutes. Additionally, the mesh transformation, along with
calculating the magnetic field using Equation 1, requires around 3.5 minutes.

3.5. Simulation Data

To measure the magnetic flux density B(r), we positioned an array of 10 x 10 virtual sensors,
ie, M = 100, at a distance d below the liquid GalnSn. In our future experimental setup, only
one spatial component of the magnetic flux density, i.e., x-component is measurable. Thus, the
conductivity distribution o(r/) and one spatial component of the magnetic flux density B(r) serve
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as the ground truth for every geometrical configuration. We simulated the conductivity distribution
for 10, 000 different geometrical configurations with a fixed applied current strength of 3.5 A. After
transforming the tetrahedral mesh into a hexahedral mesh with fixed dimensions, the resulting
conductivities were divided by 0Garsn = 3.3 x 1076 S/m, yielding relative conductivities 7,,; between
0 and 1. Subsequently, ¢,,; were binarized by assigning values smaller than 0.25 as 0 and others as
1. Two examples of binary conductivity maps are shown in Figure 2 (bottom). We selected only those
conductivity points directly above the sensor positions. Hence, out of the originally 774 simulated
conductivity data points, only 510 data points were chosen for each simulated geometry. For each of
the 10,000 configurations, the magnetic flux density was calculated at a distance d = 5 and 25 mm for
50 and 100 sensor array (see Section 3.2).

4. Method

In this section, we provide details related to the INN model and present the developed metrics
to evaluate the performance of the model. The section is organized into four main sub-sections. In
Section 4.1, we delve into the architecture of the proposed INN framework for addressing the inverse
problem of the Biot-Savart Equation. Additionally, Section 4.2 provides a detailed discussion of the loss
function employed for training the INN. Following this, in the Section 4.3, we elucidate our Random
Error Diffusion metric, which helps in assessing the quality of the conductivity reconstruction. To
evaluate the robustness of the INN for reconstructing conductivity distribution when there is noise in
sensor readings, Section 4.4 presents our algorithm for computing per-pixel bias and deviation maps.

4.1. INN Architecture

Let us reformulate the conductivity distribution o (#/) as variable x at discretized locations
and the strongest spatial component of induced magnetic flux density B () as variable y at distinct
locations below the liquid metal. The setup for training the INN as shown in Figure 3, closely follows
Ardizzone et al. [3]. Given the conductivity map x is N-dimensional vector such that x € RN and
the magnetic flux density measurements y is M-dimensional such that y € RM where N > M, the
transformation x — y is non-bijective and thus information loss occurs. We formulate an additional
latent variable as z € RN~M such that for the INN shown in Figure 3, the dimensionality of [y, z] is
equal to the dimensionality of x. It is to be noted that the conductivity distribution x, the induced
magnetic flux density y and the latent dimension z does not represent the Cartesian xyz coordinates of
three-dimensional space of the simulation setup in Figure 2.

X€ RN y€ RM

()

Magnetic Flux
Density

Conductivity X

Latent Space

ze RN-M
Figure 3. An overview of our INN architecture. The conductivity map x is positioned on the left side of
the network. The INN architecture contains k coupling blocks. On the right side of the network are
variables y and z, i.e., magnetic flux density and latent space, respectively. The INN is trainable in both
directions, as shown with the bi-directional arrows in the figure.
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The proposed INN model f is a series of k invertible mappings called coupling blocks with
f=fi,. fj, .., f that predicts £ = f (y, z;0). The coupling blocks are learnable neural networks, i.e.,
scaling s and translation t, such that these functions need not be invertible and can be represented
by any neural network [8]. The coupling block takes the input and splits it into two parts, which are
transformed by s and ¢ networks alternatively. The transformed parts are subsequently concatenated
to produce the block’s output. The architecture allows for easy recovery of the block’s input from
its output in the inverse direction, with minor architectural modifications ensuring invertibility. We
follow [9] to perform a learned invertible 1 x 1 convolution after every coupling block to reverse
the ordering of the features, thereby ensuring each feature undergoes the transformation. Hence, the
function f is a bijective mapping between [y, z] and x, leading to its invertibility which help it to
associate the conductivity x with unique pairs [y, z] of magnetic flux density y and latent space z. We
incorporate vector z to address the information loss in the forward process i.e. x — y and to capture
the variance in mapping the inverse processi.e. y — x.

Algorithm 1: Training and Testing scheme of the Invertible Neural Network

Input: Training data Dy, Test data Dy, Training epochs E, Learning rate 7
Output: Trained INN model f
1 Initialize INN model f with network parameters 6 randomly;

for sample in Diest do
Predict conductivity using trained model i.e., £s4pe = f (ysumple ; Zsample; 0);

2 for epoch <— 1 to E do

3 for batch W in D44, do

4 Calculate gradient of loss Ly () using backpropagation;

5 Update parameters using gradient descent: 6 < 0 — yVgLx(x, f(y;2;0));
6 end

7 end

8

9

10 | Compute evaluation results based on defined metrics;
11 end

4.2. INN Training and Testing Procedure

The algorithm for the training and testing of our proposed INN framework is shown in
Algorithm 1. Given the INN as an invertible function f, its optimization via training explicitly
calculates the inverse process, i.e., £ = f (y,z;0) where 0 are the INN parameters. We define the
density of the latent variable p (z) as the multivariate standard Gaussian distribution. The desired
posterior distribution p (x|y) can now be represented by the deterministic function f that pushes the
known Gaussian prior distribution p (z) to x-space, conditioned on y. Note that the forward mapping
x — [y, z] through function f~1, and the inverse mapping [y, z] — x through function f, are both
differentiable and efficiently computable for posterior probabilities. Therefore, we approximate the
conditional probability p (x|y) by the inverse process of our tractable INN model f (y, z;6) which
uses the training data {(x;, yi)}iT:1 with T samples from the forward simulation as discussed in
Section 3. Hence, the objective is to deduce the high-dimensional conductivity distribution x, from
a sparse set of magnetic flux density measurements y. Even though our INN can be trained in both
directions with losses Ly, £y and L, for variables x, y, z respectively as performed in [3], we are
only interested with reconstructing the conductivity variable x, i.e., the inverse process. Given the
training batch size as W, the loss £, minimizes the reconstruction error between the ground truth and
predictions during training as follows:

=

W
Ly(0) = <I/1V Y |x — f(yi,zi,0)|2> with objective 0% = arg;nin Ly (0) ()
i=1
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4.3. Random Error Diffusion

The ground truth conductivity maps consist of binary values, Xy, while the predictions
are continuous-valued, £l Therefore, it is crucial to define an appropriate metric to assess the
performance of the model. In principle, image dithering approaches like Floyd-Steinberg Dithering [69]
can be adopted for converting the continuous-valued pixels to binary pixels and then compare
its similarity with the ground truth binary map. However, [69] disperses quantization errors
into neighboring pixels with pre-defined fractions or a fixed dithering matrix, without adapting
to the specific characteristics of the image. Therefore, we developed a novel algorithm named
Random Error Diffusion [65] (see Algorithm 2) to assess the similarity between the continuous-valued
conductivity predictions and the binary-valued ground truth maps. The algorithm utilizes four
randomly sampled error fractions from Dirichlet distribution to diffuse quantization errors in the
context of Floyd-Steinberg Dithering. The process is then repeated multiple times to create an ensemble
of binary conductivity maps, whose density is estimated. Subsequently, the log-likelihood of the
ground truth binary map is estimated with respect to the computed density.

Algorithm 2: Random Error Diffusion

Input: Error fractions u;, Ensemble count n, Kernel Bandwidths h, Rsamples Xsample
Output: Log-Likelihood score 1og (8, (Xsampie))

1 fori=1tondo

2 Sample a vector of four random error fractions uy, ..., u4 from the Dirichlet distribution

uj € (0,1) and Z?:l uj=1; ,

3 Apply Floyd-Steinberg Dithering on £, given vector u to obtain £}, ;

4 | Store#l. in the ensemble array £7, ;

5 end

6 Optimize bandwidth / using Grid Search and Kernel Density Estimation on £};, ;

7 Perform Kernel Density Estimation on £}};, with optimal bandwidth ;

s Calculate the log-density log (& (Xsampie)) to estimate the likelihood of Xgqypie;

9 return Log-Likelihood score log (8 (Xsampie) );

4.3.1. Algorithm

To initiate the algorithm, four random error fractions, denoted as u1, . .., u4, are sampled from
the Dirichlet distribution. Each fraction is a real number within the interval (0,1), and their sum
is constrained to equal 1. Subsequently, these random error fractions are utilized to diffuse the
quantization error to the neighboring pixels in order to obtain the binary conductivity map. This process
is repeated n times for resampling the four error fractions, which is used to produce an ensemble
of n binary conductivity maps £, , for each continuous valued conductivity prediction £y, 1. We
subsequently perform Kernel Density Estimation (KDE) on the ensembles £}, for each conductivity
prediction £, to obtain the density estimate §j,, parameterized by the kernel bandwidth h. Finally,
the log-likelihood log (&} (*sample) ) of the ground truth binary map x,,,,1 is computed from the density
estimate §;,. The Figure 15 shows the distribution of log-likelihoods for validation ground truth samples
at ensemble count n = 100 and 1000. The Table 3 shows the average of the log-likelihood scores from
the validation ground truth samples for each evaluated models. The Section 5.5.2 discusses the results
in Table 3 and the Figure 15.

4.4. Bias and Deviation

To comprehensively analyze the robustness of the INN and other evaluated models for
reconstructing the conductivity distribution amid sensor noise, we introduce two additional evaluation
metrics, namely the Bias and Deviation maps. The motivation behind formulating these metrics lies
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in the observation that the reconstructed conductivity from different evaluated models as shown in
Figure 4, do not reveal the model’s true robustness to noise. Therefore, a noise vector ggpe € RM
were sampled -y times from the uniform distribution in a pre-defined range. Subsequently, this sampled
noise vector &;,pe were added to the magnetic flux density measurements from the validation set
Ysample- The models studied in this work were then utilized along with the noisy magnetic flux density
(ysmplg + Osample) to reconstruct oy conductivity maps, £ ple-

Bias: Our first metric, denoted as Bias, is computed by first taking the per-pixel average of the y
conductivity maps. Then, the conductivity map predicted from the evaluated model when the sensor
readings had no addition of noise is then subtracted from the averaged conductivity map. This results

in the computation of the bias map given as:

. 1 & R
Bzas(p, q) = {; Zx;ample(p/ Q)}_xgumple(p/ q) (3)
i=1

where Bias(p, q) is the bias at pixel (p, q), 7 is the number of iterations, £ ple(P,4) is the predicted
conductivity at pixel (p, g) in the i-th iteration, ’ets)ampl .(p,q) is the predicted conductivity at pixel (p,q)
when no noise is added in y,,,, ;.- Thus, the bias map visualizes model’s tendency to deviate from
accurate predictions under different noise conditions.

Deviation: We utilized the  conductivity maps to compute per-pixel standard deviation values,
resulting in the deviation map formulated as follows:

v

Deviation(p,q) = i;(f;umple(p’q) — Zsample(P,9))? (4)
where Deviation(p, q) is the deviation at pixel (p,q), and Zpie(p, q) is the average predicted
conductivity at pixel (p,q) across all v iterations. Hence, the per-pixel deviation map estimates the
variability in the model’s conductivity predictions across multiple instances of sensor noise. It also
elucidates the model’s sensitivity to noise in sensor readings. Together, the bias and deviation maps
offer an effective way to analyze the specific strengths and weaknesses of a model to solve the inverse

problem, enabling a deeper understanding of the model’s behavior under realistic noisy conditions.

Table 1. Average Peak Signal-to-Noise ratio for the validation set of the ground truth magnetic flux
density data. The distance of the sensors from the liquid metal is d = 25 mm with M = 50 sensors.

| Noise | 1nT | 3nT | 52T | 10nT | 50nT | 100nT | 500nT | 1uT |
| PSNR (dB) | 56.46 | 46.93 | 4251 | 3648 | 22.50 | 1649 | 248 | -3.52 |

4.4.1. Peak Signal-to-Noise Ratio (PSNR)

In our future experimental setup, a uniformly distributed noise may be present in the sensor
readings. Our previous study [71] have shown that generally, up to = 10nT noise is observed in similar
settings. Therefore, we introduced uniform noise dg;pie within the range of & 1nT, 3nT, 5nT, 10nT,
50nT, 100nT, 500nT, and 1uT. We also evaluated our models on higher noise levels in order to analyze
its robustness under atypical sensor anomalies. These noise levels were sampled 7 times and was
added to the validation set of magnetic flux density measurements, as discussed in Section 4.4. The
distance of the sensors from the liquid metal was fixed at d = 25 mm with M = 50 sensors. To
quantify the amount of noise Jdg;,p1 added to the magnetic flux density measurements y; ample of the
validation set, we computed the Peak Signal-to-Noise Ratio (PSNR), expressed in decibels (dB). PSNR
measures the logarithmic ratio between the maximum power of the noise-free magnetic flux density
measurement, y,, ., and the mean of the squared noise 54yl as:

PSNR = 20 - log;,(Max( )) — 10 - log,,(Mean(d2,,,,.)) (5)

ysample sample
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PSNR metric quantifies the relationship between the maximum possible signal power and the
power of the noise in the signal. A higher PSNR value in this context implies better signal quality,
indicating a reduced level of noise or distortion in the magnetic sensor readings. Table 1 presents the
average PSNR scores obtained from samples within the validation set of magnetic sensor data. Notably,
the noise level up to 4= 50nT already results in a low PSNR score. Therefore, the insights from Table 1
prompt further study to visually and quantitatively assess the robustness of the INN model relative to
other approaches when reconstructing the conductivity distribution under low PSNR settings.

5. Experiments and Results

In this section, we discuss our experimental setup and the obtained results. In Section 5.1, we
explain the standardization of the training and test data. Section 5.2 details the meta-parameters
defined for training the INN. Finally, we report qualitative results in Section 5.4 and quantitative
results in Section 5.5.

5.1. Data Standardization

To create distinct training and validation sets, we shuffled the simulated geometries and
allocated 80% of the 10,000 geometries for training and 20% for validation. Additionally, we
conducted data standardization to facilitate the model’s learning process and enhance convergence
efficiency. Standardizing the data ensures that all features share a similar scale, promoting faster
convergence, numerical stability, and generalizability. Given the distinct units of measurement for
magnetic flux density and conductivity distribution, standardization becomes particularly essential in
our case. We specifically employ Z-score normalization as our standardization method, transforming
the simulation data to have a per-feature mean value of 0 and a standard deviation of 1. We
perform standardization procedure separately for magnetic flux density data and binary conductivity
distribution.

5.2. INN Hyperparameters

The INN model underwent training on four NVIDIA A100 GPUs, utilizing Python 3.8.6 and
PyTorch 1.9.0. We fixed the training meta-parameters such as the batch size at 100, optimizer as
Adam with a learning rate of 1 x 107#, the exponential decay rate for the first and second moment
as 0.8 and 0.9 respectively, epsilon score at 1 x 107%, and weight decay at 2 x 10~°. Concerning the
INN architecture, we maintained three fully connected layers in s and ¢ networks for each coupling
block. Each layer has 128 neurons and tanh activation function after the first and second layers, whereas
there is no activation function in the output layer of the s and ¢ networks. We studied the effect of the
number of coupling blocks for validation loss convergence in Section 5.5.1.
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Table 2. Architecture of the developed Convolutional Neural Network (CNN) for the simulation
configuration of M = 100 sensors and the sensor distance of d = 5 mm from the liquid metal.

Layer Type Number of Filters | Feature Size | Kernel Size | Strides
Image Input Layer 10 x 10 x 1

1st convolution layer 32 10 x 10 x 32 | [3,3] [1,1]
ReLU Layer

2nd convolution layer 64 10 x 10 x 64 | [3,3] [1,1]
ReLU Layer

3rd convolution layer 128 5x5x 128 [4,4] [2,2]
ReLU Layer

4th convolution layer 128 5x5x128 [3,3] [1,1]
ReLU Layer

5th convolution layer 64 5x5 x 64 [3,3] [1,1]
Nearest Neighbor Upsampling 10 x 10 x 64

6th convolution layer 32 10 x 10 x 32 | [3,3] [1,1]
Nearest Neighbor Upsampling 20 x 20 x 32

7th convolution layer 1 20 x 20 x 1 [3,3] [1,1]
Nearest Neighbor Interpolation 34 x 15 x 1

5.3. Evaluated Methods

We implemented two distinct coupling block architectures, drawing inspiration from RealNVP [8]
and Glow [9], as the backbone of our INN model. Each of these INN models was trained with the
loss function described in Equation 2. We also trained the Glow based INN model with the mean
squared error (MSE) as the objective function such that £y (8) = & Y1V |x — f(y;,2:,0) 2. The
purpose was to assess its performance in terms of reconstructing the conductivity distribution. In
addition, we explored three alternative approaches to address the inverse problem at hand, Tikhonov,
Elastic Net and Convolutional Neural Network (CNN). The models, Tikhonov and Elastic Net, hinge
on fitting a linear model regulated by a penalty term. The Tikhonov approach applies an L,-Norm
penalty on the parameters of the linear model for regularization, while Elastic Net regularization
employs a combination of L;-Norm and Ly-Norm penalties on the model parameters. The weights
of the regularization term for the Tikhonov and Elastic Net approaches were determined through
cross-validation on the training set. To further diversify our evaluation, we introduced a CNN
model designed for reconstructing the conductivity distribution. The loss function for the CNN
was formulated similarly to Equation 2. For training the CNN model, we transformed the 100 sensor
input data into a 10 x 10 dimensional input, while the 510 conductivity points were transformed into a
34 x 15 output 2D map. Further architectural details of the developed CNN model are provided in
Table 2. In this paper, we will refer to the six models as INN-Glow, INN-RealNVP, INN-Glow (MSE),
Tikhonov, Elastic Net, and CNN as needed.
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Figure 4. Visual comparison of the quality of the reconstruction of conductivity distribution X, ;e
from example ground truths of the validation set on the evaluated models. We used the simulation
configuration of d = 5 mm with M = 100 sensors.

5.4. Qualitative Results

In this section, we present a comprehensive visual comparison of the reconstructed conductivity
distribution from several evaluated models. We also, report the results of the parameter studies and
discuss the bias and deviation maps obtained from the INN-Glow and Tikhonov model under noisy
sensor measurements.

5.4.1. Prediction of the Conductivity Maps: A Comparative Study

In Figure 4, we present the results of predicted conductivity maps by the INN-Glow, INN-RealNVP,
Tikhonov, Elastic Net, and the CNN models. These predictions are based on the sensor configuration
with d = 5 mm and M = 100 sensors. It can be observed that both INN-Glow and INN-RealNVP
models provides a good approximation of the ground truth conductivity map. The reconstructions
reveal pertinent details regarding the locations of non-conducting PMMA cylinder-induced void
fraction. The visual outcomes of Tikhonov and Elastic Net regularization exhibit similarities to those of
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the INN models. In contrast, the CNN model yields a smoother prediction owing to the convolution
operation inherent in its architecture. However, the CNN model wrongly predicts the presence
of void fraction in regions characterized by high conductivity, as visible in the results of Sample
1. We believe that this occurs due to CNN’s inherent emphasis on learning the local patterns in the
image. However, for our specific inverse problem, understanding the global relationship between the
bubble distribution and conducting liquid using a fully connected network-based INN acts as a more
suitable choice. Furthermore, CNNs are inherently tailored for image processing, while INNs are data
agnostic and adaptable to diverse data types. Importantly, INNs are invertible in its design, a property

that CNNs lack.
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Figure 5. Comparison of the reconstruction quality of the conductivity distribution for the INN-Glow
model after varying the simulation parameters such as distance from the liquid metal d and the number
of sensors M.

5.4.2. Effect of the Sensor Distance and Number of Sensors

We explored the impact of varying the distance of sensors from the liquid metal, 4, and the
number of sensors, M on the quality of the conductivity reconstruction using our INN-Glow model. In
this experiment, we trained three separate instances of the INN-Glow model using simulation data
which is based on varying the distance d and number of sensors M. The first setup is defined with
(d = 5 mm; M = 100), the second setup with (d = 25 mm; M = 100) and the third setup as (d =
25 mm; M = 50). Figure 5 present the results obtained from the three example ground truths within
the validation set. It shows that the region containing the void fraction is smoother as the distance of
the sensors from the liquid metal is increased and the number of sensors is decreased. This outcome
can be attributed to the increased difficulty for the model to solve the inverse problem with a lower
number of sensors and a greater distance of the sensors from the liquid metal. Nevertheless, the model
is effective in reconstructing the arrangement of PMMA cylinder-induced void fraction, also for the
third setup with M = 50 and d = 25 mm.
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Figure 6. The figure shows the reconstruction of the conductivity maps (left column) and the
corresponding bias (middle column) and deviation maps (right column) obtained from the INN-Glow
model at different noise levels with d = 25 mm, M = 50 sensors and y = 100. The INN-Glow model is
trained with magnetic flux density measurements that have no noise in the sensor readings.
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Figure 7. The figure shows the reconstruction of the conductivity maps (left column) and the
corresponding bias (middle column) and deviation maps (right column) obtained from the Tikhonov
model at different noise levels with d = 25 mm, M = 50 sensors and v = 100. The Tikhonov model is
fitted with magnetic flux density measurements that have no noise in the sensor readings.
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5.4.3. Robustness to Noise: INN vs Tikhonov without Noisy Training Data

Based on the method in Section 4.4, we present the results for the reconstruction of the conductivity
distribution, bias, and deviation maps after incorporating noise into the validation set of magnetic flux
density data. The results are reported after fixing the parameter v = 100, for the INN-Glow model. We
also report the results obtained after utilizing the Tikhonov model under the same experimental
setup. Note the training data did not contain noise in the sensor readings.

Conductivity Maps: In Figure 6, the left column shows the INN-Glow model’s robustness in
reconstructing the conductivity distribution, even with the presence of uniform noise & sample Up to £
100nT in the magnetic flux density data. In contrast, the first column of Figure 7 conveys a noteworthy
decline in Tikhonov’s performance to reconstruct conductivity distribution, evident even with 4= 3nT
noise in the sensor data. This discrepancy results from the Tikhonov model’s inherent linearity, making
it highly susceptible to noise perturbations. In contrast, the INN-Glow, with its inherent non-linearity
is resilient to noise, resulting in visually superior performance compared to Tikhonov.

Bias and Deviation Maps: The middle column in Figure 6 and Figure 7 illustrates bias maps for
INN-Glow and Tikhonov, respectively. The results show that the Tikhonov model has a high bias,
indicating a higher instability in its conductivity predictions when exposed to varying noise within the
same noise value range. In contrast, the INN-Glow model exhibits minimal bias and has a high level of
robustness for reconstructing conductivity maps with the presence of noise up to + 1001 T in the sensor
readings. The right column in Figure 6 and Figure 7 shows the deviation maps for INN-Glow and
Tikhonov, respectively. The per-pixel standard deviation of the conductivity maps obtained from the
Tikhonov model (see color bars of the deviation maps) linearly increases from noise level + 1nT to =+
1uT. On the contrary, the INN-Glow model shows resilience with consistently low per-pixel deviation,
that only rises after sensor readings are perturbed with & 100nT noise level. These results convey that
Tikhonov model, due to its linearity, is markedly more susceptible to noise than the INN-Glow model.

5.4.4. Robustness to Noise: INN vs Tikhonov with Noisy Training Data

In this section, we compare the results obtained from INN-Glow and Tikhonov models after
the noise levels of + 3nT and £ 50nT were added to the sensor measurements during training. The
parameter 7 is set at 100, and we show the reconstructed conductivity distribution, bias, and deviation
maps at varying level of noise during testing.

Conductivity Maps: The left column of Figure 8 and Figure 10 shows the reconstruction of the
conductivity maps obtained from the INN-Glow model trained with £+ 3nT and £ 50nT noise in
the training data, respectively. Additionally, the left column of Figure 9 and Figure 11 shows the
reconstruction of the conductivity maps for the Tikhonov model at + 3nT and £ 50nT noise in
the training data, respectively. It is evident that for £ 3nT noise in training data, the INN-Glow
model exhibit robustness to predict the void fraction up to & 50nT noise in the validation example,
while the Tikhonov model precisely reconstructs conductivity up to & 10nT noise in the validation
example. However with + 50nT noise in training data, the reconstruction of the conductivity
distribution from both the Tikhonov and INN-Glow model are robust until £ 100nT noise in the
validation example.

Bias and Deviation Maps: The middle and right columns of Figure 8 and Figure 10 show the bias
and deviation maps obtained from the INN-Glow model at & 3nT and £ 50nT noise in the training
data, respectively, while the middle and right columns in Figure 9 and Figure 11 display the bias and
deviation maps for the Tikhonov model. The results for £ 50nT noise in the training data reveals that
until = 100nT noise in validation example, the Tikhonov model has lower bias and deviation than the
INN-Glow model. With the presence of similar noise level in both training and validation data, a linear
model like Tikhonov typically has a low bias while models like INN-Glow can produce higher bias
due to its inherent non-linearity. However, both the INN-Glow and Tikhonov models exhibit high bias
and deviation at & 500nT and £ 1uT noise levels in the validation example.
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reconstruction of the conductivity maps (left column) and the

corresponding bias (middle column) and deviation maps (right column) obtained from the INN-Glow

model at different noise levels with d = 25 mm, M = 50 sensors and v = 100. The INN-Glow model is
trained with magnetic flux density measurements that have + 31T uniformly distributed noise in the
sensor readings.
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Figure 9. The figure shows the reconstruction of the conductivity maps (left column) and the
corresponding bias (middle column) and deviation maps (right column) obtained from the Tikhonov
model at different noise levels with d = 25 mm, M = 50 sensors and y = 100. The Tikhonov model is
fitted with magnetic flux density measurements that have &+ 31T uniformly distributed noise in the
sensor readings.


https://doi.org/10.20944/preprints202401.0839.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 January 2024

doi:10.20944/preprints202401.0839.v1

Ground truth

21 of 31

Prediction (no noise)

T4 £ 4 w0
= i
P 2 - 08 P 2 08
- 06 3 2 06 3
c 0 04 S 20 0.4 S
5 = 5
° 1<}
8 -2 - 02 g -2 02
? 00 ? 00
>4 >_4
-8 4 0 4 8 -8 4 0 4 8
x-coordinates [cm] Xx-coordinates [cm]
Prediction (with noise) Bias Map Deviation Map
£ — e E° o  E
5 S S
o 2 L w 2 01 o S
= & oy 5 ‘N 3
c £ 0 S £ 0 ®8 £ oS
~ R, 0w B-2 o B 3
g . w 3, w g
> - >
4g ) 0 2 8 -8 “a 0 2 8 s 2 0 2 8
x-coordinates [cm] x-coordinates [cm] x-coordinates [cm]
T4 w E 4 o E
p= S &,
w 2 o8 P 2 01 P
- £ 06 5 4 0w &
c 2o WS 20 -
™ g g w2
S -2 02 S -2 S
8 w9, w2 9
> - > - >
4 a 0 " 8 —8 4 0 4 8 —8 4 [ 2 8
x-coordinates [cm] x-coordinates [cm] x-coordinates [cm]
£ 4 w E ! o E 4
S S S
‘n 2 L n 2 01 o 2 015 §
- & 0. 2 o S =
c £ wt 20 g 20 0108
- - 5 ES) Q
n E _2 02 § -2 =-0.1 -"é -2 005 Q)
e 00 i 4 -02 “.; 4 0.00
> - - =
473 " ) 7 8 “8 4 0 4 8 ) 24 0 4 8
x-coordinates [cm] x-coordinates [cm] X-coordinates [cm]
4 w E 4 2 E
& w A =
o 2 8 w 2 01 s s
= 8 g g ]
c ® 3 ® ¢ w@ ® 03
S £ °© wb £ 8 £ o102
= 5 - S 3
S w 9 w9
- ) >—4 >
i 4 ) 2 8 "8 “a 0 4 8 ar 4 0 2 8
x-coordinates [cm] x-coordinates [cm] x-coordinates [cm]
£ 4 oo EA w E
S
A 2 0s p ) o o 5
3 06 = n 2 S
c ® 9 T © ¢ 0w 8 ®© 010.8
o = 0a® £ @ £ S
n % 5 -, g - 01 g 005§
3 — wo %, w0 9
- - >
>4 4 ) 2 8 jar 4 0 2 8 jr “a 0 2 8
x-coordinates [cm] x-coordinates [cm] x-coordinates [cm]
£ 4 w E 4 0w E
5 S 5
= 5 08 =2 " <
\.n Py 01 "
‘e £ oy % 4 = %
c go we 20 vy 2 003
= w  B-2 o B o
e 5 2
2 00 9 N 02 g
3 -
47g 2 0 2 8 -8 4 0 4 8 8 “a 8

x-coordinates [cm]

x-coordinates [cm]

x-coordinates [cm]

s

Deviation

°

4

Bias
y-coordinates [cm]

-8 4 0 4 8
x-coordinates [cm]

B | R | 10 £
o =
= 2 ™ 08 =
= g o g
c 2 65 B
o 2 0 s £
S % = 04 5
wn 8_2 - 02 g
v u 00 e
>_4 >
-8 -4 0 4 8
X-coordinates [cm]
£ . o E
= n 2
o 2 i = 08 m
9 w6y B
= ®© g ‘5 ®
3 £ m = 1- b £
— B _m L 2
g-2 - . 02 ]
e | 00 e
>_4 >
-8 -4 0 4 8

x-coordinates [cm]

x-coordinates [cm]

€

S

m <
o £ s

° [

S Q

o

9 0

>—4

-8 -4 0 4 8

x-coordinates [cm]

Figure 10. The figure shows the reconstruction of the conductivity maps (left column) and the

corresponding bias (middle column) and deviation maps (right column) obtained from the INN-Glow
model at different noise levels with d = 25 mm, M = 50 sensors and 7y = 100. The INN-Glow model is
trained with magnetic flux density measurements that have 4= 50nT uniformly distributed noise in the

sensor readings.
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Figure 11. The figure shows the reconstruction of the conductivity maps (left column) and the
corresponding bias (middle column) and deviation Maps (right column) obtained from the Tikhonov
model at different noise levels with d = 25 mm, M = 50 sensors and ¢ = 100. The Tikhonov model is
fitted with magnetic flux density measurements that has &= 50nT uniformly distributed noise in the
sensor readings.
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5.4.5. Robustness to Noise: Summary

To summarize, the results from Section 5.4.3 and Section 5.4.4 show that the INN-Glow model
performs better than the Tikhonov model, if trained without noise and tested with noise in sensor
measurements. This finding holds for a large range of noise levels. However, if the noise level is
known during model training, Tikhonov model performs as good as our INN model for reconstructing
conductivity maps with lower bias and deviation for the reconstruction. Therefore, for the future
experimental setups, if the noise level is not known or if the noise is varying based on the properties
of the sensor measurements or further external influences, we can perform INN-Glow training
without incorporating noise and then utilize the trained INN-Glow model to precisely reconstruct
the conductivity maps in the presence of noise in sensor readings, even if the noise level changes

significantly.
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Figure 12. The figure shows the bias and deviation maps for INN-Glow and Tikhonov models after
varying the parameter -y. The results are for the validation ground truth example in Figure 6. We used
the noise range 4= 1001 T in the sensor data, and no noise was added during the training.

5.4.6. Effect of Number of Uniform Noise Samples

We conducted a parameter study to analyze the significance of the number of uniform noise
samples 7y on the bias and deviation computation for reconstructing the conductivity maps. For this
experiment, we fixed the noise level of = 100nT, and the results are presented in Figure 12, for vy at 10,
100, and 1000 samples. It is apparent that -y has a pronounced effect on the Tikhonov model, reducing
bias more significantly compared to the INN-Glow model when  is higher. Furthermore, there is less
effect of varying < on the deviation maps for both models. The results affirm that an increase in the 7y
value tends to reduce bias, but fixing a very high value of y may result in substantial computational
requirements.
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Figure 13. The figure shows the results after random sampling from the latent space zg;1, of the
INN-Glow model. The bottom row shows examples of the reconstructed conductivity distribution after
Varying zg;mpe- The model is trained with the magnetic flux density measurements consisting of no
noise in training and validation data and simulation parameters are d = 5 mm, M = 100 sensors.

5.4.7. Random Sampling from Latent Space

We analyzed the influence of random sampling from the normally distributed latent space zgpie
on the INN model’s robustness for reconstructing the conductivity distribution. We sampled the latent
space Zgaple multiple times, and alongside the magnetic flux density measurements y,,,, ., we passed
[zsmple, Ysampl o) to the INN-Glow model for the reconstruction of the conductivity distribution. This
sampling procedure was repeated 100 times, and we computed bias and deviation maps following
the similar protocol established in previous experiments. The results, illustrated in Figure 13 for the
example validation ground truth show that random sampling from the latent space zgp;. causes
minimal bias and deviation on the quality of the reconstruction of the conductivity distribution. This
observation is evident in the three examples of the predicted conductivity distributions as shown in
Figures 13 d)-f) from three different latent zy;;,p,;, vectors and low bias and deviation scores as shown
in Figures 13 b)-c), respectively.

5.5. Quantitative Results

In this section, we provide quantitative results for a thorough evaluation of the proposed models
for solving the inverse problem. We discuss key performance metrics, such as the Random Error
Diffusion, average bias, and average deviation scores, to assess each of the evaluated model’s quality
of the reconstructing conductivity distribution.
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Figure 14. The validation loss curves of multiple instances of the INN-Glow models with varying
numbers of coupling blocks, denoted as k and under varying values of the parameters d and M.

5.5.1. Effect of Number of Coupling Blocks on Validation Loss

Figure 14 illustrates the impact of the number of coupling blocks k of the INN-Glow model on
the convergence of validation loss. We stop the model training when the validation loss begins to
increase. The loss curves reveal that a single coupling block leads to underfitting, while higher number
of blocks may result in overfitting without the stoppage of the training iterations. Figures 14 a)-c) show
that the configuration d = 25 mm and M = 100 has higher validation loss compared to the setup with
d = 5mm and M = 100 due to reduced information in magnetic flux density measurements with a
greater sensor distance from the liquid metal. Additionally, the configuration with d = 25 mm and
M = 50 sensors further degrades information, leading to much higher loss while solving the inverse
problem. Despite the inferior loss convergence, Figure 5 demonstrated the INN-Glow model’s ability to
learn the location of void fraction for the configuration with d = 25 mm and M = 50 sensors. Notably,
increasing the number of coupling blocks beyond k = 3 does not substantially reduce validation loss,
as the loss scores at the last epoch before the training stoppage as shown in Figure 14 d) reveals.

Table 3. Averaged Log-Likelihood scores based on Random Error Diffusion from the validation ground
truth samples. The simulation parameters are fixed at d = 5 mm and M = 100 sensors.

| Model | INN-Glow | INN-Glow (MSE) | INN-ReaINVP | Tikhonov | ElasticNet | CNN |
| n=100 | -662.64 | -1658.68 | -910.38 | -1907.59 | -129145 | -258.37 |
| n=1000 | -2000.93 | -5199.36 | -1040.56 | -2241.14 | -304236 | -975.01 |
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Figure 15. The figure shows the distribution of log-likelihood scores for all the validation ground truth
conductivity samples with respect to the probability distribution of binary ensemble maps via random
error diffusion. The left and right figures are for ensemble count of 100 and 1000, respectively.

5.5.2. Random Error Diffusion

We compared the results obtained from the Random Error Diffusion metric presented in
Section 4.3 for the six different models to solve the inverse problem. The results in Figure 15 shows the
log-likelihood distribution of all the 2000 validation ground truth samples for varying counts of binary
ensembles 7. It can be seen that the log-likelihoods scores are centered near zero irrespective of the
model, and the ensemble count n. This outcome can also be verified by the averaged log-likelihood
scores in Table 3. Figure 15 and Table 3 shows that for both n = 100 and 1000, the INN-Glow and
INN-RealNVP models performs better than the linear models i.e., Tikhonov and Elastic Net as well
as INN-Glow (MSE) as they achieve higher average log-likelihoods. However, the CNN model has
a higher log-likelihood score than all other evaluated models. Due to the convolution operation, the
CNN model predicts blurred images. The blurring obscures fine details and feature edges and makes
the image appear more uniform and less detailed, similar to a binary map. Hence, Random Error
Diffusion estimates higher likelihoods that these blurred images are being sampled from the density of
binary ensembles.

Table 4. Average bias and deviation scores with respect to all the validation ground truth at d = 25 mm,
M = 50 sensors and < = 100 for different noise levels. The model is INN-Glow, and the training data is
without the presence of noise in the sensor readings.

Metric Model InT 3nT 5nT 10nT | 50nT | 100nT | 500nT | 1uT
Deviation INN-Glow | 0.015 | 0.016 | 0.016 | 0.018 | 0.043 | 0.073 1.648 3.144
Tikhonov 0.069 | 0.206 | 0.344 | 0.687 | 3.437 | 6.869 34.337 | 68.679
Bias (min) INN-Glow | -0.160 | -0.160 | -0.160 | -0.161 | -0.173 | -0.233 -3.778 -9.937
Tikhonov -0.09 -0.315 | -0.483 | -1.185 | -5.050 | -10.157 | -57.615 | -107.509
Bias (max) INN-Glow | 0.227 0.227 0.227 0.227 0.229 0.273 5.280 10.670
Tikhonov 0.099 | 0290 | 0.485 | 1.272 | 5.123 | 10.093 | 53.572 | 101.363

5.5.3. Bias and Deviation

Table 4 presents quantitative results related to bias and deviation maps for INN-Glow and
Tikhonov models. To compute the deviation score, we took the average of the deviation maps across
all the 2000 validation samples for different noise levels. Additionally, for computing both bias (min)
and bias (max), we determine the minimum and maximum bias scores from all the 2000 validation
bias maps. The results in Table 4 indicate that the INN-Glow model consistently exhibits much lower
deviation and bias scores compared to the Tikhonov model. This underscores the INN-Glow model’s
stability and robustness in reconstructing conductivity maps in the presence of noise in sensor readings
during testing, when there is no noise during training. Conversely, the Tikhonov model is less reliable,
especially when subjected to noise beyond + 101 T in sensor readings.


https://doi.org/10.20944/preprints202401.0839.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 January 2024 doi:10.20944/preprints202401.0839.v1

27 of 31

Table 5. Average bias and deviation scores with respect to all the validation ground truth geometries
atd = 25 mm, M = 50 sensors, noise level fixed at = 100nT and varying <. The results are from the
INN-Glow model and the training data is without the presence of noise in the sensor readings.

Metric Model ¥=10 | ¥=100 | v =1000
INN-Glow | 0.070 0.073 0.073
Tikhonov 6.93 6.87 6.92
INN-Glow | -0.897 -0.233 -0.183
Tikhonov -33.274 | -10.157 | -3.027
INN-Glow | 0.856 0.273 0.316
Tikhonov 28.074 10.093 2.949

Deviation

Bias (min)

Bias (max)

5.5.4. Number of Uniform Noise Samples

Table 5 displays the average deviation and bias scores for varying values of v. The results
indicate that a higher number of noise samplings lead to reduced bias, but a minimal change in the
deviation scores, which is consistent with our findings in Figure 12. Notably, the Tikhonov model
shows a significant reduction in bias scores, suggesting its sensitivity to the choice of . Similarly,
the INN-Glow model’s sensitivity to - is evident, although the impact is less pronounced given its
already low bias scores. Given the results in Table 5, we fixed v = 100 for our experiments as this value
provides a good balance between the computational requirements and the model’s performance.

6. Conclusion

In this study, we introduced Invertible Neural Networks (INNs) for the reconstruction of
conductivity distribution from external magnetic field measurements under simulation conditions
similar to those encountered in a water electrolyzer. Our results highlight the robustness of the INN
model, showcasing its ability to learn conductivity distributions in the face of the inherently ill-posed
nature of the problem and the presence of noise in magnetic flux density measurements. In contrast,
linear models like Tikhonov exhibit high susceptibility to noise, due to which the reconstructions from
such models are unreliable beyond a certain noise level in sensor readings of the test data, especially
when the model is fitted with sensor data containing no noise. The extensive evaluation, involving bias,
deviation and random error diffusion metrics, underscore the superior performance of the INN model
in approximating ground truth conductivity maps compared to the Tikhonov model. Additionally, our
findings suggest that INNs can efficiently reconstruct conductivity maps even with limited number
of sensors, positioned at distances exceeding 20 mm from the conducting plate. Our INN model’s
real-time prediction capabilities have practical applications, especially in estimating the void fraction
distributions within actual electrolysis cells. This positions INNs as a promising model for localizing
and estimating bubble, respectively void fraction locations in current-conducting liquids. In future, we
will focus on evaluating INNs for bubble and void fraction detection within experimental electrolysis
setups and also test the findings from this work in other inverse problems of applied physics.
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